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We consider a model for the dynamics of growing cell populations with heterogeneous mobility and
proliferation rate. The cell phenotypic state is described by a continuous structuring variable and the
evolution of the local cell population density function (i.e. the cell phenotypic distribution at each
spatial position) is governed by a non-local advection–reaction–diffusion equation. We report on
the results of numerical simulations showing that, in the case where the cell mobility is bounded,
compactly supported travelling fronts emerge. More mobile phenotypic variants occupy the front
edge, whereas more proliferative phenotypic variants are selected at the back of the front. In order to
explain such numerical results, we carry out formal asymptotic analysis of the model equation using
a Hamilton–Jacobi approach. In summary, we show that the locally dominant phenotypic trait (i.e.
the maximum point of the local cell population density function along the phenotypic dimension)
satisfies a generalised Burgers’ equation with source term, we construct travelling-front solutions of
such transport equation and characterise the corresponding minimal speed. Moreover, we show that,
when the cell mobility is unbounded, front edge acceleration and formation of stretching fronts may
occur. We briefly discuss the implications of our results in the context of glioma growth.
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1 Introduction

Background
Mathematical models formulated as reaction–diffusion equations with non-local reaction

terms have been increasingly used to achieve a more in-depth theoretical understanding of the
mechanisms underlying the spatial spread and the phenotypic evolution of populations with
heterogeneous motility [4, 9–11, 13, 46].
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In these models, the phenotypic state of each individual is described by a continuous structur-
ing variable, and the model itself consists of a balance equation for the local population density
function (i.e. the phenotypic distribution of the individuals at each spatial position). As is the
case for the classical Fisher-KPP model [20, 31], individuals are assumed to undergo undirected,
random movement, which translates into a linear diffusion term. Additionally, intrapopulation
variability of individual motility is taken into account by letting the diffusion coefficient be a
function of the structuring variable. Moreover, possible changes in individual motility are con-
ceptualised as transitions between phenotypic states, which are modelled through an integral or a
differential operator. Finally, in analogy with the non-local version of the Fisher-KPP model [8,
27], most of these models rely on the assumption that the population undergoes logistic growth
at a rate that depends on the local number density of individuals (i.e. the integral of the solution
with respect to the structuring variable), which is described via a non-local reaction term.

Amongst these models, the model for the cane toad invasion presented in [7] has received con-
siderable attention from the mathematical community over the last few years. Analysis of this
simple yet effective model has made it possible to find a robust mechanistic explanation for the
empirical observation that highly motile individuals are, as such, more likely to be found at the
edge of the invasion front, and has helped elucidate the way this form of spatial sorting can pro-
mote acceleration of the invasion front [41–43, 47]. In particular, the existence of travelling-front
solutions and the occurrence of spatial sorting in the case of bounded motility has been studied
in [10–12, 46], while front acceleration in the case of unbounded motility has been investigated
in [9, 11, 13]. Furthermore, an evolution equation for the dynamic of the maximum point of the
local population density function along the phenotypic dimension (i.e. the dominant phenotypic
trait) at the edge of the front has been formally derived in [11].

Content of the paper
We consider a model for the dynamics of growing cell populations with heterogeneous mobil-

ity and proliferation rate. In analogy with the models considered in the aforementioned studies,
intra-population heterogeneity is here captured by a continuous structuring variable representing
the cell phenotypic state and the model consists of a balance equation for the local cell population
density function. However, in contrast to the aforementioned studies, such a balance equation
takes the form of a non-local advection–reaction–diffusion equation whereby the velocity field
and the reaction term are both functions of the structuring variable and of the local cell density.
This leads to the emergence of invasion fronts with compact support and brings about richer
spatio-temporal dynamics of the dominant phenotypic trait throughout the front.

Outline of the paper
The remainder of the paper is organised as follows. In Section 2, we describe the model and

the main underlying assumptions. In Section 3, we present the results of numerical simulations,
which were obtained using the numerical methods detailed in Appendix A. In Section 4, we
carry out formal asymptotic analysis of the model in order to provide an explanation for such
numerical results. In Section 5, we discuss the main results of numerical simulations and formal
analysis. Moreover, we briefly explain how these mathematical results may shed light on the
interplay between spatial sorting and natural selection that underpins tumour growth and the
emergence of phenotypic heterogeneity in glioma. Finally, we provide a brief overview of
possible research perspectives.
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2 Statement of the problem

A model for the dynamics of heterogeneous growing cell populations
We consider a mathematical model for the dynamics of a growing population of cells struc-

tured by a variable y ∈ [0, Y ] ⊂R+, which represents the phenotypic state of each cell and takes
into account intra-population heterogeneity in cell proliferation rate and cell mobility (e.g. the
variable y could represent the level of expression of a gene that controls cell proliferation and cell
mobility). The population density at position x ∈R and time t ∈ [0, ∞) is modelled by the func-
tion n(t,x,y), the evolution of which is governed by the following non-local partial differential
equation (PDE)⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tn − α μ(y) ∂x (n ∂xρ(t, x)) = R(y, ρ(t, x)) n + β ∂2

yyn,

ρ(t, x) :=
∫ Y

0
n(t, x, y) dy,

(x, y) ∈R× (0, Y ), (2.1)

subject to zero Neumann boundary conditions at y = 0 and y = Y .
The second term on the left-hand side of the non-local PDE (2.1) represents the rate of change

of the population density due to the tendency of cells to move towards less crowded regions (i.e.
to move down the gradient of the cell density ρ(t, x)) [3, 14]. The function α μ(y), with α > 0,
models the mobility of cells in the phenotypic state y. Without loss of generality, we consider the
case where higher values of y correlate with higher cell mobility and, therefore, we let μ(y) be a
smooth function that satisfies the following assumptions:

