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Results are reported from linear and nonlinear stability analyses of pulsatile flow in a
straight channel with a smooth constriction with 50 % occlusion. Physical mechanisms
based on the energy variation of the two-dimensional modes are proposed to elucidate
the equilibrium states and changes in the flow-field behaviour. When investigating how
the energy of the two-dimensional modes varied with Reynolds number, an energy
minimum was observed before the primary instability, so that it marked the Reynolds
number value at which the flow field started to exhibit one pulse front per cycle
downstream of the constriction. In addition, this flow is characterized by a bistable
system in two dimensions, whose equilibrium states are related to the energy level
of the two-dimensional mode. The energy difference between the equilibrium states
surprisingly decreases from the lower to the higher Reynolds number, which indicates
that the system should converge to a unique solution at high Reynolds number.
Regarding the flow’s nature, the equilibrium state with higher energy presented a
vortex pair soon after the constriction, with vorticity opposite to that of the base flow
separating shear layers.

Key words: channel flow, nonlinear instability

1. Introduction

Transition processes and convective mechanisms of complex flows and geometries
have gained great visibility in recent decades due to the advances in computational
resources and stability methods, and have been investigated to understand the
physical mechanisms of flows in idealized biological models. These models include
time-dependent flows in confined geometries with separated flow, which are prone
to strong instabilities. Considering channel flows, direct numerical simulations and
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large-eddy simulations were employed to study pulsatile flow in a planar channel
with a one-sided semicircular constriction with 50 % occlusion by Mittal, Simmons
& Najjar (2003). It was observed that the transition to turbulence for pulsatile flow
happened for Reynolds numbers higher than 1000. Pitt (2005) reported biglobal
stability analysis and direct numerical simulations for a pulsatile flow in a constricted
channel with 60 % occlusion. Critical Reynolds numbers were obtained for different
Womersley numbers, and the bifurcation through which the flow went for a certain
reduced velocity was found to be supercritical. Khair, Wang & Kuhn (2016) studied a
more realistic physiological pulsatile flow in a constricted channel. Three-dimensional
direct numerical simulations were carried out for different degrees of the stenosis
and pulsatile conditions in order to investigate the flow transition. On the other hand,
in axisymmetric geometries, Sherwin & Blackburn (2005) studied three-dimensional
instabilities and flow transition in pulsatile flows in an axisymmetric constricted
tube with 75 % occlusion. The pulsatile flows became unstable through a subcritical
bifurcation and the primary instability was identified as a period-doubling bifurcation:
the vortex rings which were ejected from the throat presented alternating tilting
with each pulse. However, the tilting vortex rings quickly broke down, producing
localized turbulence approximately four diameters downstream from the stenosis.
Blackburn & Sherwin (2007) demonstrated that, differently from their previous work
for long-period pulsatile flows, in lower reduced velocities the primary instability is
normally manifested as azimuthal waves of low wavenumber that grow on each vortex
ring. Griffith et al. (2009) carried out numerical and experimental investigations of
a pulsatile flow in stenotic geometries and comparisons were made between Floquet
stability analysis results and the instabilities observed experimentally.

Spatial symmetry-breaking bifurcations appear in many channel flows. The earliest
experimental and computational studies of the flow-field characterization of symmetric
channels with sudden expansion were carried out by Durst, Melling & Whitelaw
(1974), Cherdron, Durst & Whitelaw (1978), Fearn, Mullin & Cliffe (1990). In
recent investigations, Fani, Camarri & Salvetti (2012) performed linear stability and
sensitivity analyses for two-dimensional steady flow in a symmetric channel with a
sudden expansion in order to design a passive control by introducing a small cylinder
in the flow with the aim of stabilizing the unstable symmetric flow (asymmetric steady
flow). Lashgari et al. (2014) explored bifurcations and control in a symmetric channel
junction by means of linear stability analysis and direct numerical simulations, such
that the observed instability mechanisms were stabilized or destabilized by boundary
modifications. Isler, Gioria & Carmo (2018) reported the physical mechanism of the
primary bifurcation of a symmetric steady flow in a constricted channel. During the
transition process, energy from the three-dimensional modes was transferred to the
two-dimensional mode, leading the system to a two-dimensional asymmetric steady
flow, and this bifurcation exhibited a hysteretic behaviour.

