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ABSTRACT

In this paper, we investigate the effect of neighbourhood density
(ND) on vocabulary size in a computational model of vocabulary
development. A word has a high ND if there are many words
phonologically similar to it. High ND words are more easily learned
by infants of all abilities (e.g. Storkel, ; Stokes, ). We
present a neural network model that learns general phonotactic
patterns in the exposure language, as well as specific word forms and,
crucially, mappings between word meanings and word forms. The
network is faster at learning frequent words, and words containing
high-probability phoneme sequences, as human word learners are,
but, independently of this, the network is also faster at learning words
with high ND, and, when its capacity is reduced, it learns high ND
words in preference to other words, similarly to late talkers. We
analyze the model and propose a novel explanation of the ND effect,
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in which word meanings play an important role in generating word-
specific biases on general phonological trajectories. This explanation
leads to a new prediction about the origin of the ND effect in infants.

INTRODUCTION

One way of investigating how words are cognitively represented is to study
the timecourse of vocabulary development in infants. There are several
well-known findings: words that occur frequently tend to be learned
earlier, as do words with fewer phonemes (see, for example, Storkel, ,
, ; Storkel & Lee, ). Words containing frequently occurring
phoneme sequences are also learned earlier (for example, Storkel, ).
In this paper we focus on a property of words called NEIGHBOURHOOD

DENSITY (ND), which has also been shown to be correlated with age of
acquisition. Informally, words which have many ‘phonological neighbours’
are learned earlier than those with fewer neighbours. This is true for
infants of all abilities, and continues to be true right across the lifespan
(see Vitevich & Storkel, , for a review). The ND of a word is a
powerful indication of its learnability. For instance, from age ; to ;
ND accounts for more of the variance in vocabulary size than word length
and word frequency. Stokes and colleagues found that during this period
ND accounts for %, %, and % of the variance in spoken lexicon size
in English (Stokes, , ), French (Stokes, Kern & dos Santos,
), and Danish (Stokes, Bleses, Basbøll & Lambertsen, ),
respectively. In addition, the effect of ND on age of acquisition is
particularly strong for a group of children termed LATE TALKERS — a
group that makes up the slowest –% of word learners. While most
English-speaking children have learned an average of approximately 

words by their second birthday (Stokes & Klee, ), the late talkers say
fewer than  words by this age (Moyle, Stokes & Klee, ). Stokes and
colleagues (Stokes, ; Stokes, Kern & dos Santos, ; Stokes, )
showed that the ND effect is heightened for this group of children. In
summary, both for theoretical and practical reasons, the ND effect is an
intriguing source of evidence for models of vocabulary development.

At the same time, the origin and nature of the ND effect is still the subject
of much debate. One issue is that ND partially correlates with many other
measures of word learnability. For instance, words containing common
phoneme sequences also have a higher-than-average ND, because the
common sequences are likely to occur in other words. Short words also
have higher average ND, because the space of possible neighbours for
these words is smaller than for other words. In any explanation of the role
of ND in vocabulary development, it is important to isolate the effect of
ND from related effects such as these. Furthermore, if there is an isolable
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effect of ND, it is important to explain what it is about cognitive word
representations that leads to this effect. There are several informal
explanations of the advantage of high-ND words in language
development. The basic idea behind most accounts is that new words are
easier to learn if they are phonologically similar to known words, because
their phonological representations can be encoded as modifications of
existing representations, rather than having to be built from scratch (see, e.
g. Storkel & Lee, ). However, it is important to express any such
explanation formally, so it can be properly assessed.

In this paper, we present an account of the ND effect in the context of a
computational model of vocabulary development: specifically, a neural
network model. Methodologically, a computational model allows some
novel ways for isolating the ND effect from other related effects on word
learnability. And, if there is an isolable effect, it also provides a platform
for a detailed explanation of the origin of the effect.

In fact, a number of existing network models of vocabulary learning have
addressed issues related to ND. For instance, Dell, Juliano, and Godvinje
(), in a discussion of their early network model of phonological
learning, proposed that frequently occurring phoneme sequences create
‘well-worn paths’ in the space of their network’s phonological
representations, which can participate in the representations of several
distinct neighbouring words. But there are many outstanding questions.
What exactly is a ‘well-worn path’? And do well-worn paths provide an
advantage for words with high ND that is distinct from the advantages
due to commonly occurring words or phoneme sequences?

A recent connectionist model by Vitevich and Storkel () set out
explicitly to provide a detailed computational explanation of the ND
effect. Vitevich and Storkel’s model is an autoassociative network, with
an input layer, an output layer, and one hidden layer. It is given a short
sequence of three phonemes in its input layer, and learns to reproduce
this same sequence in its output layer, via an intermediate hidden layer.
The input and output layers represent phoneme sequences in a sparse
parallel scheme: distinct groups of units represent the first, second, and
third phonemes, respectively. The hidden layer is considerably smaller;
during training, the network learns to represent phoneme sequences
efficiently in this layer. The network shows a clear ND effect, learning
high ND words better than low ND words. Moreover, this effect is also
observed when the number of units in the hidden layer is reduced, to
simulate learners with fewer processing resources. The observed ND
effects cannot be attributed to word length or word frequency, as the
training words all have the same length and are all presented with the
same frequency: the networks are deliberately trained on an artificial
lexicon, controlling for these variables.
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Vitevich and Storkel () explain the effect of ND on learnability by
appealing to the well-known CONSPIRACY EFFECT in neural network training
(Rumelhart, McClelland & the PDP research group, ). To store a
training item, a training algorithm must make changes to the network’s
weights, but these must not cause it to forget other training items: algorithms
therefore make SMALL changes to ALL network weights in response to a given
item, which conspire to bias it towards the right behaviour for this particular
item, while minimally impacting its behaviour for other items. Crucially, if
two training items share similarities of any kind, as in the case of
phonological neighbours, the set of changes made for one item OVERLAP with
those made for the other, so learning one item indirectly helps to learn the
other, meaning they are particularly easy to learn as a pair.

In the current paper, we present a new neural network model of
vocabulary development, which extends Vitevich and Storkel’s ()
account of the origin of the ND effect. Our model addresses four issues in
Vitevich and Storkel’s account.
First, Vitevich and Storkel’s () model is trained on a set of artificial

phonological word forms, rather than on naturally occurring words. Their
decision to use artificial words is a deliberate one: by choosing training
words that all have the same length and frequency, they are able to study
the ND effect in isolation from effects due to these factors. But at the
same time, it means that the model’s training data is very different from
that received by child language learners. Our model is trained on real
words, containing variable numbers of phonemes, and occurring with their
natural frequencies. This means that its performance is more directly
comparable with that of infant language learners. We separate
word-frequency and word-length effects from ND effects using regression
methods, rather than by artificially holding these measures constant.

Second, while Vitevich and Storkel () control for the frequency of
whole words, they do not control for the frequency of phoneme sequences
WITHIN words. As already mentioned, words containing common phoneme
sequences also tend to have higher ND, so the effects they attribute to
high-ND words could also possibly be due to common phoneme
sequences within words rather than to neighbourhood effects. In our
regression analysis we separate out effects due to ND and to the frequency
of within-word phoneme sequences.

Third, Vitevich and Storkel () do not consider the role of word
MEANINGS in their model of phonological development. Our network learns
phonological representations of word forms, but it also learns to map word
meanings onto these word forms. (Our model of ‘known word meanings’
is also based on actual infant data, as we will describe in the next section.)
In our analysis, we find that an important component of the ND effect is
due to the way the mapping between word meanings and word forms is
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learned. This raises the possibility that word meanings might play a role in
the ND effect as it occurs in infants, and suggests some new ways of
measuring the effect in infants, which we will discuss at the end of the paper.