μ(0) > 0,
dμ(y)

dy
> 0 for y ∈ (0, Y ]. (2.2)

Moreover, the first term on the right-hand side of the non-local PDE (2.1) represents the rate
of change of the population density due to cell proliferation and death. The function R(y, ρ(t, x))
models the fitness (i.e. the net proliferation rate) of cells in the phenotypic state y at time t and
position x under the local environmental conditions given by the cell density ρ(t, x). We let
R(y, ρ) be a smooth and bounded function that satisfies the following assumptions:

R(Y , 0) = 0, R(0, ρM ) = 0, ∂ρR(·, ρ) < 0, ∂yR(y, ·) < 0 for y ∈ (0, Y ], (2.3)

with 0 < ρM < ∞ being the local carrying capacity of the cell population. Here, the assump-
tion on ∂ρR corresponds to saturating growth, while the assumption on ∂yR models the fact that
more mobile cells may be characterised by a lower proliferation rate due to the energetic cost of
migration [1, 2, 22–26, 28, 34, 39]. In particular, we will focus on the case where

R(y, ρ) := r(y) − ρ with r(Y ) = 0, r(0) = ρM ,
dr(y)

dy
< 0 for y ∈ (0, Y ], (2.4)

with r(y) being a smooth and bounded function that models the proliferation rate of cells in the
phenotypic state y.

Finally, the second term on the right-hand side of the non-local PDE (2.1) models the effects
of spontaneous, heritable phenotypic changes [29], which occur at rate β > 0.
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Object of study
Focussing on a biological scenario whereby cell movement occurs on a slower timescale com-

pared to cell proliferation and death, while spontaneous, heritable phenotypic changes occur on a
slower timescale compared to cell movement [18, 44, 49], we introduce a small parameter ε > 0
and let

α := ε and β := ε2.

Furthermore, in order to explore the long-time behaviour of the cell population (i.e. the behaviour
of the population over many cell generations), we use the time scaling t → t/ε in (2.1), which
gives the following non-local PDE for the population density function n( t

ε
, x, y) ≡ nε(t, x, y):⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ε ∂tnε − ε μ(y) ∂x (nε ∂xρε(t, x)) = R(y, ρε(t, x)) nε + ε2 ∂2

yynε,

ρε(t, x) :=
∫ Y

0
nε(t, x, y) dy,

(x, y) ∈R× (0, Y ). (2.5)

3 Numerical simulations

In this section, we report on numerical solutions of the non-local PDE (2.5) in the case where
R(y, ρε) is defined via (2.4). We choose the following initial condition:

nε(0, x, y) = C e−x2
e− (y−a)2

ε with C s.t. C

∫ Y

0
e− (y−a)2

ε dy = 1 and a ∈ (0, Y ), (3.1)

which satisfies nε(0, x, y) ∗−−−⇀
ε→0

ρ(0, x) δy0(x)(y), with ρ(0, x) = e−x2
and y0(x) ≡ a. Such an initial

condition models a biological scenario whereby y = a is the locally dominant phenotypic trait
at every position x at time t = 0. We use uniform discretisations of steps 	t, 	x and 	y of
the intervals (0,T], (0,X ) and (0,Y ), respectively, as computational domains of the independent
variables t, x and y. The implicit finite volume scheme employed to solve numerically (2.5)
complemented with (3.1) and subject to zero-flux/Neumann boundary conditions at x = 0 (we
expect a constant step), y = 0 and y = Y is described in Appendix A. All numerical computations
are performed in MATLAB.

Travelling fronts
The plots in Figure 1 summarise the numerical results obtained in the case where

Y := 1, μ(y) := y2 + 0.01, r(y) := 1 − y2, ρM := 1. (3.2)

The above definitions of μ(y) and r(y) are such that assumptions (2.2) and (2.4) are satisfied.
The left panel of Figure 1 displays the plots of the normalised cell population density function

nε(t, x, y)/ρε(t, x) at three successive time instants (i.e. t = 4, t = 6 and t = 8). These plots indicate
that for all x ∈ supp(ρε) the normalised population density function nε(t, x, y)/ρε(t, x) is concen-
trated as a sharp Gaussian with maximum at a point yε(t, x) [i.e. nε(t, x, y)/ρε(t, x) ≈ δyε(t,x)(y)
for all x ∈ supp(ρε)], and the maximum point yε(t, x) behaves like a compactly supported and
monotonically increasing travelling front that connects y = 0 to y = Y .

