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In the framework of fixed point theory, many generalizations of the classical results
due to Krasnosel’skii are known. One of these extensions consists in relaxing the
conditions imposed on the mapping, working with k-set contractions instead of
continuous and compact maps. The aim of this work if to study in detail some fixed
point results of this type, and obtain a certain generalization by using star convex
sets.
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1. Introduction

Fixed point theorems are a fundamental tool to study the existence of solution to a
wide range of different problems in mathematics, such as boundary value problems
in the framework of differential equations.

For T : D ⊂ X −→ X a mapping between sets, we say that an element x ∈ D is
a fixed point of T if T (x) = x. Here, we consider fixed point results that provide
the existence and location of fixed points for mappings and sets satisfying certain
hypotheses.

The usual technique followed to apply these results to boundary value problems
consists in transforming the problem into an integral equation. In this way, it is
obtained a mapping whose fixed points are the solutions to the boundary value
problem.

Our main results generalize some classical fixed point theorems due to Kras-
nosel’skii. Two of these classical results can be found in [6] (dated in 1960), and
they establish that, if (X, || · ||) is a Banach space, C a cone in X, T : C −→ C a
continuous and compact map such that T (0) = 0, and there exist r,R ∈ R+, r < R,
satisfying some of the following conditions

x− T (x) /∈ C, ∀ x ∈ C, ||x|| � r,

T (x) − x /∈ C, ∀ x ∈ C, ||x|| � R,
(1.1)
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Figure 1. Motivation to work with more general sets.

or

T (x) − x /∈ C, ∀ x ∈ C, ||x|| � r,

x− T (x) /∈ C, ∀ x ∈ C, ||x|| � R,
(1.2)

then T has a nontrivial fixed point in {x ∈ C : r � ||x|| � R}. Next, we mention
the different directions in which these classical results have been generalized, some
of these extensions can be found in [7].

The first direction of extension is to relax conditions (1.1) and (1.2), in such a
way that it is only required that

x− T (x) /∈ C, ∀ x ∈ C, ||x|| = r,

∀ε > 0, T (x) − (1 + ε)x /∈ C, ∀ x ∈ C, ||x|| = R,
(1.3)

or

∀ε > 0, T (x) − (1 + ε)x /∈ C, ∀x ∈ C, ||x|| = r,

x− T (x) /∈ C, ∀ x ∈ C, ||x|| = R.
(1.4)

The second direction of extension is to seek more general regions, in which the
theorem provides the fixed point. As an example, a result due to Güo and Laksh-
mikhantan [5] states that, if Ω1, Ω2 are bounded open sets in the Banach space X
such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and T : C ∩ (Ω2\Ω1) −→ C is a continuous and com-
pact mapping, then T has a fixed point in the region C ∩ (Ω2\Ω1), where Ωi is the
closure of Ωi, for i = 1, 2. We can find another example in [1], where the region
is generalized using general functionals instead of the norm. Recently, Webb [11]
provides new results for nonlinear integral operators by using fixed point index and
modifying the underlying sets.

A third way to extend the mentioned classical results consists in considering
another type of mappings instead of compact ones, the maps that we consider will
be referred to as k-set contractions.

Many of the generalizations of the classical results due to Krasnosel’skii have
been proved using topological degree theory, such as those appearing in [1,5]. It is
important to mention that this theory is not the approach used here.

Now, we can explain properly the motivation of our work. Assume that T : D ⊂
X −→ X has two fixed points with the same norm. We cannot prove their exis-
tence by using the mentioned fixed point results due to Krasnosel’skii. However,
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if we prove similar results working with more general sets, it could be possible to
distinguish these two fixed points. Figure 1 illustrates an example of sets that allow
us to separate two fixed points with the same norm.

2. Preliminaries

For the sake of completeness, we provide the following definitions, results and
notations, which are useful to our procedure. We refer to [8,10] for some basic
monographs.

Notation 2.1. Let ε > 0 and d a distance in X, we denote Bd(x, ε) = {y ∈
X : d(x, y) < ε} and Bd(x, ε) = {y ∈ X : d(x, y) � ε}. If there is no possibility
of confusion, we fix the notation B(x, ε) ≡ Bd(x, ε) and B(x, ε) ≡ Bd(x, ε).

Notation 2.2. Let X be a set, A,B subsets of X and λ ∈ R, we establish the
notation:

• If X is a topological space, A denotes the closure of A in X.

• If X is a real vector space, we define A+B = {a+ b : a ∈ A, b ∈ B} and λA =
{λa : a ∈ A}.

Definition 2.3. Let X be a real vector space and A a subset of X. The convex
hull of A is the set

co(A) :=

{
n∑

i=1

λixi : n ∈ N,
n∑

i=1

λi = 1, xi ∈ A, λi ∈ [0, 1], ∀i ∈ {1, . . . , n}
}
.

Furthermore, if X is a topological space, we denote the closure of co(A) by co(A).

Definition 2.4. Let (X, d) be a metric space, K �= ∅ a subset of X and x ∈ X.
The distance between x and K is defined by

dK(x) ≡ d(x,K) := inf
y∈K

d(x, y).

When K = ∅, we define d(x, ∅) := +∞.

Remark 2.5. If A ⊂ X and A �= ∅, it is satisfied that d(x,A) < +∞, for all x ∈ X.

Definition 2.6. Let X,Y be metric spaces and D ⊂ X. The mapping T : D ⊂
X −→ Y is compact if, for all A ⊂ D bounded, T (A) is a compact set.

The following concept allows us to relax the compactness hypothesis assumed in
the mentioned classical results due to Krasnosel’skii. Some of its principal properties
can be found in [9].
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Definition 2.7. Let (X, d) be a metric space and A ⊂ X a bounded set. The
measure of noncompactness of A is the nonnegative real number

α(A) := inf

{
ε > 0 : A ⊂

n⋃
i=1

Ai, diam(Ai) � ε, ∀i ∈ {1, . . . , n}
}
,

where diam(Ai) := sup{d(x, y) : x, y ∈ Ai}, for all i ∈ {1, . . . , n}.

Proposition 2.8. Let A,B be subsets of a metric space (X, d). The measure of
noncompactness satisfies the following properties:

(i) A ⊆ B ⇒ α(A) � α(B).

(ii) α(A ∪B) = max{α(A), α(B)}.
(iii) α(A) = α(A).

Moreover, if (X, ‖ · ‖) is a Banach space, then:

(iv) α(A+B) � α(A) + α(B).

(v) α(λA) = |λ|α(A), ∀λ ∈ R.

(vi) α(co(A)) = α(A).

(vii) A is a compact set if and only if α(A) = 0.

The measure of noncompactness can be considered as a tool to determine how
much a particular set differs from being compact. In this way, we will be able
to define a concept close to compact mapping, this one will be known as k-set
contraction. So, we give a formal definition of this kind of mappings and some
results about them. This information can be found in [9].

Definition 2.9. Let X,Y be metric spaces and D ⊂ X. Assume that the mapping
T : D ⊂ X −→ Y is continuous. We say that T is a k-set contraction if there exists
a constant k � 0 such that

α(T (A)) � kα(A), for all bounded A ⊂ D.

Remark 2.10. If T is a k-set contraction, it is implicitly required that T (A) is
bounded when A ⊂ D is bounded since it is a necessary condition to calculate the
measure of noncompactness of T (A).

Example 2.11. Continuous and compact mappings are in correspondence with
0-set contractions when X is a Banach space.

