Proceedings of the Edinburgh Mathematical Society (2015) 58, 653–659 DOI:10.1017/S0013091514000121

# CLASSIFICATION OF BOTT MANIFOLDS UP TO DIMENSION 8

# SUYOUNG CHOI

Department of Mathematics, Ajou University, San 5, Woncheondong, Yeongtonggu, Suwon 443-749, Republic of Korea (schoi@ajou.ac.kr)

(Received 20 December 2012)

*Abstract* We show that three- and four-stage Bott manifolds are classified up to diffeomorphism by their integral cohomology rings. In addition, any cohomology ring isomorphism between two three-stage Bott manifolds can be realized by a diffeomorphism between the Bott manifolds.

Keywords: Bott tower; Bott manifold; cohomological rigidity; strong cohomological rigidity

2010 Mathematics subject classification: Primary 57S25 Secondary 22F30

## 1. Introduction

A *Bott tower* of height n is a sequence of projective bundles

$$B_{\bullet} \colon B_n \xrightarrow{\pi_n} B_{n-1} \xrightarrow{\pi_{n-1}} \cdots \xrightarrow{\pi_2} B_1 \xrightarrow{\pi_1} B_0 = \{a \text{ point}\}, \tag{1.1}$$

where, for i = 1, ..., n,  $\xi_i$  is the trivial complex line bundle and  $\underline{\mathbb{C}}$  is a complex line bundle over  $B_{i-1}$ , and  $\pi_i \colon B_i = P(\underline{\mathbb{C}} \oplus \xi_i) \to B_{i-1}$  is a projective bundle over  $B_{i-1}$ . We call  $B_n$  an *n*-stage Bott manifold and  $B_{\bullet}$  a Bott tower structure of  $B_n$ . Note that an *n*-stage Bott manifold is of real dimension 2n. A one-stage Bott manifold is the complex projective space  $\mathbb{C}P^1$  of complex dimension 1. A two-stage Bott manifold is known as a *Hirzebruch surface*. Hirzebruch [5] has shown that the topological type of a Hirzebruch surface  $\Sigma_a = P(\underline{\mathbb{C}} \oplus \gamma^{\otimes a})$  is completely determined by the parity of *a*, where  $\gamma$  is the tautological line bundle over  $\mathbb{C}P^1$ , i.e.  $\Sigma_a$  is homeomorphic to  $\Sigma_b$  if and only if  $a \equiv b \pmod{2}$ . In addition, one can easily see that  $H^*(\Sigma_0)$  and  $H^*(\Sigma_1)$  are not isomorphic as graded rings. Later, it is shown that this classification also holds in the smooth category (see [7]), and stimulates the following conjecture (see [4]).

Conjecture 1.1 (cohomological rigidity conjecture for Bott manifolds). Let  $B_n$  and  $B'_n$  be n-stage Bott manifolds. Then,  $B_n$  is diffeomorphic to  $B'_n$  if and only if  $H^*(B_n)$  is isomorphic to  $H^*(B'_n)$  as graded rings.

More strongly, we conjecture the following.

© 2014 The Edinburgh Mathematical Society

#### S. Choi

Conjecture 1.2 (strong cohomological rigidity conjecture for Bott manifolds). For any cohomology ring isomorphism  $\varphi$  between two Bott manifolds, there is a diffeomorphism that induces  $\varphi$ .

Conjecture 1.1 is known to be true for  $n \leq 3$  (see [3]) and Conjecture 1.2 is known to be true for  $n \leq 2$  (see [2] or Theorem 2.2). However, they have been open for the higher cases. In this paper, we shall show that Conjecture 1.2 is true for three-stage Bott manifolds, and that Conjecture 1.1 is true for four-stage Bott manifolds; namely, we have the following theorems.

**Theorem A (Theorem 3.1).** For any cohomology ring isomorphism  $\varphi$  between two three-stage Bott manifolds there is a diffeomorphism between them that induces  $\varphi$ .

**Theorem B (Theorem 3.3).** Let  $B_4$  and  $B'_4$  be four-stage Bott manifolds. Then,  $B_4$  is diffeomorphic to  $B'_4$  if and only if  $H^*(B_4)$  is isomorphic to  $H^*(B'_4)$  as graded rings.