The right panel of Figure 1 displays the plots of the cell density ρε(t, x) (solid blue lines)
and the function r(yε(t, x)) (dashed cyan lines) at three successive time instants (i.e. t = 4, t = 6
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FIGURE 1. Travelling fronts. Plots of the normalised cell population density function nε(t, x, y)/ρε(t, x) (left
panel) and the cell density ρε(t, x) (right panel, solid blue lines) at three successive time instants (i.e. t = 4,
t = 6 and t = 8). The dashed cyan lines in the right panel highlight the corresponding values of r(yε(t, x)),
with yε(t, x) being the maximum point of nε(t, x, y) at x ∈ supp(ρε), while the inset of the right panel displays
the plots of x1ε(t) (blue squares), x2ε(t) (red diamonds) and x3ε(t) (black stars) such that ρε(t, x1ε(t)) = 0.2,
ρε(t, x2ε(t)) = 0.6 and ρε(t, x3ε(t)) = 0.8. These results were obtained solving numerically (2.5) with ε :=
0.01 under assumptions (2.4), (3.1) with a = 0.2, and (3.2). Moreover, T = 8, X = 25, 	t = 0.01, 	x = 0.01
and 	y = 0.02.

and t = 8). These plots indicate that ρε(t, x) behaves like a one-sided compactly supported and
monotonically decreasing travelling front that connects ρM to 0. Moreover, there is an excel-
lent quantitative match between ρε(t, x) and r(yε(t, x)), which means that if ρε(t, x) > 0 then the
relation R(yε(t, x), ρε(t, x)) = 0 holds.

The inset of the right panel of Figure 1 displays the plots of x1ε(t) (blue squares), x2ε(t) (red dia-
monds) and x3ε(t) (black stars) such that ρε(t, x1ε(t)) = 0.2, ρε(t, x2ε(t)) = 0.6 and ρε(t, x3ε(t)) =
0.8. These plots show that x1ε(t), x2ε(t) and x3ε(t) are straight lines of slope ≈ 2.5, which supports
the idea that ρε behaves like a travelling front of speed c ≈ 2.5. Such a value of the speed is coher-
ent with the condition on the minimal wave speed c∗ given by (4.20). In fact, inserting into (4.20)
the numerical values of yε(8, x) in place of y(z) and the numerical values of ∂2

yyuε(8, x, yε(8, x))
with uε = ε log(nε) in place of ∂2

yyu(z, y(z)) gives c∗ � 2.5.

Front edge acceleration and stretching fronts
The plots in Figure 2 summarise the numerical results obtained in the case where

Y := 20, μ(y) := 0.01 + y4, r(y) := 1 − y

1 + y
, ρM := 1. (3.3)

The above definitions of μ(y) and r(y) are chosen so that assumptions (2.2) and (2.4) are satisfied
for Y → ∞, and condition (4.21) is met (see details below).

The left panel of Figure 2 displays the plots of the normalised cell population density function
nε(t, x, y)/ρε(t, x) at three successive time instants (i.e. t = 4, t = 6 and t = 8). Similarly to the
case of Figure 1, these plots show that for all x ∈ supp(ρε) the normalised population density
function nε(t, x, y)/ρε(t, x) is concentrated as a sharp Gaussian with maximum at a point yε(t, x)
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FIGURE 2. Front edge acceleration and stretching fronts. Plots of the normalised cell population density
function nε(t, x, y)/ρε(t, x) (left panel) and the cell density ρε(t, x) (right panel, solid blue lines) at three
successive time instants (i.e. t = 4, t = 6 and t = 8). The dashed cyan lines in the right panel highlight
the corresponding values of r(yε(t, x)), with yε(t, x) being the maximum point of nε(t, x, y) at x ∈ supp(ρε),
while the inset of the right panel displays the plots of x1ε(t) (blue circles), x2ε(t) (red squares), x3ε(t) (black
diamonds) and x4ε(t) (pink stars) such that ρε(t, x1ε(t)) = 0.1, ρε(t, x2ε(t)) = 0.25, ρε(t, x3ε(t)) = 0.45 and
ρε(t, x4ε(t)) = 0.8. These results were obtained solving numerically (2.5) with ε := 0.01 under assumptions
(2.4), (3.1) with a = 0.2, and (3.3). Moreover, T = 8, X = 200, 	t = 0.002, 	x = 0.1 and 	y = 0.05.

[i.e. nε(t, x, y)/ρε(t, x) ≈ δyε(t,x)(y) for all x ∈ supp(ρε)], and the maximum point yε(t, x) is a mono-
tonically increasing function of x with minimal value 0 for all t ∈ [0, 8]. However, in contrast to
the case of Figure 1, here yε(t, x) has a jump discontinuity and its maximal value increases as t
increases.

The right panel of Figure 2 displays the plots of the cell density ρε(t, x) (solid blue lines)
and the function r(yε(t, x)) (dashed cyan lines) at three successive time instants (i.e. t = 4, t = 6
and t = 8). Similarly to the case of Figure 1, these plots indicate that ρε(t, x) is a monotoni-
cally decreasing function of x with maximal value ρM and minimal value 0 for all t ∈ [0, 8].
Furthermore, there is an excellent quantitative match between ρε(t, x) and r(yε(t, x)), which
means that if ρε(t, x) > 0 then the relation R(yε(t, x), ρε(t, x)) = 0 holds. However, in contrast
to the case of Figure 1, we have that ρε(t, x) behaves like a stretching front, which suggests that
the speed of the front edge increases with t.

Coherently with this, the plot of x1ε(t) (blue circles) such that ρε(t, x1ε(t)) = 0.1 displayed in
the inset of Figure 2 shows that the value of x1ε undergoes super linear growth, which supports
the idea that front edge acceleration occurs. This is also coherent with the fact that, in the case
where μ(y) and r(y) are defined via (3.3), we have that condition (4.21) is met and, therefore, the
minimal wave speed c∗ tends to ∞ as Y → ∞.