The symmetry-breaking bifurcations in steady constricted channel flows are naturally
bistable solutions. The equilibrium states have similar energy, since the asymmetric
solution observed after the bifurcation can deflect the flow upwards or downwards
(Durst et al. 1974). In non-symmetric systems, the bistability arises with different
energy levels. Pralits, Brandt & Giannetti (2010) demonstrated that there are two-
dimensional flows that differ slightly in lift force for flow around a rotating circular
cylinder. However, in this paper, we explore the bistability in a symmetric geometry
in which the equilibrium states differ slightly in energy and both states are symmetric
in space.

The intent of this study is to extend the previous work by Isler et al. (2018), in
which symmetric and asymmetric steady flows, the last being a result of the primary
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FIGURE 1. Constricted channel geometry and parameters (not to scale).

instability, were investigated in a constricted channel in order to comprehend the
bifurcations and convective instabilities in these two flow regimes. The aim of this
paper is to understand the base flow behaviour and the equilibrium states (bistability)
observed at subcritical Reynolds number of pulsatile flow in the same geometry.

2. Problem description and dimensionless parameters

The constricted channel geometry with 50 % occlusion under investigation is
similar to that used in Isler et al. (2018), having the same stenotic shape (figure 1).
The channel has width D, throat spacing Dmin and stenosis length L = 2D. In
our investigation, the width ratio is Dmin/D = 0.5, so the relative occlusion is
s = 1 − Dmin/D = 0.5. The base flow is generated with a time periodic inflow. Note
that, although stenotic tubes are the most common geometry studied using periodic
inflows, the geometry analysed here is planar.

The time-dependent inlet, ū(t), has a uniform cross-sectional velocity, which implies
that it does not depend on space coordinates, such that it does not vary in the wall-
normal direction. Thus, the time-dependent inlet is ū(x, t) = ū(t)x̂ and the temporal-
averaged flow velocity is ūm= 1/T

∫ T
0 ū(t) dt, where T is the pulse period and x̂ is the

vector component along the x-direction. The channel width D and the average velocity
ūm are used as length and velocity scales, respectively, so the time scale is D/ūm.

We can now define the dimensionless parameters of the flow, which are the time-
averaged Reynolds number Re= ūmD/ν and the reduced velocity Ured= ūmT/D, where
ν is the kinematic viscosity of the fluid. Another dimensionless parameter commonly
employed in pulsatile flows is the Womersley number α = (πRe/2Ured)

1/2. In our
study we fixed the reduced velocity, and varied the Reynolds number by changing
the viscosity only.

The pulse oscillates around the temporal-averaged flow velocity with a sinusoidal
shape, so that the velocity waveform applied in the pulsatile flow is a single-harmonic
pulse given by

ū(t)= ūm{1+ 0.75 sin(2πt/T)}. (2.1)

Pulsatile flows with a single-harmonic pulse have been used in many experiments
(Ahmed & Giddens 1984; Ojha et al. 1989), and this specific pulsatile fluctuation was
chosen based on computational works in constricted channel (Pitt 2005) and stenotic
tubes (Sherwin & Blackburn 2005; Blackburn & Sherwin 2007; Griffith et al. 2009).

In the present paper, the reduced velocity employed was Ured= 9 and we explored a
range of Re up to 270. In addition, it is worth mentioning that the results were mainly
analysed at t/T = 0, since at this phase it was possible to extract all the information
necessary to discuss the findings, although the flow is time-dependent.
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3. Formulation

The fluid is considered to be Newtonian and governed by the Navier–Stokes
equations. These equations can be written in non-dimensional form as

∂tu=−(u · ∇)u−∇p+ Re−1
∇

2u, with ∇ · u= 0 in Ω, (3.1)

where u(x, t)= (u, v, w)(x, t) is the velocity vector, p(x, t) is the pressure field and
Ω is the domain. The base flows were two-dimensional. The boundary conditions
employed on these equations are described as follows. For the velocity, at the inflow
boundary we imposed Dirichlet boundary conditions, no-slip conditions were imposed
at the solid walls and Neumann conditions were specified at the outflow boundary. The
pressure was set to zero at the outflow boundary and high-order pressure boundary
conditions were imposed at the inflow and walls, as described in Karniadakis, Israeli
& Orszag (1991). In addition, since we are exploring a two-dimensional geometry,
which is invariant in the z-direction, a homogeneous decomposition in the spanwise
direction can be employed to assess the three dimensionality of normal modes
(Karniadakis 1990). We can define the spanwise wavelength as Lz = 2π/β (β is the
spanwise wavenumber).

