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SUMMARY

The phylum Microspora is ancient and diverse and affects a wide range of hosts. There is unusually high use of vertical

transmission and this has significant consequences for transmission and pathogenicity. Vertical transmission is associated

with low pathogenesis but nevertheless can have significant impact through associated traits such as sex ratio distortion.

The majority of microsporidia have mixed transmission cycles and it is not clear whether they are able to modify their

phenotype according to environmental circumstances. There is a great need to understand the mechanisms controlling

transmission and one of the first challenges for the genomics era is to find genes associated with life cycle stages. Similarly

we cannot currently predict the ease with which these parasites might switch between host groups. Phylogenetic analysis

suggests that there are strong relationships between Microsporidia and their hosts. However closer typing of parasite

isolates, in relation to host range and disease phenotype, is required to assess future environmental risk from these

pathogens.
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THE PHYLUM MICROSPORA: AN ANCIENT AND

DIVERSE GROUP

Microsporidia are very common parasites which are

widespread among animal hosts. They are best

known as parasites of insects but are not restricted to

this host group and are in fact found across a vast

range of host taxa including, protists, bryozoa, ne-

matodes, oligochaete worms, insects, fish and mam-

mals including humans (Becnel and Andreadis,

2001; Canning et al. 2002; Lom and Nilsen, 2003;

Didier, 2005; Morris et al. 2005; Fokin et al. 2008;

Troemel et al. 2008). This widespread distribution in

nature is consistent with an ancient origin for the

phylumMicrospora. Phylogenetic analysis places the

group as early branching eukaryotes. Microsporidia

have 16S rather than 18S ribosomes and lack 5.8S

ribosomal RNA and on this basis were originally

considered to be primitive eukaryotes (Curgy et al.

1980). Although this assertion was initially sup-

ported by molecular phylogeny of SSUrDNA

(Vossbrink et al. 1987) subsequent analysis, based

on multiple genes, placed the group closer to the

fungi (Hirt et al. 1999; Keeling et al. 2000; James

et al. 2006). Recently Lee et al. (2008) compared both

the identity and synteny of multiple loci across the

genomes of microsporidian and fungal species and

concluded that the Microspora are highly derived

fungi descended from a zygomycete ancestor.

The diversity of the phylum indicated by phylo-

genetic analysis is currently based on analysis of

SSUrDNA with approximately 200 sequences

available from microsporidia infecting a wide range

of hosts. Reconstruction of the phylogeny (Fig. 1)

indicates the presence of five major, deep-rooted

clades each of which shows considerable divergence

(Terry et al. 2004; Vossbrinck and Debrunner-

Vossbrinck, 2005). The level of variation in riboso-

mal RNA sequence across the phylum is very high

(Keeling and Fast, 2002) and analysis of sequence

divergence reveals major insertions and deletions

within each clade. Within each major lineage SSU

rRNA is sufficiently polymorphic to discriminate

between microsporidian genera, as for example in

clade IV where the mammalian infective genus

Encephalitozoon is very clearly separated from related

genera such as Ordospora, Enterocytozoon and

Vitaforma and Endoreticulatus and Nosema (Fig. 1).

Similarly, clear separation of taxa is seen within

Clade I which mainly contains parasites of Diptera

(Vossbrinck et al. 2004) and Clade III, which is

dominated by species infecting fish (Lom andNilsen,

2003).

The high divergence apparent from phylogenetic

analysis is echoed in the size and structure of

microsporidian genomes. Encephalitozoon cuniculi,

the first microsporidian parasite to be sequenced,

famously has the smallest genome of any eukaryote

with eleven chromosomes of 2–300 kb and a total

genome size of 2.9 Mb (Katinka et al. 2001). There is

evidence that the reduced genome size is associated
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with loss of metabolic function. E. cuniculi has only

1,997 predicted proteins and lacks many enzymes,

such as those involved in the tricarboxylic acid

cycle, or in de novo synthesis of amino acids, purines

and pyrimidines. Encephalitozoon is not, however,

a typical representative of the phylum and other

microsporidia have substantially larger genome

sizes. The mammal-infective species Enterocytozoon

bieneusi has a predicted genome size of 6 Mb pre-

dicted to encode 3,800 genes (Akiyoshi et al. 2009),

Paranosema locusta (synonymous with Antonospora/

Nosema locusta) is estimated at 5.4 Mb (Streett,

1984). The genome sizes of several parasites from

the Nosema/Vairimorpha clade have been estimated

by pulsed field methodology to be around 10 Mb

(Malone and McIvor, 1993) while Nosema bombycis
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Fig. 1. Microsporidian phylogenetic tree. The tree is based on around 800 bp 800 bp SSU rDNA sequences were

used to reconstruct a phylogenetic tree of 315 microsporidian parasites with 4 species of fungi representing