4 Formal asymptotic analysis

In this section, we undertake formal asymptotic analysis of the non-local PDE (2.5) in order to
provide an explanation for the numerical results presented in Section 3.
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Building on the Hamilton–Jacobi approach presented in [6, 17, 33, 36, 37], we make the real
phase WKB ansatz [5, 19, 21]

nε(t, x, y) = e
uε (t,x,y)

ε , (4.1)

which gives

∂tnε = ∂tuε

ε
nε, ∂xnε = ∂xuε

ε
nε, ∂2

yynε =
(

1

ε2

(
∂yuε

)2 + 1

ε
∂2

yyuε

)
nε.

Substituting the above expressions into the non-local PDE (2.5) gives the following Hamilton–
Jacobi equation for uε(t, x, y):

∂tuε − μ(y)
(
∂xuε ∂xρε + ε ∂2

xxρε

)= R(y, ρε) + (
∂yuε

)2 + ε ∂2
yyuε, (x, y) ∈R× (0, Y ). (4.2)

Letting ε → 0 in (4.2) we formally obtain the following equation for the leading-order term
u(t,x,y) of the asymptotic expansion for uε(t, x, y):

∂tu − μ(y) ∂xρ ∂xu = R(y, ρ) + (
∂yu
)2

, (x, y) ∈R× (0, Y ), (4.3)

where ρ(t, x) is the leading-order term of the asymptotic expansion for ρε(t, x).

Constraint on u
Consider x ∈R such that ρ(t, x) > 0, that is, x ∈ supp(ρ), and let y(t, x) be a nondegenerate

maximum point of u(t,x,y), that is, y(t, x) ∈ arg max
y∈[0,Y ]

u(t, x, y) with ∂2
yyu(t, x, y) < 0. Since R(y, ρε)

satisfies assumptions (2.3), we have that ρε(t, x) < ∞ for all ε > 0. Hence, letting ε → 0 in (4.1)
formally gives the following constraint for all t > 0:

u(t, x, y(t, x)) = max
y∈[0,Y ]

u(t, x, y) = 0, x ∈ supp(ρ), (4.4)

which also implies that

∂yu(t, x, y(t, x)) = 0 and ∂xu(t, x, y(t, x)) = 0, x ∈ supp(ρ). (4.5)

Remark 4.1 The system defined by (4.3) and (4.4) is a constrained Hamilton–Jacobi equation
and ρ(t, x) > 0 can be regarded as a Lagrange multiplier associated with constraint (4.4).

Relation between ȳ(t, x) and ρ(t, x)
Evaluating (4.3) at y = y(t, x) and using (4.4) and (4.5) we find

R(y(t, x), ρ(t, x)) = 0, x ∈ supp(ρ). (4.6)

The monotonicity assumptions (2.3) ensure that ρ 
→ R(·, ρ) and y 
→ R(y, ·) are both invertible.
Therefore, relation (4.6) gives a one-to-one correspondence between y(t, x) and ρ(t, x).

Transport equation for y
Differentiating (4.3) with respect to y, evaluating the resulting equation at y = y(t, x) and using

(4.4) and (4.5) yields

∂2
ytu(t, x, y) − μ(y) ∂xρ ∂2

yxu(t, x, y) = ∂yR(y, ρ), x ∈ supp(ρ). (4.7)
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Moreover, differentiating (4.5) with respect to t and x we find, respectively,

∂2
tyu(t, x, y) + ∂2

yyu(t, x, y) ∂ty(t, x) = 0 ⇒ ∂2
ytu(t, x, y) = −∂2

yyu(t, x, y) ∂ty(t, x)

and

∂2
xyu(t, x, y) + ∂2

yyu(t, x, y) ∂xy(t, x) = 0 ⇒ ∂2
yxu(t, x, y) = −∂2

yyu(t, x, y) ∂xy(t, x). (4.8)

Substituting the above expressions of ∂2
ytu(t, x, y) and ∂2

yxu(t, x, y) into (4.7) and using the fact that
∂2

yyu(t, x, y) < 0 gives the following transport equation for y(t, x):

∂ty − μ(y) ∂xρ ∂xy = 1

−∂2
yyu(t, x, y)

∂yR(y, ρ), x ∈ supp(ρ), (4.9)

which is a generalised Burgers’ equation with source term since y(t, x) and ρ(t, x) are related
through (4.6).

Travelling-wave problem
Substituting the travelling-wave ansatz

ρ(t, x) = ρ(z), u(t, x, y) = u(z, y) and y(t, x) = y(z) with z = x − c t, c > 0

into (4.3)–(4.6) and (4.9) gives

− (
c + μ(y)ρ ′) ∂zu = R(y, ρ) + (∂yu)2, (z, y) ∈R× (0, Y ), (4.10)

u(z, y(z)) = max
y∈[0,Y ]

u(z, y) = 0, ∂yu(z, y(z)) = 0, ∂zu(z, y(z)) = 0, z ∈ supp(ρ), (4.11)

R(y(z), ρ(z)) = 0, z ∈ supp(ρ), (4.12)

− (
c + μ(y)ρ ′) y′ = 1

−∂2
yyu(z, y)

∂yR(y, ρ), z ∈ supp(ρ). (4.13)

We consider travelling-front solutions y(z) that satisfy (4.13) subject to the following asymptotic
condition

lim
z→−∞ y(z) = 0, (4.14)

so that, since R(0, ρM ) = 0 [cf. assumptions (2.3)], relation (4.12) gives lim
z→−∞ ρ(z) = ρM .

