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ABSTRACT
A first attempt is made to use recently developed, non-conventional Artificial Neural Network
(ANN) models with Multilayer Perceptron (MLP), Radial Basis Function (RBF) and Adaptive
Neuro-Fuzzy Interference System (ANFIS) architectures to predict the fuel flow rate of a com-
mercial aircraft using real data obtained from Flight Data Records (FDRs) of the cruise, climb
and descent phases. The training of the architectures with a single hidden layer is performed
by utilising the Delta-Bar-Delta (DBD), Conjugate Gradient (CG) and Quickprop (QP) algo-
rithms. The optimum network topologies are sought by varying the number of processing
elements in the hidden layer of the networks using a trial-and-error method. An evaluation
of the approximate fuel intake values against the ideal fuel intake data from the FDRs indi-
cates a good fit for all three ANN models. Thus, more accurate fuel intake estimations can be
obtained by applying the RBF-ANN model during the climb and descent flight stages, whereas
the MLP-ANN model is more effective for the cruise phase. The best accuracy obtained in
terms of the linear correlation coefficient is 0.99988, 0.91946 and 0.95252 for the climb,
cruise and descent phase, respectively.

Keywords: aircraft; fuel flow rate; artificial neural networks; radial basis function; adaptive
neuro-fuzzy interference system; flight data records

NOMENCLATURE
Abbreviations

ANFIS adaptive neuro-fuzzy interference system

ANN artificial neural network

BP back-propagation
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CG conjugate gradient

CV cross-validation

FFNN feed-forward neural network

FIS fuzzy inference system

HL hidden layer

nMSE normalised mean squared error

MAE mean absolute error

MAPE mean absolute percentage error

MLP multilayer perceptron

MSE mean squared error

PE processing elements (neurons)

QP Quickprop

RBF radial basis function

T training

TSK Takagi–Sugeno–Kang fuzzy model

Symbols
ai, bi, ci consequent parameters in ANFIS

Ai, Bi linguistic labels in ANFIS

cj centre (vector) of jth hidden neuron

f transfer function

hj output of jth hidden neuron

m number of neurons in hidden layer

n number of data

Oj
i output of ith node in layer j

R linear correlation coefficient

wi firing strength of a rule in ANFIS

wk0 bias

wkj synaptic weight connecting jth hidden neuron and kth output neuron

x n-dimensional input

yk kth output of ANN

Y actual actual value of ANN model output

Y mean mean value of ANN model output

Y predicted predicted ANN model output

μ membership function in ANFIS

φ radial basis function

1.0 INTRODUCTION
Recently, the climatic and economic impacts of increasing economic growth and output
have led to a challenging trade-off. Regardless of any enhancements in the efficiency of
industrial systems, any percentage increase in terms of economic performance escalates the
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impact on the climate as a result of the irregular progress towards greater economic growth.
Moreover, in addition to legislation aimed at environmental protection, industry now has more
flexible choices, such as the consideration of substitute fuels, ground-based activities, and
comparatively minimal safety and back-up requirements, with aviation having high specific
limitations which ultimately complicate the achievement of the trade-off necessary to allevi-
ate the climatic effect. Furthermore, given the significance of the aviation sector in steering
the economy, it is highly resistant to ecological considerations.

Currently, there are two key issues associated with air transportation: environmental impact
and efficiency. Efficiency includes aspects such as fuel intake, time and the most favourable
use of resources within the airport and terminal zone, such as slots, continuous descent
operations and direct routing. On the other hand, noise and emissions are linked to the
environmental impact. Regardless of the considerable progress in engine and airframe design,
inefficient air traffic management, resulting from capacity concerns, has an adverse effect on
flight efficiency, such as fuel or time cost, thus escalating emissions.

Several effects influence the fuel consumption during a particular flight, including the
weather conditions, flight speed and altitude, mass and air traffic management. Equally, the
intricate relationships between these variables make it quite difficult to measure the size of
each variable. Nevertheless, note that several studies have been conducted on the estimation of
the sole impact of a given variable on fuel intake. Additionally, each flight phase offers diverse
possibilities for fuel savings, which must be weighed against aspects such as time, cost, capac-
ity, noise and contrail formation. When considering the engine power, it is observed that the
fuel flow rate is considerably high in the climb phase, which has a limited duration. Therefore,
limitations implemented by air traffic management may lead to inefficient operations with the
aim of attaining decreased noise levels(1,2).

