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Nonlinear analysis of shock–vortex interaction:
Mach stem formation
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Shock–vortex interaction is analysed for strong gaseous shock waves and a ratio of
specific heats close to unity. A nonlinear wave equation for the wrinkles of the shock
front is obtained for weak vortices. The solution breaks down after a finite time and
the slope of the front develops jump discontinuities, indicating the formation of Mach
stems. Shock–turbulence interactions are also briefly discussed.
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1. Introduction
For a long time gaseous planar shock waves have been known to be stable.

Experimental and theoretical pioneering studies reported a relaxation of initial
disturbances which follows power laws, t−1/2 or t−3/2, see Lapworth (1959),
Briscoe & Kovitz (1968) and Van-Moorhem & George (1975). The stroboscopic
schlieren photographs, taken to study the relaxation, show Mach stems (triple points)
propagating in the transverse direction on the shock front. Except for the approximate
geometrical approach of Whitham (1957), no particular attention was paid to these
phenomena in the past.

Cellular detonations are instructive examples of Mach stem formation in shock
waves. Gaseous detonations consist of a strong inert shock followed by an exothermic
reaction region. Planar gaseous detonations are known to be unstable and exhibit
cellular structures with triple points propagating in the transverse direction of the
shock front. Cellular detonations were observed a long time ago, see Shchelkin
& Troshin (1965) and Strehlow (1979). More recently, the cellular structure has
been explained by the weakly nonlinear analysis of Clavin & Denet (2002) near
the instability threshold of planar detonations. According to this analysis, the main
nonlinear effect is not associated with the heat release. This suggests that the
formation of Mach stems results from some mechanism inherent in the dynamics
of the shock front which is wrinkled by the instability due to an unsteady coupling
with the heat release.

The early numerical simulations of two-dimensional shock–vortex interaction by
Guichard, Vervich & Domingo (1995) and Ellzey et al. (1995) have shown that the
front develops corners and triple points. The more recent numerical simulations of
Inoue & Hattory (1999), Inoue (2000) and Zhang, Zhang & Shu (2005) focus attention
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on sound generation for different strengths of rather strong vortices (turnover velocity
v1 of the order of the sound speed a1). These simulations are limited to weak shocks
with a small Mach number of propagation M1, not larger than 1.3, the inner structure
of the shock wave being resolved by using the Navier–Stokes equations. In contrast
to these simulations, attention is focused here on strong shocks, M1 � 1, and weak
vortices (very subsonic turnover velocity). Therefore, the distortions of the shock front
are small, which is a necessary condition for a weakly nonlinear analysis. Moreover,
strong shocks may be of interest in astrophysics and in fusion by inertial confinement.

Shock–turbulence interaction is a fundamental problem which has been extensively
studied. Mach stems are not easy to observe on strongly unsteady shock waves,
neither in numerics nor in experiments. However, sharp transitions in the slope of
the front appear in the direct numerical simulation of Lele & Larsson (2009), see
also Larsson & Lele (2009). Moreover, a strong bursting character of the flow of
compressed gas is observed in the experiments of Agui, Briassulis & Andreopoulos
(2005). An outcome of the present analysis is a simple nonlinear equation which can
be used as a model for studying the two-dimensional geometry of the cusped front of
a strong shock propagating in a weakly turbulent flow, see (4.19). From the theoretical
side, analytical studies of shock–turbulence interaction have been carried out in the
linear approximation, see Wouchuk & Huete Ruiz de Lira (2009) and the PhD thesis
of Huete Ruiz de Lira (2012) where an extensive review of the literature may be
found. Apparently, nonlinear analyses of shock–vortex interaction have not yet been
performed.

The only existing systematic analysis of Mach stem formation is the weakly
nonlinear analysis of Majda & Rosales (1983). This pioneering analysis concerns
spontaneous Mach stem formation in a reacting shock front propagating in a
quiescent medium. The front being considered as a hydrodynamic discontinuity
without modifications of its inner structure, the instability mechanism of detonations
is not fully taken into account. Another basic assumption of the analysis is that all
of the eigenmodes are radiating (spontaneous sound emission). This assumption is not
valid for inert shock waves propagating in a quiescent polytropic gas, see Clavin &
Williams (2012). However, the acoustic waves generated in the compressed gas during
the interaction of a shock wave with a non-uniform flow are systematically radiating.
Therefore, it can be argued that Mach stem formation might not be much different
from that described by Majda & Rosales (1983).

The purpose of the present work is not to solve analytically the shock–vortex
interaction in the general case. An approximate solution for the formation of
singularities of the slope of a weakly wrinkled shock front is obtained in a limiting
case instead. Coupling vorticity and pressure waves makes the analysis difficult to
carry out, especially for the initial-value problem of the shock–vortex interaction.
Analytical results and physical insights cannot be easily obtained without further
simplifications. In the distinguished limit (2.5) which is considered here, M1� 1 and
(γ − 1)� 1, see the formulation in § 2, the sound speed in the compressed gas,
a2, is of the same order of magnitude as in the initial medium, a2/a1 = O(1), but
the flow of the compressed gas (velocity u2 relative to the shock front) is strongly
subsonic, M1 ≡ u1/a1 � 1⇒u2 � a2 � u1. Attention is focused on the interaction in
two dimensions of a strong shock wave with a weak and rectilinear vortex of strength
2πr0v1 whose axis is parallel to the shock front, and v1� a1� u1. At large distances
from the vortex core, r� r0, the small turnover velocities in the irrotational region
should not play significant roles. The analysis is performed for a vortex of finite size l,
and the extension to usual rectilinear vortices is discussed in § 3.7.
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The physical insights may be summarized as follows. A small distortion of the
shock front is formed during the short lapse of time taken by the vortex to cross
the shock, τint = l/u1, called the interaction time in the following. The amplitude
of the wrinkle is much smaller than its transverse extension l, the slope of the
wrinkle being of order a2v1/u2