Monotonicity of travelling-front solutions
Differentiating (4.12) with respect to z gives

∂yR(y(z), ρ(z))y′(z) + ∂ρR(y(z), ρ(z))ρ ′(z) = 0, z ∈ supp(ρ). (4.15)

Substituting the expression of ρ ′ given by (4.15) into (4.13) yields

−c y′ + μ(y)
∂yR(y, ρ)

∂ρR(y, ρ)

(
y′)2 = 1

−∂2
yyu(z, y)

∂yR(y, ρ),

that is,

y′ = −∂yR(y, ρ)

c

(
1

−∂2
yyu(z, y)

+ μ(y)
(
y′)2

−∂ρR(y, ρ)

)
, z ∈ supp(ρ). (4.16)
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Since ∂2
yyu(z, y) < 0 and ∂yR(y, ·) < 0 for y ∈ (0, Y ] [cf. assumptions (2.3)], using (4.16) and the

expression of ρ ′ given by (4.15) we find

y′(z) > 0 and ρ ′(z) < 0, z ∈ supp(ρ). (4.17)

Position of the front edge
Relation (4.12) and monotonicity results (4.17) along with the fact that R(Y , 0) = 0 [cf.

assumptions (2.3)] imply that the position of the edge of a travelling-front solution y(z) that
satisfies (4.13) subject to asymptotic condition (4.14) coincides with the unique point 
 ∈R such
that y(
) = Y .

Minimal wave speed
Differentiating both sides of (4.10) with respect to y gives

− (
c + μ(y)ρ ′) ∂2

yzu(z, y) − dμ(y)

dy
ρ ′ ∂zu(z, y) = ∂yR(y, ρ) + 2 ∂yu(z, y) ∂2

yyu(z, y).

Evaluating the above equation at y = y(z) using (4.11) yields(
c + μ(y)ρ ′(z)

)
∂2

yzu(z, y) + ∂yR(y, ρ) = 0. (4.18)

Moreover, (4.8) implies that

∂2
yzu(z, y) = −∂2

yyu(z, y) y′

and substituting into the latter equation the expression of y′ given by (4.15) we find

∂2
yzu(z, y) = ∂2

yyu(z, y)
∂ρR(y, ρ)

∂yR(y, ρ)
ρ ′(z).

Inserting the above expression of ∂2
yzu(z, y) into (4.18) gives

μ(y) ∂2
yyu(z, y) ∂ρR(y, ρ)

(
ρ ′)2 + c ∂2

yyu(z, y) ∂ρR(y, ρ) ρ ′ + (
∂yR(y, ρ)

)2 = 0.

In the case where R(y, ρ) is defined via (2.4), we have that

∂ρR(·, ρ) = −1 and ∂yR(y, ·) = dr(y)

dy
.

Hence, the latter equation becomes

μ(y) ∂2
yyu(z, y)

(
ρ ′)2 + c ∂2

yyu(z, y) ρ ′ −
(

dr(y)

dy

)2

= 0. (4.19)

Coherently with (4.17), the real roots of (4.19) seen as a quadratic equation for ρ ′ are negative.
Furthermore, the following condition has to hold for the roots to be real:

2

∣∣∣∣dr(y)

dy

∣∣∣∣
√√√√ μ(y)∣∣∣∂2

yyu(z, y)
∣∣∣ � c.

This indicates that there is a minimal wave speed c∗, which satisfies the following condition:

c∗ � sup
z∈supp(r(y))

2

∣∣∣∣dr(y(z))

dy

∣∣∣∣
√√√√ μ(y(z))∣∣∣∂2

yyu(z, y(z))
∣∣∣ , (4.20)
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where we have used the fact that, when R(y, ρ) is defined via (2.4), relation (4.12) gives

ρ(z) ≡ r(y(z)), z ∈ supp(ρ).

Condition (4.20) implies that if∣∣∣∣dr(Y )

dy

∣∣∣∣ √μ(Y ) −→ ∞ as Y → ∞ (4.21)

then c∗ → ∞ as Y → ∞.

5 Discussion, biological implications and research perspectives

Discussion of the main results
In this paper, we have reported on the results of numerical simulations of the non-local PDE

(2.5) complemented with (2.2) and (2.4), and subject to zero Neumann boundary conditions at
y = 0 and y = Y . These numerical results indicate that

if nε(0, x, y) ∗−−−⇀
ε→0

ρ(0, x) δy0(x)(y) then nε(t, x, y)
∗−−−⇀

ε→0
ρ(t, x) δy(t,x)(y), (5.1)

with ρ(t, x) and y(t, x) such that if ρ(t, x) > 0 then the relation R(y(t, x), ρ(t, x)) = 0 holds. These
numerical results also indicate that in the case where Y ∈R

∗+ (i.e. when μ(Y ) < ∞ and, therefore,
the cell mobility is bounded), ρ(t, x) in (5.1) behaves like a one-sided compactly supported and
monotonically decreasing travelling front ρ(z) ≡ ρ(x − ct) that connects ρM to 0, while y(t, x)
in (5.1) behaves like a compactly supported and monotonically increasing travelling front y(z) ≡
y(x − ct) that connects 0 to Y . Furthermore, we have provided numerical evidence for the fact that
front edge acceleration and formation of stretching fronts may occur in the case where Y → ∞
(i.e. when μ(Y ) → ∞ and, therefore, the cell mobility is unbounded).