Finally, the differences between ‘normal word learners’ and ‘late talkers’ in
Vitevich and Storkel’s () model are not quite the same as those found in
children. As already mentioned, in children, the influence of ND on word
learnability is stronger for late talkers than for normal word learners
(Stokes, ). But in Vitevich and Storkel’s () model, the ND effect
is more pronounced for normal word learners than for late talkers (see, e.g.
in Figure  of Vitevich & Storkel, ).

In the next section, we introduce our networkmodel, describe its architecture
and training regime, and show that it displays ND effects which are separable
from several other factors which contribute to the learnability of words: word
length, word frequency, and the frequency of biphones within words. We
also show that these effects are very similar to the ND effects that have been
found in children. In the section after that, we give a detailed explanation of
how these ND effects arise during the model’s training. We find that the
circuit which learns how to map word meanings onto word forms plays an
important role in making high-ND words more learnable. In the final
section, we consider to what extent our explanation of the ND effects shown
in the SRN may extend to those shown by children.

EXPERIMENT: WORD LEARNING WITH AN SRN MODEL

Model architecture and input/output representations

Our model of phonological/lexical learning takes the form of a SIMPLE

RECURRENT NETWORK (SRN: Elman, ). This differs from Vitevich and
Storkel’s () architecture: while their network represents the phonemes
of each incoming training word in parallel, in spatially separate positions
in its input layer, our network receives the phonemes of each word one at
a time, in the same input medium. Our use of a recurrent architecture
makes it somewhat easier to process words of arbitrary length, but we do
not want to dwell too much on our choice of a recurrent architecture:
there are long traditions of modelling word-processing mechanisms using
both recurrent architectures (e.g. Dell et al., ; Cottrell & Plunkett,
; Gaskell & Marslen-Wilson, ; Christiansen, Allen & Seidenberg,
; Shillcock, Cairns, Chater & Levy, ; Sibley, Kello, Plaut &
Elman, ) and non-recurrent architectures (e.g. Miikkulainen, ; Li
& MacWhinney, ), and in fact it is quite likely the brain uses a
mixture of parallel and recurrent methods to encode phoneme sequences,
as it does when encoding prepared sensorimotor sequences more generally
(see Takac & Knott, , for a review). The architecture of our network
is shown in Figure .
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The network takes as input a word meaning (MEANING), plus
representations of the phoneme most recently produced and of the current
context (CURRENT PHONEME and CONTEXT), both initialized to conventional
values; it outputs a representation of the next phoneme to be produced
(NEXT PHONEME). Phonemes in the network are represented using a localist
scheme: the current and next phoneme layers contain forty-eight units
each: forty-seven English phonemes and one WORD BOUNDARY (WB) unit.
We also use a localist scheme to code word meanings, so each word
meaning is represented with a single unit in the network’s meaning layer.
(We could also use the term ‘lemma’ for our meaning units, since they are
semantic representations that stand in : correspondence with specific
words.) We use simple localist representations of meaning for two reasons.
First, our aim is not to model how word meanings themselves are learned
(e.g,. how the concept [dog] is acquired) but rather to model how
ASSOCIATIONS BETWEEN meanings and word forms are learned (e.g. how the
mature concept [dog] comes to be associated with the word form dog).
Second, using localist representations makes it easier to analyze the
network’s learning, as we will discuss later.

The next phoneme is predicted through an intermediate hidden layer of
units, whose activities are copied to the context layer at the next
time-point. In an SRN, the hidden layer learns to encode common
sequences of phonemes encountered during training: a given pattern of
activity in the hidden layer biases the network towards certain phoneme
sequences. The capacity of the SRN to store sequences is determined by
the number of units in the hidden layer. In our experiments, we use
networks with different numbers of units in the hidden layer (, , , or
) to model word learners with different storage capacities.

Fig. . Architecture of our model of word production. Thick arrows represent full
connectivity between layers.
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Altering the size of the hidden layer is not the only way to vary the
capacity of an SRN; in fact it reduces its representational capacity as well
as its storage capacity. A way of reducing storage capacity by itself would
be to add noise to the activity of the network’s neurons, or to its weights;
however, it is not clear which of these methods provides the best model
of late talkers. Vitevich and Storkel () model capacity differences by
varying the size of the hidden layer, so minimally our decision allows for
comparisons with their model. (We also conducted some preliminary
experiments reducing the capacity of the -hidden-unit network by
adding noise rather than removing hidden units. We identified noise
levels that produced learning curves comparable to the - and -
hidden-unit networks. The age of acquisition of CDI words in these
noise-contaminated networks correlated moderately well with the age of
acquisition in their hidden-unit analogues, with correlation coefficients
of · and ·, respectively, so the two manipulations have at least
broadly similar effects.)

Our network is trained on a sample of monosyllabic words from an actual
language (English). Each word is represented as a sequence of phonemes;
there are , distinct words. We assume that the child can learn
phonotactic patterns from all of these words, even without knowing their
meaning. At the same time, we want to model the way learning word
meanings interacts with learning phonotactics. We assume that the child can
represent the meanings of some (small) proportion of the words it hears,
and for these words, is in a position to learn a mapping from meanings to
phonological sequences. We use the MacArthur-Bates Communicative
Development Inventory (CDI) of English words (Fenson et al., ),
British English version (Klee & Harrison, ), as a simple estimate of the
number of word meanings to include in our model. The inventory includes
 words, including  monosyllables. In Fenson et al.,’s () normed
study, children in the th percentile of vocabulary size can produce around
 of the words in the complete inventory by age  months. We estimate
that most children at this age can produce all  monosyllables in the
inventory, and therefore provide our model with meaning representations
for these  words. During training, if the word form presented is one of
the CDI words, the appropriate unit in the meaning layer is activated; for
other words, there is no activity in the meaning layer. In summary, our
network receives a stream of phonemes, in some cases associated with word
meanings, and learns to predict the next phoneme in a word from the
currently active phoneme (and meaning, if any).

The network’s input units are fully connected to its hidden units, which
are in turn fully connected to its output units. The hidden units have a
sigmoid activation function; the output units are linear, and their
activations are constrained to sum to  (by a softmax function), so they
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can be interpreted as representing a probability distribution of possible next
phonemes. The context layer has the same number of units as the hidden
layer and provides recurrence via copying values of the hidden units and
providing them back as input with a time lag of one step.

Training regime and training data

The network is trained by the backpropagation-through-time algorithm
(Werbos, ) with time-window  gradually reducing the error
between its actual and desired output (target) for each input–target pair
in the training set. The training set consists of phoneme sequences
corresponding to English word forms, sometimes accompanied by meaning
representations. During training on a CDI word, the meaning unit
representing the word’s meaning is turned on, the current phoneme unit is
initialized to WB, and the network is trained to produce a sequence of
input� output pairs. Thus for the CDI word dog (phonologically /d/, /a/,
/g/), the meaning unit representing the concept [dog] is turned on and the
network is trained on the sequence ([dog],WB�/d/), ([dog],/d/�/a/),
([dog],/a/�/g/), ([dog],/g/� WB). (We use De Cara & Goswami’s, ,
transcription system for phonemes.) While the network is training, the
output phonemes are assumed to be produced COVERTLY rather than
overtly – they represent the network’s tacit predictions about expected
upcoming phonemes. If those predictions are wrong, the network adjusts
its weights responsible for generated predictions. In this way, the
backpropagation procedure relies on its own internal feedback signal rather
than an external one. This technique is common to most SRN-based
models of language learning, as discussed in Chang, Dell, and Bock
(). Training proceeds in batches, which means the suggested
error-driven weight changes are accumulated after each phoneme, but the
actual weights are updated only after the complete word was presented.
For a non-CDI word like ale (/e/, /l/), the sequence would be ([ ],WB�/e/),
([ ],/e/�/l/), ([ ],/l/�WB) with no meaning unit activated. Of course, in this
case the network cannot make perfect predictions, but recall that at this point
the network is being trained, and is only generating covert predictions.
Words with unknown meanings still provide opportunities to learn about
the phonotactics of the language, and about word forms. In summary, the
network’s training mechanism means that for CDI words, both links from
meanings to the hidden layer (embodying word-specific phonotactics) and
from current phoneme to the hidden layer (embodying general phonotactics)
are modified, while non-CDI words only result in modification of general
phonotactics.