The interest of the linear stability analysis is in the evolution of small perturbations
of the form u′(x, y, z, t) in a time-dependent base flow U(x, y, t) (pulsatile flow). The
linearized Navier–Stokes equations were applied to evolve infinitesimal perturbations

∂tu′ =−(U · ∇)u′ − (u′ · ∇)U−∇p′ + Re−1
∇

2u′, with ∇ · u′ = 0 in Ω, (3.2)

where p′(x, y, z, t) is the perturbation pressure.
An operator A(τ ) can be defined in order to represent the action of the linearized

equations (3.2) on an initial perturbation u′(t= 0). So it is possible to evolve an initial
perturbation over an time interval τ by calculating u′(τ ) = A(τ )u′(0). The solution
of the linear system (3.2) can be decomposed as a sum of eigenmodes u′(x, t) =∑

j exp(σjt)ũj+ c.c., where σj is the complex growth rate of the eigenfunction ũj and
c.c. stands for complex conjugate. The evolution of each eigenmode is given by the
dynamics of the system

A(τ )ũj =µjũj, µj ≡ exp(σjτ), (3.3a,b)

where σj is the eigenvalue of the system (3.2) and µj is called a Floquet multiplier
of the forward operator A(τ ). Since the base flow U is T-periodic, we set τ = T and
consider this as a temporal Floquet problem. The eigenmodes of A(τ ) are T-periodic
Floquet modes uj(x, t+T)=uj(x, t). A mode is linearly unstable if the real part of the
growth rate, σj, is positive, which corresponds to |µj|> 1. On the other hand, a mode
is linearly stable when the real part of σj is negative, which corresponds to |µj|< 1.
To solve this eigenproblem, we imposed u′ = 0 and ∂u′/∂n= 0 on boundaries where
Dirichlet and Neumann conditions are specified for the base flow, respectively.

The dimensionless flow kinetic energy was employed as a measure of the amplitude
of the perturbation in this investigation and is defined as

Ek =
1

2Aū2
m

∫
A

ûk · û
∗

k dA, (3.4)
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N 3 4 5 6 7 8 9

σ 0.023681 0.044543 0.044537 0.044373 0.044371 0.044379 0.044379
% difference 46.64 −0.37 −0.36 0.01 0.02 0 —

TABLE 1. Convergence of the three-dimensional leading eigenvalues at Re= 315 for
β = 1 with respect the variation of the spectral element polynomial order N.

where A is the area of two-dimensional cross-section of the domain Ω , ûk is the
velocity data in the kth Fourier mode and û∗k is its complex conjugate. For the
discretization in the spanwise direction we mostly used 8 Fourier modes (16 planes
of data in the spanwise direction), however numerical simulations were also performed
with 32 Fourier modes in order to ensure the independence of our results with respect
to the number of Fourier modes. Periodic boundary conditions were enforced on the
planes at the boundaries parallel to the xy plane.

4. Computational simulations

The three-dimensional computational simulations were carried out using a three-
dimensional version of the Navier–Stokes solver which employs a Spectral/hp element
discretization in the xy plane (Karniadakis & Sherwin 2005) and Fourier modes in
the spanwise direction. The quadrilateral mesh approach around the throat applied
in Isler et al. (2018) was used here with almost the same level of refinement. The
two-dimensional computational mesh was composed by 2136 spectral elements, 1994
being quadrilateral and 42 triangular.

Floquet stability analysis was chosen as the subject to perform the convergence
tests – in addition this method was employed considering the highest Reynolds
number in the present study. Polynomials of degree 4 (i.e. fifth-order accuracy in
space) achieved excellent convergence results (table 1). Just to be rigorous with our
calculations, polynomials of degree 6 were used in the discretization of the mesh
for the two-dimensional base flows and stability calculations. However, the fully
three-dimensional simulations were carried out with polynomials of degree 5, due to
the high computational cost. The inflow and outflow lengths were chosen as 30D and
40D measured from the throat of the stenosis, such that there was no influence of
the mesh length in the stability calculations.