In order to explain such numerical results, we have undertaken formal asymptotic analy-
sis of the non-local PDE (2.5) complemented with (2.2) and (2.3) in the asymptotic regime
ε → 0 using a Hamilton–Jacobi approach. In particular, we have shown that y(t, x) satisfies
a generalised Burgers’ equation with source term [see transport equation (4.9)] and ρ(t, x) =
R(y(t, x), ρ(t, x))−1(0) [see relation (4.6)]. Moreover, we have shown that travelling-front solu-
tions y(z) of such transport equation, which connect 0 to Y are monotonically increasing, while
the corresponding ρ(z) = R(y(z), ρ(z))−1(0) is monotonically decreasing and connect ρM to 0
[see the monotonicity results given by (4.17)]. Finally, in the case where R(y, ρ) is defined via
(2.4), we have characterised the minimal speed c∗ of such travelling-front solutions [see the
result given by (4.20)] and derived sufficient conditions under which c∗ → ∞ as Y → ∞ [see
condition (4.21)].

Biological implications of the main results
From a biological point of view, y(t, x) represents the dominant phenotypic trait at position x

and time t and the transport equation for y(t, x) can be seen as a generalised canonical equation
of adaptive dynamics [16, 17], which describes the spatio-temporal evolution of the dominant
phenotypic trait. Furthermore, the fact that ρ(t, x) behaves like a monotonically decreasing
travelling front ρ(z) that connects ρM to 0 represents the formation of an invasion front of cells
that expands into the surrounding environment [35]. Hence, the fact that y(t, x) behaves like a
monotonically increasing travelling front y(z) that connects 0 to Y has the following biological
implications. First, the fact that the front y(z) is monotonic indicates that cells with different
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phenotypic characteristics populate different parts of the invasion front – i.e. phenotypic
heterogeneity is dynamically maintained throughout the front. Second, since larger values of
y correlate with a lower proliferation rate and a higher mobility, the fact that the front y(z) is
increasing indicates that more mobile/less proliferative phenotypic variants occupy the front
edge, whereas less mobile/more proliferative phenotypic variants are selected at the back of the
front. This recapitulates previous theoretical and experimental results on glioma growth, which
indicate that the interior of the tumour consists mainly of proliferative cells while the tumour
border comprises mainly cells that are more mobile and less proliferative – see, for instance, [2,
15, 25, 26, 48, 50] and references therein.

Research perspectives
Building upon the results presented in this paper, a number of generalisations of the mathe-

matical model given by the non-local PDE (2.1) could be considered in order to investigate the
role of the concerted action between evolutionary and mechanical processes in tissue develop-
ment and tumour growth. For example, a natural generalisation is the one given by the following
non-local PDE⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tn − μ(y) ∇x · (n ∇xP(t, x)) = R(y, P(t, x)) n + β ∂2

yyn,

P ≡ �(ρ), ρ(t, x) :=
∫ Y

0
n(t, x, y) dy,

(x, y) ∈R
d × (0, Y ) (5.2)

subject to zero Neumann boundary conditions at y = 0 and y = Y . Here, d = 1, 2, 3 depending
on the biological problem considered, and the function P(t, x) is the pressure exerted by cells
at position x and time t, which is defined via the barotropic relation �(ρ) that satisfies suitable
assumptions.

On the basis of the knowledge we have here acquired on the behaviour of the solutions to the
non-local PDE (2.1), under asymptotic scenarios relevant to applications we may expect n(t, x, y)
to converge to a singular measure of the form ρ(t, x)δy(t,x)(y). Moreover, depending on the choices
of Y , μ(y), R(y, P(t, x)) and �(ρ), the cell density ρ(t, x) may develop into an invading front or
it may exhibit interface instabilities [30, 32, 40, 45]. Finally, when the following definition of �

is considered

�(ρ) := Kγ ργ , Kγ > 0, γ > 1,

which was proposed in [38] in order to capture key aspects of tumour and tissue growth while
ensuring analytical tractability of the model equation, one finds that P(t, x) satisfies a porous
medium-type equation. Hence, free boundary problems may emerge in the asymptotic regime
γ → ∞ (i.e. the asymptotic regime whereby cells are regarded as an incompressible fluid). These
are lines of research that we will be pursuing in the near future.
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Appendix A. Numerical methods

Since ρε(t, x) might develop into a stiff travelling front, solving the non-local PDE (2.5) via an
explicit finite volume scheme would result in a severe CFL constraint on t. In order to overcome
such a limitation, we carried out numerical simulations using the implicit finite volume scheme
presented here. For simplicity of notation, throughout this appendix we drop the subscript ε.

Time splitting
Adopting a time-splitting approach, which is based on the idea of decomposing the original

problem into simpler subproblems that are then sequentially solved at each time step, we decom-
pose the non-local PDE (2.5) posed on 
 := (0, T] × (0, X ) × (0, Y ) into two parts – viz. the
diffusion–advection part corresponding to the following non-local PDE⎧⎪⎪⎨

⎪⎪⎩
∂tn − ∂x(μ(y) n ∂xρ) = ε ∂2

yyn,

ρ(t, x) :=
∫ Y

0
n(t, x, y) dy

(A1)

and the reaction part corresponding to the following integro-differential equation⎧⎪⎪⎨
⎪⎪⎩

ε ∂tn = R(y, ρ) n,

ρ(t, x) :=
∫ Y

0
n(t, x, y) dy.

(A2)

We complement (A1) with zero-flux/Neumann boundary conditions at x = 0 (we expect a con-

stant step), y = 0 and y = Y . Note that making the ansatz n(t, x, y) = e
u(t,x,y)

ε , as similarly done
in Section 4, the integro-differential equation (A2) can be rewritten in the following alternative
form: ⎧⎪⎪⎨

⎪⎪⎩
∂tu = R(y, ρ),

ρ(t, x) :=
∫ Y

0
e

u(t,x,y)
ε dy.