We based the training input to our network on the reference database
of , English monosyllables (De Cara & Goswami, ) obtained
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from all monosyllabic words found in the ·-million-word CELEX corpus
(Baayen, Piepenbrock & van Rijn, ), excluding homophones,
homographs, and abbreviations. (De Cara and Goswami’s, , database
in fact contains , monosyllables, but , of these are so rare they are
listed as having ‘zero frequency’ in the corpus; we excluded these rare
words.) In order to approximate a real language environment, we made
the probability of a word appearing in our training set proportional to its
frequency in the CELEX corpus (more precisely, the probability of a
word with frequency WF in CELEX is proportional to log(WF + )).
From these word types we stochastically generated , tokens that
formed our training set. Out of the ambient , monosyllables, 

word types were found in the CDI; their tokens were paired with
appropriate meanings in the training set.

The network was repetitively exposed to the same training set for a
certain number of epochs. (The order of the words was shuffled
randomly in each epoch and the context layer was reset after each word
to eliminate the effect of previous words.) Changes in the network during
training are interpreted as developmental changes over time; the network
at a given epoch is analogous to a child at a given age. To explore the
influence of processing capacity, we created four groups of neural
networks named by the number of units in their hidden layers: H, H,
H, H. Each group consisted of ten ‘participants’ – different instances
of the network with different randomly initialized connection weights.
We stochastically generated ten different training sets, so that the ten
‘participants’ in each group could be matched by training set (i.e. the
first subjects from each group were trained on set , the second subjects
on set , and so on).
Training went on for  epochs. The learning rate parameter of the

backpropagation process was set to linearly anneal from · in epoch  to
· in epoch  (and to be constant thereafter), to prevent oscillations in
learning. After each epoch, each network’s connection weights were
temporarily frozen and the networks were tested in a word production
task, in which a sequence of phonemes was produced for each of the 

CDI words. (These sequences can be understood as being overtly rather
than covertly produced, since there is an associated meaning for each CDI
word.) For each word, the network was prompted with a meaning and a
‘word boundary’ signal (e.g. [dog], WB). (The word boundary signal is a
neutral initial phonological signal that is the same for all words.) The
activity in the network was propagated through the hidden to the output
layer; then the most active output unit was fed back as the current
phoneme in the next step (while the meaning unit stayed active), and so
on. Word generation finished when the network predicted WB, or when a
preset limit of ten phonemes was reached.
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We should emphasize that while our network is trained to generate
sequences of phonemes, it is not only a model of word production. Its
predictions about the next phoneme express general phonotactic
constraints it has learned about the exposure language and knowledge of
the forms of specific words, as well as knowledge of the mapping from
meanings to word forms; these types of knowledge inform its predictions
even when the network is not given a word meaning as input. When the
network IS given a word meaning, it does function as a simple model of
word production, but we are not attempting to model the production
process in any detail; we are not interested in reproducing patterns of
error, timing data, priming effects, and so on. When we ask our model to
produce word forms from meanings, our interest is mainly in examining
how well it can combine its general knowledge of phonotactics with its
specific knowledge of word forms to encode a mapping from meanings to
word forms.

Results: factors influencing vocabulary learning in the SRN

To summarize the ability of each simulated ‘participant’ at each epoch to
generate the phonetic form of CDI words from their meaning
representations, we constructed a matrix PARTICIPANT × EPOCH × DATA,
where data comprised actually generated phonetic sequences for all 

CDI words. From this matrix, we computed for each participant the AGE

OF ACQUISITION of each word: the first epoch in which the word was
correctly produced for a particular meaning. We also computed the
VOCABULARY SIZE for each participant in each epoch, defined as the number
of all words that the subject produced correctly from their meanings at
that epoch. Finally, for each participant and epoch, we computed a
number of measures for each word in its vocabulary at that epoch. For
each word we computed its OVERALL WORD FREQUENCY (WF), defined as
the logarithm of the word’s frequency as experienced by the learner.

We also computed the ND of each word. There are several possible
measures of neighbourhood density: counts of neighbouring (i.e. different
in a single phoneme) word TYPES (ND), word TOKENS (frequency-weighted
ND), or word tokens starting with the same onset (frequency-weighted
cohort density; as in Magnuson, Dixon, Tanenhaus & Aslin, ). We
tried our regression analysis with models based on each of these: the
frequency-weighted ND yielded the same results as ND – in fact, the two
measures were highly correlated (r= ·). Type- and token-based variants
of cohort density made the model worse. Hence, in this paper we report
results using the type-based definition of ND. There are also two ways of
defining the neighbourhood of a word. It is normally defined over the
complete ambient language to which a learner is exposed. However, it may
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be preferable to define it over the set of words that are actually known by the
learner, because these are the words whose representations are most likely to
be helpful. Accordingly we measured the EXPOSED LANGUAGE ND of each
word (henceforth simply EXPOSED ND), defined as the number of
neighbours the word has in the complete ambient language experienced by
the learner, and the KNOWN ND of each word, defined as the number of
neighbours the word has in the set of CDI words (i.e. in the set of words
whose meanings are assumed to be already known). We also computed a
measure of the frequency of the biphones contained in each word. Again,
we computed two measures: a word’s EXPOSED BIPHONE FREQUENCY was
defined as the sum of the log frequencies of all the word’s biphones in the
training corpus, divided by the length of the word, and its KNOWN BIPHONE

FREQUENCY was defined as the sum of the log frequencies of the word’s
biphones in the set of CDI words, divided by the length of the word. In
addition to these measures, we also calculated frequencies, NDs, and
biphone frequencies over the whole CELEX corpus, rather than the subset
to which the learner had been exposed. Not surprisingly, these general
measures tended to be correlated with the more local predictors, but
somewhat less effective at predicting the model’s behaviour.

We excluded networks with a Hidden Node size of , as very little learning
occurred in that group. We also converted all variables to z-scores (i.e. they
were scaled and centred). We then fitted a linear mixed effects regression
model over all remaining data, where each word was included in the
dataset once for each participant modelled. The dependent variable being
modelled was the age of acquisition of the word (i.e. the epoch in which it
was acquired by the learner). The ‘participant’ and the word identity were
included as random effects in the model. Significant predictors were
overall word frequency, known biphone frequency, hidden node size,
exposed ND, and known ND. We also tested for interactions with hidden
node size, and found significant interactions between hidden node size and
word frequency, hidden node size and exposed ND, and hidden node size
and known ND. Word length was tested in the model but was not
significant.
The model estimates are shown in Table . The model intercept provides a

baseline estimate of age of acquisition. The adjustments to this for each
factor are given in the estimate column. These values provide an estimate
of the effect of each predictor on the dependent variable, when all other
predictors are held constant. The calculation of these estimates is not
sensitive to the order in which the predictors are entered into the model.
For continuous predictors, the estimate shows how much age of
acquisition is predicted to change per unit of change of the independent
predictor. The only categorical predictor is hidden node size. A hidden
node size of  is chosen as the default (i.e. it receives an estimate of ).
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The estimates for hidden node sizes of  and  show the predicted effect on
the model of hidden nodes of these sizes, as compared to the default of .
The estimates for the interactions show the added adjustments to the
predicted age of acquisition caused by the combined effect of the two
interacting factors. All main effects show t-values considerably above the
oft-agreed upon metric of |t| > for significance. Model selection
proceeded via direct model comparison, guided by Akaike’s and Bayesian
Information Criteria (AIC and BIC; Dziak, Coffman, Lanza, & Li, ).
This procedure justified retention of all factors retained in the final model.
The model predictions are shown in Figure .

