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CLASSIFICATION OF BOTT MANIFOLDS UP TO DIMENSION 8
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Abstract We show that three- and four-stage Bott manifolds are classified up to diffeomorphism by
their integral cohomology rings. In addition, any cohomology ring isomorphism between two three-stage
Bott manifolds can be realized by a diffeomorphism between the Bott manifolds.
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1. Introduction

A Bott tower of height n is a sequence of projective bundles

B• : Bn
πn−−→ Bn−1

πn−1−−−→ · · · π2−→ B1
π1−→ B0 = {a point}, (1.1)

where, for i = 1, . . . , n, ξi is the trivial complex line bundle and C is a complex line
bundle over Bi−1, and πi : Bi = P (C ⊕ ξi) → Bi−1 is a projective bundle over Bi−1.
We call Bn an n-stage Bott manifold and B• a Bott tower structure of Bn. Note that
an n-stage Bott manifold is of real dimension 2n. A one-stage Bott manifold is the
complex projective space CP 1 of complex dimension 1. A two-stage Bott manifold is
known as a Hirzebruch surface. Hirzebruch [5] has shown that the topological type of
a Hirzebruch surface Σa = P (C ⊕ γ⊗a) is completely determined by the parity of a,
where γ is the tautological line bundle over CP 1, i.e. Σa is homeomorphic to Σb if and
only if a ≡ b(mod 2). In addition, one can easily see that H∗(Σ0) and H∗(Σ1) are not
isomorphic as graded rings. Later, it is shown that this classification also holds in the
smooth category (see [7]), and stimulates the following conjecture (see [4]).

Conjecture 1.1 (cohomological rigidity conjecture for Bott manifolds). Let
Bn and B′

n be n-stage Bott manifolds. Then, Bn is diffeomorphic to B′
n if and only if

H∗(Bn) is isomorphic to H∗(B′
n) as graded rings.

More strongly, we conjecture the following.
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Conjecture 1.2 (strong cohomological rigidity conjecture for Bott mani-
folds). For any cohomology ring isomorphism ϕ between two Bott manifolds, there is a
diffeomorphism that induces ϕ.

Conjecture 1.1 is known to be true for n � 3 (see [3]) and Conjecture 1.2 is known
to be true for n � 2 (see [2] or Theorem 2.2). However, they have been open for the
higher cases. In this paper, we shall show that Conjecture 1.2 is true for three-stage Bott
manifolds, and that Conjecture 1.1 is true for four-stage Bott manifolds; namely, we have
the following theorems.

Theorem A (Theorem 3.1). For any cohomology ring isomorphism ϕ between two
three-stage Bott manifolds there is a diffeomorphism between them that induces ϕ.

Theorem B (Theorem 3.3). Let B4 and B′
4 be four-stage Bott manifolds. Then,

B4 is diffeomorphic to B′
4 if and only if H∗(B4) is isomorphic to H∗(B′

4) as graded rings.

2. Cohomology rings and square vanishing elements

We recall a Bott tower in (1.1), and one can express

Bj = P (C ⊕ γαj ) with αj ∈ H2(Bj−1),

where C denotes the trivial complex line bundle and γαj denotes the complex line bundle
over Bj−1 with αj as the first Chern class for j = 1, . . . , n. Using the Borel–Hirzebruch
formula [1] for the cohomology ring of the projective bundle, we have that H∗(Bj) is a
free module over H∗(Bj−1) via the map π∗

j on the two generators 1 and xj of degree 0
and 2, respectively. The ring structure is determined by the single relation

x2
j = π∗

j (αj)xj ,

where xj is the first Chern class of the tautological line bundle over Bj .
Using this formula inductively on j and regarding H∗(Bj) as a graded subring of

H∗(Bn) through the projections in (1.1), namely, setting xi := π∗
n ◦ · · · ◦ π∗

i+1(xi), we see
that

H∗(Bn) = Z[x1, . . . , xn]/〈x2
j = αjxj | j = 1, . . . , n〉,

where α1 = 0, and αj =
∑j−1

i=1 Ai
jxi with Ai

j ∈ Z for j = 2, . . . , n. Since complex line
bundles are classified by their first Chern classes, as is well known, a Bott tower B•
in (1.1) is completely determined by the list of integers Ai

j (1 � i < j � n). In addition,
we note that there is the natural filtration of H∗(Bn)

H∗(B1)
π∗
2

↪−−→ H∗(B2)
π∗
3

↪−−→ · · ·
π∗

n
↪−−→ H∗(Bn).