Chytridiomycota, Zygomycota, Ascomycota as outgroups. MrBayes v 3.1.1 (Huelsenbeck and Ronquist, 2001) was

used to infer these Bayesian analyses over 8,000,000 generations, and nodal support was assessed by posterior

probabilities estimated from the final 75% (60,000) sampled trees.
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at 15.6 Mb (Xu et al. 2006) and Brachiola algerae at

approximately 23 Mb (Belkorchia et al. 2008) have

much larger genomes. One of the fascinating aspects

of microsporidian genomes is their high degree of

compaction. This was first noted in Encephalitozoon

where gene prediction models suggested there

were no introns and many overlapping transcripts

(Katinka et al. 2001). This unusual feature is seen in

other microsporidia with small genomes and may a

be general characteristic of compacted eukaryotic

genomes (Williams et al. 2005). Emerging evidence

indicates that multigene transcripts are not common

among microsporidia with larger genomes

(Belkorchia et al. 2008, Corradi et al. 2008, Gill et al.

2008).

Microsporidia exhibit some morphological traits

that are consistent with their fungal origins, such as

the formation of an intranuclear spindle during

mitosis (Bigliardi et al. 1998) and the chitin-rich wall

of the spore stage: however, their cellular structure is

unusual. There are two basic life-cycle stages, the

proliferative stage, the intracellular meront which

lies directly within the host cell cytoplasm and spore

stage which mediates transmission (Dunn et al.

2001). The meront is adapted to scavenge nutrients

directly from the host cell : it lies directly in the host

cell cytoplasm and thus has direct access to nutrients.

Microsporidia have a vestigial mitochondrial orga-

nelle, or mitosome, which does not have support

oxidative phosphorylation but retains a role in iron

sulphur cluster assembly (Williams et al. 2002,

Goldberg et al. 2008). The parasites scavenge ATP

from the host cell through the activity of nucleotide

transporters (Tsaousis et al. 2008) and close inter-

actions between the meront plasma membrane and

host cell mitochondria may enhance this energy

scavenging (Terry et al. 1997). In species such as

Encephalitozoon, meronts divide within a para-

sitophorous vacuole. Evidence suggests that this

vacuolar membrane is of host origin and, similar to

the vertebrate pathogenToxoplasma gondii, is porous

to small molecules (Ronnebaumer et al. 2008). Inter-

action with mitochondria is preserved and they are

tethered to the vacuolar membrane (Scanlon et al.

2004).

The spore stage is highly adapted for transmission

and has an elaborate structure designed to deliver

the parasite directly into the host cell cytoplasm

(Dissanaike and Canning, 1957; Vavra, 1976). The

nucleus and cytoplasm, which is densely packed

with ribosomes, are enclosed within by multilayered

endosprore and exospore walls. The anterior section

of the spore contains a membranous organelle, the

polaroplast and the hollow coiled polar filament

attached via an anchoring disc to the spore wall

(Sinden and Canning, 1974). Once triggered to

hatch, the spore absorbs water and the polaroplast

swells, increasing pressure in the cell which causes

the polar filament to shoot out to penetrating the host

cell membrane and allowing the sporoplasm to

enter the cytoplasm of the host cell (Undeen and

Vandermeer, 1994; Xu andWeiss, 2008). The spore,

with its tough external wall and specialised ‘injection

mechanism’, appears highly adapted for survival

and dissemination in the extracellular environment

but, in fact, certain spore types are also adapted to

mediate cell to cell transmission within the host

(Iwano and Kurtti, 1995; Terry et al. 1999).

The core life-cycle stages, the meront and spore

found in all microsporidian parasites but both the

structure of these stages and the way the complexity

of the parasite life cycle may vary. For example, the

spore can vary massively in size and structure, i.e.

Bacillidium vesiculoformis produces rod-like spores

12.2r1.3 mm while the mollusc-infective species

Steinhausia mytilovum produces spherical spores

of approximately 1.5 mm in diameter (Sagrista et al.

1998; Morris et al. 2005). The fine structure of the

spore, including the presence of a monokaryotic or

diplokaryotic nucleus, the organisation of endospore

and exospore walls, the morphology of the polaro-

plast and the structure and number of coils in the

polar filament all show many differences (Vavra and

Larsson, 2001). These phenotypic traits have been

the basis for taxonomic classification of the phylum

Microspora, together with information on the life

cycle and on the host species infected. The com-

plexity of the life cycle varies greatly: among the

most straightforward examples is the parasite

Brachiola algerae, (synonymous with Nosema alger-

ae) which was first isolated from mosquitoes, but has

the potential to infect humans. Diplokaryotic mer-

onts divide directly in host cell cytoplasm and enter

disporous sporogony, leading to the production of

a single diplokaryotic spore type. Multiplication of

the parasite is rapid and asynchronous causing severe

disruption of infected muscle cells (Vavra and

Undeen, 1970; Cali et al. 2004). The most complex

life cycle is potentially that ofEharzardia aediswhich

has four different sporulation sequences (Becnel et al.

1989; Johnson et al. 1997).