Proposition 2.12. Let (Xi, di) be metric spaces for i ∈ {1, 2, 3}, and (X, ‖ · ‖) a
Banach space. The following properties are satisfied:

(i) If T1 : X1 −→ X2, T2 : X2 −→ X3 are, respectively, k1, k2-set contractions,
then T2 ◦ T1 : X1 −→ X3 is a k1k2-set contraction.
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(ii) If S1 : X1 −→ X, S2 : X1 −→ X are, respectively, k1, k2-set contractions,
then S1 + S2 : X1 −→ X is a k1 + k2-set contraction.

Proposition 2.13. Let D, D̂ be closed subsets of a metric space (X, d). Assume
that T : D −→ X, T̂ : D̂ −→ X are k-set contractions and T|D∩D̂ = T̂|D∩D̂. If we
define another mapping by

T̃ : D ∪ D̂ −→ X

x �−→ T̃ (x) :=

{
T (x), x ∈ D,

T̂ (x), x ∈ D̂,

then T̃ is a k-set contraction.

Corollary 2.14. Let D, D̂ be closed subsets of a metric space (X, d). Suppose that
T : D −→ X is a k-set contraction and T̂ : D̂ −→ X is a k̂-set contraction such that
T|D∩D̂ = T̂|D∩D̂. Define

T̃ : D ∪ D̂ −→ X

x �−→ T̃ (x) :=

{
T (x), x ∈ D,

T̂ (x), x ∈ D̂,

then T̃ is a k̃-set contraction with k̃ = max{k, k̂}.

Proposition 2.15. Let (X, ‖ · ‖) be a Banach space, T : D ⊂ X −→ X a k-set con-
traction and λ : D −→ R+ ∪ {0} a continuous function such that supx∈D λ(x) = l <
∞. Define

T̂ : D ⊂ X −→ X

x �−→ T̂ (x) := λ(x)T (x),

then T̂ is a kl-set contraction.

3. Main fixed point results

In this section, we include some known results proved by Potter [9] that generalize
one of the fixed-point results due to Krasnosel’skii, in two of the mentioned direc-
tions. Besides, we show our contribution proving a result that generalizes the one
proved by Potter in other of the directions mentioned working with more general
sets which do not need to be convex.

The following result is basic in the proof of the fixed point theorem due to Potter.
This can be found in [4].

Proposition 3.1 (Fixed point theorem for k-set contractions). Let (X, ‖ · ‖) be a
Banach space and B ⊂ X a closed, convex and bounded set. Assume that T : B −→
B is a k-set contraction with k < 1, then there exists x ∈ B a fixed point of T .
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Now, we fix the notation about the subsets of a Banach space in which the main
results will locate the fixed points.

Definition 3.2. Let (X, ‖ · ‖) be a Banach space. A subset C of X is a cone if

• C is closed;

• for all x, y ∈ C, a, b ∈ R+, it is satisfied that ax+ by ∈ C;

• x ∈ C, −x ∈ C if and only if x = 0.

Example 3.3. Let us consider the Banach space (R2, || · ||), where

|| · || : R2 −→ [0,+∞), (x, y) �−→ ||(x, y)|| :=
√
x2 + y2.

The set C := {(x, y) ∈ R2 : x, y � 0} is a cone in R2. We will make representations
with this cone to illustrate the restrictions imposed in the statements of the main
fixed point results.

Example 3.4. Let us consider the Banach space (C([0, 1],R), || · ||), where the ele-
ments in C([0, 1],R) are continuous functions on the interval [0, 1] with values in R
and

|| · || : C([0, 1],R) −→ [0,+∞), x �−→ ||x|| := sup
t∈[0,1]

|x(t)|.

The set C := {x ∈ C([0, 1],R) : x � 0} is a cone in C([0, 1],R).

Notation 3.5. Let (X, ‖ · ‖) be a Banach space and C ⊂ X a cone. For r,R ∈ R,
with 0 < r < R, let

• Fr,R = {x ∈ C : r � ‖x‖ � R};
• Br = {x ∈ C : ‖x‖ � r};
• Sr = {x ∈ C : ‖x‖ = r}.

We outline the mentioned result due to Potter. The following lemma is required
to prove this fixed point theorem. It allows us to extend the domain of some k-set
contractions, with k < 1, preserving this property of the mapping.

Lemma 3.6. Assume that T : Sr −→ C is a k-set contraction. Let us consider

T̃ : Br −→ C, x �−→ T̃ (x) :=

{‖x‖
r T

(
r

‖x‖x
)
, x �= 0,

0, x = 0,

then T̃ is a k̃-set contraction, with k̃ > k, k̃ as near k as we please.

The conditions of the classical results due to Krasnosel’skii, which have been
formulated in the Introduction (1.1), can be replaced by the ones in the following
definition.
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Definition 3.7. Let (X, || · ||) be a Banach space and C a cone. A mapping T :
Fr,R −→ C is said to be a compression of the cone C if

• x− Tx /∈ C for all x ∈ C with ‖x‖ = r;

• for all ε > 0 and x ∈ C with ‖x‖ = R, Tx− (1 + ε)x /∈ C.

Theorem 3.8. Let (X, || · ||) be a Banach space, C a cone in X and 0 < r < R
real numbers. Suppose that T : Fr,R −→ C is a k-set contraction with k < 1 and a
compression of the cone C. Then T has at least one fixed point in Fr,R ⊂ C.

Now, we prove a more general result working with star convex sets that are not
necessarily convex.

Definition 3.9. Let (X, ‖ · ‖) be a Banach space, E ⊂ X and x0 ∈ E such that

λx0 + (1 − λ)x ∈ E, for all λ ∈ [0, 1] and x ∈ E.

If x0 �= 0, E is said to be an x0-star convex set. If x0 = 0, it is called a star convex
set.

In our main results, we will consider the following hypothesis.

Condition 3.10. Let (X, ‖ · ‖) be a Banach space, C a cone in X and E a star con-
vex set (which trivially satisfies that E ∩ C �= ∅). We assume the following essential
conditions for the star convex set E:

• E is bounded, closed and has nonempty interior.

• If F is the boundary of E in X, then 0 /∈ F .

• There exists a continuous mapping ∂ : E\{0} −→ F, x �−→ ∂(x), such that (see
figure 2):

∂(x) = ∂(λx), ∀x ∈ E, ∀λ ∈ (0, 1],

∂(x) = x, ∀ x ∈ F.

If the boundary F satisfies the appropriate conditions, there is a unique procedure
valid to define the mapping ∂, related to the replication of its values through rays
travelling to 0.

The last property in condition 3.10 is too strong since the interesting properties
arise in C ∩ E\{0}.

Remark 3.11. Suppose that (X, ‖ · ‖) is a Banach space, C a cone in X and E a
star convex set satisfying condition 3.10. As E is a closed and star convex set such
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Figure 2. An example of mappings ∂ and ∂C .

that 0 ∈ E̊, it is possible to extend the domain of ∂|C∩(E\{0}) to C\{0} by

∂C : C\{0} −→ F

x �−→ ∂C(x) :=

{
∂(x), x ∈ E\{0},
∂
(

d(0,F )
||x|| x

)
, x ∈ C\(C ∩ E̊).

Besides, ∂C is a continuous function. Figure 2 illustrates the behaviour of ∂C in a
particular case.

Proposition 3.12. Let (X, ‖ · ‖) be a Banach space, C a cone in X and E a star
convex set satisfying condition 3.10. Then, for all x ∈ C ∩ (E\{0}), there exists a
unique number βx ∈ R+ such that βxx ∈ C ∩ F .