1 � 1. The calculation is carried out in § 3.3 and the
results are summarized in § 3.4. After the interaction time, t > τint , the wrinkled
shock wave propagates into a quiescent medium, as is the case for the normal
modes analysis. The wrinkles of the front then propagate in transverse directions
at the sound velocity of the shocked gas, a2, see § 3.5. This transverse propagation
involves a characteristic time longer than the interaction time, l/a2 � τint . Owing to
this difference of time scales, the initial condition for the second stage (t > τint) is,
roughly speaking, provided by the vortex–shock cross-over (first stage, 0 < t < τint).
The analysis is simplified by the approximation in (3.14): in the limit (2.5) the flow
of the impulsive source which generates an acoustic pulse during the cross-over, has a
negligible transverse component. Therefore, during the second stage, the downstream
compressible flow is negligibly near the shock front and the dynamics of the wrinkles
is mainly controlled by an incompressible shear flow (vorticity wave), see § 3.5. Thus,
the linear dynamics for t > τint is described by the wave equation (3.9) of the normal
mode analysis in the limit (2.5). A composite equation, covering both the first and the
second stage, is then obtained, see (3.29). The weakly nonlinear analysis is performed
in §§ 4.1 and 4.2. This leads to the same nonlinear equation (4.17) as for the normal
modes but with an additional impulsive source term, see (4.19). As in the works of
Whitham (1957) and Majda & Rosales (1983), the solution breaks down in finite
time and the slope of the shock front develops jump discontinuities, indicating the
formation of Mach stems after the cross-over, and away from the impact region. The
extension to three dimensions is straightforward, see (4.19). Such analytical results
are obtained for weak vortices v1 � a1 and strong shocks in the limit (2.5). In
contrast, large distortions of the shock front and triple points are produced during the
cross-over of strong vortices and weak shocks. This case is not covered by the weakly
nonlinear analysis performed here. Discussion of the results, concluding remarks and
perspectives are given in § 5.

2. Formulation
The shock wave is considered as a discontinuity separating two flows of a polytropic

gas. The two-dimensional Euler equations may be written as

1
ρ

D
Dt
ρ + ∂

∂x
u+ ∂

∂y
w= 0, ρ

D
Dt

u=− ∂
∂x

p, ρ
D
Dt

w=− ∂
∂y

p,
D
Dt

s(ρ, p)= 0, (2.1)

where ρ, p, s, u and w are the density, the pressure, the entropy, the longitudinal
and transverse velocity of the flow, and where the material derivative has been
introduced D/Dt ≡ ∂/∂t + u∂/∂x + w∂/∂y. The conditions upstream and downstream
from the shock front will be identified by the subscripts 1 and 2, respectively.
Introducing the ratio of specific heats γ , the jumps of ρ and p across the shock
are (Rankine–Hugoniot conditions)

ρ1f /ρ2f = [(γ − 1)M2
1 + 2]/[(γ + 1)M2

1], p2f /p1f = [2γM2
1 − (γ − 1)]/(γ + 1) (2.2)

where the subscript f denotes values at the shock front. The Mach number M1

is expressed in terms of both the upstream flow and the equation of the shock
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front x= α(y, t),

M1 =
(u1f − α̇t − w1fα

′
y)

a1f (1+ α′2y )1/2
, where α̇t ≡ ∂α

∂t
, α′y ≡

∂α

∂y
(2.3)

and a1 = (γ p1/ρ1)
1/2 is the sound speed in the upstream gas. Conservation of mass

and transverse momentum across the front yield

ρ1f (u1f − α̇t − w1fα
′
y)= ρ2f (u2f − α̇t − w2fα

′
y), w1f + u1fα

′
y = w2f + u2fα

′
y. (2.4)

The flow geometry is unbounded downstream. From now on we introduce the notation,
u→ u + u, ρ→ ρ + ρ, p→ p + p, where an overbar identifies the unperturbed flow
in the referential frame of the shock wave, α = w1 = w2 = 0. The flow (u1, w1, p1) is
prescribed with a small Mach number, |u1|/a1� 1, |u1|/|w1| = O(1), p1 = O(ρ1|u1 |2).

A better understanding is provided by the simplified analysis performed in the
distinguished limit making the compressed gas flow strongly subsonic relative to the
shock front, M2 ≡ u2/a2� 1,

M1 ≡ u1/a1� 1, M
2
1(γ − 1)= O(1). (2.5)

A perturbation analysis is then performed using the small parameter ε ≡M2� 1,

ε ≡ u2/a2 ≈ (a2/a1)/M1 = a2/u1� 1, where a2/a1 = O(1), (2.6)

(a2/a1)
2 ≈ [2+ (γ − 1)M

2
1]/2, u2/u1 = ρ1/ρ2 ≈ ε2, p2/p1 ≈M

2
1 = O(1/ε2). (2.7)

3. Linear analysis of the shock–vortex interaction
3.1. Method

When the turnover velocity is sufficiently small so that the amplitude of the wrinkles
of the front are also small, |α′y| < 1, the first stage of the shock–vortex interaction is
well described by a linear analysis, and (2.2)–(2.4) yield

p2f

p2

− p1f

p1

≈ 2
(u1f − α̇t)

u1
,

ρ2f

ρ2

− ρ1f

ρ1

= 2 (a1/a2)
2 (u1f − α̇t)

u1
, (3.1)

(u2f − α̇t)= (u1f − α̇t)b/M
2
1, w2f ≈ u1α

′
y + w1f , (3.2)

where b ≡ [(γ − 1)M
2
1/2 − 1] is a parameter of order unity and where terms of order

ε2 have been omitted for simplicity in the numerical factor on the right-hand side of
the first equation in (3.1) and the second equation in (3.2). In the linear approximation,
the flow of compressed gas is the sum of an isobaric shear flow (incompressible
entropy–vorticity wave) and an acoustic wave,

u2 = u(i)2 + u(a)2 , w2 = w(i)
2 + w(a)

2 , ∂u(i)2 /∂x+ ∂w(i)
2 /∂y= 0, (3.3)

p(i)2 = 0, p2 = p(a)2 . (3.4)

The shear flow, u(i)2 (x, y, t), w(i)
2 (x, y, t), is the solution of the linearized Euler equations

without the pressure term. Therefore, it may be expressed in terms of its value at the
front u(i)2f (y, t), u(i)2f (y, t),

u(i)2 (x, y, t)= u(i)2f (y, t − x/u2), w(i)
2 (x, y, t)= w(i)

2f (y, t − x/u2). (3.5)
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These values are obtained from u2f (y, t) and w2f (y, t) given by the Rankine–Hugoniot
conditions (3.2), by subtracting the acoustic flow,

u(i)2f (y, t)= u2f − u(a)2f , w(i)
2f (y, t)= w2f − w(a)

2f . (3.6)

Once the acoustic flow is known, the linear equation for evolution of the disturbances
of the shock front is obtained from (3.5) by the incompressibility condition in (3.3).
In principle, the linear analysis can be performed in the general case by using
the Laplace transform formalism, see Huete Ruiz de Lira (2012). The sound wave
generated by shock–vortex interaction has been analysed by Ribner (1985). The full
problem is a complex free boundary problem. It may be solved analytically in the
limit (2.5).