Now, let us consider an element in H2(Bn) whose square vanishes. Assume that a
primitive element z = axj + u in H2(Bn) satisfies z2 = 0, where a is a non-zero integer
and u is a linear combination of xis for i < j. Then, z2 = a2x2

j +2axju+u2 = 0 ∈ H∗(Bn),
i.e. 2au = −a2αj and u2 = 0. This implies that a square vanishing element should be of
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the form z = axj − 1
2aαj with α2

j = 0. Therefore, a primitive element in H2(Bn) whose
square vanishes is either xj − 1

2αj or 2xj − αj up to sign for some j, where α2
j = 0 in

both cases. Let X(Bn) be the set of all primitive square vanishing elements of H∗(Bn)
up to sign. Then |X(Bn)| is equal to the number of js satisfying α2

j = 0, and hence is
less than or equal to n. Furthermore, for n � 2, we have |X(Bn)| � 2 since α2

1 = α2
2 = 0.

We say that Bn is Q-trivial if its cohomology ring is isomorphic to that of (CP 1)n with
Q-coefficients as graded rings.

Proposition 2.1. Bn is Q-trivial if and only if α2
j = 0 in H∗(Bn) for all j = 1, . . . , n.

Proof. If α2
j = 0, then (xj − αj/2)2 = 0 in H∗(Bn; Q) because x2

j = αjxj . Since
xj − αj/2 for j = 1, . . . , n generate H∗(Bn; Q) as a graded ring, this shows that Bn is
Q-trivial. Conversely, if Bn is Q-trivial, there are n primitive elements in H2(Bn) up to
sign whose squares vanish, which implies the converse by the above discussion. �

It is known that the strong cohomological rigidity holds for the class of Q-trivial Bott
manifolds; namely, we have the following theorem.

Theorem 2.2 (Choi and Masuda [2]). Any cohomology ring isomorphism between
two Q-trivial Bott manifolds is realizable by a diffeomorphism.

Put t = |X(Bn)|. A Bott tower B• is said to be well ordered if α2
j = 0 for j = 1, . . . , t,

and α2
j 	= 0 for j = t + 1, . . . , n.

Lemma 2.3. Every Bott manifold Bn admits a well-ordered Bott tower structure.

Proof. Consider any Bott tower structure of Bn that is not well ordered. In other
words, there exists at least one j such that α2

j 	= 0 but α2
j+1 = 0. Remember that

αj+1 =
j−1∑
i=1

Ai
j+1xi + Aj

j+1xj .

If Aj
j+1 	= 0 and, as assumed, α2

j+1 = 0, then we get

αj+1 = Aj
j+1xj − (Aj

j+1/2)αj

with α2
j = 0, which is a contradiction. Hence, Aj

j+1 = 0. We can interchange the labels
j and j + 1, which proves the lemma by the following procedure: since Aj

j+1 = 0, γαj+1

can be regarded as a complex bundle over Bj−1. Let π : P (C ⊕ γαj+1) → Bj−1 be the
corresponding projection. Then,

π∗Bj

��

π̃

��������������������������
∼= �� P (C ⊕ γαj+1) = Bj+1

��
P (C ⊕ γαj+1)

π
������������

P (C ⊕ γαj ) = Bj

πj
���������������

Bj−1
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where π∗Bj is the pullback of Bj → Bj−1 by π. One can then see that π∗Bj is diffeomor-
phic to Bj+1, and it gives another Bott tower structure of Bn that is obtained from B•
by interchanging the jth and j + 1th stages. �

From now on, we only consider Bott manifolds with well-ordered Bott tower structure;
namely, we assume that any Bott tower that appears in this paper is well ordered.