Unsurprisingly, learning occurs earlier if there are more hidden nodes.
The number of hidden nodes interacts both with word frequency and
both types of ND. The leftmost panels in Figure  show the effects of
Neighbourhood Density, as calculated over all words the learner is
exposed to (bottom left), and just those words which are explicitly
known (top left). Both of these factors have separate contributions. While
they are correlated with one another, the model does not contain
problematic levels of co-linearity. If we attempt to residualize one upon
the other, essentially the same model is returned, with significant effects
of both values. In both cases, the effect of Neighbourhood Density is
more pronounced at smaller Hidden Node sizes than larger ones. Or, put
differently, the effect of ND is particularly pronounced for the slower
learner. This is in line with data from infants; recall that late talkers have
a larger proportion of high-ND words in their vocabularies than normal
learners (Stokes, ). On the other hand, in Vitevich and Storkel’s
() model, the effect of Neighbourhood Density on learnability is

TABLE  . Mixed effects linear regression model, predicting age of acquisition of
words

Estimate Std. error t value

(Intercept) · · ·
knownBF –· · –·
overallWF –· · −·
exposedND –· · –·
knownND –· · –·
HiddenNodes =  −· · −·
HiddenNodes =  −· · −·
overallWF:HiddenNodes =  –· · –·
overallWF:HiddenNodes =  –· · –·
exposedND:HiddenNodes =  · · ·
exposedND:HiddenNodes =  · · ·
knownND:HiddenNodes =  · · ·
knownND:HiddenNodes =  · · ·

NOTES: BF = biphone frequency; WF=word frequency; ND= neighbourhood density.
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more pronounced for ‘normal learners’ than for ‘impaired learners’ – an
effect that runs in the opposite direction. For ease of comparison, we
analyzed our data using a similar method to that of Vitevich and Storkel
in their Experiment : we identified two groups of words with ‘sparse’
and ‘dense’ neighbourhoods. (Because meaning was not represented in
Vitevich and Storkel’s model, we used exposed ND to define these
neighbourhoods: the ‘sparse’ group contained words with exposed ND
less than the mean (·) minus one standard deviation (·); the ‘dense’
group contained words with ND more than the mean plus one standard
deviation. However, the obtained result was very robust and did not
change for different density thresholds or even when known ND was
used.) For each group we measured the mean error in generation by
networks with different numbers of hidden nodes, at a particular epoch
of training (epoch ). As before, we excluded the network with  hidden
nodes, as very little learning happened in that network. The ANOVA
showed the same significant main effects of neighbourhood density and
number of hidden units as in Vitevich and Storkel, and a significant
interaction between the ND effect and the number of hidden nodes in
the opposite direction – see Figure , which is directly comparable to

Fig. . The effects of known (top left) and exposed (bottom left) Neighbourhood Density;
Word Frequency (top right) and known Biphone Frequency (bottom right) upon predicted
Age of Acquisition (all variables on the x axes were converted to z-scores). For factors
which interact with Hidden Node Size, separate predictions are shown for Hidden Node
sizes of , , and .
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Figure  of Vitevich and Storkel: as network capacity increases, networks
make fewer errors overall, but the effect is greater for sparse words than
for dense words (F(, ) = ., p <.).

The top right panel of Figure  shows the effect of word frequency.
Unsurprisingly, higher-frequency words are learned earlier. This also
interacts very slightly with Hidden Node Size, though in this case, the
effect of Word Frequency is marginally larger for higher Hidden Node
Sizes. Finally, the bottom right panel shows the main effect of biphone
frequency. Words with higher biphone frequency – as calculated across
known words – are learned earlier. Biphone frequency over all exposed
words does not have as much explanatory power – a fact we will return to
later. It is significant only in a model that excludes Known Biphone
Frequency, and that model is inferior to the one reported here. Exposed
Biphone Frequency does not contribute to the current model, either in
its untransformed state, or when residualized against Known Biphone
Frequency.

This model demonstrates clearly that there is an effect of ND on the
model’s word acquisition patterns. The model considers individual
words, and when they are learned, but does not directly track the
vocabulary size of the ‘learners’, and how this might be predicted by
various factors. To do this, we calculated the total vocabulary size of
each learner, at each point at which a new word was added to its
vocabulary. We also calculated the average ND of the vocabulary at each
point. We were interested in directly testing the question of whether the
average ND at any point in a learner’s development could be predicted
by that learner’s vocabulary size. To ask this question, we fitted three
separate models, considering the three hidden node sizes separately. The
individual learner was a random effect in the model. For the purposes of

Fig. . Mean proportion of errors for ‘sparse’ and ‘dense’ words in networks with different
capacities at epoch . Sparse words are those with – neighbours in the exposure
language (on average  words); dense words are those with – neighbours (on average
 words). The error is measured as the proportion of incorrectly pronounced phonemes in
a word, averaged across all words in a sparse/dense group and all  networks with the
same hidden layer size.
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this exploration, we used a canonical definition of ND – simply taking the
ND of each word, with reference to the CELEX lexical database, a value we
refer to as AVERAGE CELEX ND. The rationale for taking this approach is
that ND calculations in the experimental literature are not conducted
locally – largely because it would be impractical to assess the actual
vocabulary of any given speaker or learner. Rather, what has been shown
in the literature is overall correlations between an independently
calculated ND, and factors such as age of acquisition or vocabulary
(Stokes, ). We were interested in assessing whether such broad
correlations would also hold in our own, simulated, data.

For all three models, vocabulary size was a significant, and non-linear,
predictor of Average CELEX ND (p <. for both components of the
quadratic, in all three models). The model effects are shown in Figure .
What can be seen is that for all hidden node sizes, there is a relationship
between vocabulary size and Average CELEX ND. When there is a
hidden node size of , the system plateaus at a vocabulary size of about
, and an Average CELEX ND of about . For the larger hidden node
sizes, the vocabulary grows larger, and the average ND grows smaller.

Similar results can be obtained if we consider the relationship between
Average CELEX ND and age of acquisition. This is because age of
acquisition and vocabulary size at time of acquisition are so highly
correlated. To illustrate the relationship, we plot, in Figure , the raw data
for learners with  hidden nodes. On the left we see the relationship
between the age of acquisition of vocabulary items and the Average
CELEX ND at time of acquisition. On the right we see the relationship
between different vocabulary sizes and Average CELEX ND (as modelled
above). Visual inspection of these graphs reveals that age of acquisition is
predictive of average CELEX ND only in the initial stages (for the first 
words or so), but total vocabulary size continues to have some relationship
with ND throughout the period we are modelling.