3.2. Normal mode analysis
It is worth briefly recalling first the result of the normal mode analysis initiated by
D’Yakov (1954) and Kontorovich (1957) for studying the stability of planar shock
fronts in any quiescent material,

u1f = w1f = p1f = 0, (3.7)

see the recent reviews by Clavin & Williams (2012) and Bates (2012). This will be
useful in § 3.5 for the final dynamics of the shock front after the vortex has crossed
the shock wave. The flow and shock front are decomposed in transverse Fourier
modes, eiky+σ t, which are analysed separately, α(y, t) = α̃keiky+σ t, α′y = ikα, α̇t = σα
where k is real and σ complex. For each mode, the acoustic flow (u(a)2 ,w(a)

2 ) is
expressed in terms of σ and k from the pressure at the front p2f given in (3.1) where
u1f and p1f are set equal to zero. The quantities u2f and w2f are expressed in terms
of σ and k from (3.2). Using (3.6), incompressibility of the shear flow at the front,
−(σ/u2)u

(i)
2f + ikw(i)

2f = 0 then leads to an equation for the reduced linear growth rate,
σ/a2|k|,

±M2

√
S2 + 1= 1+ S2(1+ 1/M

2
1), where S≡ (1−M

2
2)
−1/2

(σ/a2|k|). (3.8)

For a polytropic gas the roots of (3.8) are purely imaginary and represent neutral
normal modes (neither damped nor amplified exponentially in time). The square root
in (3.8) is a pressure term. It introduces a cut in the complex S-plane which may lead
to a relaxation characterized by power laws, as shown by using the Laplace transform
formalism.

To leading order in the limit (2.5), according to (2.6), the pressure term,
±M2

√
S2 + 1, vanishes in (3.8). According to the relation u1u2 ≈ a2

2 in (2.6), equation
(3.8) then reduces to S2+1= 0, σ 2+a2

2k2 = 0, that is a wave equation for the wrinkles
of the front, x= α(y, t),

α̈tt − a2
2α
′′
yy = 0 with the notation α̈tt ≡ ∂2α/∂t2, α′′yy ≡ ∂2α/∂y2. (3.9)

This shows that propagation of disturbances along the shock wave at velocity of
sound is not necessarily associated with compressibility. The reason here is that
the entropy–vorticity wave propagating in the compressed gas is strongly tilted, see
figure 1. It is worth mentioning for the following and in particular for the calculations
in § 4.1, that if the linear analysis is pushed to the next order in the limit (2.5), the
pressure term, at this order, do not change the form of the wave equation (3.9) but
only introduces a correction of order ε2 to the phase velocity a2. This is easily seen
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FIGURE 1. Sketch of the shock–vortex interaction, not drawn to scale, u2/u1 ≡ ε2� 1,
u2/a2 = O(ε) and a2/u1 = O(ε).

by noticing that the quantity
√

S2 + 1 is of order ε, and the first term in (3.8) is of
order ε2.

3.3. Shock–vortex cross-over (first stage)
Coming back to the shock–vortex interaction, consider a rectilinear vortex of strength
Γ = 2πr0v1 where r0 and 2v1/r0 are the radius and the vorticity of the rotational
core. The axis of the vortex is parallel to the planar shock front and perpendicular
to the plan Oxy. The velocity of its centre, relative to the upstream gas, will be
neglected compared with u1. The components |u1| and |w1| are of order v1 near the
core and decrease to zero with increasing radius r in the irrotational region (r > r0), as
Γ/(2πr). This long tail makes the calculations of the shock–vortex interaction tedious,
even though the small turnover velocities should be negligible. The analysis is carried
out first with a simpler vortex model constituted by a blob of disturbances, u1(x, y),
w1(x, y), of amplitude v1 and finite extension l in space. The results are extended in
§ 3.7 to a variable length scale.

Introducing the finite size l, the perturbations of the upstream velocity u1(x, y) and
w1(x, y) felt by the shock front are localized, 1y= l, and short-lived, 1t = τint ≡ l/u1,

u1f (y, t)= u1(x, y)|x=−u1t, w1f (y, t)= w1(x, y)|x=−u1t, (3.10)

where t = 0 is the beginning of the shock–vortex cross-over. The time scale and length
scale of this source term are

∂/∂t = O(u1/l), ∂/∂y= O(1/l). (3.11)

Assuming, u1� a1� v1, and neglecting the Doppler shift at leading order in the limit
(2.5), u2� a2, the linear equations of acoustics in the compressed gas yield,

∂u(a)2

∂t
≈− 1

ρ2

∂p2

∂x
,

∂w(a)
2

∂t
≈− 1

ρ2

∂p2

∂y
,

∂2p2

∂t2
− a2

2

(
∂2p2

∂x2
+ ∂

2p2

∂y2

)
≈ 0. (3.12)
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Sound generation by an impulsive source may be solved in free space by the method
of Green’s function, see for example the text book of Howe (2003). The acoustic
waves propagating in the compressed gas are more complicated due to the free
boundary at the shock front. Simplifications appear for a weak vortex and a strong
shock in the limit (2.5). At low Mach number of turnover, v1/a1� 1, non-dimensional
pressure and density disturbances, p1/p1 and ρ1/ρ1, are of order (v1/a1)

2. Therefore,
the upstream pressure fluctuation, p1f , becomes negligible in the expression of the
pressure disturbance at the compressed side in (3.1) for v1/a1� ε,

v1/a1� ε : p2f /p2 ≈ 2(u1f − α̇t)/u1. (3.13)