#### 2. Cohomology rings and square vanishing elements

We recall a Bott tower in (1.1), and one can express

$$B_j = P(\underline{\mathbb{C}} \oplus \gamma^{\alpha_j}) \quad \text{with } \alpha_j \in H^2(B_{j-1}),$$

where  $\underline{\mathbb{C}}$  denotes the trivial complex line bundle and  $\gamma^{\alpha_j}$  denotes the complex line bundle over  $B_{j-1}$  with  $\alpha_j$  as the first Chern class for  $j = 1, \ldots, n$ . Using the Borel-Hirzebruch formula [1] for the cohomology ring of the projective bundle, we have that  $H^*(B_j)$  is a free module over  $H^*(B_{j-1})$  via the map  $\pi_j^*$  on the two generators 1 and  $x_j$  of degree 0 and 2, respectively. The ring structure is determined by the single relation

$$x_j^2 = \pi_j^*(\alpha_j) x_j$$

where  $x_i$  is the first Chern class of the tautological line bundle over  $B_i$ .

Using this formula inductively on j and regarding  $H^*(B_j)$  as a graded subring of  $H^*(B_n)$  through the projections in (1.1), namely, setting  $x_i := \pi_n^* \circ \cdots \circ \pi_{i+1}^*(x_i)$ , we see that

$$H^*(B_n) = \mathbb{Z}[x_1, \dots, x_n] / \langle x_j^2 = \alpha_j x_j \mid j = 1, \dots, n \rangle,$$

where  $\alpha_1 = 0$ , and  $\alpha_j = \sum_{i=1}^{j-1} A_j^i x_i$  with  $A_j^i \in \mathbb{Z}$  for j = 2, ..., n. Since complex line bundles are classified by their first Chern classes, as is well known, a Bott tower  $B_{\bullet}$ in (1.1) is completely determined by the list of integers  $A_j^i$   $(1 \leq i < j \leq n)$ . In addition, we note that there is the natural filtration of  $H^*(B_n)$ 

$$H^*(B_1) \xrightarrow{\pi_2^*} H^*(B_2) \xrightarrow{\pi_3^*} \cdots \xrightarrow{\pi_n^*} H^*(B_n).$$

Now, let us consider an element in  $H^2(B_n)$  whose square vanishes. Assume that a primitive element  $z = ax_j + u$  in  $H^2(B_n)$  satisfies  $z^2 = 0$ , where a is a non-zero integer and u is a linear combination of  $x_i$ s for i < j. Then,  $z^2 = a^2 x_j^2 + 2ax_j u + u^2 = 0 \in H^*(B_n)$ , i.e.  $2au = -a^2\alpha_j$  and  $u^2 = 0$ . This implies that a square vanishing element should be of

the form  $z = ax_j - \frac{1}{2}a\alpha_j$  with  $\alpha_j^2 = 0$ . Therefore, a primitive element in  $H^2(B_n)$  whose square vanishes is either  $x_j - \frac{1}{2}\alpha_j$  or  $2x_j - \alpha_j$  up to sign for some j, where  $\alpha_j^2 = 0$  in both cases. Let  $X(B_n)$  be the set of all primitive square vanishing elements of  $H^*(B_n)$ up to sign. Then  $|X(B_n)|$  is equal to the number of js satisfying  $\alpha_j^2 = 0$ , and hence is less than or equal to n. Furthermore, for  $n \ge 2$ , we have  $|X(B_n)| \ge 2$  since  $\alpha_1^2 = \alpha_2^2 = 0$ . We say that  $B_n$  is  $\mathbb{Q}$ -trivial if its cohomology ring is isomorphic to that of  $(\mathbb{C}P^1)^n$  with  $\mathbb{Q}$ -coefficients as graded rings.

**Proposition 2.1.**  $B_n$  is  $\mathbb{Q}$ -trivial if and only if  $\alpha_j^2 = 0$  in  $H^*(B_n)$  for all  $j = 1, \ldots, n$ .