In sum, there is clear and robust evidence in this simulation for a
relationship between average ND and vocabulary size / age of acquisition,
over and above the effects of word length, word frequency, and word
biphone frequency. Words which are acquired earlier, and by learners with
small vocabularies, have higher ND, and the early stages of acquisition are
thus characterized by high average ND. These results extend the results of
Vitevich and Storkel (), in that they are obtained using a naturalistic set
of training words, with variable lengths and frequencies, and in that they
show an effect of ND that is separable from the effect of biphone frequency.
The model of age of acquisition of particular words shows that this is
driven by local characteristics of words that the learner has been exposed to,
and knows. However, because these local ND figures are highly correlated
with ND as calculated over the ambient language, broad correlations
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between age of acquisition / vocabulary size and ND, as calculated over the
CELEX lexical database, emerge as strong and significant.

Comparisons with child language data

Since our network’s training words are modelled on the words actually
encountered by children, we can make certain direct comparisons between
the performance of our trained models and that of children. The
relationship between average ND and lexicon size found in our SRN
simulations reflects a result consistently found in children’s productive
lexicons. As noted in the ‘Introduction’, in hierarchical multiple regression
studies of English, French, and Danish children, average ND consistently

Fig. . Predicted effect of vocabulary size on Average ND, across slow, medium, and fast
learners.
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accounted for a significant portion of the variance in expressive lexicon size
(Stokes, , ; Stokes, Bleses et al., ; Stokes, Kern & dos Santos,
). Scatterplots of ND against lexicon size for English, French, and
Danish children in the data obtained by Stokes and colleagues are similar
to those generated by SRN models, as shown in Figure . Note that the
ND calculations in these empirical reports are necessarily not local to the
speakers, but rather derive their values from overall vocabularies, such as
CELEX. (Note that, for the child data, lexicons smaller than  words
were excluded to avoid heteroscedasticity of the distributions.) There is a
clear trend from high to low average ND as vocabulary size increases, in
both the child and SRN data. (Recall that in Vitevich and Storkel’s, ,
model the trend is in the opposite direction: ND has a greater impact on
word learnability for higher-capacity learners.) In our simulation there is
also a clear trend from high to low variance in average ND as vocabulary
size increases, which again matches the trend in the child data. The overall
variance in average ND is certainly lower in our simulations than in
children. This may be because children have a wider range of memory

Fig. . Scatterplots of the relationship between average CELEX ND and age of acquisition
and vocabulary size for SRN learners with  hidden nodes.
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capacities than are modelled in the simulations. It may also reflect the fact
that the SRN scatterplots are derived from only ten individuals sampled at
different times, while each point in the child scatterplots comes from a
separate child.

AN EXPLANATION OF THE ND EFFECT IN THE NETWORK ’S WORD

LEARNING

In this section we provide a formal explanation of why high ND words
are learned earlier in our SRN model. As background, we first show
empirically that the model’s learning starts with predominantly phonological
learning and we analyze the relation between learning from known and

Fig. . Scatterplots of ND against lexicon size. English children (top left), French children
(top right), Danish children (bottom left), and the SRN simulations (bottom right), all
using Average CELEX ND.
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unknown words. We then describe the network’s computations formally, as
the application of a set of geometric transformations. Finally, we show that
word meanings are learned as biases on these transformations, and show
how the ND effect emerges from this fact.

A coarse-grained analysis of the network’s learning

Recall from our regression analysis that significant predictors of the age of
acquisition of a word are its frequency, its biphone frequency with respect
to known/CDI words and its ND with respect both to known words and
to the whole training set. In this section we focus on the relation between
learning general phonotactics, i.e. phoneme transition probabilities learned
from a GROUP of words, and learning word-specific transitions.

Since the network’s output layer can be interpreted as holding a
probability distribution for the next phoneme (as we discussed in the
‘Model architecture’ section), its performance can be compared directly to
that of a traditional probabilistic model. Hidden Markov models (HMMs)
are a natural choice of probabilistic model for time series data. A useful
way of roughly charting the network’s learning is to compare its
predictions at each epoch to those of a range of different HMMs, to find
which model fits best.

All HMMs were trained on the same training set as a randomly chosen
SRN in the H group (i.e. one with the highest memory capacity of 

hidden neurons), and recorded next phoneme transition frequencies/
probabilities for given information such as n previous phonemes in the
presence/absence of a meaning.

HMMs in the first class (referred to as Gen_n) do not record transitions
for individual meanings separately, i.e. they learn to predict the next
phoneme from bigrams, trigrams, tetragrams, etc. of the set of words they
were exposed to. More formally, Gen_n models predict the next phoneme
c(t) at time t based solely on the n previous phonemes. The predicted
phoneme ci is the one that maximizes the probability:

Pr ci | c(t− 1), . . . , c(t− n)( ) .
HMMs in the second class (M_n) are similar to Gen_n models, but
additionally include the word meaning M. The predicted phoneme ci is
the one that maximizes the probability:

Pr ci | c(t− 1), . . . , c(t− n),M( ) .
To compare predictions of the SRN with those of the HMMs, we took the
phoneme sequences generated by the SRN for each of the  CDI words
after each epoch of training and compared them with those generated by
each trained HMM, computing the proportion of matching phonemes.
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Early in training, around epoch , the HMMs that most closely match the
SRN’s predictions are those that make no reference to word meaning (see
Figure  left). As training proceeds, HMMs learn to predict from gradually
longer histories, but around epoch  the HMMs that incorporate word
meaning provide a progressively better fit (see Figure  right). The best of
these make reference to the previous two phonemes. (Adding histories
longer than three preceding phonemes – not shown in the graph – did not
improve the result.) From this same point, the role of general phonology in
predicting the next phoneme actually reduces somewhat, as word meanings
take over responsibility for predicting the next phoneme.

In summary, the SRN’s learning happens in two overlapping stages. It
begins by predicting the next phoneme using just several preceding
phonemes. At this stage it is mainly learning about the phonotactics of the
exposure language. At around epoch  it starts to use the word’s meaning
to supplement its phonotactic learning.

Note that it is at the point when the network is transitioning between the
models based on general phonology and models using meaning-specific
knowledge (around epochs –; see Figure  right) that the strongest
ND effect is observed (as can be seen in Figure  left). At this
intermediate point, general phonology still has a strong enough influence
to drive the system towards generation of frequently occurring phoneme
sequences, but at the same time, meanings have enough of a role to bias
the generation towards phonemes correct for a particular word.

The results from our regression analysis show that the biphone frequency
(BF) with respect to known/CDI words is a better age-of-acquisition
predictor than the BF computed from all words in the training set. It looks

Fig. . Proportion of matching phonemes between the SRN predictions after different
amount of training and predictions of probabilistic models. Left: Ngram-based models
with no meaning input. Right: Comparison of a tetragram model (Gen_) with a
meaning-based trigram model (M_).
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as if the SRN gave transitions within known/CDI words more weight than
those within unknown ambient words. To test this, we trained another class
of HMMs and compared it with the SRN in the same way as described in
the previous section. The new class GenCDI_n is similar to Gen_n class in
learning transitions from previous n phonemes collectively for a group of
words, but this time ignoring all non-CDI words in the training set.
Figure  shows that with more training the new model gradually fits the
behaviour of the SRN better that the model trained on all the words.

What makes CDI words special? Recall that CDI words in our training set
represent the words with known meaning: each time such a word is presented
as a sequence of ‘current phoneme� next phoneme’ transitions, a particular
meaning unit is activated and stays active during the whole sequence
presentation, while non-CDI words are presented just as phoneme
transitions without any activity in the meaning layer.

The backpropagation learning rule only modifies weights of connections
from currently active units, so even though the training algorithm
minimizes the error evenly over the whole training set (in fact frequently
occurring transitions have stronger influence), in the case of known words
it has extra parameters to use for fine-tuning – the connections from the
active meaning unit to the hidden layer.