In terms of alpha taxonomy, approximately 140

genera of microsporidia have been described

(Sprague et al. 1992) on the basis of morphological

data. There are ongoing efforts to resolve the re-

lationships between molecular phylogeny and alpha

taxonomy. These studies suggest that while pheno-

typic data are often support phylogenetic relation-

ships they are insufficient for taxonomic assignment.

An example of this is seen in polyphyletic origins of

parasites assigned to the genus Nosema. Many para-

sites were designated to this genus on the basis of

structural similarity to the type species N. bombycis,

which falls into Clade IV of the phylum, but it is

clear from molecular studies that this phenotype

is also widespread in Clade V. Three branches can

be resolved in clade V one of which contains

Brachiola algerae, originally N. algerae (Vavra and
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Undeen, 1970), together with the crustacean parasite

Fibrillonosema crangonycis (Slothauber-Galbreath

et al. 2004). A second branch contains the orthop-

tera-infective parasites Paranosema locusta, orig-

inally Nosema locusta (Canning, 1953), and

Paranosema whiteii (Soklova et al. 2003, 2005) while

the third branch also contains Nosema-like parasites

infecting bryozoans, designated Pseudonosema, Tri-

chonosema and Bryonosema (Canning et al. 2002).

Although the systematics of phylum Microspora is

under active review, additional sequence data from

new host groups continues to support division of

the phylum into five major clades (Terry et al. 2004;

Vossbrinck and Debrunner-Vossbrinck, 2005),

while integration of morphological and molecular

data adds to the resolution of these lineages.

In conclusion, the phylum Microspora contains a

group of unusual and highly derived fungi that they

have a range of unusual structural adaptations and

high dependency on their hosts. They are highly

diverse with significant differences in their structure,

life cycle, genome organisation and cellular biology.

Their presence as pathogens across all animal taxa is

consistent with ancient origins and makes them an

excellent model to study the host parasite evolution

and transmission.

FROM PASTEUR TO POLLINATORS:

TRANSMISSION AND DISEASE IN BENEFICIAL

INSECTS

The first microsporidian parasite to be described was

Nosema bombycis the causative agent of pebrine

disease in the silkworm Bombyx mori. Pasteur’s ex-

periments noted the presence of ‘corpuscules’ in the

egg, the first description of the parasite linked with

Vertical Transmission (VT) (Pasteur, 1870). The life

cycle of the parasite is described from both in vitro

and in vivo studies and is relatively straightforward

(Ishihara, 1969; Iwano and Ishihara, 1991). In the

silkworm larva, infection begins when spores infect

the midgut epithelium, the diplokaryotic meront

divides directly in the cytoplasm and generates

sporonts which undergo disporoblastic development

to produce spores. Two types of spores are formed,

those with a long polar filament with thirteen coils,

which are destined to transmit the infection between

hosts and those with a short polar filament of only

three coils which are responsible for disseminating

infection from the midgut to muscle and other tis-

sues. The parasite has a mixed transmission strategy

with and disease can be spread horizontally between

larvae during sericulture (Ishihara and Fujiwara,

1965) but can also be transmitted vertically from the

adult silkworm to the egg (Han andWatanabe, 1988).

Infection of larvae is most severe in the first second

and fifth instars and can cause significant mortality in

production systems, but larvae infected in late instars

are likely to progress to adults and transmit the

disease vertically. This mixed strategy both maxi-

mises transmission between individuals in phase of

population growth and enables to shift to next gen-

eration in a discontinuous production system.

The impact of Nosema infection in sericulture is

massive as the profit margin is tied to the number of

cycles of production and repeated crashes can deci-

mate productivity. Serious steps are taken to control

the infection in the industry by trying to eradicate

vertical transmission. Silkworm eggs are produced

centrally by crossing different genetic stocks of

Bombyx. In the initial cross adult females are

screened for the presence of parasites and any eggs

from infected batches are discarded, thus providing

‘sterile ’ material for the regional sericulture industry

(Hatakeyama and Hyasake, 2003; Liu et al. 2004).

Clearly outbreaks do still occur and these could be

due either to vertical transmission through low level

contamination of eggs, below the limit of detection of

current diagnostic methods, or horizontally through

introduction of parasites deposited on Mulberry

leaves by indigenous host species.

There are many unresolved questions about the

diversity and host range of microsporidia causing

pebrine disease. It is uncontroversial that the type

species for the genus Nosema bombycis is responsible

for much of the disease seen in sericulture, but it has

been shown that a number of lepidopteran species

are susceptible to this species (Kashkarova and

Khakhanov, 1980) raising the possibility that re-

servoirs of disease may exist in wild hosts. It has also

been noted that there is genetic diversity among

parasites causing the disease, (Rao et al. 2005, 2007).

The genusNosema is subdivided into two clades, the

‘true Nosemas’, including Nosema bombycis, and the

Vairimorpha clade (Baker et al. 1994). Members of

the Vairimorpha clade have a second developmental

cycle in which haploid octospores are produced

within a sporophorous vesicle (Vavra et al. 2006).