**Proof.** If  $\alpha_j^2 = 0$ , then  $(x_j - \alpha_j/2)^2 = 0$  in  $H^*(B_n; \mathbb{Q})$  because  $x_j^2 = \alpha_j x_j$ . Since  $x_j - \alpha_j/2$  for  $j = 1, \ldots, n$  generate  $H^*(B_n; \mathbb{Q})$  as a graded ring, this shows that  $B_n$  is  $\mathbb{Q}$ -trivial. Conversely, if  $B_n$  is  $\mathbb{Q}$ -trivial, there are n primitive elements in  $H^2(B_n)$  up to sign whose squares vanish, which implies the converse by the above discussion.

It is known that the strong cohomological rigidity holds for the class of Q-trivial Bott manifolds; namely, we have the following theorem.

**Theorem 2.2 (Choi and Masuda [2]).** Any cohomology ring isomorphism between two Q-trivial Bott manifolds is realizable by a diffeomorphism.

Put  $t = |X(B_n)|$ . A Bott tower  $B_{\bullet}$  is said to be *well ordered* if  $\alpha_j^2 = 0$  for  $j = 1, \ldots, t$ , and  $\alpha_j^2 \neq 0$  for  $j = t + 1, \ldots, n$ .

**Lemma 2.3.** Every Bott manifold  $B_n$  admits a well-ordered Bott tower structure.

**Proof.** Consider any Bott tower structure of  $B_n$  that is not well ordered. In other words, there exists at least one j such that  $\alpha_j^2 \neq 0$  but  $\alpha_{j+1}^2 = 0$ . Remember that

$$a_{j+1} = \sum_{i=1}^{j-1} A_{j+1}^i x_i + A_{j+1}^j x_j.$$

If  $A_{j+1}^j \neq 0$  and, as assumed,  $\alpha_{j+1}^2 = 0$ , then we get

$$\alpha_{j+1} = A_{j+1}^{j} x_j - (A_{j+1}^{j}/2)\alpha_j$$

with  $\alpha_j^2 = 0$ , which is a contradiction. Hence,  $A_{j+1}^j = 0$ . We can interchange the labels j and j+1, which proves the lemma by the following procedure: since  $A_{j+1}^j = 0$ ,  $\gamma^{\alpha_{j+1}}$  can be regarded as a complex bundle over  $B_{j-1}$ . Let  $\pi \colon P(\mathbb{C} \oplus \gamma^{\alpha_{j+1}}) \to B_{j-1}$  be the corresponding projection. Then,



S. Choi

where  $\pi^* B_j$  is the pullback of  $B_j \to B_{j-1}$  by  $\pi$ . One can then see that  $\pi^* B_j$  is diffeomorphic to  $B_{j+1}$ , and it gives another Bott tower structure of  $B_n$  that is obtained from  $B_{\bullet}$  by interchanging the *j*th and *j* + 1th stages.

From now on, we only consider Bott manifolds with well-ordered Bott tower structure; namely, we assume that any Bott tower that appears in this paper is well ordered.

Let  $B'_n$  be another Bott manifold. Suppose that  $H^*(B_n)$  and  $H^*(B'_n)$  are isomorphic as graded rings. A graded ring isomorphism  $\varphi \colon H^*(B_n) \to H^*(B'_n)$  is said to be k-stable if there is a graded ring isomorphism  $h_k \colon H^*(B_k) \to H^*(B'_k)$  that makes the diagram



commute. We note that  $\varphi$  should send elements in  $X(B_n)$  to elements in  $X(B'_n)$  up to sign, and  $X(B_n)$  forms a basis of  $\pi_n^* \circ \cdots \circ \pi_{t+1}^*(H^2(B_t))$ , where  $t = |X(B_n)|$ . It implies that  $|X(B_n)| = |X(B'_n)|$  and  $\varphi$  is t-stable.

**Theorem 2.4 (Ishida [6]).** Let  $B_n$  and  $B'_n$  be two Bott manifolds. If there is an isomorphism  $\varphi \colon H^*(B_n) \to H^*(B'_n)$  that is (n-1)-stable, and if  $h_{n-1}$  is realizable by a diffeomorphism between  $B_{n-1}$  and  $B'_{n-1}$ , then so is  $\varphi$  by a diffeomorphism between  $B_n$  and  $B'_n$ .