Proof. The existence of such a number is clear since C is a cone and E is closed,
bounded, with nonempty interior and a star convex set. Suppose that there exist
β1

x, β2
x ∈ R+ such that β1

x �= β2
x and β1

xx, β
2
xx ∈ C ∩ F . Assume that β2

x > β1
x, then

0 < ((β1
x)/(β2

x)) < 1 and, therefore,

∂(β1
xx) = ∂

(
β1

x

β2
x

β2
xx

)
= ∂(β2

xx) = β2
xx ∈ F.

Besides, since β1
xx ∈ F , ∂(β1

xx) = β1
xx ∈ F . As a consequence, β1

xx = β2
xx. Taking

the norm, we get β1
x‖x‖ = β2

x‖x‖, and, since x �= 0, then β1
x = β2

x. We conclude that
the element βx in the statement is unique and the proof is finished. �

Lemma 3.13. Let (X, ‖ · ‖) be a Banach space, C a cone in X and E a star convex
set satisfying condition 3.10. Then

β : C ∩ (E\{0}) −→ [1,+∞)

x �−→ β(x) := βx,
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where βx is the unique βx ∈ R+ such that βxx ∈ F ∩ C, satisfies the following
properties:

(a) β is a continuous function.

(b) lim
x→0

β(x) = +∞.

Proof. First of all, we prove that the image of β is a subset of [1,+∞). Let x ∈
C ∩ (E\{0}), then it is satisfied that βxx = ∂(x), where

βx =
‖∂(x)‖
‖x‖ � 1.

Secondly, we prove the properties (a) and (b). Indeed:

(a) The function

d0 : X −→ [0,∞), x �−→ d0(x) := d(0, x)

is continuous because of the properties of the distance. By hypothesis, ∂ :
E\{0} −→ F is continuous too. Since β can be expressed as

β : C ∩ (E\{0}) −→ [1,+∞)

x �−→ β(x) =
d(0, ∂(x))
d(0, x)

=
(d0 ◦ ∂)(x)
d0(x)

,

then β is a continuous function.

(b) For all M ∈ R+, we look for δ ∈ R+ such that

β(x) > M, for all x ∈ C ∩ (E\{0}) with ||x|| < δ.

If M ∈ (0, 1), using that β ∈ [1,+∞), then β(x) > M is trivially satisfied for
all x ∈ C ∩ (E\{0}). If M � 1, let 0 < δ = ((d(0, F ))/(M)) � d(0, F ) < +∞.
We prove that, if x ∈ C ∩ (E\{0}) with ||x|| < δ, then β(x) > M :

β(x) =
d(0, ∂(x))
d(0, x)

� d(0, F )
d(0, x)

=
d(0, F )
||x|| >

d(0, F )
δ

= M.

The proof is concluded.

�

Remark 3.14. Assume that E is a star convex set satisfying condition 3.10.
Since E is a bounded and closed set and F is its boundary, then there exists
L ∈ R+ such that d(0, ∂(x)) = ‖∂(x)‖ � L for all x ∈ E\{0}. It is enough to take
L = sup{d(0, x) : x ∈ F}.

We have stated sufficient conditions on the sets. The next step will be to
reformulate definition 3.7 dealing with these more general sets.
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Figure 3. T is a compression of the cone C.

Definition 3.15. Let (X, ‖ · ‖) be a Banach space, C a cone in X and E1, E2

star convex sets fulfilling condition 3.10. For i = 1, 2, we establish the following
notation:

• Fi is the boundary of Ei, E̊i is the interior of Ei.

• ∂i : Ei\{0} −→ Fi is the continuous mapping required by condition 3.10.

• βi : C ∩ (Ei\{0}) −→ Fi, x �−→ βi(x) = ((d(0, ∂i(x)))/(d(0, x))).

• Li = sup{d(0, x) : x ∈ Fi}.
Suppose that 0 ∈ E1 ⊂ E2 and F1 ∩ F2 = ∅.

A mapping T : C ∩ (E2\E̊1) −→ C is a compression of the cone C (see figure 3)
if

(C1) x− T (x) /∈ C, for all x ∈ C ∩ F1;

(C2) for all ε > 0 and x ∈ C ∩ F2, T (x) − (1 + ε)x /∈ C.

Next, some generalizations of lemma 3.6 and theorem 3.8 are proved.

Lemma 3.16. Assume that (X, ‖ · ‖) is a Banach space, C a cone in X and E a
star convex set satisfying condition 3.10. Suppose that T : C ∩ F −→ C is a k-set
contraction. We define

T̃ : C ∩ E −→ C

x �−→ T̃ (x) :=

{
1

β(x)T (β(x)x), x �= 0,

0, x = 0.

Then T̃ is a k̃-set contraction for k̃ > ((L)/(d(0, F )))k, k̃ as near ((L)/(d(0, F )))k
as we please, where L = sup{d(0, x) : x ∈ F}.
Proof. We prove the result in two steps:

• We first show that T̃ is continuous by distinguishing the cases x0 �= 0 and
x0 = 0.
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Let x0 ∈ C ∩ (E\{0}) and ε > 0 be arbitrarily fixed. As x0 �= 0, then
d(0, x0) > 0, therefore we can choose δ ∈ R with 0 < δ < d(0, x0). As a con-
sequence,

T̃|B(x0,δ)
: B(x0, δ) ∩ (C ∩ E) −→ C

x �−→ T̃|B(x0,δ)
(x) =

1
β(x)

T (β(x)x)

is continuous, because T , β and 1/β are continuous too.
Now, let x0 = 0. Since X is a Banach space, in particular, a metric space,

we can characterize the continuity property of T̃ at 0 working with convergent
sequences. Suppose that {xn}n∈N ⊂ C ∩ E converges to 0. We can assume that
xn �= 0 for all n ∈ N, so

‖T̃ (xn)‖ =
∥∥∥∥ 1
β(xn)

T (β(xn)xn)
∥∥∥∥ =

1
βxn

‖T (βxn
xn)‖ .

If n ∈ N, then βxn
xn ∈ C ∩ F . Besides, as C ∩ F is bounded and T is a k-set

contraction, then T (F ∩ C) is necessarily a bounded set in order to consider
its measure of noncompactness. Therefore, there exists K ∈ R+ such that
sup{T (βxn

xn) : n ∈ N} < K, so

‖T̃ (xn)‖ � 1
βxn

K.

Using the properties proved in lemma 3.13, it is satisfied that {((1)/(βxn
))}n∈N

converges to 0, then {‖T̃ (xn)‖}n∈N also converges to 0. As T̃ (0) = 0, the
continuity of T̃ at x0 = 0 is proved.

• Secondly, we prove that k̃ can be taken as near ((L)/(d(0, F )))k as we please,
with T̃ being a k̃-set contraction. Let us consider A ⊂ C ∩ E. A is a bounded
set since it is a subset of E, which is bounded. Just like before, we distinguish
two cases: α(A) = 0 and α(A) �= 0.

If α(A) = 0, then A is a compact set. Besides, T̃ is continuous, so T̃ (A) is
also a compact set. Using that the measure of noncompactness of a compact
set is null and T̃ (A) ⊆ T̃ (A), then we have

α(T̃ (A)) � α(T̃ (A)) = kα(A) = 0, ∀ k ∈ R, k � 0.

Now, assume that α(A) �= 0. Suppose that k > 0 (if this is not true, we
can take k̂ > 0 instead of k). As k, α(A) > 0, there exists d > 0 such that
((kα(A))/(2)) > d > 0. We fix arbitrarily some d satisfying these conditions.