To alleviate the harmful environmental effects associated with fuel consumption, it is
imperative to preserve fuel energy sources, curtail flight costs, obtain highly precise estima-
tions of aircraft trajectories and achieve faultless and efficient air traffic management. In the
present state of commercial aviation worldwide, this requires a precise fuel flow rate model
for turbofan engines(1).

The primary literature approaching such predictions of fuel intake comprises the model in
Ref. (3), which was considered in the SIMMOD (Airport and Airspace Simulation Model) of
the FAA. Later, an Artificial Neural Network (ANN) model was applied in the prediction of
the fuel intake by Trani et al.(4) based on flight data for a Fokker F-100 aircraft. Consistent
with Senzig et al.(5), given that this model requires comprehensive aerodynamic information
or an extensive database of aircraft operations, along with data on the associated state of the
aircraft, it has met with limited acceptance . Regardless of the accurate results of the ANN
model proposed by Trani et al.(4), it is necessary to improve this model, including the form
of its input and the optimisation of the modelling architecture. In their study, Trani et al.(4)

established the impact of variation of the Mach number as an input parameter, including the
only primary and final altitudes but excluding the impact of altitude variation in the model’s
input parameters. Furthermore, the additional input parameters defined included the initial
temperature and weight of the aircraft. It is critical to note that a definite air range was pro-
vided as an output parameter, but not the fuel flow rate, while modelling the cruise flight
phase. Eight candidate topologies were tested, using a sensitivity analysis, with a three-layer
model with eight neurons in the initial two layers plus a single neuron in the third (output)
layer finally being chosen. The number of layers and neurons therein were selected using
a trial-and-error approach rather than optimisation of the ANN model architecture. In their
study, Bartel and Young(6) developed a thrust-specific fuel intake model for the cruise phase.
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This model included the variation of the thrust-specific fuel intake with the Mach number, but
excluded the impact of the temperature ratio. The temperature term was replaced by using a
factor considered to be the ratio between the thrust in a given cruise condition versus a refer-
ence condition. Equally, Senzig et al.(5) examined a fuel intake model based on the terminal
area. Their model based on the thrust-specific fuel intake was proposed by Hill and Peterson
and modified by Yolder. For the terminal area, the model further included the Mach number
dependence, the temperature ratio effect and the net thrust correlated with the pressure ratio.
A novel fuel intake model based on the Genetic Algorithm (GA) was proposed by Turgut and
Rosen(7), where the descent flight phase considered the fuel flow rate dependence, with only
altitude as an input parameter. Except for these models, considering the latest version (3.13) of
Eurocontrol’s Base of Aircraft Data (BADA) and based on its user manual, the nominal fuel
flow was computed by using the thrust and thrust-specific fuel intake, defined as a function of
the practical airspeed for all flight phases, excluding the idle descent and cruise conditions.
The difference between the expression for the cruise and nominal fuel flows was observed
by an extra correction coefficient of cruise fuel flow, with the fuel flow expression in the idle
descent condition being considered as a function of the pressure altitude and the fuel flow
coefficients during descent(8). A fuel flow rate estimation model based on the GA was devel-
oped by Baklacioglu(9) for the climb phase, and another model(10), based on GA-optimised
Back-Propagation (BP) and Levenberg–Marquart (LM) Multilayer Perceptron (MLP) ANNs
was developed for the cruise, climb and descent phases by using flight data records from a
transport aircraft. Recently, a statistical model predicting the fuel flow rate of a piston engine
aircraft was derived by Huang et al.(11) using general aviation flight operational data, including
the altitude, ground speed and vertical speed of the aircraft.

The present study is the first attempt in literature to estimate the fuel flow rate of a medium-
weight transport aircraft using ANNs with three architectures (MLP, RBF and ANFIS), trained
using three different learning algorithms (CG, QP and DBD). The newly designed models in
this study take the variation of both the true airspeed and altitude as input parameters and
provide the fuel flow rate as an output parameter for the cruise, climb and descent flight
stages. A unique aspect of this research is that the projected models are built using real raw
flight data records from a Boeing 737-800 operated by a local airline in Turkey. Flight altitude
and real airspeed variations were included as inputs to the modelling approach to avoid the
need for comprehensive information on aircraft data and operation. This facilitates precise
fuel flow rate modelling using a simplified method.