The network learns from transitions both in known words and in
unknown ones. However, weight changes for ambient words can cancel or
weaken each other. For example, when trained on the first transition of the
ambient word beast, the network adjusts its weights closer to generating
([ ],WB�/b/), while when trained on the first transition of the ambient word

Fig. . Proportion of matching phonemes between the SRN predictions after different
amount of training and predictions of probabilistic models. Comparison of a tetragram
model trained on the whole training set (Gen_) with a tetragram model ignoring unknown
words (GenCDI_).
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sound, the network adjusts its weights closer to generating ([ ],WB�/s/). There
is nothing in the input to differentiate these two cases from each other, so the
network has to learn from two conflicting transitions. (For later positions in
the word, there is some information differentiating the cases in the context
vector encoding the history of previous transitions.)

In contrast with this, for known words there is an extra part of the input to
differentiate transitions – the meaning. For example ([bed],WB�/b/) and
([snow],WB�/s/) are no longer conflicting because of different meanings.
Hence the training input is noisier for unknown words and the network
learns transitions in known words more effectively. To confirm this, we
monitored the network’s predictions about the next phoneme while it was
training, for words with meanings and for words without meanings.
(Recall that these predictions are made ‘covertly’, and are not part of
actual word production.) The results are summarized in Figure . The left
graph ‘Words’ compares percentages of successfully generated known and
unknown words. We see that the network completely fails to learn whole
unknown words – mostly because it fails to generate the first phoneme in
the absence of meaning information. The right graph ‘Phonemes’
compares percentages of correctly generated phonemes. We see that, after
training, the network gets about % of unknown-words transitions right,
and almost all known-words transitions.

It is interesting to measure the prediction success for each position within
a word separately (Figure ). We see that for known words, the position
does not make much difference as long as the meaning is present. For
unknown words, the prediction gets gradually better with the number of
phonemes seen (as a long enough fragment can uniquely identify the word
to be generated).

In summary, the network is more effective in learning transitions from
words with known meaning, i.e. in a word learning context, than from
unknown words that are perceived as streams of phonemes. In the
following sections we will focus on the neighbourhood density effect.
While BF relates to individual transitions, ND relates to whole words.
Our explanation of the ND effect is based on the idea that general
phonotactics defines ‘well-worn paths’, as discussed in the ‘Introduction’;
the effect of meaning is to provide a bias able to deviate from a highway
just enough to generate a specific word correctly. We will express this idea
more formally as geometric transformations in the hidden layer vector
space in the following two sections.

A geometric analysis of the network’s computations

The computations the SRN performs in order to convert its input to its
output have a well-known geometric interpretation. We consider first the
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hidden layer. If there are n neurons in the hidden layer, we can think of any
static pattern of activity in this layer as a point in an n-dimensional space.
This point is defined by an n-dimensional vector: we will term this vector
the HIDDEN STATE VECTOR, and the n-dimensional space of hidden units the
HIDDEN SPACE. Each output neuron (representing one particular phoneme)
is connected to the n hidden neurons by n connections. Since there is one
connection from each hidden neuron, the connections to each output
neuron can also be thought of as forming a vector in the n-dimensional
hidden space; we will term this vector the OUTPUT WEIGHT VECTOR. All the
output neurons are linear, i.e. their activities are computed as a scalar

Fig. . Proportion of correctly generated words (left) and phonemes (right) during training
evaluated separately for words with meaning (known) and without meaning (unknown).

Fig. . Proportion of correctly generated phonemes during training evaluated separately
for each phoneme position within a word. Left: words with meaning (known). Right:
words without meaning (unknown).
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product of the hidden state vector and their weight vector. These scalar
products can be interpreted as PROJECTIONS of the weights vectors on the
hidden state vector. This means that for a given hidden state vector, the
lengths of all the output weight vector projections directly specify a
probability distribution of possible next phonemes, and thus determine
the phoneme that will be produced – namely, the one whose output
neuron has the longest projection. (See the ‘Appendix’ for mathematical
details.)

Geometrically, it is useful to think of the SRN’s current hidden state
vector as indicating a point on an n-dimensional hypersphere. The output
weight vectors effectively partition the surface of this sphere into regions,
each associated with a single phoneme. The region to which the hidden
state vector points at a given iteration indicates which phoneme will be
produced at that iteration. Over a sequence of iterations, the hidden state
vector moves through a TRAJECTORY of points on the hypersphere,
resulting in a sequence of associated phonemes. These trajectories are a
formal way of thinking about the ‘paths’ in the space of hidden unit
activities discussed by Dell et al. () in their informal explanation of
the density effect.

An explanation of the network’s learning and the ND effect

We now consider the process by which the network learns. Its task is to learn
the correct probability distribution for each possible position in each possible
word so that the error summed over the whole training set is minimized. The
network does this by adjusting both the hidden state vectors (by modifying
connections from input to hidden neurons) and the output weight vectors
(the connections from hidden to output neurons).

We have shown in the previous sections that early in training the
behaviour of the network resembles a probabilistic model based on general
phonotactics. This is mostly because the network ‘hears’ many more words
than it ‘understands’: most words presented during training are simply
phonological sequences, with no active meaning representation. Only
words in the CDI set have associated meanings, and these words make up
only % of all training words – a fairly realistic approximation of the
training data to which CDI-aged children are exposed, as already
discussed. In fact, given that the backpropagation rule only modifies
connections from units with non-zero activity, for non-CDI training
words there are no changes made at all to the connections from semantic
units to hidden units: so the connections from the current phoneme and
context units to the hidden units, and those from the hidden units to the
next phoneme units, are modified without any reference to semantics fully
% of the time; only % of their learning is done with reference to
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meaning, but as we have shown in the previous section, the presence of
meaning creates less noisy data and makes also learning of general
phonology of known words more effective.

Let’s focus on the means that the network has to use meaning information.
Given that most of the system’s learning is purely phonological, its learning
about how to map specific word meanings onto specific phoneme sequences
involves making MODIFICATIONS to its general phonological learning. These
modifications can involve changes to connections from all input layers to
the hidden layer, since learning from CDI words allows adaptations in all
these connections.

But, clearly, the most obvious modifications to make are to the connections
from meaning units to hidden units. Meaning units are the only ones that can
store information about specific words. And we know that these connections
play an important role in an explanation of the ND effect because, as we
discuss in our regression analysis, a word’s ND is a better predictor of its
learnability if neighbourhood is defined over the set of CDI words with
known meanings than over the full set of ambient words.

Each meaning unit has an n-dimensional vector of connections linking it
to the n hidden units. Using the terminology introduced earlier, we will
term this vector the MEANING WEIGHT VECTOR. As just discussed, the
network must store information about specific words ‘on top of’ its
information about general phonology. In the geometric terms introduced
earlier, the primary role of the meaning weight vector for a given
meaning unit must be to ROTATE or BIAS the hidden state vector so that
the resulting projections of the output weight vector reflect phoneme
transition probabilities CONDITIONAL ON THE CURRENTLY ACTIVE MEANING.
For instance, the network’s general phonological learning includes the
fact that the most probable first phoneme in English monosyllables is /s/,
but when the word meaning [dog] is presented, the first phoneme should
be /d/; the meaning weight vector should therefore rotate the hidden
state vector, so that it points to a region of the hypersphere associated
with /d/ rather than /s/.