We have just proved that T̃ is a continuous function, so there exists δd >
0 such that T̃ ((C ∩ E) ∩B(0, δd)) ⊂ B(0, d). Thus, for all A ⊂ C ∩ E, it is
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satisfied that

T̃ (A ∩B(0, δd)) ⊂ B(0, d). (3.1)

For any n ∈ N, define εn := δd/n and, for all m ∈ N ∪ {0}, also define

An
m := {x ∈ A : ‖x‖ ∈ [mεn, (m+ 1)εn]}.

For any n ∈ N, since A is a bounded set, there exists Nn ∈ N such that
‖x‖ � (Nn + 1)εn for all x ∈ A. Furthermore, A ∩B(0, δd) = {x ∈ A : ‖x‖ <
δd = εnn}, then

A ⊂ (A ∩B(0, δd)) ∪
(

Nn⋃
m=n

An
m

)
. (3.2)

It follows from (3.1), (3.2) and properties (i), (ii) of proposition 2.8 that

α(T̃ (A)) = α

(
T̃ (A ∩Bδd

) ∪ T̃
(

Nn⋃
m=n

An
m

))

= α(T̃ (A ∩Bδd
) ∪ T̃ (An

n) ∪ . . . ∪ T̃ (An
Nn

))

= max
{
α(T̃ (A ∩Bδd

)), α(T̃ (An
n)), . . . , α(T̃ (An

Nn
))
}

� max
{
α(Bd), α(T̃ (An

n)), . . . , α(T̃ (An
Nn

))
}
.

(3.3)

For each m ∈ {n, . . . , Nn}, we have 0 /∈ An
m, so

T̃|An
m

: An
m −→ C

x �−→ T̃|An
m

(x) =
1

β(x)
T (β(x)x).

We want to prove that T̃|An
m

is a (1 + 1/m) ((L)/(d(0, F )))k-set contraction for
eachm ∈ {n, . . . , Nn}. To this purpose, we make use of some auxiliary mappings
that help us to prove the result by using propositions 2.12 and 2.15. Let us fix
m ∈ {n, . . . , Nn} arbitrarily and define:
∗ 1/β|An

m
: An

m −→ C, x �−→ 1/β|An
m

(x) := 1/β(x).

∗ T̂|An
m

: An
m −→ C, x �−→ T̂ (x) = T (β(x)x), which can be expressed as the

composition T ◦ Sn
m, where Sn

m : An
m −→ F , x �−→ Sn

m(x) := β(x)x.
Firstly, since β is continuous and its image is a subset of [1,+∞), we deduce
that 1/β|An

m
is a continuous function. Besides, for all x ∈ An

m, it is satisfied that
1/β|An

m
(x) = ((d(0, x))/(d(0, ∂x))) � (((m+ 1)εn)/(d(0, ∂x))), hence

sup{1/β(x) : x ∈ An
m} � sup

{
(m+ 1)εn

d(0, ∂x)
: x ∈ An

m

}
� (m+ 1)εn

d(0, F )
.

Secondly, as T is a k-set contraction, we will conclude a similar behaviour
for Sn

m. Let B ⊂ An
m, then B is bounded since An

m ⊂ A is also bounded. For
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all x ∈ B ⊂ An
m, it is satisfied that ‖x‖ ∈ [mεn, (m+ 1)εn], therefore 1/‖x‖ ∈

[((1)/((m+ 1)εn)), ((1)/(mεn))]. Consequently, by remark 3.14, for all x ∈ B,
((d(0, ∂(x)))/(‖x‖)) � ((L)/(mεn)), then

Sn
m(B) =

{
d(0, ∂(x))

‖x‖ x : x ∈ B

}
⊂ co

{
{0} ∪ L

mεn
B

}
. (3.4)

Using (3.4) and the properties (i), (ii), (v), (vi) and (vii) of proposition 2.8,
we get

α(Sn
m(B)) � α

(
{0} ∪ L

mεn
B

)
= max

{
α({0}), α

(
L

mεn
B

)}

= α

(
L

mεn
B

)
=

L

mεn
α(B).

Besides, Sn
m is a continuous function since β has also this property, hence Sn

m

is an L/(mεn)-set contraction.

We conclude that T̂|An
m

is an L/mεnk-set contraction by using (i) of proposition
2.12.

Applying proposition 2.15 to the mappings 1/β|An
m

and T̂|An
m

, we have that T̃|An
m

is a (1 + 1/m)((L)/(d(0, F )))k-set contraction.
Then, taking into account (3.3) and (i) of proposition 2.8, we are able to establish

the inequalities

α(T̃ (A)) � max
{

2d,
(

1 +
1
n

)
L

d(0, F )
kα(An

n), . . . ,
(

1 +
1
Nn

)
L

d(0, F )
kα(An

Nn
)
}

� max
{

2d,
(

1 +
1
n

)
L

d(0, F )
kα(A), . . . ,

(
1 +

1
Nn

)
L

d(0, F )
kα(A)

}

�
(

1 +
1
n

)
L

d(0, F )
kα(A),

where we have used 2d < kα(A) and L � d(0, F ). Since n ∈ N was arbitrarily fixed,
we have proved that T̃ is a k̃-set contraction, with k̃ > ((L)/(d(0, F )))k, k̃ as near
((L)/(d(0, F )))k as we please. �

Remark 3.17. It is possible to consider k̃ = ((L)/(d(0, F )))k in lemma 3.16.

Remark 3.18. If we want T̃ to be a k̃-set contraction with k̃ < 1, it is needed that

L

d(0, F )
k < 1,

that is, k < ((d(0, F ))/(L)).

Theorem 3.19. Let (X, ‖ · ‖) be a Banach space, C a cone in X and E1, E2 star
convex sets satisfying condition 3.10. Suppose that T : C ∩ (E2\E̊1) −→ C is a k-set
contraction, with k < ((d(0, F1))/(L1)), and a compression of the cone C according
to definition 3.15. Then T has at least one fixed point in C ∩ (E2\E̊1).
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Figure 4. Example of sets used in the definition of T .

Proof. First, we consider a mapping T that is an extension of T : C ∩ (E2\E̊1) −→
C. To that purpose, we should take into account that, since 0 ∈ E1\F1, then
d(0, F1) > 0. Hence, it is possible to choose δ ∈ R such that 0 < δ < d(0, F1). Fix
arbitrarily some δ ∈ R satisfying such conditions and define the set

Eδ
1 := {x ∈ E1 : d(x, F1) � δ}.

We consider T defined by (see figure 4)

T : C −→ C

x �−→ T (x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δh, ‖x‖ = 0,
1

β1(x)
T (β1(x)x) + δh, x ∈ C ∩ (Eδ

1\{0}),

1
β1(x)

T (β1(x)x) + d(x, F1)h, x ∈ C ∩ (E1\E̊δ
1),

T (x), x ∈ C ∩ (E2\E̊1),

T (∂C
2 (x)), x ∈ C\(C ∩ E̊2);

where h ∈ C and

‖h‖ > (1/δ)[sup{d(0, x) : x ∈ C ∩ E1} + sup{‖T (β1(x)x)‖ : x ∈ C ∩ E1}].
We show that there exists such an h:

• Since C ∩ E1 is a bounded set, there exists sup{d(0, x) : x ∈ C ∩ E1} < +∞.

• For each x ∈ C ∩ E1, β1(x)x ∈ C ∩ F1 and, as T is a k-set contraction, then
the image of the bounded set C ∩ F1 is also bounded, hence there exists

sup{‖T (β1(x)x)‖ : x ∈ C ∩ E1} < +∞.