The pressure pulse at the downstream side of the front then corresponds to the
longitudinal component of the turnover velocity of the vortex. This suggests that the
pressure burst propagating in the compressed gas is generated at the shock front by
an impulsive source constituted by a longitudinal flow of transverse extension l and
short lifetime τint . During this short lapse of time, to leading order, the pressure pulse
takes the form of a quasi-planar and longitudinal acoustic flow, u(a)2 ≈ p2/ρ2a2 with
p2 ≈ ρ2a2

2, so that, according to (3.13),

0 6 t 6 τint : u(a)2f (y, t)≈ 2(a2/u1)(u1f − α̇t), (3.14)

where, according to (2.6), (a2/u1) ≈ ε. The validity of (3.14) is checked from (3.12)
when using the time scale and the transverse length scale in (3.11): the longitudinal
length scale results from the balance of the two first terms in the third equation
in (3.12),

∂/∂x= O(ε−1/l), (3.15)

and (3.13) with the first equation in (3.12) then yields (3.14). The order of magnitude
of the transverse component of the acoustic flow is obtained from (3.13) and the
second equation in (3.12),

w(a)
2f = O((a2/u1)

2(u1f − α̇t)), (3.16)

showing that, to leading order, the acoustic wave is quasi-planar, |w(a)
2 /u

(a)
2 | = O(ε).

In the linear approximation the shear flow propagating in the compressed gas is
given by (3.5) and (3.6). Neglecting terms of order ε2, equations (3.2) and (3.14)
yield

u(i)2f (y, t)≈ α̇t(y, t)− 2(a2/u1)u1f (y, t), w(i)
2f (y, t)= u1α

′
y + w1f − w(a)

2f , (3.17)

where the order of magnitude of w(a)
2f is given by (3.16). According to (3.10) and

(3.5), the last term in the first equation in (3.17) yields a contribution to u(i)2 (x, y, t)
which may be expressed in terms of the upstream component u1(x, y) in the form
−2(a2/u1)u1(−u1(t − x/u2), y). Its derivative with respect to x gives

−2
a2

u2

(
∂u1

∂x

)
x=−u1t

= 2
(a2/u1)

u2

∂
(
u1|x=−u1t

)
∂t

. (3.18)

Incompressibility of the shear flow, ∂u(i)2 /∂x+∂w(i)
2 /∂y= 0, written at x= 0, leads to an

equation for evolution of the front, valid during cross-over 0 6 t 6 τint . Equation (3.17)
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then yield

0 6 t 6 τint :
− α̈tt

u2
+ 2

(a2/u1)

u2

∂
(
u1|x=−u1t

)
∂t

+ u1α
′′
yy −

(
∂u1

∂x

)
x=−u1t

− ∂w(a)
2f

∂y
= 0, (3.19)

where incompressibility of the upstream vortex flow, ∂u1/∂x + ∂w1/∂y = 0, has been
used in the fourth term. Three terms are in fact negligible in this equation. According
to (3.18) and u2/a2 = ε � 1, see (2.6), the fourth term gives a correction of order ε
to the second term. The latter is a source terms of order ε−1u1f /l which varies on
the short time scale τint = l/u1. According to (3.16), ∂w(a)

2f /∂y = O(ε2(u1f − α̇t)/l), the
last term in (3.19), yields contributions smaller than the second and first terms by a
factor ε3 and ε4, respectively, since, according to (3.11), α̈tt/u2 = O(ε−2α̇t/l). Finally,
the third term is smaller than the first term by a factor ε2. Therefore, to leading order,
the two first terms of (3.19) must be balanced, to give after integration with respect to
time

0 6 t 6 τint : α̇t ≈ 2
a2

u1
u1f , u1f ≡ u1|x=−u1t, α(y, t)≈ 2

a2

u1

∫ 0

−u1t
dx

u1(x, y)

u1
. (3.20)

3.4. Orders of magnitude
As already mentioned, the fourth term in (3.19) is the first correction term, of order
ε, to the two first terms, so that ∂w(i)

2f /∂y≈ ∂w1f /∂y and w(i)
2f ≈ w1f . According to (3.5)

and (3.11),

∂u(i)2 /∂x=−u−1
2 ∂u(i)2 /∂t = O((u1/u2)(u

(i)
2 /l)). (3.21)

Incompressibility of the shear wave written in the form ∂u(i)2 /∂x ≈ −∂w1f /∂y then
shows that |u(i)2 /w1f | = O(u1/u2), namely, using (2.6), |u(i)2 /w

(i)
2 | = O(ε2).

For a single vortex blob, the quantity under the integral in (3.20), u1(x, y), does not
change sign at y fixed but changes sign when crossing y = 0. According to (3.20),
the amplitude of the wrinkle, |α|, left just after the passage of the vortex of size l,
is of order εlv1/u1 since a2/u1 ≈ ε, see (2.6). Therefore, the slope of the wrinkled
front |α′y| is small, of order εv1/u1 = a2v1/u2

1. The corrugation of the wrinkled front,
x = α(y), changes sign when crossing y = 0, α(y = 0) = 0. Its amplitude decreases
when increasing |y| and is zero for |y|> l/2.

Therefore, the physical interpretation of the shock–vortex interaction during the
cross-over is simple for v1/a1� ε in the limit (2.5):

(i) the acoustic pulse is generated by the longitudinal component of the turnover
velocity of the vortex;

(ii) the shear flow is generated by the transverse component of the vortex and is
quasi-parallel to the front; this flow corresponds to the transmitted vortex core.

The result, which is based on the approximation in (3.13)–(3.14), may be
summarized as follows:

(v1/a1)� ε, 0 6 t 6 τint :
α̇t ≈ 2εu1f , |α′y| = O(εv1/u1), (3.22)

p2f /p2 ≈ 2u1f /u1, u(a)2f ≈ 2εu1f , |w(a)
2f /u

(a)
2f | = O(ε), (3.23)

w(i)
2f ≈ w1f , |u(i)2f /w

(i)
2f | = O(ε2). (3.24)
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If v1/a1 is still small but becomes of order ε, equation (3.20) should be modified to
take into account the pressure inside the vortex, u1f → u1f + ε−1p1f /(2ρ1a2),

v1/a1 = O(ε), 0 6 t 6 τint : α̇t = O(u2
1f /a2), |α′y| = O(εv2

1/(a1u1)). (3.25)

However, the approximation in (3.14) is less accurate in this case.