Let B′
n be another Bott manifold. Suppose that H∗(Bn) and H∗(B′

n) are isomorphic
as graded rings. A graded ring isomorphism ϕ : H∗(Bn) → H∗(B′

n) is said to be k-stable
if there is a graded ring isomorphism hk : H∗(Bk) → H∗(B′

k) that makes the diagram

H∗(Bk) � � π∗
n◦···◦π∗

k+1 ��

hk

��

H∗(Bn)

ϕ

��
H∗(B′

k) � � π′∗
n ◦···◦π′∗

k+1 �� H∗(Bn)

commute. We note that ϕ should send elements in X(Bn) to elements in X(B′
n) up to

sign, and X(Bn) forms a basis of π∗
n ◦ · · · ◦ π∗

t+1(H
2(Bt)), where t = |X(Bn)|. It implies

that |X(Bn)| = |X(B′
n)| and ϕ is t-stable.

Theorem 2.4 (Ishida [6]). Let Bn and B′
n be two Bott manifolds. If there is an

isomorphism ϕ : H∗(Bn) → H∗(B′
n) that is (n − 1)-stable, and if hn−1 is realizable by a

diffeomorphism between Bn−1 and B′
n−1, then so is ϕ by a diffeomorphism between Bn

and B′
n.

3. Classification of low-stage Bott manifolds

Note that there is only one one-stage Bott manifold CP 1, and every two-stage Bott
manifold is Q-trivial. Hence, by Theorem 2.2, the strong cohomological rigidity holds for
one- and two-stage Bott manifolds.

Theorem 3.1. For any cohomology ring isomorphism ϕ between two three-stage Bott
manifolds, there is a diffeomorphism between them that induces ϕ.

Proof. If three-stage Bott manifolds are Q-trivial, then, by Theorem 2.2, ϕ can be
realized by diffeomorphism. Otherwise, namely, if they are not Q-trivial, then ϕ should
be 2-stable. Since the strong cohomological rigidity holds for two-stage Bott manifolds,
by Theorem 2.4, ϕ is realizable. �

Now we prepare one lemma for proving the cohomological rigidity for four-stage Bott
manifolds.

Lemma 3.2. Let Bn = P (C⊕γα) and B′
n = P (C⊕γβ) be two projective bundles over

an (n− 1)-stage Bott manifold Bn−1. If there exists u ∈ H2(Bn−1) such that α = β − 2u

and u(u − β) = 0, then Bn is isomorphic to B′
n as bundles. In particular, P (C ⊕ γα) is

isomorphic to P (C ⊕ γ−α).
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Proof. Note that P (C ⊕ γβ) is isomorphic to P (γu ⊕ γβ+u). The total Chern class of
γ−u ⊕ γβ−u is (1 − u)(1 + β − u) = 1 + β − 2u + u(u − β) = 1 + α. Hence, γ−u ⊕ γβ−u

and C ⊕ γα are isomorphic by [6, Theorem 3.1], as are P (C ⊕ γβ) and P (C ⊕ γα). �

Theorem 3.3. Let B4 and B′
4 be four-stage Bott manifolds. Then B4 is diffeomorphic

to B′
4 if and only if H∗(B4) is isomorphic to H∗(B′

4) as graded rings.