As C is a cone in X, it is possible to choose such an h.
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The different expressions of T coincide in the intersection of the sets C ∩
(Eδ

1\{0}), C ∩ (E1\E̊δ
1), C ∩ (E2\E̊1) and C\(C ∩ E̊2), so T is well defined. More-

over, T is continuous in C\{0} and the proof of the continuity of this mapping at
x = 0 is quite similar to the one given in the lemma 3.16.

Our purpose is to apply proposition 3.1, so we need to select a bounded, closed
and convex set such that the restriction of T to this set is a k-set contraction with
k < 1. In this way, we are going to prove some properties:

(a) There exists R1 ∈ R+ such that R1 = sup{‖T (x)‖ : x ∈ C ∩ E2}.
We complete the proof by distinguishing four cases, because the definition of
T depends on the subset of C ∩ E2 which is considered:
• If x = 0, ‖T (x)‖ = δ‖h‖.
• If x ∈ C ∩ (Eδ

1\{0}), ‖T (x)‖ = ‖((1)/(β1(x)))T (β1(x)x) + δh‖. Using the
triangular inequality and that, if β1(x) ∈ [1,+∞), then ((1)/(β1(x))) ∈
(0, 1], we obtain ‖T (x)‖ � ‖T (β1(x)x)‖ + δ‖h‖. As C ∩ F1 ⊂ C ∩ (E2\E̊1)
is a bounded set and T : C ∩ (E2\E̊1) −→ C is a k-set contraction,
then T (C ∩ F1) is also bounded, therefore there exists M1 ∈ R+ such
that ‖T (x)‖ � M1 for all x ∈ C ∩ F1. Besides, for all x ∈ C ∩ (Eδ

1\{0}),
β1(x)x ∈ C ∩ F1, so we conclude

‖T (x)‖ � M1 + δ‖h‖, ∀ x ∈ C ∩ (Eδ
1\{0}).

• If x ∈ C ∩ (E1\E̊δ
1), then

‖T (x)‖ � M1 + δ‖h‖

by the existence of M1 proved before.

• If x ∈ C ∩ (E2\E̊1), as this is a bounded set and T is a k-set contraction,
there exists M2 ∈ R+ such that ‖T (x)‖ = ‖T (x)‖ � M2, for all x ∈ C ∩
(E2\E̊1).

Thus, we conclude that there exists R1 ∈ R+ with the above property.

(b) There exists R2 ∈ R+ such that R2 = sup{d(0, x) : x ∈ C ∩ E2}, since C ∩
E2 is a bounded set.

Now, let R = max{R1, R2} ∈ R+ and BR = {x ∈ C : d(0, x) � R}, then it is
obtained that T (BR) ⊆ BR.

We want to prove that T |BR
: BR −→ BR satisfies the hypotheses of proposition

3.1. Indeed:

• BR is a bounded, closed and convex set, because it is the intersection of the
closed and convex set C with the bounded, closed and convex set B(0, R) =
{x ∈ X : d(0, x) � R}.

• T |BR
is clearly continuous.
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• T |BR
is a k-set contraction with k < 1. To prove it, we define another helpful

auxiliary mappings:

T1 : BR ∩ E1 −→ BR is given by

T1(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δh, x = 0;
1

β1(x)
T (β1(x)x) + δh, x ∈ BR ∩ (Eδ

1\{0}
)
;

1
β1(x)

T (β1(x)x) + d(x, F1)h, x ∈ BR ∩
(
E1\E̊δ

1

)
.

T2 : BR\(BR ∩ E̊1) −→ BR is given by

T2(x) :=

⎧⎨
⎩
T (x), x ∈ BR ∩ (E2\E̊1),

T (∂C
2 (x)), x ∈ BR\(BR ∩ E̊2).

It is possible to express T1 as the sum of two mappings T 1
1 and T 2

1 . The
mapping

T 1
1 : BR ∩ E1 −→ BR

x �−→ T 1
1 (x) :=

{
δh, x ∈ BR ∩ Eδ

1 ,

d(x, F1)h, x ∈ BR ∩ (E1\E̊δ
1),

is a 0-set contraction. In fact, let A ⊂ BR ∩ E1, then A is bounded and T 1
1 (A) =

T 1
1 (A ∩ (BR ∩ Eδ

1)) ∪ T 1
1 (A ∩ (BR ∩ (E1\E̊δ

1))). As

T 1
1 (A ∩ (BR ∩ (E1\Eδ

1))) ⊂ co{{0} ∪ {δh}},

by using properties (i), (ii), (iii), (vi) and (vii) of proposition 2.8, we can
conclude

α(T 1
1 (A)) � max{α({δh}), α(co{{0} ∪ {δh}})} = 0.

Furthermore, the mapping

T 2
1 : BR ∩ E1 −→ BR

x �−→ T 2
1 (x) :=

⎧⎨
⎩

0, x = 0,
1

β1(x)
T (β1(x)x), x �= 0,

is a k2
1-set contraction with k2

1 < 1, because it is the restriction to BR ∩ E1 of
T̃ in lemma 3.16 with E = E1 and F = F1.

Using (ii) of proposition 2.12, then T1 = T 1
1 + T 2

1 is a k1 = 0 + k2
1-set

contraction with k1 < 1.
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Besides, T2 is a k2-set contraction with k2 = k, because it can be written as
the composition T ◦ S, where S : BR\(BR ∩ E̊1) −→ BR ∩ (E2\E̊1) is given by

S(x) :=

⎧⎨
⎩
x, x ∈ BR ∩ (E2\E̊1),

∂C
2 (x) = β2

(
d(0, F2)
||x|| x

)
d(0, F2)
||x|| x, x ∈ BR\(BR ∩ E̊2),

is a 1-set contraction. Therefore, hypothesis (i) of proposition 2.12 is satisfied
and, as a consequence, T2 is a k-set contraction. We now prove that S is a 1-set
contraction. For this, let us consider λ : BR\(BR ∩ E̊1) −→ R+ given by

λ(x) :=

⎧⎨
⎩

1, x ∈ BR ∩ (E2\E̊1),

β2

(
d(0, F2)
||x|| x

)
d(0, F2)
||x|| , x ∈ BR\(BR ∩ E̊2),

which is a continuous function and satisfies

sup{λ(x) : x ∈ BR ∩ (BR\E̊1)} � 1.

Hence, by using proposition 2.15, we conclude that S is a 1-set contraction
since the identity also fulfills this property.

Applying corollary 2.14 to T1 and T2, we get that T |BR
is a k-set contraction

with k = max{k1, k} < 1.

Therefore, the hypotheses of proposition 3.1 are satisfied and T |BR
has at least one

fixed point x. We only have to prove that x ∈ C ∩ (E2\E̊1). To that purpose, we
consider four cases:

Case 1: Suppose that x = 0.
So T (0) = 0, then δ‖h‖ = 0 and this is not possible since δ > 0, ‖h‖ > 0.

Case 2: Assume that x ∈ BR ∩ (Eδ
1\{0}).

Consequently, T (x) = ((1)/(β1(x)))T (β1(x)x) + δh = x, so

‖h‖ � 1
δ
‖x‖ +

1
δβ1(x)

‖T (β1(x)x)‖

and it is a contradiction with the selection of h in the definition of the
mapping T : C −→ C.

Case 3: Let x ∈ BR ∩ (E1\Eδ
1).