2.0 ANN MODELLING ARCHITECTURES

2.1 MLP-ANN
The multilayer perceptron (MLP) topology comprises an output layer, an input layer and one
or more layers of hidden neurons(12). Accepting input signals from the outside world, the
input layer distributes these signals to all the neurons in the hidden layer(s), which identifies
patterns in the input and symbolises them through their weights. The output pattern from the
network is then proposed by the output layer(12–16).

The overall error of the network is computed and the network weights thus determined
by employing three diverse learning algorithms, viz. CG, QP and DBD, in this study. As an
example, the general structure of the learning procedure of a feed-forward ANN is illustrated
in Fig. 1. Based on the forward propagation process, the data are distributed from the input
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Figure 1. General structure of the feed-forward ANN model for fuel flow rate prediction.

layer and measured by the hidden layer to be passed onto the output layer, where the result
corresponding to the input of the network is obtained.

If an error is identified between the actual and preferred output values, it is propagated lay-
erwise through the network weights and thresholds from the output layer via the hidden layer
to the input layer, with the objective of reducing the error. Based on this backward error prop-
agation, the network weights and thresholds are constantly modified, thereby improving the
accuracy of the network in reaction to the input data. The primary objective of this learning
procedure is to amend and update the link weights and thresholds to achieve suitable values
based on constant training. However, excessive or inadequate training may prevent an opti-
mum outcome and even lead to phenomena such as overfitting or decreased generalisability
of the network(15).

2.2 RBF-ANN
The RBF network is a type of FFNN comprising a single hidden layer, an input layer and
an output layer(12, 17). The neurons in the input layer are openly linked to the neurons in the
hidden layer. Employing non-linear radial basis functions, the hidden layer transforms the data
received from the input space to the hidden space. Within an RBFN, a radially symmetrical
activation function is used in the hidden layer. The Gaussian function, which is the natural
choice for this activation process, is applied in this study. Considering an n-dimensional input
x ∈ Rn to an RBFN, the output of the jth hidden layer can be expressed as

hj(x) = φj

(‖x − cj‖
)

, j = 1, 2, ..., m · · · (1)

Here, cj denotes the centre (vector) of the jth hidden neuron, m symbolises the number of
neurons in the hidden layer and φ(·) signifies the radial basis function. A linear activation
function is employed in the output layer. A weighted sum of the output of each neuron in the
hidden layer is linked to a specific neuron in the output layer, thus the kth output of the neural
network is

ŷk(x) =
m∑

j=1

wkjhj(x) + wk0 · · · (2)

where wkj represents the weight linking the jth hidden neuron to the kth output neuron, wk0

stands for the partiality and m is the number of neurons in the hidden layer. Throughout
the training procedure of the RBFN, the parameters describing the (centre and width) of the
Gaussian functions and the values of the weights between the hidden and output layers are
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amended. The weights are optimized by using the least mean square algorithm, while the
centres might be allocated randomly or measured by the application of various clustering
algorithms.

2.3 ANFIS
The adaptive network-based fuzzy inference system (ANFIS) developed by Jang is one of
the main, widely applied, fuzzy inference systems. The architecture of this system is based
on the introduction of a fuzzy inference system (FIS) into the structure of an adaptive neural
network. The first-order Takagi–Sugeno model is implemented for the ANFIS topology in
this research(12, 18). The general rule set, as well as the base fuzzy if–then rules, are given as
follows:

If x1 is A1 and x2 is B1 then f1 = a1x1 + b1x2 + c1

If x1 is A2 and x2 is B2 then f2 = a2x1 + b2x2 + c2 · · · (3)

The ANFIS topology comprises five layers, each consisting of a number of nodes depending
on their function. Let O j

i denote the output of the ith node within layer j.

First Layer: Each node within the initial layer is an adaptive node. The outputs of the first
layer are the fuzzy membership degrees of the inputs, as shown below:

O1
i = μAi (x1) i = 1, 2 · · · (4)

O1
i = μBi−2 (x2) i = 3, 4 · · · (5)

Here Ai and Bi signify the linguistic labels and μAi and μBi denote the corresponding
membership functions. Constant and piecewise differentiable functions such as trapezoidal,
Gaussian, triangular, and generalised Bell membership functions are frequently employed for
the nodes in this layer. The outputs of this layer define the membership values of the principle
part and the active parameters within the membership functions of the fuzzy sets, which are
known as premise parameters.