Studies on disease phenotype and the phylogenetic

relationships of silkworm isolates reveal that both the

virulence and the capacity for vertical transmission

may vary and parasites from either of the twoNosema

clades can be responsible for disease (Rao et al. 2005,

2007).

Microsporidian infection is also of concern in

other beneficial insects, particularly pollinator

species. There are three species of high importance

Nosema apis, N. ceranae and N. bombi, all of which

fall into the Nosema/Vairimorpha clade. N. apis has

long been known as a parasite of the honey bee Apis

mellifora (Fantham and Porter, 1912). The parasite is

primarily transmitted horizontally through ingestion

of spores that establish infection in themidgut (Fries,

1989, 1992). The severity of infection clearly varies

but the parasite infects both workers and queens

(Webster et al. 2004) and can cause mortality of adult

bees (Malone and Giacon, 1996) and regression in

the ovaries of queens (Liu, 1992). In social insects,
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such as bees, infection of the queen is critical in

disseminating infection both within the colony and

to new colonies during reproductive swarming

(Czekonska, 2000; Fries andCamazine, 2001). There

is no evidence of transovarial transmission in infected

queens (Webster et al. 2008) but their role in in-

fecting new colonies which might be regarded as a

form of vertical transmission. A second species, N.

ceranae, originally from the Asian honey bee Apis

ceranae (Fries et al. 1996), has recently spread into

Apis mellifera and appears to be more pathogenic

than N. apis (Klee et al. 2007, Paxton et al. 2007).

This parasite has been proposed as a cause of colony

collapse disorder (Higes et al. 2008) but this syn-

drome, which is currently so damaging to honey bee

populations, is likely to have multifactorial origins

(Cox-Foster et al. 2007; Watanabe, 2008).

It is not only the honey bee which is affected by

Nosema parasites since commercially-reared and

wild bumblebees are also affected. N. bombi causus

disseminated infection in the host (Fries et al. 2001)

and is widespread in Bombus spp. (Larsson, 2007).

Experimental studies show that the parasite can be

highly detrimental causing mortality in workers

and almost complete loss reproductive capacity in

infected gynes (Otti and Schmid-Hempel, 2007).

Such high virulence might be deemed to lead to

extinction of the parasite but it seems that parasite

virulence may vary between different bumble bee

species sustaining the parasite in the environment

(Rutrecht and Brown, 2009). There is some evidence

to suggest thatN. bombi is transovarially transmitted

but the importance of this in disease epidemiology is

not fully understood (Rutrecht and Brown, 2007).

The key challenges in microsporidiosis of ben-

eficial insects lie in understanding the role or vertical

and horizontal transmission in relation to disease

pathogenesis. Control of vertical transmission should

focus on screening of reproductive females. This is

well established in the sericulture industry but less

rigorously applied in managed pollinator species.

Control of horizontal transmission currently relies

on the use of antifungal agents such as fumagillin

(Katznelson and Jamieson, 1952; Pajuelo et al. 2008)

which continues to be used despite its potential

genotoxic effects to (Stanimirovic et al. 2007).

Greater understanding of disease epidemiology and

identification of reservoirs of infection are essential to

improve disease management and prevent damaging

spillover into wild populations (Otterstatter and

Thompson, 2008).

MANIPULATING MORTALITY: TRANSMISSION

AND DISEASE IN PEST SPECIES

While in beneficial insect species our focus is on

control of microsporidiosis in pest species the per-

spective is different. The high virulence associated

with some microsporidian infections has long been

cited as a useful trait in biological control. There are

several instances where this has been successfully

employed. Nosema pyracusta is a parasite of the corn

borer (Ostrinia nubilalis). Transovarial transmission

is critical to epidemiology of this parasite as Ostrinia

has discontinuous generations and overwinters as a

fifth instar larva. The parasite is found in the larval

gonad and infects the developing oocysts produced

by the resulting adult (Sajap and Lewis, 1988). The

parasite has significant effects on the development

and survival of larvae and on the reproductive

success of adults (Sajap and Lewis, 1992) and its

influence is maintained by further horizontal trans-

mission between hosts (Andreadis, 1987). The role of

N. pyracusta in biocontrol is well established (Lewis

et al. 2009) but the use of microsporidia more widely

has also been considered for many other pest species.

Among the Lepidoptera Endoreticulatus schubergi,

N. lymantriae and Vairimorpha disparis have been

proposed for control of the Gypsy moth Lymantria

dispar (Goetz and Hoch, 2008, 2009), Vairimorpha

ephestiae for the wax moth Galleria mellonella

(Vorontsova et al. 2004) andVairimorpha necatrix for

the tomato moth Lacanobia oleracea (Down et al.

2004). Paranosema locusta used for control of locust

and other orthopteran pests (Lomer et al. 2001;

Tounou et al. 2008) and Thelohania solenopsae has

been proposed for control of the fire ant Solenopsis

invicta (Fuxa et al. 2005).