Since x is a fixed point, then T (x) = ((1)/(β1(x)))T (β1(x)x) +
d(x, F1)h = x, so

x− 1
β1(x)

T (β1(x)x) = d(x, F1)h ∈ C,

due to d(x, F1) � 0. Moreover, β1(x) ∈ [1,+∞), thus

β1(x)x− T (β1(x)x) ∈ C, where β1(x)x ∈ F1 ∩ C,
which contradicts the hypothesis (C1) for T a compression of the cone C.
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Case 4: Suppose that x ∈ BR\(BR ∩ E2).
Let us define yx = ((d(0, F2))/(||x||))x, then

T (x) = T (∂C
2 (x)) = T (∂2(yx))

= T (β2(yx)yx) = T

(
d(0, ∂2(yx))

‖yx‖
d(0, F2)
‖x‖ x

)
.

As ‖yx‖ = ((d(0, F2))/(‖x‖))‖x‖ = d(0, F2), then T (x) = T (((d(0, ∂2

(yx)))/(‖x‖))x). Take ε = ((‖x‖)/(d(0, ∂2(yx)))) − 1, then ε > 0 since
((‖x‖)/(d(0, ∂2(yx)))) > 1. We can express x as (1 + ε)((d(0, ∂2(yx)))/
(‖x‖))x, then

T (x) = T

(
d(0, ∂2(yx))

‖x‖ x

)
= (1 + ε)

d(0, ∂2(yx))
‖x‖ x.

Due to ((d(0, ∂2(yx)))/(‖x‖))x ∈ C ∩ F2 and T (((d(0, ∂2(yx)))/(‖x‖))x)
− (1 + ε)((d(0, ∂2(yx)))/(‖x‖))x = 0 ∈ C, we obtain a contradiction with
the hypothesis (C2) for T a compression of the cone C.

Finally, the fixed point of T belongs to C ∩ (E2\E̊1), since T and T coincide on
this set, then we conclude that T has a fixed point in the mentioned set. �

Potter, in [9], asserts that, using similar techniques as the ones in the proof of
theorem 3.8, it is possible to generalize the fixed point result due to Krasnosel’skii
by considering hypothesis (1.2) instead of (1.1), but the proof is not given. On the
other hand, Các and Gatica prove it in [3] following the steps of Krasnosel’skii to
prove the mentioned classical result with hypothesis (1.2). In the future, we will
consider the case of expansive mappings working with sets which satisfy condition
3.10.

3.1. Admissible sets defined by functionals

The above-mentioned fixed point theorem due to Potter provides the existence
of fixed points in certain subsets of a Banach space (X, || · ||). These subsets are
determined by the norm || · ||, for instance, given r ∈ R, r > 0 and C a cone in X,
we define

Br := C ∩ {x ∈ X : ||x|| � r}, Sr := C ∩ {x ∈ X : ||x|| = r}.

This result guarantees, for some r,R ∈ R, 0 < r < R, and some particular mapping
T , that there exists at least a fixed point of T in BR\B̊r = C ∩ {x ∈ X : r � ||x|| �
R}.

We have just proved a generalization of this result working with some particular
star convex sets. Now, our aim is to determine conditions over a functional ϕ :
X −→ [0,+∞) such that, for r ∈ R, r > 0, the sets

Er := {x ∈ X : ϕ(x) � r}, Fr := {x ∈ X : ϕ(x) = r}

https://doi.org/10.1017/prm.2018.119 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.119


A generalization of Krasnosel’skii fixed point theorem 295

satisfy the condition 3.10, and derive some consequences as corollary of
theorem 3.19.

Remark 3.20. If ϕ = || · ||, then Br = C ∩ Er and Sr = C ∩ Fr. This allows to
consider functionals with weaker properties in comparison with the norm.

Theorem 3.21. Let (X, ‖ · ‖) be a Banach space, r ∈ R, r > 0 and ϕ : X −→
[0,+∞) satisfying:

(F1) If x ∈ X is such that ϕ(x) � r, then ϕ(λx) � r for all λ ∈ [0, 1].

(F2) ϕ is a continuous functional.

(F3) For all x ∈ Er, ϕ(x) = 0 ⇔ x = 0.

(F4) ϕ(λx) = λϕ(x) for all λ ∈ (0,+∞), x ∈ Er.

(F5) There exists m ∈ R,m > 0 such that m‖x‖ � ϕ(x) for all x ∈ X with ‖x‖ >
ϕ(x), or lim inf

‖x‖→+∞
ϕ(x) > r.

Under these assumptions, Er and Fr satisfy condition 3.10.

Proof. We proceed step by step, that is, we prove each one of the properties required
to Er and Fr by using the appropriate hypotheses of ϕ. Indeed:

• (F1) is equivalent to Er being a star convex set.

• (F2) implies that Er is closed and ϕ−1([0, r)) is open in X. Indeed, we can
write Er = ϕ−1([0, r]). As [0, r] is a closed subset of ([0,+∞), | · |), where | · | is
the absolute value for real numbers, then Er is closed since it is the preimage
of a closed set by a continuous function. Besides, we can assert that ϕ−1([0, r))
is open in X since [0, r) is an open subset of [0,+∞).

• (F3) implies that 0 /∈ Fr, because ϕ(x) = r > 0 for all x ∈ Fr.

• By hypothesis (F4), we prove two conditions over the sets Er and Fr. First,
we show that Fr is the boundary of Er. We have just proved that Er is closed
and Er\Fr = ϕ−1([0, r)) is open, so the boundary of Er is a subset of Fr. Let
us consider y ∈ Fr arbitrarily, we want to prove that y is a boundary point of
Er. As y ∈ Fr ⊂ Er, we must prove that, for all ε > 0, B(y, ε) ∩ (X\Er) �= ∅.
We take z = (1 + ((ε)/(2‖y‖)))y ∈ B(y, ε), then it is satisfied

ϕ(z) =
(

1 +
ε

2‖y‖
)
ϕ(y),

and, as (1 + ((ε)/(2‖y‖))) > 1, we can conclude that ϕ(z) > ϕ(y) = r. There-
fore, z ∈ X\Er and y is a boundary point of Er. Secondly, there exists
a mapping ∂ : Er\{0} −→ Fr, x �−→ ∂(x) := ((r)/(ϕ(x)))x, which satisfies
the desired conditions for mapping ∂. The function ∂ is clearly well-
defined and continuous, by using (F2) and (F3). Let x ∈ Er\{0}, ϕ(∂(x)) =
ϕ(((r)/(ϕ(x)))x) = r, then ∂(x) ∈ Fr. Moreover, if x ∈ Fr, then ϕ(x) = r and,
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Figure 5. Graph of function ϕ, which is upper semicontinuous.

therefore, ∂(x) = x. Furthermore, by (F4), ∂(λx) = ∂(x) for all x ∈ Er and
λ ∈ (0, 1].

• Finally, (F5) implies that Er is a bounded set.

�

Remark 3.22. We know that the norm is a continuous function, so we think if it is
possible to relax this condition required to the functional. Is it enough to work with
an upper or lower semicontinuous function ϕ? Next, we prove that this assumption
is not enough.

Assume that ϕ is upper semicontinuous. We justify that Er\Fr is open and Er

is not necessarily closed:

• Let r ∈ R, r > 0, then ϕ−1([0, r)) is open. We prove it by contradiction, so
suppose that ϕ−1([0, r)) is not open, then there exists y ∈ ϕ−1([0, r)) such that
y is not an interior point. Therefore, for all δ ∈ R, δ > 0, it holds that

B(y, δ) � ϕ−1([0, r)). (3.5)

As ϕ(y) < r, we can take ε > 0 such that ϕ(y) + ε < r. Besides, by using
that ϕ is upper semicontinuous, there exists δy

ε such that, for all x ∈ B(y, δy
ε ),

0 � ϕ(x) < ϕ(y) + ε < r. As a consequence, B(y, δy
ε ) ⊂ ϕ−1([0, r)) and it con-

tradicts (3.5). Therefore, we conclude that ϕ−1([0, r)) is an open set.