Second layer: The nodes in layer 2 are defined in contrast to layer 1. The output O2
i from

node i is given as

O2
i = wi = μAi (x1) · μBi (x2) i = 1, 2 · · · (6)

where wi denotes the firing strength of a function.

Third layer: The normalisation procedure is accomplished in layer 3, where the nodes are
fixed. For each node, the ratio of the firing strength of the ith rule to the firing strength of the
sum of all rules is calculated. The outputs from this layer are thus called standardised firing
strengths, expressed as

O3
i = w̄i = wi

w1 + w2
i = 1, 2 · · · (7)

Fourth layer: The next section of the fuzzy rule is addressed in layer 4. Each node i within this
layer is an adaptive node that computes the contribution of the ith rule to the output function
of the model. According to the first-order Takagi–Sugeno technique, the output O4

i of node i
is specified as
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O4
i = w̄i fi = w̄i(aix1 + bix2 + ci) i = 1, 2 · · · (8)

where {ai, bi, ci} are fixed parameters. The parameters for this layer are known as the resultant
parameters.

Fifth layer: Layer 5 comprises a single set node. This is the final layer, where all the incoming
signals are combined and the output is generated as

O5
i = y =

∑
i

w̄i fi =
∑

i wi fi∑
i wi

· · · (9)

The final output can be formulated as a linear combination of the resultant parameters that five
the values of the premise parameters in the derived ANFIS topology. Therefore, the output y
can be expressed as

y = w1

w1 + w2
f1 + w2

w1 + w2
f2 = w̄1f1 + w̄2f2 = (w̄1x1)a1 + (w̄1x2)b1

+ w̄1c1 + (w̄2x1)a2 + (w̄2x2)b2 + w̄1c2 · · · (10)

To optimise the resultant parameters with fixed principle parameters, the least square method
(forward pass) is applied during the training phase. The backward pass starts as soon as the
optimal values for the resultant parameters are obtained. The gradient descent method (back-
ward pass) is applied to amend the premise parameters in the optimal manner with respect
to the fuzzy sets in the input domain. Using the resultant parameters obtained in the forward
pass, the ANFIS output is then obtained. According to the learning algorithm, the output error
is then applied to amend the premise parameters(12).

3.0 ANN METHODOLOGY AND APPLICATION
ANN models for the fuel intake were developed using randomly chosen flight data records
for a Boeing 737-800 aircraft operating by Pegasus Airlines, a domestic airline in Turkey. The
evaluated raw data comprises engine speeds, Mach number, flight altitude, fuel flow rate and
flight time, which includes the inputs for the considered ANNs, viz. the true airspeed and flight
altitude. When these data were applied as input parameters, the MLP, RBF and ANFIS archi-
tectures output the fuel flow rate value corresponding to the same instant of the input flight
data records. Table 1 presents the corresponding values of the input and output factors for the
FDRs containing 347, 404, and 483 data points in the climb, cruise and descent phase, respec-
tively. Before training the neural networks, all the input variables and the objective function
of each of the three models were normalised to lie in the interval [0–1]. The implementation
of the CG, DBD and QP learning algorithms involved data pre-processing, randomisation and
splitting into training (60%), cross-validation (15%) and testing (25%) groups. Modelling of
non-linear problems using ANNs requires the execution of various phases, which are affected
by the characteristics of the preceding and subsequent phases(19). To choose the correct con-
figuration of the ANN for estimating the model output parameters, a statistical analysis was
employed. The ANN design requires the description of the inputs, network types, topology,
training standard and transfer functions. Specifically, the modelling process can essentially
be categorised into three phases: The first phase includes the design of the network topology
by considering the type of ANN, the input parameters, and the numbers of hidden layers and

https://doi.org/10.1017/aer.2020.119 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.119


460 THE AERONAUTICAL JOURNAL MARCH 2021

Table 1
Number of data and ranges of model parameters

Parameters and data Climb Cruise Descent

Number of data 347 404 483
Flight altitude (ft) 10,056–29,974 31,998–32,036 7,028–32,004
True airspeed (m/s) 150.795–219.36 216.95–225.382 142.08–224.212
Fuel flow rate (kg/h) 4,113.158–6,621.183 1,465.025–2,883.552 146.436–1,465.025

neurons. This phase also entails the choice of the transfer function, the training and validation
samples, as well as the training algorithm. The next phase involves a training step, where data
are applied to the ANN models to regulate their weights and biases as a function of a prede-
fined condition. The final phase is the testing step, in which the ANN models are tested using
a novel dataset and their accuracy evaluated based on statistical parameters.