### 3. Classification of low-stage Bott manifolds

Note that there is only one one-stage Bott manifold  $\mathbb{C}P^1$ , and every two-stage Bott manifold is  $\mathbb{Q}$ -trivial. Hence, by Theorem 2.2, the strong cohomological rigidity holds for one- and two-stage Bott manifolds.

**Theorem 3.1.** For any cohomology ring isomorphism  $\varphi$  between two three-stage Bott manifolds, there is a diffeomorphism between them that induces  $\varphi$ .

**Proof.** If three-stage Bott manifolds are  $\mathbb{Q}$ -trivial, then, by Theorem 2.2,  $\varphi$  can be realized by diffeomorphism. Otherwise, namely, if they are not  $\mathbb{Q}$ -trivial, then  $\varphi$  should be 2-stable. Since the strong cohomological rigidity holds for two-stage Bott manifolds, by Theorem 2.4,  $\varphi$  is realizable.

Now we prepare one lemma for proving the cohomological rigidity for four-stage Bott manifolds.

**Lemma 3.2.** Let  $B_n = P(\underline{\mathbb{C}} \oplus \gamma^{\alpha})$  and  $B'_n = P(\underline{\mathbb{C}} \oplus \gamma^{\beta})$  be two projective bundles over an (n-1)-stage Bott manifold  $B_{n-1}$ . If there exists  $u \in H^2(B_{n-1})$  such that  $\alpha = \beta - 2u$ and  $u(u - \beta) = 0$ , then  $B_n$  is isomorphic to  $B'_n$  as bundles. In particular,  $P(\underline{\mathbb{C}} \oplus \gamma^{\alpha})$  is isomorphic to  $P(\underline{\mathbb{C}} \oplus \gamma^{-\alpha})$ .

**Proof.** Note that  $P(\underline{\mathbb{C}} \oplus \gamma^{\beta})$  is isomorphic to  $P(\gamma^{u} \oplus \gamma^{\beta+u})$ . The total Chern class of  $\gamma^{-u} \oplus \gamma^{\beta-u}$  is  $(1-u)(1+\beta-u) = 1+\beta-2u+u(u-\beta) = 1+\alpha$ . Hence,  $\gamma^{-u} \oplus \gamma^{\beta-u}$  and  $\underline{\mathbb{C}} \oplus \gamma^{\alpha}$  are isomorphic by [6, Theorem 3.1], as are  $P(\underline{\mathbb{C}} \oplus \gamma^{\beta})$  and  $P(\underline{\mathbb{C}} \oplus \gamma^{\alpha})$ .  $\Box$ 

**Theorem 3.3.** Let  $B_4$  and  $B'_4$  be four-stage Bott manifolds. Then  $B_4$  is diffeomorphic to  $B'_4$  if and only if  $H^*(B_4)$  is isomorphic to  $H^*(B'_4)$  as graded rings.

**Proof.** Let  $\varphi: H^*(B_4) \to H^*(B'_4)$  be a graded ring isomorphism. If both  $B_4$  and  $B'_4$  are  $\mathbb{Q}$ -trivial, then, by Theorem 2.2,  $\varphi$  can be realized by a diffeomorphism. If  $|X(B_4)| = 3$ , then, combining Theorem 3.1 and Theorem 2.4,  $\varphi$  can also be realized. Hence, for the above two cases,  $B_4$  and  $B'_4$  are diffeomorphic.