• However, ϕ−1([0, r]) is not always closed. As an example, we work with the
function

ϕ : [0,+∞) −→ [0,+∞)

x �−→ ϕ(x) = �x� + 1,

where �·� denotes the floor function (see figure 5).
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First of all, we prove that ϕ is an upper semicontinuous function. Let ε ∈ R,
ε > 0 and y ∈ [0,+∞) be arbitrarily fixed. We take δy = ((d(y, ϕ(y)))/(2)) > 0,
so

ϕ(B[0,+∞)(y, δy)) ⊂ [0, ϕ(y + δy)) ⊂ [0, ϕ(y)) ⊂ [0, ϕ(y) + ε).

Then, ϕ is upper semicontinuous.
Secondly, for each r ∈ R, r > 0, it is satisfied that: If r ∈ (0, 1), then

ϕ−1([0, r]) = ∅. If r ∈ [1,+∞), then ϕ−1([0, r]) = [0, �r�), which is an open set
of ([0,+∞), | · |).

Assume that ϕ is lower semicontinuous. We justify that Er is closed and Er\Fr

is not necessarily open.

◦ Let r ∈ R, r > 0, then ϕ−1([0, r]) is closed. As ϕ−1([0, r]) = X\ϕ−1((r,+∞)),
we prove that ϕ−1((r,+∞)) is an open subset of [0,+∞) by contradiction.
Let us assume that ϕ−1((r,+∞)) is not open, so there exists at least a point
y ∈ ϕ−1(r,+∞) such that for each δ ∈ R, δ > 0, it is fulfilled

B(y, δ) � ϕ−1((r,+∞)). (3.6)

Now, as ϕ(y) > r, we can take ε > 0 such that ϕ(y) − ε > r. Besides, by
using that ϕ is lower semicontinuous, there exists δy

ε > 0 such that, for
all x ∈ B(y, δy

ε ), r < ϕ(y) − ε < ϕ(x) < +∞. As a consequence, B(y, δy
ε ) ⊂

ϕ−1((r,+∞)), which contradicts (3.6).

◦ Nevertheless, ϕ−1([0, r)) is not always open. For example, we consider the
function

ϕ : [0,+∞) −→ [0,+∞)

x �−→ ϕ(x) :=

{
�x�, x /∈ N;
x− 1, x ∈ N;

where �·� is the floor function (see figure 6).
First, we show that ϕ is lower semicontinuous. Let y = 0 and ε ∈ R, ε > 0,

since

ϕ([0, δ)) ⊂ [0,+∞) = [ϕ(0),+∞) ⊂ (ϕ(0) − ε,+∞), ∀ δ ∈ R, δ > 0,

ϕ is clearly lower semicontinuous at 0. Let ε ∈ R, ε > 0, and y ∈ (0,+∞) be
arbitrarily fixed. We take δy = ((d(y, ϕ(y)))/(2)) > 0 and it is possible to prove
that

ϕ(B[0,+∞)(y, δy)) ⊂ (ϕ(y) − ε,+∞).

As a consequence, we can assert that ϕ is lower semicontinuous.
Next, let r ∈ R, r > 0, it is satisfied that: If r ∈ N, then ϕ−1([0, r)) = [0, r],

which is a closed subset of [0,+∞). If r /∈ N, then ϕ−1([0, r)) = [0, �r� + 1],
which is a closed subset of [0,+∞).

To sum up, it is not enough to work with an upper or lower semicontinuous function.

https://doi.org/10.1017/prm.2018.119 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.119


298 C. Lois–Prados and R. Rodŕıguez–López

Figure 6. Graph of function ϕ, which is lower semicontinuous.

Now, we rewrite theorem 3.19 by using functionals.

Theorem 3.23. Let (X, ‖ · ‖) be a Banach space, C a cone in X and r,R ∈
R, with 0 < r < R. Assume that ϕ,ψ : X −→ [0,+∞) are functionals satisfying
the hypotheses (F1) − (F5) of theorem 3.21, for r,R respectively, and ψ(x) <
(R/r)ϕ(x) for all x ∈ X such that ϕ(x) � r. We consider E1 := {x ∈ X : ϕ(x) �
r} and E2 := {x ∈ X : ψ(x) � R}. Then E1 and E2 fulfill condition 3.10, 0 ∈ E1 ⊂
E2 and F1 ∩ F2 = ∅. Moreover, suppose that T : C ∩ (E2\E̊1) −→ C is a k-set con-
traction, with k < ((d(0, F1))/(L1)) and a compression of the cone C according to
definition 3.15. Then T has at least one fixed point in C ∩ (E2\E̊1).

Proof. First of all, by theorem 3.21, since ϕ,ψ satisfy the hypotheses (F1) − (F5),
then Ei, Fi fulfill the condition 3.10, for i = 1, 2.

Secondly, we check that 0 ∈ E1 ⊂ E2 and F1 ∩ F2 = ∅ in order to deal with the
concept of a compression of the cone C. Since ψ(x) < (R/r)ϕ(x) for all x ∈ E1:

• Let y ∈ E1, ψ(y) < (R/r)ϕ(y) � R, then y ∈ E2.

• Let y ∈ F1, ψ(y) < (R/r)ϕ(y) = R, then y /∈ F2.

Therefore, the hypotheses of theorem 3.19 are satisfied and, as a consequence, T
has at least a fixed point in C ∩ (E2\E̊1). �

Remark 3.24. The hypothesis ψ(x) < (R/r)ϕ(x), for all x ∈ X such that ϕ(x) � r,
of theorem 3.23, can be replaced by

ψ(x) � R

r
ϕ(x), for all x ∈ X such that ϕ(x) < r,

ψ(x) <
R

r
ϕ(x), for all x ∈ X such that ϕ(x) = r.
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4. Application

In this last section, we consider an ordinary differential equation subject to bound-
ary conditions and apply theorems 3.19 and 3.21 to study the existence of solutions
localized in a region determined by two star convex sets defined by functionals. The
same problem was considered by Avery, Henderson and O’Regan in [2], where the
authors applied other different fixed point theorems.

To proceed, let us consider the second-order nonlinear boundary value problem

x′′(t) + f(x(t)) = 0, t ∈ [0, 1],

x(0) = 0 = x(1),
(4.1)

where f : R −→ R is a continuous function such that f(z) � 0 for all z � 0. We
seek some solution x ∈ C2([0, 1],R) to (4.1). We prove that there exists at least one
solution that satisfies some properties as concavity and symmetry with respect to
t = 1/2.

First of all, we obtain a mapping T whose fixed points correspond to the solutions
of the boundary value problem. This mapping is given as follows:

T : C([0, 1],R) −→ C([0, 1],R)

x �−→ T (x) := Tx : [0, 1] −→ R

t �−→ [Tx](t) :=
∫ 1

0

G(t, s)f(x(s))ds,

where G is the function:

G : [0, 1] × [0, 1] −→ [0, 1]

(t, s) �−→ G(t, s) :=

{
t(1 − s), 0 � t � s � 1,
s(1 − t), 0 � s � t � 1.