ANNs are described as intelligent systems with the potential to learn, memorise and
form relationships among data, becoming a non-linear tool for time-series modelling(20). The
importance of each input variable is related the outputs of interest. Therefore, the optimisa-
tion procedure used in this work to evaluate the optimum network configuration considered
the exogenous and endogenous variables selected for each model. The parameters considered
in the recombination procedure thus included the type of transfer function, the number of
hidden layers and the number of hidden neurons.

3.1 MLP-ANN results
The MLP model comprised a three-layer network, formed from a single input layer, a sin-
gle hidden layer and a single output layer. The FDRs obtained from the aircraft were used to
provide the training, cross-validation and test datasets. Linear (pure-lin) and hyperbolic tan-
gent (tansig) functions were used for the output and hidden layer, respectively. The developed
MLPs were trained using the CG, DBD and QP algorithms. Considering the MLP models,
the number of neurons in the hidden layer was defined by using a trial-and-error method.

Given that the number of hidden layers and the number of neurons therein are features of
the ANN that affect its accuracy, different ANN configurations with three different learning
algorithms were examined in five runs over 1,000 epochs. Throughout this trial-and-error
process, the network weights and biases were initialised randomly at the start of the learning
stage. The termination criterion during the model generalisation was also defined based on
the mean square error (MSE), typically the average squared error between the ANN outputs
and the target on the cross-validation dataset(21).

The accuracy of the model was evaluated based on the results for 19 topological config-
urations of the network. The Mean Squared Error (MSE), Normalised Mean Squared Error
(nMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and linear
correlation coefficient (R) were considered as statistical indicators in this comparison process,
as expressed below:

MSE = 1

n

n∑
i=1

(
Ypredicted − Yactual

)2 · · · (11)

nMSE = 1

n

n∑
i=1

(
Ypredicted − Yactual

)2

ȲpredictedȲactual
· · · (12a)
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Ȳpredicted = 1

n

n∑
i=1

Ypredicted · · · (12b)

Ȳactual = 1

n

n∑
i=1

Yactual · · · (12c)

MAE = 1

n

n∑
i=1

∣∣Ypredicted − Yactual

∣∣ · · · (13)

MinAbsError = Min
n∑

i=1

∣∣Ypredicted − Yactual

∣∣ · · · (14)

MaxAbsError = Max
n∑

i=1

∣∣Ypredicted − Yactual

∣∣ · · · (15)

R =
n

n∑
i=1

YpredictedYactual −
n∑

i=1
Ypredicted

n∑
i=1

Yactual√
n

n∑
i=1

Ypredicted
2 −

(
n∑

i=1
Ypredicted

)2
√

n
n∑

i=1
Yactual

2 −
(

n∑
i=1

Yactual

)2
· · · (16)

where n, Y predicted, Y actual and Y mean are the number of data, and the predicted, actual
and mean value of each output parameter, respectively(22). Additionally, MaxAbsError and
MinAbsError are the maximum and minimum absolute errors, respectively. nMSE estimates
the overall variation between the measured and predicted values using the MAE measure,
since the predictions lie within the range of observed values. The direction and strength of the
linear relation between any two variables is measured by R, which is a significant measure as
it enables an evaluation of the overall accuracy of a regression model.

The transfer function, the number of hidden neurons and the number of hidden layers were
varied, taking into account several plausible values. Considering the reviewed literature, vari-
ous pairs of transfer functions were selected for the output and hidden layers, with the linear
function often being selected for the output layer. Therefore, the transfer function for the hid-
den layer must essentially be non-linear, although the hyperbolic tangent transfer function was
found to be preferable due to its excellent results.

The training was considered to have converged when the MSE stabilised over a particu-
lar number of iterations(23). Figure 2 illustrates the least MSEs attained when training using
the CG, DBD and QP algorithms and the cross-validation for the single-hidden-layer MLP
architectures for the climb, cruise and descent flight stages. During the implementation of the
QP training, a momentum factor of 0.85 was chosen, due to its ability to provide excellent
results based on the minimum MSE values. The best candidate, being considered to be the
most suitable MLP model, is the architecture achieving the lowest MSE in the cross-validation
stage.