(A3)

Preliminaries and notation
We denote by [[k1, k2]] the set of integers between k1 and k2. We discretise 
 via a uniform

structured grid of steps 	t, 	x, 	y whereby th = h	t and the (j, k)-th cell is

Kj− 1
2 ,k− 1

2
= (xj−1, xj) × (yk−1, yk) with xj = j	x, yk = k	y, (A4)
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where j ∈ [[1, mx]] and k ∈ [[1, my]], 	x = X
mx

, 	y = Y
my

and mx, my ∈N. Moreover, we let Nh
j− 1

2 ,k− 1
2

be the numerical approximation of the average of n(th, x, y) over the cell Kj− 1
2 ,k− 1

2
and we con-

sider the following first-order approximation of the average of ρ(th, x) over the interval (xj−1, xj):

ρh
j− 1

2
= 	y

my∑
k=1

Nh
j− 1

2 ,k− 1
2
.

Finally, we introduce the notation

nh =
(

Nh
j− 1

2 ,k− 1
2

)T

∈R
(mx+1),(my+1), ρh =

(
ρh

j− 1
2

)T

∈R
mx (A5)

with j ∈ [[1, mx]] and k ∈ [[1, my]].

Numerical scheme
Step 1 We first solve numerically (A1) by using the following implicit scheme:

N∗
j− 1

2 ,k− 1
2
− Nh

j− 1
2 ,k− 1

2

	t
− 1

	x

[
F∗

j,k− 1
2
− F∗

j−1,k− 1
2

]
= ε

N∗
j− 1

2 ,k+ 1
2
− 2N∗

j− 1
2 ,k− 1

2
+ N∗

j− 1
2 ,k− 3

2

	y2
, (A6)

where F∗
j,k− 1

2
represents the numerical flux at the boundary ∂Kj− 1

2 ,k− 1
2
∩ {x = xj}, which is given

by the following upwind approximation:

F∗
j,k− 1

2
= μk− 1

2

[
−(δxρ

∗
j )− N∗

j− 1
2 ,k− 1

2
+ (δxρ

∗
j )+ N∗

j+ 1
2 ,k− 1

2

]
. (A7)

Here, μk− 1
2
= μ(yk− 1

2
),

δxρ
∗
j =

(
ρ∗

j+ 1
2
− ρ∗

j− 1
2

)
	x

with ρ∗
j− 1

2
= 	y

my∑
k=1

N∗
j− 1

2 ,k− 1
2
,

and (·)− and (·)+ are, respectively, the negative and positive parts of (·). Analogous consid-
erations hold for F∗

j−1,k− 1
2
. We complement (A6) with boundary conditions corresponding to

zero-flux/Neumann boundary conditions at x = 0 (we expect a constant step), y = 0 and y = Y .
Step 2 We solve numerically (A3) using the following implicit scheme:

Uh+1
j− 1

2 ,k− 1
2
− U∗

j− 1
2 ,k− 1

2

	t
= R

(
yk− 1

2
, ρh+1

j− 1
2

)
, (A8)

where U∗
j− 1

2 ,k− 1
2
= ε ln

(
N∗

j− 1
2 ,k− 1

2

)
and N∗

j− 1
2 ,k− 1

2
is obtained via (A6). Since

ρh+1
j− 1

2
= 	y

my∑
k=1

exp

⎛
⎝Uh+1

j− 1
2 ,k− 1

2

ε

⎞
⎠

= 	y

my∑
k=1

exp

⎛
⎜⎜⎝

U∗
j− 1

2 ,k− 1
2
+ 	tR

(
yk− 1

2
, ρh+1

j− 1
2

)
ε

⎞
⎟⎟⎠ , (A9)
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in the case where the function R is defined via (2.4) the value of ρh+1
j− 1

2
can be found by solving

(A9). The value of ρh+1
j− 1

2
so obtained is substituted into (A8), which is then solved in order to find

Uh+1
j− 1

2 ,k− 1
2
, whose value is finally used to compute Nh+1

j− 1
2 ,k− 1

2
via the formula

Nh+1
j− 1

2 ,k− 1
2
= exp

⎛
⎝Uh+1

j− 1
2 ,k− 1

2

ε

⎞
⎠ .

Properties of the numerical scheme (A6)
Due to the the strong coupling between n(t,x,y) and ρ(t, x) in the non-local PDE (A1), it

remains an open problem to prove existence and uniqueness of the solution to the corresponding
initial boundary value problem. Similarly, proving unique solvability of the non-linear, non-local,
implicit scheme (A6) remains an open problem.

Here, assuming solvability of (A6), we prove that such a numerical scheme preserves non-
negativity of n, maximum principle on ρ and monotonicity of ρ (cf. Proposition A.1).

Proposition A.1 Consider the scheme (A6) only. If the numerical scheme (A6) is uniquely
solvable, then the following properties hold:

(i) [nonnegativity]
if nh � 0 then n∗ � 0;

(ii) [maximum principle on ρ]
if 0 � ρh � ρM then 0 � ρ∗ � ρM ;

(iii) [monotonicity of ρ]
if ρh is monotonically decreasing then ρ∗ is monotonically decreasing.

Proof.