3.5. Linear evolution after the cross-over (second stage)
For t > τint , the pressure pulse becomes multidimensional. For weak shock, it takes
a quasi-cylindrical shape in the far field, centred on the transmitted vortex core, as
sketched in figure 1, see Ribner (1985), Inoue & Hattory (1999), Inoue (2000) and
Zhang et al. (2005). However, for a weak vortex and a strong shock in the limit (2.5),
the sound intensity varies with the azimuthal angle and decreases to negligible values
when approaching the shock front (x = 0, |y| > l/2). The dynamic of the wrinkled
shock front after the vortex has crossed the shock wave is mainly controlled by a
quasi-isobaric flow in the compressed gas, as shown now. During the second stage
(t > τint), the acoustic flow at the downstream side of the compressed gas may be
decomposed into two parts:

(i) the acoustic waves radiated from the flow disturbances propagating in the
compressed gas and which were generated initially during the short period τint ;

(ii) the pressure fluctuations generated at the shock front by the wrinkles propagating
along the shock front after τint .

Consider to begin with the first mechanism. For a cylindrical vortex, the longitudinal
component of the upstream velocity disturbance at the front, u1f (y, t), is antisymmetric,
u1f (y, t)=−u1f (−y, t), it does not change sign neither for y> 0 nor during its lifetime
τint , and it vanishes for |y| > l/2. According to (3.23), this is also true for the
longitudinal impulsive flow, u(a)2f (y, t), which generates the acoustics pulse propagating
afterwards in the shocked gas, t > τint . Therefore, due to the longitudinal character of
the flow of the impulsive source, the directivity of the pressure pulse in the far field
(large distance compared with l) is oriented downstream along the x-axis, so that this
acoustic field does not perturb the shock front (x = 0, |y| > l/2) for t > τint . Consider
now the second mechanism. Neglecting the acoustic disturbance radiated from the
compressed gas and in the absence of upstream disturbances, p1f = u1f = w1f = 0,
the situation is similar to that of the normal mode analysis. According to (3.1) with
p1f = 0, p2f /ρ2 ≈ −2(a2

2/u1)α̇t, the flow velocity of the resulting acoustic wave is of
order (a2/u1)α̇t. According to (3.9), the wrinkles propagate in the transverse direction
with the sound speed of the compressed gas, |α̇t| = O(a2|α′y|), so that, to leading order
in the limit (2.5), the flow of the acoustic waves near the front in the shocked gas
is parallel to the unperturbed front. The flow velocity of this acoustic wave being
of order (a2/u1)α̇t = O

(
(a2

2/u1)|α′y|
)
, it is smaller by a factor ε2 than the transverse

component of the velocity w2f = u1α
′
y given by (3.2) with w1f = 0. It is thus negligible

at the leading order in the limit (2.5).
To summarize, according to (3.2), u(i)2f ≈ α̇t, w(i)

2f ≈ u1α
′
y, and (3.5)–(3.6) for a

negligible acoustic flow, the shear flow takes the form

t > τint : u(i)2 (x, y, t)≈ α̇t(y, t − x/u2), w(i)
2 (x, y, t)≈ u1α

′
y(y, t − x/u2), (3.26)

Incompressibility, ∂u(i)2 /∂x+ ∂w(i)
2 /∂y= 0 and the relation u1u2 ≈ a2

2 in (2.6), then show
that the linear dynamics of the wrinkles after the cross-over is effectively controlled by
the wave equation of the normal modes (3.9). This equation corresponds to the first
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and third terms in (3.19). The time scale of the second stage is thus longer than that of
the first stage, τint , by a factor ε−1, l/a2 = O(τint/ε), and the order of magnitudes are

t > τint : |α̇t| = O(a2|α′y|), w(i)
2f ≈ u1α

′
y, |u(i)2f /w

(i)
2f | = O(ε), (3.27)

|w(a)
2f /w

(i)
2f | = O(ε2), |u(a)2f /w

(a)
2f | = O(ε), (3.28)

where |α′y| = O(εv1/u1) is given by the first stage, see (3.22). The second relation
in (3.28) is obtained from the linear solution of the normal modes, see for example
Clavin & Williams (2012).

According to (3.9) and (3.19), a composite equation for the linear evolution of the
front takes the simple form of a wave equation with a forcing term,

v1/a1� ε : α̈tt − a2
2α
′′
yy = 2(a2/u1)∂u1f /∂t. (3.29)

If v1/a1 is of order ε, 1� (v1/a1) > ε, equation (3.29) is still valid with a different
forcing term, u1f → u1f + ε−1p1f /(2ρ1a2), still localized in space, 1y/l = 1, and time,
1t/τint = 1, see (3.25).

3.6. Simple waves
After the cross-over the disturbances of the front take the form of two simple waves,

t > τint : α(y, t)= A−(y− a2t)+ A+(y+ a2t), (3.30)

where the functions A±(y) are determined by (3.29) and are zero for |y| > l/2.
According to (3.20), A±(y) should not be much different from (a2/u1)

∫
dxu1(x, y)/u1

for v1/a1 � ε. The transverse component of the shear flow is given by the second
equation in (3.26) and (3.30), see also figure 1. The transverse component of the shear
flow in (3.26) is proportional either to A′−(y − a2t + x/ε) or to A′+(y + a2t − x/ε),
depending on the simple wave from which they are generated. These two flows
merge in a thin region, 1x = εl, 1y = l, centred on the x-axis near x ≈ u2t.
This thin overlapping region includes the transmitted vortex which is constituted
by the strong shear wave which was generated during the cross-over 0 < t < τint ,
w1f (−u1(t − x/u2), y), see (3.5), (3.24) and figure 1. After a time lapse 1t > l/u2, the
two simple waves are separated by the distance 1y > l/ε and the shear flows do not
overlap in the vicinity of the front, in a region larger than l, 1x > l, as shown in
figure 1.