The meaning weight vector is held constant throughout the presentation
of a known word. The bias it exerts on the hidden state vector while the
word is generated has two components: a static and a dynamic one. The
static one is the constant meaning weight vector itself; the dynamic one is
a changing context vector that reflects the history of past hidden state
vectors. (As the past hidden state vectors themselves were influenced by
the meaning weight vector, the autonomous dynamics of the unfolding
context can contain traces of meaning too.) Setting the bias correctly
therefore involves satisfying multiple simultaneous constraints: it must
exert the right influence on the hidden state vector both directly and
through the context for each phoneme transition in the word. Recall that
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in the geometric interpretation introduced earlier, the network’s activity in
successive iterations describes a trajectory of points on an n-dimensional
hypersphere, partitioned into discrete regions associated with different
output phonemes. The network’s general phonological knowledge can be
thought of as defining a set of trajectories on the surface of this sphere.
The function of a given meaning weight vector is to exert a bias on these
trajectories, so as to produce a particular phoneme sequence.

Note that a bias will only change the network’s output if it results in points
on the trajectory crossing boundaries between regions on the hypersphere.
This allows for subtle biases that preserve common phonological
sequences when appropriate, and deviate only when necessary. The use of
small analogue changes to achieve appropriate discrete effects in the output
of SRNs is known in the literature, and often called SHADING

(Servan-Schreiber, Cleeremans & McClelland, ).
Finding a meaning weight vector that delivers an appropriate bias can be

a difficult task. In fact, the difficulty of the task is determined by the size of
the hidden layer: if the dimensionality of the hidden space is large, the
simultaneous constraints become easier to solve. (For instance, a ‘spare’
dimension can be recruited to hold a bias specific to the given meaning, or
several dimensions can ‘conspire’ to hold a bias that does not affect the
network’s other computations.) The problem of finding a suitable bias is
analogous to the problem of placing n points in a t-dimensional space so
that their mutual distances monotonically preserve their dissimilarities.
Kruskal’s () work on multidimensional scaling showed that the higher
thet, the better the solution – and that a perfect solution preserving all the
relations always exists for t= n− . (Whether backpropagation would
always find this solution is another matter.)
Even so, regardless of the size of the hidden layer, the task of finding an

appropriate meaning weight vector is easier in some cases than others. For
one thing, it is easier to the extent that a word conforms to general
phonological rules. The role of the meaning weight vector is then to
maintain the hidden state vector in areas preserving general phoneme
transition probabilities while biasing it away in areas which require
word-specific transitions. But, separately to this, and more relevantly for
our current concerns, it is easier to find a suitable meaning weight vector
for a word IF THE SRN ALREADY KNOWS A PHONOLOGICALLY SIMILAR WORD.
If a bias has already been found that creates a particular phonological

trajectory, then it is likely that a similar bias can be found, which deviates
just enough from the first one to produce the different phonemes in the word
while retaining the similar ones. (Again, always assuming the dimensionality
of the hidden space is high enough.) In summary, the increased learnability
of words with high ND can be attributed to the fact that they apply similar
biases to the trajectories encoding general phonological rules within the

NEIGHBOURHOOD DENSITY AND WORD LEARNING



https://doi.org/10.1017/S0305000916000052 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000916000052


network. The heightened advantage for high ND words when word meanings
first start to be learned (during epochs –) can be attributed to the fact that it
is at this stage of learning that meaning weight vectors rely most strongly on
general phonological knowledge.

If the above analysis is correct, this leads to a prediction: the more
phonological similarities there are between two CDI words, the more
similar their meaning weight vectors will be. In particular, the meaning
weight vectors of neighbouring words should on average be closer to each
other than those of non-neighbours. We tested this prediction for each of
the fully trained H networks by computing the Euclidean distances
between the meaning weight vectors of  randomly selected pairs of
neighbouring words (sample A) and  randomly selected pairs of
non-neighbouring words (sample B). In each case, the mean distance
between pairs in sample A was significantly smaller than that between
pairs in sample B. (Results for a typical network: sample A mean =
·; sample B mean = ·; t = –·, d.f. = ·, p < –,
difference in means > · with % confidence.) To examine the
relation between meaning weight vector similarity and phonological
similarity in more detail, we also performed a hierarchical clustering
analysis on the meaning weight vectors for each CDI word in each trained
H network. Figure  shows the leaves of a hierarchical clustering
diagram (dendrogram) for one network: adjacent words in the diagram are
those which cluster together. (For space reasons, we only show leaves of
the dendrogram. Clustering is hierarchical, hence adjacent words very
often form a lowest-level cluster, but sometimes they belong to different
lowest-level clusters and only cluster together on a hierarchically higher
level.)

We can see that adjacent words are frequently phonological neighbours.
Notice that it is not just a particular type of neighbour, e.g. a common
prefix or a common suffix, but all different kinds, e.g. talk, walk, and
work. (In fact we also see phonologically similar words that are not strictly
neighbours: for instance hen and help, or break and grape. It is somewhat
artificial to only consider words that differ in exactly ONE phoneme – it is
often more fruitful to talk about a DEGREE of neighbourship.) Needless to
say, this organization is not always perfect; we do not claim that if two
words are neighbours, their meaning weight vectors are always close to
each other. The network is trying to find a global compromise solution for
a multiple constraint satisfaction problem by making local modifications –
it may in principle be more economical to recycle a single region of the
hidden space for representing a given transition in many similar words,
but sometimes the network happens to learn to use more than one region
for that purpose. However, the hypothesis that meaning weight vectors of
phonological neighbours are in general closer than those of
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non-neighbours is strongly supported. This in turn corroborates our
explanation of why CDI words with high ND are more learnable in the
network.

Note that our geometric account of learning also explains why networks
with fewer hidden neurons can altogether fail to learn some low-ND
words. Learning these words involves finding meaning weight vectors that
produce highly idiosyncratic biases on the trajectories established by
general phonological learning – biases that are unlike any other bias. As we
explained above, the higher the dimensionality of the hidden space, the
easier it is to find such biases. Networks with fewer hidden neurons might
simply not have enough capacity for creating regions with all idiosyncrasies
in low-ND words.

Our explanation would also be valid for the alternative method of reducing
working memory (WM) capacity by adding noise to the context connection
weights: if learning words correctly requires the ability to represent subtle
deviations from typical paths/trajectories in the network’s hidden space, the
presence of noise would destroy these fine differences; however, the noisy
hull around the original path would still be within the limits for common
(high-ND) transitions, hence we should observe a similar ND effect.

DISCUSSION

In this paper we used an SRN-based neural network model of phonological
development and early word learning as a platform for studying the effect of
ND on language acquisition in children. The network’s training data were
derived from a sample of English: word frequencies (and thus
phonotactics) were taken from a large corpus of mature spoken English,
and words were paired with meanings in line with normed data about
children’s productive vocabularies. When trained on this data, our network
model clearly demonstrated a preference for high-ND words, which was
shown to be distinct from preferences for frequent words, and words with
frequent biphones. This ND effect is comparable to the effect found in
children in several ways. It is strongest at the point when the first word
meanings are learned; it continues to have an impact on vocabulary size as
learning proceeds; and the effect is stronger in learners with lower

Fig. . Fragment of the dendrogram of meaning weight vectors (connections from
meaning to hidden units) for CDI words in a fully trained model with twenty hidden
neurons.
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phonological working memory capacities, mimicking the stronger ND effect
found in late talkers.