In employing microsporidia for biological control

one clear aim is to maximize the impact of the para-

site on the target population. Although efficient

horizontal transmission is an important character-

istic here, in the majority of the cases cited vertical

transmission is critical for the introduction and

maintenance of the parasite in the environment and

for perpetuation of disease across generations of

hosts (Sajap and Lewis, 1988; Raina et al. 1995;

Briano et al. 1996; Goetz and Hoch, 2008). In bio-

control it is also important to ensure that the control

agent does not have detrimental effects on non-target

species. Solter, Maddox andMcManus (1997) tested

the host range of microsporidia isolated from

European populations of the Gypsy moth in a range

of American lepidopteran species and found that

the majority of isolates had broad host specificity

when spores were fed directly to larvae. Similarly

Microsporidia isolated from US hosts were infective

to the Gypsy moth (Solter and Maddox, 1998).

However, although direct feeding resulted in trans-

mission, few isolates were sustained by horizontal

transmission in non-native hosts, implying that

artificial infection experiments could not be extra-

polated to evaluate environmental transmission risks

(Solter and Maddox, 1998; Solter, 2006). Para-

nosema locusta, used for control of locusts, is now

known to occur in over 120 species of orthoptera

(Lange, 2005), so consideration of impacts on non-

target species is clearly appropriate.
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PARASITES WHICH DICTATE HOST SEX:

TRANSMISSION AND REPRODUCTIVE

MANIPULATION

In some cases vertical transmission has been as-

sociated with reproductive manipulation of the host

(Dunn and Smith, 2001). Bacterial endosimbionts

are known to induce a range of such manipulations

including cytoplasmic incompatibility, partheno-

genesis and sex ratio distortion (SRD) (Duron et al.

2008) but the microsporidia are the only group of

eukaryotes in which SRD has been unequivocally

demonstrated (Dunn, Terry and Smith, 2001). The

first SRD microsporidian described was Nosema

granulosis, a parasite which is closely related to

N. bombycis but infects the amphipod crustacean

Gammarus duebeni. N. granulosis had a high rate of

transovarial transmission (91%) and was estimated to

feminise 66% of offspring leading to a highly female

biased sex ratio (72–82%). The parasite had no im-

pact on the survival of offspring although infected

females were smaller than uninfected females (Terry

et al. 1998). The parasite life cycle, like that of

N. bombycis, consists of a single cycle of meronts

producing diplokaryotic spores, but the spore is

unusual in having a short polar filament, similar to

autoinfection spores (Terry et al. 1999). On closer

examination, many adaptations can be found for

efficient transovarial transmission. In the adult

female host, parasites are at low density and via EM

were concentrated in the follicle cells surrounding

the ovary. The parasite life cycle appears to be co-

ordinated by host endocrine cues and sporulation is

triggered in synchrony with the reproductive cycle

producing spores which germinate to infect the oo-

cytes (Terry et al. 1997). The embryo has a relatively

low burden of parasites and these are associated with

host mitochondria and microtubules and segregate

to a subset of cells during embryogenesis (Terry et al.

1999a ; Weedall et al. 2006). The molecular mech-

anism of feminisation is currently unclear but it is

likely that the parasite causes endocrine interference.

In crustaceans, sexual differentiation controlled by

the androgenic gland which forms and a masculi-

nising hormone (AGH). Studies have shown that this

gland does not mature in infected females and inter-

sexes and no hormone is produced (Rodgers-Gray

et al. 2004).

Although N. granulosis was the first feminising

microsporidian to be studied there is accumulating

evidence for a relationship between vertical trans-

mission and sex ratio distortion in amphipod hosts.

Terry et al. (2004) surveyed 17 amphipod species

discovering eight species of microsporidia four of

which were associated with SRD in one or more

hosts. Supportive evidence for sex ratio distortion

has come from breeding experiments which show

that shown that Dictyocoela duebenum feminises

Gammarus duebeni (Dunn et al. 2006) and from field

studies which indicate an association between sex

ratio distortion and infection with Fibrillonosema

crangonycis in Crangonyx pseudogracilis (Slothauber-

Galbreath et al. 2004), for two species of Dictyocoela

in Gammarus roeseli (Haine et al. 2004) and for a

novel, clade V, microsporidian in Corophium volu-

tatur (Mautner et al. 2007). These data suggest the

SRD phenotype may be widespread but it is notable

that it occurs in amphipods and not in insects where

the mechanism of sexual differentiation is different.

Nosema granulosis and other SRD microsporidia

have very efficient vertical transmission but the

question arises as to whether they could sustain

themselves in the population with no horizontal

transmission. The low burden and limited disease

pathogenesis would limit the detrimental effects of

the infection, but in fact there is evidence that the

parasite may be able to offset these negative effects by

conferring survival advantage to infected offspring

(Haine et al. 2007). It has also been suggested that a

bias in the sex ratio towards females enhances the

growth rate of infected host populations and that

this might confer advantages in colonisation of new

habitats (Slothauber-Galbreath et al. 2004, 2009).