Proof. Let ϕ : H∗(B4) → H∗(B′
4) be a graded ring isomorphism. If both B4 and B′

4
are Q-trivial, then, by Theorem 2.2, ϕ can be realized by a diffeomorphism. If |X(B4)| =
3, then, combining Theorem 3.1 and Theorem 2.4, ϕ can also be realized. Hence, for the
above two cases, B4 and B′

4 are diffeomorphic.
Assume that |X(B4)| = 2. We denote by yj , βj and Bi

j those elements in H∗(B′
4) that

correspond to xj , αj and Ai
j in H∗(B4) for j = 1, . . . , 4. Since ϕ is 2-stable, ϕ induces a

ring isomorphism

H∗(B4)/π∗
4 ◦ π∗

3(H∗(B2)) �� H∗(B′
4)/π′∗

4 ◦ π′∗
3 (H∗(B′

2))

Z[x3, x4]/〈x2
3 = 0, x2

4 = A3
4x3x4〉 Z[y3, y4]/〈y2

3 = 0, y2
4 = B3

4y3y4〉

Hence, since it preserves the set of primitive square vanishing elements, we conclude that
A3

4 and B3
4 have the same parity, and ϕ(x3) is either εy3 +w, ε(y4 − (B3

4/2)y3)+w (if B3
4

is even) or ε(2y4 − B3
4y3) + w (if B3

4 is odd), where ε = ±1 and w is a linear combination
of y1 and y2.

Case 1 (ϕ(x3) = εy3 + w). Note that ϕ is 3-stable. Hence, ϕ can be realized by a
diffeomorphism.

Case 2 (ϕ(x3) = ε(y4 − (B3
4/2)y3) + w). Note that B3

4 (say, b) is even. If b = 0,
then we may interchange the third and fourth stages of its Bott tower structure as in
Lemma 2.3. Hence, ϕ(x3) would be 3-stable, and hence it can be realized. Suppose that
b 	= 0. Since x3(x3 − α3) = 0,

0 = ϕ(x3(x3 − α3)) =
(

εy4 − εb

2
y3 + w

)(
εy4 − εb

2
y3 + w − ϕ(α3)

)

= y4(y4 − by3 + 2εw − εϕ(α3))

+ 1
4by3(by3 − 4εw + 2εϕ(α3)) + w2 − wϕ(α3).

Because ϕ(α3) is a linear combination of y1 and y2, and b 	= 0, we have that

y4(y4 − by3 + 2εw − εϕ(α3)) = 0 ∈ H∗(B′
4) (3.1)

and

1
2by3( 1

2by3 − 2εw + εϕ(α3)) = 0 ∈ H∗(B′
4). (3.2)

Hence, by (3.1), β4 = by3 − 2εw + εϕ(α3). Let u = by3/2. Then, by (3.2), u(β4 − u) = 0.
Hence, by Lemma 3.2, we have an isomorphism f : B′

4 → P (C ⊕ γβ4−2u) as bundles over
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B′
3. This isomorphism gives a new Bott tower structure of B′

4 whose third and fourth
stages are interchangeable. The interchange map is denoted by g. The new Bott tower
structure obtained by g ◦f(B′

4) is denoted by B′′
• . Note that f and g are diffeomorphisms

and B′′
• is well ordered. Hence, one can easily check that (g−1)∗ ◦ (f−1)∗ ◦ ϕ : H∗(B4) →

H∗(B′′
4 ) is 3-stable. Therefore, (g−1)∗ ◦ (f−1)∗ ◦ ϕ is realizable and, hence, so is ϕ.

Case 3 (ϕ(x3) = ε(2y4 − B3
4y3) + w). Note that A3

4 (say, a) and B3
4 (say, b) are

both odd. We may also assume that ϕ−1(y3) = ε(2x4 − ax3) + z, where ε = ±1 and z is
a linear combination of x1 and x2. Since x3(x3 − α3) = 0,

0 = ϕ(x3(x3 − α3))

= (2εy4 − bεy3 + w)(2εy4 − bεy3 + w − ϕ(α3))

= 4y4

(
y4 − by3 + εw − ε

ϕ(α3)
2

)
+ b2y3

(
y3 − 2

b
εw +

1
b
εϕ(α3)

)
+ w2 − wϕ(α3)

Hence, β4 = by3 − εw + ε(ϕ(α3)/2), β3 = 2εw/b − εϕ(α3)/b and w2 = wϕ(α3). Note that
β2