To estimate the fuel flow rate for the turbofan engines in the climb, cruise and descent
flight phases using the single-hidden-layer ANN designs, the best topologies seemed to be
the 2–16–1 CG, 2–9–1 CG and 2–5–1 DBD structures, respectively, where the three values
indicate the total number of neurons in the input, output and hidden layers. The lowest cross-
validation MSE values with the MLP-ANN architecture were 3.663 × 10−5, 1.141 × 10−2

and 6.923 × 10−3, for each flight phase respectively.
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Figure 2. Minimum MSEs for the training and cross-validation of the MLP-ANNs trained with CG, DBD
and QP in the (a) climb, (b) cruise and (c) descent phase.
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Table 2
Testing phase error values in fuel flow rate for the optimal MLP architecture

Performance Climb Cruise Descent

MSE 1.82854E-08 5.98921E-07 1.55805E-06
nMSE 0.000270896 0.164655555 0.185742985
MAE 0.000111361 0.000453283 0.000943351
Min Abs Error 5.71922E-07 1.0199E-06 1.9042E-05
Max Abs Error 0.00036113 0.003451375 0.005096066
R 0.999864633 0.919455151 0.903879521

Climb: CG-MLP, cruise: CG-MLP, descent: DBD-MLP.

During the testing phase of the MLPs, the highest linear correlation coefficients between
the model-predicted and actual fuel flow rate, indicating the accuracy of each ANN model,
were 0.999865, 0.919455 and 0.903880 for the climb, cruise and descent stage, respectively.
The accuracy obtained using the best ANN architecture in terms of the preset error types
MSE, nMSE and MAE and the linear correlation coefficient based on the MLP model testing
dataset are presented in Table 2. Additionally, it is important to mention that the maximum
and minimum absolute errors are also illustrated in this table to clarify the error level attained.

3.2 RBF-ANN results
This study also evaluated the RBF network comprising three layers: one hidden layer, one
input layer and one output layer. While seeking the optimal network using the trial-and-error
method, the number of cluster centres was assumed to be 15, selected based on the competitive
rule, and a Euclidean metric was considered in the design of the RBFN architectures. As for
the MLP-ANNs, 19 configurations were tested, varying the number of hidden layers from 2 to
20 in the trial-and-error method for the RBFNs. Such RBF networks are based on a static
Gaussian function, with nonlinearity in the Processing Element (PE) layer, while a linear
transfer function is selected for the output processing elements.

The response of the Gaussian function is limited to a region of the input range. To ensure
that these networks are successfully implemented, it is imperative to establish appropriate
centres for these Gaussian functions. In this study, this was achieved via supervised learning,
although the unsupervised method was found to provide better output values. As a result,
a hybrid supervised–unsupervised topology was applied in this work. The first phase of the
simulation involved the training of the unsupervised layer. This step was performed to obtain
the Gaussian centres and widths using the input data. These centres were encoded using the
weights of the unsupervised layer by competitive learning. While conducting the unsupervised
learning, the Gaussian widths were calculated according to their neighbours. The output of
this layer was obtained from the input data weighted by a Gaussian mixture.

After the training of the unsupervised layer had finished, the supervised part subsequently
set the centres of the Gaussian functions, depending on the weights of the unsupervised
layer, determining the width (standard deviation) of each Gaussian based on the centres of
its neighbours. A hidden layer was included to make the supervised section into a multilayer
perceptron (MLP), rather than a plain linear perceptron, in this study. The supervised part
employed the weighted inputs, rather than the input data interpreted from the data records.
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Table 3
Testing phase error values in fuel flow rate for the optimum RBF

network architecture

Performance Climb Cruise Descent

MSE 1.62088E-08 8.18435E-07 7.77966E-07
nMSE 0.000240131 0.225004329 0.092745227
MAE 0.00010333 0.000459805 0.000623736
Min Abs Error 1.39918E-06 5.59812E-06 2.7715E-06
Max Abs Error 0.00032498 0.005910281 0.003434451
R 0.999881531 0.897203513 0.952523067

Climb: CG-RBF, cruise: DBD-RBFN, descent: DBD-RBF.