LIFE CYCLE COMPLEXITY AND THE ROLE OF

VERTICAL TRANSMISSION

The life cycles of microsporidian parasites can be

quite complex and elaborate involving several

sporulation cycles in multiple hosts. Complex life

cycles are common among the Amblyosporidae

which form clade I of the phylum Microspora and

largely infect dipteran host species, including mos-

quitoes (Vossbrinck et al. 2004). With Edharzardia

aedis, mosquito larvae are infected by ingesting un-

inucleate spores, which penetrate the midgut and

undergo shizogony before differentiating into ga-

metes, which fuse to produce binucleate spores

within four days of infection. These binucleate

spores are responsible for disseminating the infection

from the midgut but infection is limited and does not

kill the developing host. When the host reaches the

adult stage and takes a blood meal the parasite is

stimulated to produce a second binucleate spore that

is responsible for transovarial transmission to the

next generation of larvae. In these larvae there a

two separate sporulation sequences, one leading to

the formation of meiospores, the second leading

to the production of large numbers of uninucleate

spores (Becnel et al. 1989; Johnson et al. 1997). In

this host-parasite system there is a strong relation-

ship between infection route and disease: larvae

that have acquired the infection transovarially die

while those that are horizontally infected survive. In

several species there is an alternation of hosts with

the uninucleate spore stages being found within a

copepod rather than in the mosquito (Andreadis,

1985) parasites, such as Amblyospora connecticus in
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the saltmarsh mosquito, Aedes cantator (Andreadis,

1990), Amblyospora albifasciati in the neotropical

mosquito, Aedes albifasciatus (Micieli et al. 2000), or

Amblyospora camposi in the bromeliad-inhabiting

mosquito,Culex renatoi (Micieli et al. 2007). In these

systems the vertical transmission cycle is constrained

and occurs in a single species of mosquito but a

single copepod species can harbour multiple micro-

sporidian parasites.

In the Amblyosporidae we see both vertical and

horizontal cycles employed to ensure transmission

of parasites between alternate hosts. It is possible

that there are many other examples of complex life

cycles across the phylum Microspora, as there are

many cases where our understanding of transmission

is very basic. With the advent of improved molecular

systematics, it is now possible to match parasite

sequences retrieved from different hosts allowing

reconstruction of life cycles. For example, a recent

analysis of Pleistophora sequences revealed likely

overlap between P. mulleri, found in the amphipod

Gammarus duebeni and P. typicalis from the cottoid

fish Myoxocephalus scorpius leading to the proposal

that these represent alternate hosts (Ironside et al.

2008).

ADAPTIVE TRANSMISSION STRATEGIES:

GENETICS VS ENVIRONMENTAL CUES

A survey of the phylum Microspora shows that both

vertical and horizontal transmission are extensively

used by microsporidian parasites (refer to Fig. 1).

Terry et al. (2004) proposed that vertical trans-

mission was an ancestral trait which occurred

throughout the phylum. While horizontal trans-

mission is well reported, vertical transmission re-

quires screening of reproductive tissue and eggs so is

likely to be underestimated. In fact, in addition to the

well studied examples discussed above we find evi-

dence of vertical transmission strategies in many host

taxa. The mammal-infective Encephalitozoon species

are zoonotic parasites horizontally transmitted be-

tween hosts (Didier, 2005), but there are reports that

transplacental transmission can occur in some host

species (Baneaux and Pognan, 2003; Webster et al.

2008). A number of microsporidia infecting fish are

also thought to be vertically transmitted including

Oviepleistophora ovale in the golden shiner Notemi-

gonus crysoleucas (Phelps and Goodwin, 2008) and

Pseudoloma neurophilia in the zebrafish, Danio rerio

(Kent and Bishop-Stewart, 2003). Screening of the

aquatic snail Bulinus globosus also revealed the pres-

ence of Microsporidia in the gonad and egg sacs

(McClymont et al. 2005) while a parasite morpho-

logically described as Steinhausia sp. in the marine

bivalve Eurhomalea lenticularis was transoverially

transmitted to 88% of oocytes (Olivares, 2005).

The majority of Microsporidia use a combination

of vertical and horizontal transmission in their life

cycles. This presents a conflict for the parasite as

adaptations that favour the horizontal route would be

very different from those that supported vertical

transmission (Dunn and Smith, 2001). Horizontal

transmission would be enhanced by the production

and dissemination of large numbers of infective

stages and this is likely to be associated with severe

pathogenesis or with the death of infected hosts. In

contrast, vertical transmission would favour low

parasite burden to ensure the hosts survival and re-

productive manipulation to increase the frequency of

transmission to the next generation. Strong selective

pressures might, for example lead to parasites with

high or sole VT strategies which had lost the genes

required for horizontal transmission. Similarly

parasites could be selected for high horizontal

transmission. There is evidence to suggest that this

might happen: for example, N. granulosis is a trans-

ovarially transmitted feminising parasite and arti-

ficial infection experiments show that horizontal

transmission is inefficient (Dunn et al. 1993) and the

non-random association with host mitochondrial

haplotypes argues that it is little horizontal trans-

mission in the field (Ironside et al. 2003). On the

other hand, Vairimorpha disparis, proposed for con-

trol of the Gypsy moth, has no vertical transmission

and spores can survive through the winter in cada-

vers and horizontal transmission among larvae is

efficient (Goertz and Hoch, 2008). The majority of

microsporidian species use both routes and must

therefore have complex mechanisms to control the

phenotype.