3.7. Rectilinear vortex with an irrotational tail
Outside the rotational core, the length scale of the irrotational flow in a rectilinear
vortex varies as the distance r from the centre. This does not change the analysis
and (3.29), in which the length scale l does not appear explicitly, is still valid. At
a distance from the vortex centre of the order of the core radius, r/r0 = O(1), the
length scale is fixed, l≈ r0, and the situation is the same as in § 3.5. This corresponds
to the central part of the simple waves in (3.30) where the slope |α′y| is maximum,
|y| . l for |A(y)|. However, the simple waves have wings associated with the tails
of the irrotational flow in the vortex, r > l, |y| > l for |A(y)|. The time and length
scales increases in the wings with the distance from the centre of the simple wave.
These wings do not play significant roles, because the wave breaking studied in § 4.2
concerns the vicinity of the maximum of slope |α′y|. At leading order in the limit
(2.5), the wings are fully negligible as soon as they are produced by turnover velocities
smaller than v1 by a factor ε. According to the vortex structure v/v1 ≈ r0/r, this
occurs at a distance from the centre of order r0/ε. Therefore, the transverse extension
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of the simple waves is l ≈ r0/ε but the time scale of the front wrinkles in the
central part of the simple waves is r0/a2. For 1t > ε−1r0/u2, the x-extension of the
non-overlapping region discussed in § 3.6 is larger than the transverse extension of the
simple waves.

4. Weakly nonlinear analysis
In this section, we perform a weakly nonlinear analysis for t > l/a2, more precisely

for t = O(ε−1r0/u2). The objective is to see whether singularities appear in the long
time limit. The method is similar to that developed by Clavin (2002a) for studying
cellular detonations, see also Clavin (2002b).

4.1. Nonlinear equation for the evolution of the shock front
According to (2.1), conservation of momentum takes the form,

∂u2

∂t
+ u2

∂u2

∂x
= U − 1

ρ2

∂p2

∂x
,

∂w2

∂t
+ u2

∂w2

∂x
=W − 1

ρ2

∂p2

∂y
, (4.1)

where U ≡ u2∂u2/∂x + w2∂u2/∂y and W ≡ u2∂w2/∂x + w2∂w2/∂y. A perturbation
method may be used if the quadratic terms U and W are small compared with the
unsteady terms. When expressed in terms of (3.26), the quadratic terms take the form

U ≈ 1
2
∂H

∂x
, W ≈−1

2
u1

u2

∂H

∂y
, H ≡ [−α̇2

t (t − x/u2, y)+ a2
2α
′2
y (t − x/u2, y)], (4.2)

where u2u1 ≈ a2
2 has been used. According to (3.26) and (3.27), these terms introduce

small corrections to the leading order of the linear dynamics of order ε ≡ |α′y|/ε.
According to (3.28), acoustic terms in the quadratic terms would introduce smaller
corrections, smaller at least by a factor ε. Therefore, U and W in (4.2) are the
dominant nonlinear terms in the Euler equations (4.1). For shock–vortex interaction
in the limit (2.5), the order of magnitude of the small parameter ε depends on the
turnover velocity v1,

ε = O(v1/u1) for v1/a1� ε or ε = O(v2
1/(u1a1)) for v1/a1 = O(ε), (4.3)

see (3.22) and (3.25). Introducing (3.30) into (4.2), H takes the form of a product
of simple waves H = −4A′−(y − a2t + x/ε)A′+(y + a2t − x/ε). Therefore, in the long
time limit, according to § 3.6, the terms U and W are negligible in a wide downstream
domain, adjacent to the front, see figure 1, so that they do not influence the dynamics
of the front at order ε of the perturbation analysis.

However, quadratic terms appear also in the boundary conditions and introduce
corrections of order ε to the linear dynamics. Taking into account of the quadratic
terms, equations (2.2)–(2.4) yield

p2f /p2 =−2α̇t/u1 − α′2y , (u2f − α̇t)(1− κα̇t/u1)= w2fα
′
y, w2f = u1α

′
y − u2fα

′
y, (4.4)

where κ ≡ 2 (a1/a2)
2 is a parameter of order unity, and where corrections of order

ε2 have been neglected for simplicity. In principle, terms of order ε2 would have to
be retained in the weakly nonlinear of the shock vortex interaction, since, according
to (4.3), ε2 > ε. As in the study of cellular detonations by Clavin & Denet (2002)
this would not change the nonlinear dynamics but introduce useless corrections in
the coefficients of the linear operator, see the end of § 3.2. In order to simplify
the presentation these terms are not retained in the following calculations. The
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corresponding small quantitative correction may be easily introduced afterwards in
the final result.

It is more convenient in the nonlinear analysis to introduce a system of coordinates
attached to the front,

ξ = x− α(y, t), ∂/∂t→ ∂/∂t − α̇t∂/∂ξ, ∂/∂y→ ∂/∂y− α′y∂/∂ξ,
∂/∂x→ ∂/∂ξ.

}
(4.5)

The boundary conditions in (4.4) concern ξ = 0, but the change of referential
introduces new quadratic terms in the equations. From now on, we will use the
flow splitting,

p2 = p(a)2 + p̃, u2 = u(a)2 + ũ, w2 = w(a)
2 + w̃ (4.6)

where the acoustical flow is smaller than the linear part by a factor ε2, see (3.28).
Neglecting the nonlinear acoustic terms and introducing (3.26) into the quadratic terms,
the Euler equations (4.1) yield

∂ ũ

∂ξ
+ ∂w̃

∂y
= X̃,

∂ ũ

∂t
+ u2

∂ ũ

∂ξ
= Ũ − 1

ρ2

∂ p̃

∂ξ
,

∂w̃

∂t
+ u2

∂w̃

∂ξ
= W̃ − 1

ρ2

∂ p̃

∂y
, (4.7)

where Ũ ≡−α̇t(y, t)α̈tt(y, t − ξ/u2)/u2, W̃ ≡−(u1/u2)α̇t(y, t)α̇′ty(y, t − ξ/u2) (4.8)

and X̃ ≡−(u1/u2)α
′
y(y, t)α̇′ty(y, t − ξ/u2). (4.9)