Equation (3.1) was used to solve the two-dimensional pulsatile base flows,
employing the stiffly stable splitting scheme presented by Karniadakis et al. (1991).
Time integration was carried out using a second-order velocity-correction scheme
with a value of the non-dimensional time step of 0.001 for the two-dimensional base
flows and normal stability analyses and 0.002 for the three-dimensional simulations.
For Floquet stability calculations, the pulsatile base flows were pre-computed and
stored as data: 192 time slices were stored (Blackburn, Sherwin & Barkley 2008)
and the base flows were reconstructed from these data, using Fourier interpolation.

5. Results

5.1. Floquet stability calculations
Figure 2(a) shows the leading eigenvalues, σ , as functions of spanwise wavenumber
β for different Reynolds numbers. All leading eigenvalues found were real and
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FIGURE 2. Floquet stability analysis for pulsatile flow in a constricted channel. (a) Plot of
the leading eigenvalues, σ , against spanwise wavenumber for different Reynolds numbers.
(b) Neutral stability curve for the primary instability. The critical Reynolds number is
Rec = 247.8.

correspond to positive Floquet multipliers. Figure 2(b) depicts the neutral stability
curve for the primary instability for Reynolds numbers up to 270. The critical
Reynolds number and corresponding spanwise wavenumber are Rec= 247.8± 0.1 and
βc = 0.78± 0.01, respectively, for Ured = 9 (α = 6.6).

5.2. Nonlinear characterization of the pulsatile flow
The next step of our study was the nonlinear characterization of the flow and
understanding of the physical mechanisms behind the pulsatile flow and flow-field
behaviour.

5.2.1. Equilibrium states: bistable system
Results from three-dimensional direct numerical simulation of the pulsatile base

flow seeded with the least stable mode taken from the Floquet stability analysis at
Re = 225 and β = 0.78 are shown in figure 3(a). As expected in a linearly stable
region, the energy of the three-dimensional Fourier modes went to zero; however, the
energy of the two-dimensional mode increased slightly, achieving an upper energy
level (nonlinear saturated state), which demonstrates an unexpected behaviour. In
addition, when the three-dimensional simulation started, the energy grew abruptly,
almost reaching its upper energy level in one period cycle. It is worth mentioning
that, although we employed a Floquet mode as initial condition in this numerical
simulation, a white noise with very small energy was applied for this set up and it
was also able to lead the two-dimensional mode to the upper energy level.

The three-dimensional perturbation was able to trigger the two-dimensional flow
to another (two-dimensional) equilibrium state. A two-dimensional simulation was
initialized with the two-dimensional mode at the upper energy level at Re = 225
as illustrated in figure 3(b), in order to verify whether the nonlinear saturated state
of the two-dimensional mode could survive in a two-dimensional regime. It can be
seen that the energy of the two-dimensional mode stayed at the same energy level
during the five period cycles, thus the system was sustained at the upper energy
level, showing that it has two equilibrium states. Therefore, we can conclude that this
system is bistable in two dimensions. However, when three-dimensional simulations
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FIGURE 3. (a) Three-dimensional simulation at Re = 225 for β = 0.78 seeded with
the least stable mode. (b) Two-dimensional simulation at Re = 225 seeded with the
two-dimensional Fourier mode at the upper energy level. The time series of energies Ek
in spanwise Fourier modes are shown above. The growth and saturation of the energy of
the two-dimensional Fourier mode with points in steps of T are shown below.

are performed, the energy of the two-dimensional mode always goes to the upper
energy level, such that only the upper energy state exists in three dimensions.

An important point to be mentioned is that small differences between bistable flows
were also observed in the literature for other geometries. See for instance Pralits et al.
(2010) for flow around a rotating circular cylinder. They have found two stable two-
dimensional flows that differ slightly in lift force.