One possibility is that the phenotype is primarily

determined by host and parasite genetic factors, in

which case we would predict fixed relationships be-

tween parasite strain diversity and transmission

route. An alternative hypothesis is that control of the

parasite phenotype and life cycle could be largely

epigenetic and the relevant phenotype would be in-

duced by environmental conditions. These might

include external signals such as temperature, pH and

salinity or host-related factors such as endocrine

signals, the immune response, and nutritional or

physiological status. It is important to understand

the relative importance of genetic and environmental

factors as this has significant implications for disease

ecology.

It is currently difficult to discriminate between

‘genetic’ and ‘environmental ’ effects but evidence

from experimental studies gives support to both.

There clearly are intrinsic differences between

microsporidian isolates as revealed by comparison of

disease phenotype in a single host, such as the silk-

worm (Rao et al. 2007) or the Gypsy moth (Solter

andMaddox, 1998; Goetz andHoch, 2009). There is

also evidence that the parasite phenotype varies ac-

cording to host species (Solter, 1997). In terms of

environmental factors, Vizoso and Ebert (2005)

found evidence of phenotypic plasticity in studies of

Transmission in Microsporidia 1907

https://doi.org/10.1017/S0031182009991818 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182009991818


the infection route of Octosporea bayeri in Daphnia

magna. This research demonstrated a trade-off be-

tween spore production (HT trait) and the pro-

duction of infected host offspring (VT trait). There is

also evidence that temperature affects the dynamics

of infection and the disease phenotype: for example,

N. ceranae can complete its life cycle over a much

wider temperature range (25–37 xC) than N. apis

(Martin-Fernandez et al. 2009).

ECOLOGICAL AND EVOLUTIONARY

INTERACTIONS AND EMERGING DISEASE RISK

Given the widespread use of VT among micro-

sporidian parasites it is interesting to question to

whether it influences the evolutionary relationships

between these parasites and their hosts (Terry et al.

2004). A high degree of adaptation is required to

mediate transovarial or transplacental transmission

and this might require specific molecular interac-

tions. In addition, vertical transmission leads to

clonal segregation of the parasite within a subset of

hosts and this could potentially drive co-speciation.

If the influence of vertical transmission is strong we

would predict close association between host and

parasite taxa and closely tied to their hosts and lin-

eage switching between unrelated taxa would be rare.

We can evaluate the relationships between micro-

sporidia and their hosts on an ‘ecological ’ time-scale

through studies of trans-continental invasion. The

amphipod Crangonyx pseudogracilus was introduced

to Europe from North America over seventy years

ago (Crawford, 1937) and has since spread through-

out European waterways. In its native range this

species harbours at least seven different species of

microsporidia that do not overlap parasites found in

European amphipod species. During invasion, a

subset of these parasites has been introduced but one

species Fibrillonosema crangonycis dominates in the

invasive range (Slothauber-Galbreath et al. 2004,

2009). Interestingly, this species is a vertically trans-

mitted SRD parasite and it is proposed that it may

have contributed to the success of the invasion

through overproduction of females and enhanced

population growth rate. While the amphipod is

sympatric with many European amphipod species

there has been no transfer of Fibrillonosema to

these native amphipods, nor have there been any

introductions of microsporidia from European am-

phipods into populations of Crangonyx (Terry et al.

2004; Slothauber-Galbreath et al. 2009). Evidence

from other crustacean invasions is less easy to in-

terpret, the pontocaspian gammaridDikerogammarus

villosus has spread across Western Europe from

its Ponto-Caspian origins over the last ninety years.

Characterization of its parasite fauna (Wattier et al.

2007) reveals one dominant species, Microsporidium

sp. D, which was abundant across the invasive

range and may have been introduced with source

populations together with three further parasites

which were very rare and were similar but not

identical to N. granulosis and Dictyocoela spp. found

in European amphipods (Haine et al. 2004; Terry

et al. 2004). It is not clear whether these parasites

have been acquired from sympatric amphipod spe-

cies or are close relatives derived from Ponto-

Caspian Dikerogammarus. Studies reveal that popu-

lations of the invasive signal crayfish Pacifastacus

leniusculus and the native white clawed crayfish

Austropotamobius pallipes in the UK are both in-

fected with Thelohania contejeani (Dunn et al. 2009).

However, it is difficult to map the origins of this

microsporidian parasite, which may have cosmo-

politan distribution among crayfish species (Lom

et al. 2001). Attempts have also been made to analyse

the likelihood of switching in Lepidopteran hosts.