(i) The implicit scheme (A6) can be rewritten as

− a∗
j−1,kN∗

j− 3
2 ,k− 1

2
+ b∗

j,kN∗
j− 1

2 ,k− 1
2
− c∗

j+1,kN∗
j+ 1

2 ,k− 1
2
+ (A10)

ε
	t

(	y)2

(− N∗
j− 1

2 ,k− 3
2
+ 2N∗

j− 1
2 ,k− 1

2
− N∗

j− 1
2 ,k+ 1

2

)= Nh
j− 1

2 ,k− 1
2
, (A11)

where

a∗
j,k = 	t

	x
μk− 1

2
(δxρ

∗
j )− � 0, c∗

j,k = 	t

	x
μk− 1

2
(δxρ

∗
j−1)+ � 0,

b∗
j,k = 1 + 	t

	x
μk− 1

2

[
(δxρ

∗
j−1)+ + (δxρ

∗
j )−

]
= 1 + a∗

j,k + c∗
j,k .

The system of equations (A10) can be written in matrix form as

M∗n∗ = nh,

where M∗ is a matrix containing the terms a∗
j,k’s, b∗

j,k’s and c∗
j,k’s with j ∈ [[1, mx]], k ∈

[[1, my]]. Since the matrix M∗ is strictly diagonally dominant by columns, it is invertible
and all elements of (M∗)−1 are positive. This ensures that n∗ is non-negative if nh is
non-negative.
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(ii) Summing (A6) over all k ∈ [[1, my]], we find

ρ∗
j− 1

2
− ρh

j− 1
2

	t
− 1

	x

[
< μk− 1

2
N∗,upwind

j,k− 1
2

> δxρ
∗
j − < μk− 1

2
N∗,upwind

j−1,k− 1
2

> δxρ
∗
j−1

]
= 0, (A12)

where δxρ
∗
j = (

ρ∗
j+ 1

2
− ρ∗

j− 1
2

)
/	x, < μk− 1

2
N∗,upwind

j,k− 1
2

>= 	y
∑my

k=1 μk− 1
2
N∗,upwind

j,k− 1
2

and

N∗,upwind

j,k− 1
2

=

⎧⎪⎨
⎪⎩

N∗
j− 1

2 ,k− 1
2

if δxρ
∗
j < 0,

N∗
j+ 1

2 ,k− 1
2

if δxρ
∗
j � 0.

(A13)

For simplicity of notation, we define d∗
j = 	t

	x2
< μk− 1

2
N∗,upwind

j,k− 1
2

>. Notice that d∗
j � 0. Then,

the system of equations (A12) can be rewritten as

(1 + d∗
j−1 + d∗

j )ρ∗
j− 1

2
− d∗

j−1ρ
∗
j− 3

2
− d∗

j ρ
∗
j+ 1

2
= ρh

j− 1
2
. (A14)

Assume that ρ∗
j0− 1

2
= min

j
{ρ∗

j− 1
2
}, we claim that ρ∗

j0− 1
2
� 0. In fact, if ρ∗

j0− 1
2
< 0, we have

ρh
j0− 1

2
= ρ∗

j0− 1
2
+ d∗

j0−1

(
ρ∗

j0− 1
2
− ρ∗

j0− 3
2

)
+ d∗

j0

(
ρ∗

j0− 1
2
− ρ∗

j0+ 1
2

)
� ρ∗

j0− 1
2
< 0, (A15)

which is a contradiction. Hence, ρ∗ � 0. Similarly, one can prove that ρ∗ � ρM .

(iii) Introducing the notation w∗
j = ρ∗

j+ 1
2
− ρ∗

j− 1
2
, we rewrite (A14) as

ρ∗
j− 1

2
+ d∗

j−1w∗
j−1 − d∗

j w∗
j = ρh

j− 1
2
. (A16)

Changing all subscripts in (A16) from j to j + 1, after a little algebra we find

(1 + 2d∗
j )w∗

j − d∗
j−1w∗

j−1 − d∗
j+1w∗

j+1 = wh
j . (A17)

Writing the system of the equations (A17) in matrix form and using arguments similar to
those used in part (i), it is possible to prove that w∗ � 0 if wh � 0. �

Properties of the numerical scheme (A8)
The numerical scheme (A8) satisfies the properties established by Proposition A.2.

Proposition A.2 Consider the scheme (A8) only. If R(y, ρ) satisfies assumptions (2.3) and
n∗ � 0, then the following properties hold:

(i) [existence and uniqueness and non-negativity]
the scheme (A8) admits a unique solution such that nh+1 � 0;

(ii) [maximum principle on ρ]
if 0 � ρ∗ � ρM , then 0 � ρh+1 � ρM .
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Proof.

(i) It is sufficient to prove existence and uniqueness of ρh+1
j− 1

2
. Let

f (ρ) = ρ − 	y

my∑
k=1

exp

(U∗
j− 1

2 ,k− 1
2
+ 	tR(yk− 1

2
, ρ)

ε

)
.

Since f ′(ρ) > 0, f (0) < 0 and lim
ρ→∞ f (ρ) = ∞, equation (A9) has a unique positive root,

which is ρh+1
j− 1

2
. From this, existence, uniqueness and non-negativity of Nh+1

j− 1
2 ,k− 1

2
immediately

follow.

(ii) Noticing that f ′(ρ) > 0, f (0) < 0 and

f (ρM ) � ρM − 	y

my∑
k=1

exp

(U∗
j− 1

2 ,k− 1
2

ε

)
= ρM − ρ∗

j− 1
2
� 0, (A18)

we conclude that equation (A9) has a unique solution in the interval [0, ρM ]. This implies
that 0 � ρh+1 � ρM .
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