Assume that  $|X(B_4)| = 2$ . We denote by  $y_j, \beta_j$  and  $B_j^i$  those elements in  $H^*(B_4)$  that correspond to  $x_j, \alpha_j$  and  $A_j^i$  in  $H^*(B_4)$  for  $j = 1, \ldots, 4$ . Since  $\varphi$  is 2-stable,  $\varphi$  induces a ring isomorphism

$$\begin{array}{c|c} H^*(B_4)/\pi_4^* \circ \pi_3^*(H^*(B_2)) & \longrightarrow & H^*(B_4')/\pi_4'^* \circ \pi_3'^*(H^*(B_2')) \\ & & & & \\ & & & \\ & & & \\ \mathbb{Z}[x_3, x_4]/\langle x_3^2 = 0, x_4^2 = A_4^3 x_3 x_4 \rangle & & \mathbb{Z}[y_3, y_4]/\langle y_3^2 = 0, y_4^2 = B_4^3 y_3 y_4 \rangle \end{array}$$

Hence, since it preserves the set of primitive square vanishing elements, we conclude that  $A_4^3$  and  $B_4^3$  have the same parity, and  $\varphi(x_3)$  is either  $\epsilon y_3 + w$ ,  $\epsilon(y_4 - (B_4^3/2)y_3) + w$  (if  $B_4^3$  is even) or  $\epsilon(2y_4 - B_4^3y_3) + w$  (if  $B_4^3$  is odd), where  $\epsilon = \pm 1$  and w is a linear combination of  $y_1$  and  $y_2$ .

Case 1 ( $\varphi(x_3) = \epsilon y_3 + w$ ). Note that  $\varphi$  is 3-stable. Hence,  $\varphi$  can be realized by a diffeomorphism.

Case 2  $(\varphi(x_3) = \epsilon(y_4 - (B_4^3/2)y_3) + w)$ . Note that  $B_4^3$  (say, b) is even. If b = 0, then we may interchange the third and fourth stages of its Bott tower structure as in Lemma 2.3. Hence,  $\varphi(x_3)$  would be 3-stable, and hence it can be realized. Suppose that  $b \neq 0$ . Since  $x_3(x_3 - \alpha_3) = 0$ ,

$$0 = \varphi(x_3(x_3 - \alpha_3)) = \left(\epsilon y_4 - \frac{\epsilon b}{2}y_3 + w\right) \left(\epsilon y_4 - \frac{\epsilon b}{2}y_3 + w - \varphi(\alpha_3)\right)$$
$$= y_4(y_4 - by_3 + 2\epsilon w - \epsilon\varphi(\alpha_3))$$
$$+ \frac{1}{4}by_3(by_3 - 4\epsilon w + 2\epsilon\varphi(\alpha_3)) + w^2 - w\varphi(\alpha_3).$$

Because  $\varphi(\alpha_3)$  is a linear combination of  $y_1$  and  $y_2$ , and  $b \neq 0$ , we have that

$$y_4(y_4 - by_3 + 2\epsilon w - \epsilon \varphi(\alpha_3)) = 0 \in H^*(B'_4)$$

$$(3.1)$$

and

$$\frac{1}{2}by_3(\frac{1}{2}by_3 - 2\epsilon w + \epsilon\varphi(\alpha_3)) = 0 \in H^*(B'_4).$$
(3.2)

Hence, by (3.1),  $\beta_4 = by_3 - 2\epsilon w + \epsilon \varphi(\alpha_3)$ . Let  $u = by_3/2$ . Then, by (3.2),  $u(\beta_4 - u) = 0$ . Hence, by Lemma 3.2, we have an isomorphism  $f: B'_4 \to P(\underline{\mathbb{C}} \oplus \gamma^{\beta_4 - 2u})$  as bundles over  $S. \ Choi$ 

 $B'_3$ . This isomorphism gives a new Bott tower structure of  $B'_4$  whose third and fourth stages are interchangeable. The interchange map is denoted by g. The new Bott tower structure obtained by  $g \circ f(B'_4)$  is denoted by  $B''_{\bullet}$ . Note that f and g are diffeomorphisms and  $B''_{\bullet}$  is well ordered. Hence, one can easily check that  $(g^{-1})^* \circ (f^{-1})^* \circ \varphi \colon H^*(B_4) \to$  $H^*(B''_4)$  is 3-stable. Therefore,  $(g^{-1})^* \circ (f^{-1})^* \circ \varphi$  is realizable and, hence, so is  $\varphi$ .