The current study extends a recent study by Vitevich and Storkel ()
that also uses a neural network model to investigate the ND effect. There
are several differences. One is technical: our SRN model can learn
phoneme sequences of arbitrary length, while Vitevich and Storkel’ s
autoassociative model encodes phoneme sequences with fixed-length
vectors of units active in parallel. As noted in the ‘Introduction’, it is
likely that the brain uses a mixture of recurrent and parallel schemes to
encode phonological sequences, so both models arguably reflect a
component of the brain’s phonological representations. A second difference
relates to how the ND effect is isolated from other factors that influence
word learnability. While Vitevich and Storkel’s study isolated the ND
effect by using artificial training words with uniform length frequency, we
used actual English words with varying lengths and frequencies, and
isolated the ND effect in a regression analysis. This also allowed us to
isolate the ND effect from the effect of biphone frequency – a factor not
considered by Vitevich and Storkel. A third difference is that while
Vitevich and Storkel’s model just learned phonology, our model learned
both phonology and form–meaning associations. The latter two differences
mean that our model’s learning can be more directly compared to that of
actual children. A fourth difference is that our model reproduces the
finding in children that the ND effect is more pronounced in late talkers
than it is in normal learners, while Vitevich and Storkel’s model does not.
A final difference concerns the way the ND effect is explained. Vitevich
and Storkel explain the effect by referring to the way backpropagation
causes multiple weights to ‘conspire’ to generate the desired output, with
phonologically similar words profiting from overlapping conspiracy effects.
Our explanation uses a geometric interpretation of an SRN’s activity,
expressed in terms of the n-dimensional space of the network’s hidden
units. This is helpful in thinking about the conspiracy effect geometrically,
in relation to the problem of multidimensional scaling. But it also allowed
us identify a new component of the ND effect, relating to the mechanism
that maps from word meanings to word forms. We showed that, in our
network, links from word meanings to phonology are learned as biases on
the hidden-space trajectories that encode general phonological knowledge,
and that it is easier to learn biases for phonologically related words. This
fact also explains why the ND effect is larger for late talkers in our model.
The task of learning biases is also easier in higher n-dimensional spaces,
and this facilitation interacts with the one due to phonologically related
words.

The two separable components of the ND effect can also be identified in
the regression analysis of our model’s learning. Our analysis found
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independent effects of ND calculated over all words the network was exposed
to during training, and ND calculated over known words only. The former
effect can be seen as due to ‘conspiracy’ of words with similar phonology,
without any reference to word meaning, in accordance with Vitevich and
Storkel’s () explanation. But the latter effect has to make reference to
word meanings. This is the effect we explained in terms of word-specific
biases stored in meaning-to-phonology connection weights. In fact, in our
regression analysis, the effect of ND calculated over known words is much
stronger than the effect calculated over all words, which suggests that the
main effect of ND is due to the biasing influence of word meanings.

Our regression analysis also identifies another role that meaning vectors
play in phonological development, one that is not directly related to ND
effects. Recall that, in our regression analysis, biphone frequency is a
much stronger predictor of word learnability if it is calculated just over
‘known words’ (i.e. words with known meanings) than if calculated over
all words in the exposure language (see Figure  and associated
discussion). This indicates that the regions of hidden-unit activation space
where phonotactic frequency effects are most helpful in learning words are
those ‘pointed to’ by meaning vectors.

If we take our computational model as a model of phonological/lexical
learning in children, these considerations allow us to make some novel
predictions about ND effects as they occur in children. (Of course, our
model only addresses certain selected aspects of children’s learning
mechanisms, so these predictions are narrowly focused on ND effects,
rather than other aspects of learning or performance.) The key prediction
stems from our finding that word meanings play an important role in the
ND effect. From this fact, we predict that if ND is calculated over ‘known
words’ for children, rather than over all words in their exposure language,
the observed effect of ND on learnability will be stronger. That is to say:
there will be a stronger relationship between words’ ND and their age of
acquisition if ND is measured over known words rather than over the
whole exposure language. (How experimentalists should estimate the
words a child knows is, of course, a hard problem, but approximating by
using the CDI norms, as we do in our model, should provide at least an
approximate solution.)

Our analysis of the factors influencing our model’s learning also leads us to
a second prediction, that is not directly relevant to ND effects, but relates to
the role of word meanings nonetheless. As just summarized, biphone
frequency is a much stronger predictor of word learnability in our model
if it is calculated over words with known meanings than if it is calculated
over all words in the exposure language. We predict that the same will be
found in children: in other words that the influence of phonotactic
frequency on age of acquisition will be found to be stronger if frequency is
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measured just over ‘known words’ rather than over all words in the ambient
language. This prediction is certainly in accord with the literature on adult
phonotactic well-formedness intuitions, which always assumes that
phonotactic representations are generalizations over known words (rather
than being extracted from ambient speech; Frisch, Large & Pisoni, ;
Hay, Pierrehumbert & Beckman, ).

Our ultimate aim in this paper is to propose an explanation of the ND
effect found in children, which sheds light on how they learn words, and
on how their word-learning processes may be delayed. We stated our
explanation formally, with reference to a computational model of word
learning whose internal representations could be studied in detail. Our
model is very simple; naturally, it can only be thought of as a very crude
model of the circuitry actually responsible for word learning. However, it
does reproduce several aspects of the ND effects found in children: in
particular, the fact that the effect is stronger in late talkers. And our
analysis does isolate the ND effect more clearly than other computational
models, by distinguishing it from a general phonotactic frequency effect.
Perhaps most importantly, our analysis also suggests a new component of
the ND effect, that stems from the role of word meanings in biasing
phonological representations. This suggestion leads to some testable
predictions about how ND effects should be measured. If these
predictions are borne out, it could also lead to some novel ideas about
therapies for late talkers. For instance, a therapy might attempt to improve
phonological word representations indirectly, by working on consolidating
word meanings, rather than directly, by working on phonology per se.
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APPENDIX

Here we present mathematical details of some SRN computations.
Activity of linear output neurons is computed as a scalar product

oi = �woi · �h, where oi is the activity of the i-th output neuron, �woi is the
vector of connection weights from all hidden units to the i-th output unit
and �h is the vector of activities of the hidden neurons – the so-called
hidden state vector. The scalar projection comp�h�woi is computed as:

comp�h�woi =
�woi · �h
‖�h‖ = oi

‖�h‖ ;

hence each output unit’s activity is proportional to the scalar projection of its
weight vector on �h:

oi = ‖�h‖ · comp�h�woi .

(see Figure ).
The softmax combination does not change the order of activities, so which

phoneme will be generated is effectively determined by lengths of the weight
vector projections.

The hidden state vector �h is computed as a sigmoidal squashing function f
of a scalar product of inputs and corresponding weights, which can be
rewritten as:

�h = f WM · �M +Wc · �c+Wctx · ctx��( )
= f �wM + �wc +Wctx · ctx��( )

,

where �M is the meaning part of the input, �c is the current phoneme part of
the input, and ctx�� is the context vector (a copy of �h from the previous time
step), WM, Wc, and Wctx are matrices of connection weights between the
respective parts of the input layer and the hidden layer (Figure ).

Thanks to -hot coding (one unit in each of the meaning and current
phoneme blocks equal to , all the others ) used in the meaning and
current phoneme input parts, the first two scalar products reduce to
vectors of weights coming out from the active meaning/phoneme unit.
The vector of weights from an example meaning unit (termed the
MEANING WEIGHT VECTOR in our earlier discussion) is shown as �wM in
Figure , and the vector of weights from an example current phoneme
unit is shown as �wc. For non-CDI words, the �wM is zero vector, hence
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most of the time the network is trained on general phonology. The task of the
meaning weight vector �wM is to shift/bias the hidden state vector �h to a part
of the hidden space where its mutual configuration with the output weight
vectors generate a probability distribution (or at least its winner)
appropriate to a particular word, not just general phonology. Meaning is
also reflected in the context influence Wctx · ctx��, because the context is the
copy of the previous hidden state.

Fig. . Activity of the i-th output neuron oi is proportional to scalar projection comp�h �woi
of the corresponding weight vector �woi onto the hidden state vector �h. The neuron with the
longest projection becomes a winner and the corresponding phoneme is predicted.

Fig. . The model architecture with labelled weights and inputs.
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