3 = (1/b2)ϕ(α2
3) 	= 0 ∈ H4(B′

4). Similarly, we also have α2
3 = (1/a2)ϕ−1(β2

3). Thus, α2
3 =

(1/a2b2)α2
3. Since α2

3 does not vanish, a2b2 = 1. Hence, |a| = |b| = 1. We may assume that
a = b = 1 by Lemma 3.2. Then β3 = 2εw−εϕ(α3) and β4 = y3−εw+εϕ(α3)/2 = y3−β3/2.
Similarly, we have α4 = x3 − α3/2. By Lemma 3.2, we have a bundle isomorphism
f : P (C ⊕ γϕ(α3)) → B′

3 over B′
2. Then we obtain the pullback f∗B′

4 = P (C⊕γy3−ϕ(α3)/2)
of B′

4 by f , and we obtain the induced diffeomorphism f̃ : P (C ⊕ γy3−ϕ(α3)/2) → B′
4. On

the other hand, since any cohomology ring isomorphism between two Hirzebruch surfaces
is realizable, we consider a diffeomorphism g : B′

2 → B2 that induces ϕ restricted by
H∗(B2). We also obtain, then, the pullback g−1∗(f∗B′

4) = P (C ⊕ γx3−α3/2) of f∗B′
4

by g−1, and we also have the induced diffeomorphism g̃−1 : P (C ⊕ γx3−α3/2) → f∗B′
4;

see the following diagram

P (C ⊕ γx3−α3/2)

��

g̃−1
�� P (C ⊕ γy3−ϕ(α3)/2)

f̃ ��

��

P (C ⊕ γy3−β3/2)

π′
4

��
P (C ⊕ γα3)

��

�� P (C ⊕ γϕ(α3))
f ��

��������������
P (C ⊕ γβ3)

π′
3��������������

B2 B′
2g

		

Note that P (C ⊕ γx3−α3/2) = P (C ⊕ γα4), and, hence, P (C ⊕ γα4) → P (C ⊕ γα3) → B2

is a Bott tower structure of B4. Hence, f̃ ◦ g̃−1 is a diffeomorphism between B4 and B′
4.

In the three cases above we have shown that B4 and B′
4 are diffeomorphic, which

proves the theorem. �

Example 3.4. Let B4 be a four-stage Bott manifold with the Bott tower structure
P (C ⊕ γx3−α3/2) → P (C ⊕ γα3) → B2. Consider four homomorphisms ϕk : H∗(B4) →
H∗(B4) (k = 1, . . . , 4) defined by
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(1) ϕ1(x1) = x1, ϕ1(x2) = x2, ϕ1(x3) = 2x4 − x3 + α3 and ϕ1(x4) = x4;

(2) ϕ2(x1) = x1, ϕ2(x2) = x2, ϕ2(x3) = 2x4 − x3 + α3 and ϕ2(x4) = x4 − x3 + 1
2α3;

(3) ϕ3(x1) = x1, ϕ3(x2) = x2, ϕ3(x3) = −2x4 + x3 and ϕ3(x4) = −x4;

(4) ϕ4(x1) = x1, ϕ4(x2) = x2, ϕ4(x3) = −2x4 + x3 and ϕ4(x4) = −x4 + x3 − 1
2α3.

Then they are all well defined and are graded ring isomorphisms. Moreover, they are all
under the third case of the proof of Theorem 3.3.

We remark that a cohomology ring isomorphism ϕ is realizable unless it is under the
last case of the proof of Theorem 3.3. However, we do not know whether ϕ of the last
case is realizable or not. In order to prove the strong cohomological rigidity for four-stage
Bott manifolds, we require that any automorphism of the cohomology ring of B4 with
the Bott tower structure P (C ⊕ γx3−α3/2) → P (C ⊕ γα3) → B2 under the last case is
realizable. We note that there are only finitely many such automorphisms. Since we may
assume that ϕ(x1) = x1 and ϕ(x2) = x2, there are only four essential automorphisms ϕk

(k = 1, . . . , 4).

Problem 3.5. Are the automorphisms ϕk (k = 1, . . . , 4) realizable?
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