The first equation in (4.7) means that the flow (ũ, w̃) is incompressible. The acoustic
pressure being excluded from the pressure term, p̃ is a quadratic term which should

be at least of order ρ2 (w
(i)
2 )

2 ≈ ρ2u2
1α
′2
y to be non-negligible. Using (3.9) and the

relation a2
2 ≈ u1u2 in (2.6), one gets, according to the definitions of Ũ, W̃ and X̃ in

(4.8)–(4.9),

∂Ũ/∂ξ + ∂W̃/∂y= ∂X̃/∂t + u2∂X̃/∂ξ. (4.10)

Introducing (4.10) into (4.7) show that p̃ is a solution of Laplace’s equation,

∂2p̃/∂ξ 2 + ∂2p̃/∂y2 = 0. (4.11)

Equation (4.7) and (4.11) are valid except in the thin overlapping layer at x = u2t
mentioned in § 3.6. In the long time limit, this overlapping zone is sufficiently far
away downstream from the shock front, so that it can no longer influence the shock
dynamics. Therefore, according to Laplace’s equations (4.11), the pressure term p̃
could be generated only from the nonlinear terms in the boundary condition (4.4) at
the shock. However, the quadratic term in the first equation in (4.4) gives a negligible

contribution to p̃, of order ρ2a2
2α
′2
y , smaller than ρ2 (w

(i)
2 )

2
by a factor ε2. Therefore,

the flow (ũ, w̃) is a solution of (4.7) with p̃ = 0. Retaining the corrections of order
ε ≈ |α′y|/ε and neglecting correction of order ε2, the boundary conditions in (4.4)
reduce to

ε3 < |α′y|< ε⇒ ξ = 0 : ũ= ũf (y, t)≡ α̇t + u1α
′2
y , w̃= w̃f (y, t)≡ u1α

′
y. (4.12)

The solutions to the second and third equation in (4.7) for p̃ = 0, subject to the
boundary condition (4.12), are obtained by noticing that every function of t and ξ

through the grouping t − ξ/u2 is a solution to the corresponding equations without the
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second member,

ũ= ũf (y, t − ξ/u2)+ Ũ (ξ, y, t), w̃= w̃f (y, t − ξ/u2)+ W̃ (ξ, y, t), (4.13)

where Ũ ≡ [α(y, t − ξ/u2)− α(y, t)]α̈tt(y, t − ξ/u2)/u2, (4.14)

W̃ ≡ (u1/u2)[α(y, t − ξ/u2)− α(y, t)]α̇′yt(y, t − ξ/u2). (4.15)

The flow (Ũ , W̃ ) is incompressible, ∂Ũ /∂ξ + ∂W̃ /∂y = X̃, as is checked by using
(3.9) and the relation H = 0, α̇2

t = a2
2α
′2
y . Incompressibility of the flow (ũ, w̃), the first

equation in (4.7), then leads to a nonlinear wave equation of the shock front,

ε3 < |α′y|< ε, t = O(ε−1r0/u2) : ∂2α

∂t2
− a2

2

∂2α

∂y2
+ u1

∂

∂t

[(
∂α

∂y

)2
]
= 0,(4.16)

where the lower bound of |α′y| is the condition for the acoustic effects of order ε2 to be
negligible in the linear operator. As already mentioned, when the compressible terms
of order ε2 are taken into account, the form of the equation in (4.16) is not changed,
but simply a useless correction of order ε2 is introduced into the phase velocity a2.
Therefore, the lower bound of |α′y| may be suppressed and (4.16) is valid for the
second stage of the interaction of a weak vortex and a strong shock in the limit (2.5).

4.2. Mach stem formation
The nonlinear term in (4.16) introduces corrections to α̇t ≈ ±a2α

′
y of order ε ≈ |α′y|/ε.

Introducing the non-dimensional quantities η = y/r0, τ = a2t/r0, and A = α/(εεr0),
equation (4.16) takes the form of a two-time-scale equation, involving the parameter ε

ε� 1, A = O(1), τ = O(1), : ∂2A

∂τ 2
− ∂

2A

∂η2
+ ε ∂

∂τ

[(
∂A

∂η

)2
]
= 0. (4.17)

Equation (4.17) may be transformed into an equation free from parameters by
introducing ˜A = εA . However, the form of (4.17) is convenient to show that the
solutions have breaking waves. For any smooth initial data, A (η, τ = 0) = O(1),
∂A /∂η = O(1), vanishing at large distance, |η| →∞, the derivative ∂A /∂η develops
a jump discontinuity in finite time, τ = O(1/ε), and the front develops a corner,
representative of Mach stem formation. This is easily seen by introducing the slow
time scale τ ′ = ετ , and focusing attention on simple waves, A = A(η′, τ ′) where
η′ = η ± τ . To leading order in an expansion for small ε, equation (4.17) leads to the
Burgers’ equation for the slope,

∂A′/∂τ ′ + A′∂A′/∂η′ = 0, where A′(η, τ )≡ ∂A/∂η′. (4.18)

This shows Mach stem formation in the limit (2.5).

4.3. Composite solution
Neglecting the nonlinear effects during the short time of cross-over, a composite
equation for the shock–vortex interaction is obtained by combining (3.29) and (4.16),
that is by introducing the forcing term a2∂π/∂t on the right-hand side of (4.16)
with π(y, t) ≡ 2(u1f /u1) + p1f /(ρ1a2

2). This term varies on the short time scale of
cross-over, shorter than the characteristic scale of the travelling wave. Using the same
reduced variables τ and η as in (4.17) and introducing ˜A = εA , the equation for the
two-dimensional shock front takes the form

(v1/a1)� 1 : ∂2 ˜A /∂τ 2 −∇2 ˜A + ∂ |∇ ˜A |2 /∂τ =H , (4.19)
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where the forcing term is H (η, τ ) ≡ ε−1∂π/∂τ , η ∈ R2. The pressure term in π
coming from the upstream pressure fluctuation p1f is retained in order to take into
account the vortices whose strength is of order ε, see (3.25), and not only smaller
than ε as in (3.22)–(3.24). However, in this case, the directivity of the pressure
pulse mentioned in § 3.5 is less pronounced and the quasi-isobaric approximation less
accurate.