Solter and Maddox (1998) reported that the Gypsy

moth had failed to acquire microsporidia from

sympatric Lepidoptera in its invasive North

American range. They also found that microsporidia

infecting the Gypsy moth in its native range

were distinct from species affecting sympatric

Lepidoptera (Solter et al. 2000). These studies imply

that microsporidia are ‘ecologically segregated’

within the environment and that transfer between

host taxa is rare (Solter, 2006). Some caution should

be exercised in interpreting these data as the isolates

retrieved fromLymantriawere very closely related to

those from sympatric hosts and a number were able

to cross-infect when tested in bioassay (Solter et al.

2000). Taking these ecological studies at face value,

there is very little evidence for host switching in

microsporidian parasites, consistent with the concept

that these parasites are closely linked to their hosts.

Our understanding is however very incomplete.

Only a handful of studies have employed molecular

methods to identify microsporidian species and these

rely on the use of ribosomal DNA as a phylogenetic

tool. This means that we can only evaluate host

parasite associations at a relatively high taxonomic

level.

It is also possible to consider interactions between

microsporidia and their hosts on an evolutionary

time-scale. One of the striking facts about the large-

scale phylogenetic analysis of the phylum Micro-

spora is that there are quite strong links between

parasite lineages and host groups (Fig. 1). For ex-

ample, clade V, which is often basal to the tree con-

tains parasites such as Bacillidium and Pseudonosema

and found in primitive animals such as bryozoans and

oligochetes (Canning et al. 2002; Morris et al. 2005).

The majority of Microsporidia in Clade I fall within

the Amblosporidae which infect dipteran hosts and

within this further separate into species infecting

Anopholine orCulicinemosquitoes (Vossbrinck et al.

2004), Clade III consists mainly of parasites such

as Loma, Glugea and Pleistophora which infect fish

(Lom and Nilson, 2003) while the majority of
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mammal-infective species are found in Clade IV.

These deep associations between host and parasite

taxa are not perfect but they are very strong. There

are two possible interpretations of this pattern. One

is that there are many undiscovered species which

will ultimately break up these relationships. The

second possibility is that there are emerging strong

relationships and that the divisions seen at the level

of the deep branches reflect the evolutionary as-

sociations between ancestral microsporidia and their

hosts. One group of hosts, the amphipod crustacea

does not follow this pattern. Microsporidian from

amphipods are distributed through multiple bran-

ches of the tree and this might imply that the early

radiation of the parasites occurred in this host group.

If we move from the deep relationships to the tips

of the tree it is possible to see detailed interactions

between Microsporidia genera and groups of hosts.

For example, the emerging genus Dictyocoela is

present across many species of amphipods and the

divergence of this parasite genus may relate to that

of its host. Our ability to test this relationship is

currently limited by the resolution of our current,

single locus, marker and there is a need to identify

polymorphic loci and develop multilocus typing

methods in order to analyse these relationships fully.

Similar issues arise over the relationships of Nosema

parasites with lepidopteron and non-lepidopteron

hosts, It is currently unclear whether this group

consists of generalist parasites which have overlap-

ping host ranges or of many closely related species

each of which has a unique interaction with its host.

Much more work is needed to test host-parasite

associations and demonstrate whether they reflect

co-speciation or extensive lineage switching driven

by ecological interaction.

These studies of the interaction between micro-

sporidia and their hosts are of great importance in

assessing the impact these parasites might have.

Since the advent of AIDS, microsporidiosis has

been considered an emerging disease of humans,

as patients became susceptible to a range of mammal-

infective (e.g. Encephalitozoon spp. and Vittaforma

corneum) and generalist (e.g. Brachiola algerae)

parasites (Didier, 2005). Disease emergence is not

simply a human health problem, as illustrated by the

case of Nosema ceranae where the penetration of a

parasite species into a new host backgroundmay have

significant ecosystem consequences.

CONCLUSIONS

The phylum Microspora is ancient and diverse and

affects a wide range of hosts. There is unusually high

use of vertical transmission and this has significant

consequences for transmission and pathogenicity.

A high VT parasite would be cryptic with little

patent disease but might nevertheless create signifi-

cant impacts upon its host. Vertical transmission is

adapted to fulfil different roles, including over-

wintering survival, transmission between discon-

tinuous generations and transmission to alternate

hosts. The majority of microsporidia have mixed

transmission cycles and it is not clear whether they

could switch and modify their phenotype according

to environmental circumstances. There is a great

need to understand the mechanisms controlling

transmission and one of the first challenges for the

genomics era is to find genes associated with life cycle

stages. Similarly, we cannot currently predict the

ease with which these parasitesmight switch between

host groups. Phylogenetic analysis suggests that

there are strong relationships betweenMicrosporidia

and their host but multilocus typing data is urgently

needed for close identification of parasite isolates

in relation to host range and disease phenotype

and to assess future environmental risk from these

pathogens.
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