**Case 3**  $(\varphi(x_3) = \epsilon(2y_4 - B_4^3y_3) + w)$ . Note that  $A_4^3$  (say, a) and  $B_4^3$  (say, b) are both odd. We may also assume that  $\varphi^{-1}(y_3) = \varepsilon(2x_4 - ax_3) + z$ , where  $\varepsilon = \pm 1$  and z is a linear combination of  $x_1$  and  $x_2$ . Since  $x_3(x_3 - \alpha_3) = 0$ ,

$$0 = \varphi(x_3(x_3 - \alpha_3))$$
  
=  $(2\epsilon y_4 - b\epsilon y_3 + w)(2\epsilon y_4 - b\epsilon y_3 + w - \varphi(\alpha_3))$   
=  $4y_4\left(y_4 - by_3 + \epsilon w - \epsilon \frac{\varphi(\alpha_3)}{2}\right) + b^2 y_3\left(y_3 - \frac{2}{b}\epsilon w + \frac{1}{b}\epsilon\varphi(\alpha_3)\right) + w^2 - w\varphi(\alpha_3)$ 

Hence,  $\beta_4 = by_3 - \epsilon w + \epsilon(\varphi(\alpha_3)/2)$ ,  $\beta_3 = 2\epsilon w/b - \epsilon\varphi(\alpha_3)/b$  and  $w^2 = w\varphi(\alpha_3)$ . Note that  $\beta_3^2 = (1/b^2)\varphi(\alpha_3^2) \neq 0 \in H^4(B'_4)$ . Similarly, we also have  $\alpha_3^2 = (1/a^2)\varphi^{-1}(\beta_3^2)$ . Thus,  $\alpha_3^2 = (1/a^2b^2)\alpha_3^2$ . Since  $\alpha_3^2$  does not vanish,  $a^2b^2 = 1$ . Hence, |a| = |b| = 1. We may assume that a = b = 1 by Lemma 3.2. Then  $\beta_3 = 2\epsilon w - \epsilon\varphi(\alpha_3)$  and  $\beta_4 = y_3 - \epsilon w + \epsilon\varphi(\alpha_3)/2 = y_3 - \beta_3/2$ . Similarly, we have  $\alpha_4 = x_3 - \alpha_3/2$ . By Lemma 3.2, we have a bundle isomorphism  $f \colon P(\underline{\mathbb{C}} \oplus \gamma^{\varphi(\alpha_3)}) \to B'_3$  over  $B'_2$ . Then we obtain the pullback  $f^*B'_4 = P(\underline{\mathbb{C}} \oplus \gamma^{y_3 - \varphi(\alpha_3)/2})$  of  $B'_4$  by f, and we obtain the induced diffeomorphism  $\tilde{f} \colon P(\underline{\mathbb{C}} \oplus \gamma^{y_3 - \varphi(\alpha_3)/2}) \to B'_4$ . On the other hand, since any cohomology ring isomorphism between two Hirzebruch surfaces is realizable, we consider a diffeomorphism  $g \colon B'_2 \to B_2$  that induces  $\varphi$  restricted by  $H^*(B_2)$ . We also obtain, then, the pullback  $g^{-1^*}(f^*B'_4) = P(\underline{\mathbb{C}} \oplus \gamma^{x_3 - \alpha_3/2})$  of  $f^*B'_4$  by  $g^{-1}$ , and we also have the induced diffeomorphism  $\tilde{g}^{-1} \colon P(\underline{\mathbb{C}} \oplus \gamma^{x_3 - \alpha_3/2}) \to f^*B'_4$ ; see the following diagram



Note that  $P(\underline{\mathbb{C}} \oplus \gamma^{x_3 - \alpha_3/2}) = P(\underline{\mathbb{C}} \oplus \gamma^{\alpha_4})$ , and, hence,  $P(\underline{\mathbb{C}} \oplus \gamma^{\alpha_4}) \to P(\underline{\mathbb{C}} \oplus \gamma^{\alpha_3}) \to B_2$ is a Bott tower structure of  $B_4$ . Hence,  $\tilde{f} \circ \tilde{g}^{-1}$  is a diffeomorphism between  $B_4$  and  $B'_4$ .

In the three cases above we have shown that  $B_4$  and  $B'_4$  are diffeomorphic, which proves the theorem.