Now, we apply theorem 3.19 to the mapping T . We consider the Banach space
(C([0, 1],R), || · ||), where || · || is the norm defined in example 3.4. However, we take
a cone in C([0, 1],R) different from the one in this example, as follows:

C :=
{
x ∈ C([0, 1],R) : x � 0, x is concave and symmetric with respect to

1
2

}
.

Besides, we require that the function f which defines the second-order differential
equation in (4.1) satisfies the following conditions.

Condition 4.1. There exist real numbers 0 < r < R and 0 < α < ((R)/(r)) − 1
such that:

(H1) f(z) > 8r, for all z ∈ [0, r].

(H2) f(z) � ((8R)/((1 + α))), for all z ∈ [0, R/α].
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Given real numbers 0 < r < R and 0 < α < ((R)/(r)) − 1 such that the hypotheses
(H1) and (H2) of condition 4.1 are fulfilled, and 0 � δ < 1/2 fixed, we consider the
following sets

E1 :=
{
x ∈ C([0, 1],R) : ||x|| = max

t∈[0,1]
|x(t)| � r

}
,

E2 :=
{
x ∈ C([0, 1],R) : min

t∈[1/2−δ,1/2+δ]
|x(t)| + α‖x‖ � R

}
.

We assert that E1 and E2 are star convex sets fulfilling condition 3.10. E1 is clearly
under the required hypotheses. On the other hand, E2 is a set defined by the
functional

ϕ : C([0, 1],R) −→ [0,+∞)

x �−→ ϕ(x) := min
t∈[1/2−δ,1/2+δ]

|x(t)| + α‖x‖.

This functional satisfies the hypotheses required in theorem 3.21. Therefore, E2

is a star convex set fulfilling condition 3.10. Besides, the following properties are
satisfied:


 Since α < R/r − 1, then E1 ⊂ E2 and F1 ∩ F2 = ∅.

 If x ∈ C ∩ F1, then ‖x‖ = maxt∈[0,1] |x(t)| = x(1/2) = r.


 If x ∈ C ∩ F2, then mint∈[1/2−δ,1/2+δ] |x(t)| + α‖x‖ = x(1/2 − δ) + αx(1/2) =
R.

The next result proves the existence of a nonzero, concave and symmetric with
respect to 1/2 solution to the boundary value problem (4.1).

Theorem 4.2. For all continuous function f : R −→ R such that f(z) � 0 for all
z � 0 and fulfilling condition 4.1, the boundary value problem (4.1) has at least a
solution in C ∩ (E2\E̊1).

Proof. We prove the result by checking the hypotheses of theorem 3.19.
First, (C([0, 1],R), || · ||) is a Banach space, C a cone in C([0, 1],R) and E1, E2

star convex sets satisfying condition 3.10.
Secondly, it is possible to prove that T : C([0, 1],R) −→ C([0, 1],R) is a continuous

and compact mapping.
Then, we have to prove the following properties:

(i) T (C ∩ (E2\E̊1)) ⊂ C.

(ii) x− Tx /∈ C, for all x ∈ C ∩ F1.

(iii) For all ε > 0 and x ∈ C ∩ F2, Tx− (1 + ε)x /∈ C.
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We begin by proving (i). Let x ∈ C ∩ (E2\E̊1), we show that T (x) ∈ C. To that
purpose, we check the following items:

• For each t ∈ [0, 1], since G(t, s) ∈ [0, 1] for all (t, s) ∈ [0, 1] × [0, 1] and f(x(s)) �
0 for all s ∈ [0, 1], then

[Tx](t) =
∫ 1

0

G(t, s)f(x(s))ds � 0.

• By construction of T (x), for all t ∈ (0, 1), it is satisfied that [Tx]′′(t) =
−f(x(t)) � 0, so Tx is a concave function.

• Tx is symmetric with respect to 1/2, because

[Tx](t) = [Tx](1 − t), for all t ∈ [0, 1].

In fact, for all t ∈ [0, 1], it holds that

[Tx](t) =
∫ 1

0

G(t, s)f(x(s))ds =
∫ t

0

s(1 − t)f(x(s))ds+
∫ 1

t

t(1 − s)f(x(s))ds.

Making the change of variable s = 1 − u, we obtain

[Tx](t) =
∫ 1

1−t

(1 − u)(1 − t)f(x(1 − u))du+
∫ 1−t

0

tuf(x(1 − u))du.

Since x ∈ C, x is symmetric with respect to 1/2, then

[Tx](t) =
∫ 1−t

0

u[1 − (1 − t)]f(x(u))du+
∫ 1

1−t

(1 − t)(1 − u)f(x(u))du

=
∫ 1

0

G(1 − t, u)f(x(u))du = [Tx](1 − t).

Therefore, property (i) has been proved. In fact, we have just proved Tx ∈ C for
all x ∈ C.

By hypothesis (H1), we prove that condition (ii) is fulfilled. In fact, let x ∈
C ∩ F1, as x � 0 and ||x|| = r, then 0 � x(s) � r for all s ∈ [0, 1]. Let us consider
t = 1/2, then

x

(
1
2

)
− [Tx]

(
1
2

)
= r −

∫ 1

0

G

(
1
2
, s

)
f(x(s))ds.

Now, by using (H1), we obtain that f(x(s)) > 8r for all s ∈ [0, 1], then

x

(
1
2

)
− [Tx]

(
1
2

)
< r − 8r

∫ 1

0

G

(
1
2
, s

)
ds = 0,

and, therefore, we conclude that x− Tx /∈ C, because x− Tx � 0 is not satisfied.
As x ∈ C ∩ F1 was arbitrarily fixed, then (ii) has been proved.
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By hypothesis (H2), we prove that property (iii) is satisfied. Indeed, let ε > 0
and x ∈ C ∩ F2 be arbitrarily fixed. Since x ∈ C ∩ F2, then:

• The property R = mint∈[1/2−δ,1/2+δ] |x(t)| + α‖x‖ = x(1/2 − δ) + αx(1/2)
implies that x(1/2) = ((R− x(1/2 − δ))/(α)) � R/α.

• Since ‖x‖ = maxt∈[0,1] x(t) = x(1/2), then 0 � x(s) � x(1/2) � R/α, ∀ s ∈
[0, 1].

• As x(1/2 − δ) � x(1/2), then R = x(1/2 − δ) + αx(1/2) � (1 + α)x(1/2) and,
hence, x(1/2) � ((R)/(1 + α)) and, finally (1 + ε)x(1/2) > ((R)/(1 + α)).

Therefore, by using hypothesis (H2),

[Tx]
(

1
2

)
− (1 + ε)x

(
1
2

)
=
∫ 1

0

G

(
1
2
, s

)
f(x(s))ds− (1 + ε)x

(
1
2

)

� 8R
1 + α

∫ 1

0

G

(
1
2
, s

)
ds− (1 + ε)x

(
1
2

)
< 0.

As a consequence, we conclude that Tx− (1 + ε)x /∈ C, because Tx− (1 + ε)x � 0
is not satisfied. Since ε > 0 and x ∈ C ∩ F2 have been arbitrarily fixed, the property
(iii) has been proved.

From all this, theorem 3.19 guarantees that there exists at least one fixed point x
of T in C ∩ (E2\E̊1). Therefore, there exists at least one solution to the boundary
value problem (4.1) in C ∩ (E2\E̊1). �

We have shown an application to boundary value problems of a generalized ver-
sion of a Krasnosel’skii fixed point result. We would like to emphasize that we work
with star convex sets that generalize the ones considered in the results by Potter
[9]. Besides, with the application given we have illustrated that E2 is an admissible
set by using that this is defined by a suitable functional.
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