It is not feasible to propose a suitable number of Gaussians for each case, as this depends
on the problem in hand. The number of patterns within the training set influences the number
of centres, as extra patterns mean extra Gaussians. However, this can be addressed via the
distribution of clusters. If the information is well clustered, then few Gaussians are required.
Conversely, if the data are spread widely, many more Gaussians are needed to achieve excel-
lent performance. In this regard, the number of cluster centres in this study was assumed
to be 15.

Competitive learning has an inherent metric, which was used in this study. This is known
as the Euclidean metric, which determines the dissimilarity between two vectors based on the
distances within the input space. Moreover, competitive learning maintains inherent probabil-
ity sharing of the input data. However, it has the disadvantage that some PEs may never fire,
while others may win the contest every time. To prevent these extremes, a ‘conscience’ mech-
anism, which maintains a count of how frequently a PE wins the competition and imposes a
steady winning frequency across the PEs, was incorporated into the RBF models at this point.

As for the MLP-ANNs, the DBD, CG and QP algorithms were implemented to train the
RBFNs in order to identify the best network model. The minimum MSE values for the training
and cross-validation of the DBD, CG, and QP algorithms (with the latter having a momentum
rate of 0.85) are shown in Fig. 3(a), (b) and (c) for the climb, cruise and descent phases. The
best RBF network architecture candidate was found to be the 2–12–1 CG, 2–3–1 DBD and
2–3–1 DBD structure, while the least cross-validation MSE value was found to be 5.045 ×
10−5, 7.097 × 10−3 and 8.471 × 10−3 for the mentioned flight stages.

For the structures of the RBF networks with the best testing performance, the linear upper-
most correlation coefficient was found to be 0.999882, 0.897204 and 0.952523 for the climb,
cruise and descent flight phase, respectively. The values of the predefined types of error for
the case of the RBF networks are presented in Table 3.

3.3 ANFIS results
Applying fuzzy guidelines as a pre-processor to an ANN permits the integration of human
awareness to carry out decision-making and inference. The ANFIS model optimises the fuzzy
laws (membership role parameters) with back-proliferation, thus human knowledge is not
required. To start the development of the ANFIS prediction model, a fuzzy model first has
to be obtained. To define this model, it is necessary to determine the number of inputs and
linguistic variables and, thereby, the number of laws for the final fuzzy model. As in the initial
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Figure 3. Minimum MSEs for the training and cross-validation of the RBFNs trained with CG, DBD and
QP in the (a) climb, (b) cruise and (c) descent phase.
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Table 4
Testing phase error values in fuel flow rate for the optimum

ANFIS architecture

Performance Climb Cruise Descent

MSE 2.78392E-08 7.63535E-07 1.25E-06
nMSE 0.000412432 0.20991117 0.149019097
MAE 0.000133429 0.000588461 0.000808906
Min Abs Error 4.90284E-07 1.55069E-06 3.55298E-06
Max Abs Error 0.000402406 0.003107487 0.00477084
R 0.999799317 0.890046502 0.922952207

Climb: DBD-ANFIS, cruise: DBD-ANFIS, descent: QP-ANFIS.

step for defining the initial fuzzy model, the subtractive clustering technique is used on the
input–output data pairs. The technique proposed by Chiu(24) is a quick, one-pass algorithm for
approximating the number of clusters and cluster centres using an unsupervised method by
determining the prospective data points within the feature space. After this clustering process,
the number of fuzzy rules and principle fuzzy membership functions are measured. Therefore,
the optimal values of these parameters, as well as the resultant and premise parameters, are
obtained using the learning algorithm.

In this study, the DBD, CG and QP learning algorithms were implemented for the ANFIS
architecture, as in the situation of the RBFNs and MLP-ANNs. After trying numerous net-
work parameters in a search for the most accurate testing outcomes, the following were
selected for the execution of the ANFIS networks: no hidden layer configuration, three mem-
bership functions per network input, Gaussian-shaped curve fuzzy membership function, and
TSK fuzzy model (the well-recognised Sugeno fuzzy model). For ANFIS networks, the MSE
values achieved for the training and cross-validation using the DBD, CG and QP algorithms
(with the latter having a momentum factor of 0.85) versus the number of epochs are shown in
Fig. 4(a), (b) and (c) for the climb, cruise and descent flight phase, respectively. The lowest
cross-validation MSE value of 5.892 × 10−5 was obtained at epoch number 492 when using
the DBD training algorithm for the climb phase, whereas a lowest value of 0.010232367 was
obtained at epoch number 740 when using the QP training algorithm for the descent phase,
and 0.009143089 at epoch number 367 when using the DBD training algorithm for the cruise
flight phase.