For a single vortex the function π(y, t) is non-zero for a space extension of the order
of r0 and for a short period of time, 1t = l/u1 ≈ r0/a1. This corresponds to a stiff
forcing term in (4.19) H (η, τ ) = ε−2h(η, ε−1τ) where h(η, ·) is a function of order
unity.

5. Discussion of the result, conclusions and perspectives
The present analysis shows that, to leading order in the limits (2.5), the formation

of singularities of the slope of the weakly wrinkled front of a strong shock is mainly
due to a geometrical term in the boundary conditions at the front. This nonlinear
term, w2fα

′
y, comes from the Rankine–Hugoniot condition (2.4) concerning the normal

component of the flow velocity, see (4.4), (4.12) and (4.16). The other nonlinearities
in the Euler equations controlling the flow in the compressed gas are not essential.
In particular, the acoustic waves in the shocked gas do not influence the nonlinear
dynamics in the limit (2.5). Their effect on the linear dynamics is limited to useless
small quantitative corrections. Therefore, the dynamics of the shock front is mainly
controlled by the incompressible flow of the shear waves generated by the front
wrinkling. This last approximation is valid for the normal modes at the leading order
in the limit (2.5). Its validity for the second stage (t� τint) of the interaction of a
strong shock and a weak vortex, v1� a1, is discussed in § 3.5.

Even in the absence of compressible effects (acoustic waves), the wrinkles of the
shock front propagate in the transverse direction at the sound velocity of the shocked
gas, see (3.9) and (4.16)–(4.19). This is due to the fact that the incompressible shear
waves (vorticity waves), which propagate into the shocked gas with a longitudinal
component of velocity equal to the subsonic velocity of the flow velocity, x = u2t,
u2 = εa2, are strongly tilted in the transverse direction, y =±x/ε, see figure 1 and the
text below (3.30), A′±(y ± a2t ∓ x/ε). This shows that transverse propagation of the
wrinkles at the sound speed, y=∓a2t, is not necessary associated with acoustic waves.

Equations (4.16) and (4.17) are the same as the nonlinear equations obtained for
the normal modes at the leading order in the limit (2.5). The solution breaks down
after a finite time and the slope of the front develops jump discontinuities, indicating
the formation of Mach stems, as shown in § 4.2. The small acoustic waves, which
appear near the shock front at the next order of the perturbation analysis, propagate
in the quasi-parallel direction to the shock front. However, they are slightly non-
radiating and the normal mode solution thus looks non-causal. This is not the case for
the shock–vortex interaction because the non-radiating character is strictly local and
limited to the vicinity of the shock front. The weakly non-radiating quasi-transverse
acoustic waves which are associated with the wrinkles during the second stage, t > τint ,
match the small acoustic waves that are radiated from the disturbances, generated
earlier into the compressed gas flow, during the short interaction time, 0< t < τint . The
global acoustic flow is radiated from the transmitted vortex, as shown in figure 1. Here,
normal modes that do not satisfy the causality condition are useful in the dynamics of
the shock front. This is a counterexample of usual cases for which such modes are not
meaningful.
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In the limit (2.5), the shock–vortex interaction takes the form of a two-time-scale
problem, τint = l/u1� l/a2, involving wrinkles of the shock front of small amplitude.
The simple form of the final result in (4.19) rests on the approximation in (3.14).
The physical insights may be summarized as follows. To leading order, the transmitted
vortex is associated with the transverse velocity w1 of the initial vortex, w(i)

2f ≈ w1f ,
while its longitudinal velocity, u1, triggers the acoustic pulse which is generated by
the cross-over during the short interaction time τint , u(a)2f ≈ 2εu1f , |w(a)

2f /u
(a)
2f | � 1, see

(3.22)–(3.25). The longitudinal character of the impulsive acoustic flow at the shock
front implies that the directivity of the resulting acoustic pulse, which is sent into the
shocked gas, is along the direction normal to the shock front. Therefore, to leading
order in the limit (2.5), the acoustic pulse does not influence the second stage of the
front dynamics (t > τint , x = 0, |y| > l/2). Matching this pulse and the small acoustic
flows that are generated at the wrinkled shock front after the cross-over (t > tint),
requires us to push the perturbation analysis to next orders. This is a difficult task,
beyond the scope of the present analysis. Further works have to be performed in
that direction. Another consequence of (3.14) is that the transmitted vortex is reduced
to a thin isobaric shear wave (of thickness lu2/u1 ≈ ε2l), elongated in the transverse
direction and propagating in the normal direction at the velocity of the compressed gas
flow u2, see figure 1.

The main role of the source term in the right-hand side of (4.19) is limited to
control the initial amplitude of the wrinkles which are initially produced during the
short interaction time τint . The full structure of the Mach stem cannot be described
without solving the acoustic problem. However, after introducing artificially a small
damping term for transforming the singularities into sharp folds, equation (4.19) may
be used to model the geometry of the cusped surface of a shock front propagating
in a turbulent flow, viewed as an ensemble of vortices. The stiffness of the forcing
term results from the fact that the interaction time of each vortex is shorter than the
time necessary for the nonlinear term in the left-hand side of (4.19) to produce sharp
folds. A too high frequency of the disturbances of the shock front may not leave a
sufficient long time for formation of sharp folds. Therefore, in the limit (2.5), the
formation of folds looks to be favoured by the intermittency of the turbulent flow with
short-lived bursts of order l/u1, followed by longer quasi-laminar periods, of order
l/a2. In that respect, numerical analyses of a regularized version of (4.19) may be
useful to improve our understanding of the geometry of a two-dimensional shock front
propagating in a three-dimensional turbulent flow.

The present analysis works neither for weak shocks, (M1 − 1) < 1, nor for strong
vortex (v1/a1 not sufficiently smaller than unity). In these cases the acoustic waves
influences the front dynamics. However the wrinkles of the shock front still propagate
in the transverse direction at a velocity close to the sound velocity in the compressed
gas. If the dominant nonlinear term is similar to that in (4.19), as is the case in the
analysis of reactive shock fronts by Majda & Rosales (1983), the end result could not
be much different from (4.19) but with a smoother forcing term. Much work remains
to be done in that direction.
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