**Example 3.4.** Let  $B_4$  be a four-stage Bott manifold with the Bott tower structure  $P(\underline{\mathbb{C}} \oplus \gamma^{x_3 - \alpha_3/2}) \to P(\underline{\mathbb{C}} \oplus \gamma^{\alpha_3}) \to B_2$ . Consider four homomorphisms  $\varphi_k \colon H^*(B_4) \to H^*(B_4)$   $(k = 1, \ldots, 4)$  defined by

- (1)  $\varphi_1(x_1) = x_1, \ \varphi_1(x_2) = x_2, \ \varphi_1(x_3) = 2x_4 x_3 + \alpha_3 \text{ and } \varphi_1(x_4) = x_4;$
- (2)  $\varphi_2(x_1) = x_1, \varphi_2(x_2) = x_2, \varphi_2(x_3) = 2x_4 x_3 + \alpha_3 \text{ and } \varphi_2(x_4) = x_4 x_3 + \frac{1}{2}\alpha_3;$
- (3)  $\varphi_3(x_1) = x_1, \varphi_3(x_2) = x_2, \varphi_3(x_3) = -2x_4 + x_3 \text{ and } \varphi_3(x_4) = -x_4;$
- (4)  $\varphi_4(x_1) = x_1, \ \varphi_4(x_2) = x_2, \ \varphi_4(x_3) = -2x_4 + x_3 \text{ and } \varphi_4(x_4) = -x_4 + x_3 \frac{1}{2}\alpha_3.$

Then they are all well defined and are graded ring isomorphisms. Moreover, they are all under the third case of the proof of Theorem 3.3.

We remark that a cohomology ring isomorphism  $\varphi$  is realizable unless it is under the last case of the proof of Theorem 3.3. However, we do not know whether  $\varphi$  of the last case is realizable or not. In order to prove the strong cohomological rigidity for four-stage Bott manifolds, we require that any automorphism of the cohomology ring of  $B_4$  with the Bott tower structure  $P(\mathbb{C} \oplus \gamma^{x_3 - \alpha_3/2}) \to P(\mathbb{C} \oplus \gamma^{\alpha_3}) \to B_2$  under the last case is realizable. We note that there are only finitely many such automorphisms. Since we may assume that  $\varphi(x_1) = x_1$  and  $\varphi(x_2) = x_2$ , there are only four essential automorphisms  $\varphi_k$  $(k = 1, \ldots, 4)$ .

**Problem 3.5.** Are the automorphisms  $\varphi_k$  (k = 1, ..., 4) realizable?

Acknowledgements. The author thanks Professor Matthias Kreck of the Hausdorff Research Institute for Mathematics (HIM) for inviting him to HIM and providing a supportive environment in which to complete this work. The author also thanks Anna Abczynski from Bonn University for pointing out many small mistakes and unclear explanations, helping to improve the paper significantly. The author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (Grant NRF-2011-0024975), and was additionally supported by the TJ Park Science Fellowship, funded by POSCO TJ Park Foundation.

# References

- 1. A. BOREL AND F. HIRZEBRUCH, Characteristic classes and homogeneous spaces I, Am. J. Math. 80 (1958), 458–538.
- S. CHOI AND M. MASUDA, Classification of Q-trivial Bott manifolds, J. Symplectic Geom. 10(3) (2012), 447–462.
- S. CHOI, M. MASUDA AND D. Y. SUH, Topological classification of generalized Bott towers, *Trans. Am. Math. Soc.* 362(2) (2010), 1097–1112.
- 4. S. CHOI, M. MASUDA AND D. Y. SUH, Rigidity problems in toric topology: a survey, *Proc. Steklov Inst. Math.* **275** (2011), 177–190.
- F. HIRZEBRUCH, Über eine Klasse von einfachzusammenhängenden komplexen Mannigfaltigkeiten, Math. Annalen 124 (1951), 77–86.
- 6. H. ISHIDA, (Filtered) cohomological rigidity of Bott towers, Osaka J. Math. 49(2) (2012), 515–522.
- M. MASUDA AND T. E. PANOV, Semi-free circle actions, Bott towers, and quasitoric manifolds, *Mat. Sb.* 199(8) (2008), 95–122.