Among the different ANFIS networks, the optimal testing result in terms of the linear
correlation coefficient was 0.999799, 0.890047 and 0.922952 for the climb, cruise and descent
flight phase, respectively. The error values for the best ANFIS configurations are reported in
Table 4.

Consequently, considering these testing results for the three ANN architectures, the output
parameter values estimated for the optimal ANN architectures and the data acquired from the
actual FDRs are also shown, considering the associated ANN dataset, in Fig. 5(a), (b) and (c)
for the climb (RBF), cruise and descent phase, respectively. Considering the results shown in
these figures, it can be concluded that there is a good fit between the real values and those
predicted by the model for the fuel flow rate in each flight phase.

The obtained ANN models were also employed to generate formerly inaccessible output
values by feeding new input data into all the model networks. Yielding linear correlation
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Figure 4. MSE versus number of epochs for the training and cross-validation of the ANFIS architectures
trained with CG, DBD and QP in the (a) climb, (b) cruise and (c) descent phase.
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Figure 5. Test results of the best ANN architectures for the (a) climb (RBF), (b) cruise (MLP) and
(c) descent (RBF) phase.
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Figure 6. Fuel flow rate outputs produced by the most accurate ANNs in the (a) climb, (b) cruise and
(c) descent phase.
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coefficients extremely close to 1, the derived ANN models were extremely efficient for obtain-
ing accurate new values for the fuel flow rate. The resulting outputs are shown versus the
model inputs in Fig. 6(a)–(c).

4.0 CONCLUSIONS
For the first time in literature, this study implemented a new modelling method for estimation
the fuel flow rate of a commercial turbofan aircraft throughout the climb, cruise and descent
flight phases based on ANNs with three diverse architectures, viz. MLP, RBF and ANFIS
networks, trained using three different learning algorithms, i.e. CG, QP and DBD. To device
and design the models, real data derived from FDRs of a Boeing 737-800 were used, which
represents an additional novelty of the projected models. Furthermore, unlike existing models
in literature, the models derived in this study adopted the variation of both the true airspeed
and altitude as input parameters, while offering the fuel flow rate as the output parameter. To
avoid the need for comprehensive information on aircraft data and operations, flight altitude
and real airspeed variations were applied as the input parameters for the developed models,
thus facilitating highly accurate fuel flow rate modelling in a simplified way.

Using the most favourable ANN models, linear correlation coefficients of 0.999882,
0.919455 and 0.952523 were obtained the for climb, cruise and descent flight phase, respec-
tively. Considering these high linear correlation coefficients, together with the low values
of the predefined error types, it can be clearly deduced that the obtained ANN models are
extremely accurate for the approximation of the fuel flow rate for the case study aircraft.

Among the three diverse topologies, the implementation of the ANN model with the
RBF architecture and trained with the CG algorithm achieved the most accurate behaviour
throughout the climb phase. Meanwhile, the CG-MLP and DBD-RBF network architectures
performed better for the cruise and descent stage, respectively.

When actual flight data or manual data from an aircraft are accessible, this newly proposed
ANN architecture could facilitate a further effective modelling methodology for fuel flow
rate predictions in actual applications. For instance, this could decrease fuel consumption in
ecological research or be used in fuel-saving policies and air traffic management, as well
as aircraft trajectory prediction within air traffic control simulations and decision support
systems. Moreover, to achieve accurate fuel flow rate predictions to compute the required
thrust and energy of an aircraft engine, the model obtained in this research could be embedded
into Full Authority Digital Engine Control (FADEC). When an accurate formulation to define
the correlation between the thrust and required fuel energy is achieved, FADEC could send
the accurate and minimum required fuel flow rate to the engine combustor. Such achievement
of the correct fuel flow rate could minimise emissions, decrease environmental effects and
wasted energy, and maximise aircraft sustainability .

The present research also opens the avenue towards future research. Indeed, the robust
fuel flow rate modelling approach proposed herein could be used to construct energetic and
exergetic models for the turbofan engines of contemporary commercial aircraft, to analyse
their environmental effects and sustainability.
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