5.2.2. Two-dimensional Fourier mode behaviour
To analyse the bistable system further, diagrams were built with the energies of the

two-dimensional Fourier modes at the lower and upper energy levels (both equilibrium
states) at the beginning of the pulse (t/T = 0), as shown in figure 4. Note that the
energy diagrams only deal with energy from two-dimensional simulations and for
subcritical Reynolds number. Figure 4(a) depicts the energies of the lower and upper
energy levels for a range of Reynolds number. The energies of the two-dimensional
Fourier modes are higher for the lower Reynolds numbers, but when the Reynolds
number is increased they suffer a sharp fall, such that their energies reach a minimum
and afterwards start to increase again. It should be noted that, before the energy
minimum the curves have a nonlinear behaviour, but after that they increase almost
linearly. The energy minimum occurs at Re= 154.8 for the lower energy state and at
Re= 156.3 for the upper energy state, which corresponds to a Womersley number of
α ≈ 5.2.

Now let the focus be on the observed difference of the energy curves (energy gaps)
in figure 4(a), which is the additional energy in the two-dimensional Fourier modes
that led the system to the upper energy level. Surprisingly, the energy gap is higher
for lower Reynolds numbers and gets smaller when the Reynolds number increases,
having an intriguing behaviour. Besides that, at the end the energy gap decreases
linearly, as shown in figure 4(b). Thus, not only the energy of the two-dimensional
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FIGURE 4. Energy diagrams with the two-dimensional component (k = 0) of the
Fourier modes. The energies were computed at the beginning of the pulse (t/T=0)
in two-dimensional simulations. (a) Energies at the upper and lower energy states.
(b) Difference between the energies of the upper and lower energy levels.

modes increases linearly with Re (figure 4a), but also the energy gap between the
upper and lower energy levels starts to decrease linearly with Re after the energy
minimum. It should be noted that, in figure 4(b), the decrease in the energy gap
indicates that the bistable system is converging to a unique solution at higher Reynolds
number, since the energy gap is tending to zero. In addition, it is noteworthy that
this energy diagram (figure 4b) is the opposite of that found by Isler et al. (2018)
for a symmetric steady flow, where the energy gap of the two-dimensional modes
increased with Reynolds number due to the spatial symmetry-breaking nature of the
flow bifurcation. However, both phenomena, the primary bifurcation of the symmetric
steady flow and changes between the equilibrium states of the pulsatile flow, occur at
approximately the same energy level, of approximately 10−4.

5.2.3. Pulse front emission
In order to find a physical explanation for the energy minimum of the two-

dimensional modes, contours of vorticity of the two-dimensional base flow at the
beginning of the pulse for Reynolds numbers before and after the energy minimum
are illustrated in figure 5(a–c). At Re = 90, in figure 5(a), it is easy to verify that
there is no pulse front detached from the shear layers. However, at Re= 270, a pulse
front is observed travelling downstream of the throat (figure 5c), which is stronger
than that found at Re = 225 (figure 5b), so that the only effect in the flow field is
the strengthening of the pulse front at higher Reynolds numbers. In addition, when
the pulse front begins to be observed downstream of the throat (after the energy
minimum), the energy of the two-dimensional modes increases almost linearly, as
shown in figure 4(a).

Exploring the two flow regimes further, figure 5(d) shows the y-velocity against time
at (x, y)/D = (6, 0.25) for Reynolds numbers before and after the energy minimum.
After the energy minimum, the y-velocities present positive and negative values along
the cycle period, which means that the pulse front travelled through this point. In
addition, since the pulse front at Re = 225 is weaker than at Re = 270 and we are
evaluating the top part of the channel, there is a positive velocity at t/T = 0 because
the vorticity centre is behind x/D = 6. However, at Re = 270 the vorticity centre is
downstream from this point, such that the velocity is negative at t/T = 0. On the
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FIGURE 5. Contours of vorticity for the two-dimensional base flow (−10<ωzD/ūm < 10)
at t/T = 0. (a) Re= 90 (before the energy minimum); (b) Re= 225 and (c) Re= 270 (after
the energy minimum). (d) y-velocity (velocity perpendicular to the channel centreline)
against time at (x, y)/D= (6, 0.25) during one pulse cycle for Reynolds numbers before
and after the energy minimum of the two-dimensional mode.

other hand, before the energy minimum, the velocity peaks are lower than after the
energy minimum. At Re = 90 there is just a short interval with negative velocity
around t/T = 0.24, after which the velocity becomes positive again, and at Re= 45 no
negative velocity was observed along the cycle period. Thus, these velocity patterns
demonstrate that they are not pulse fronts propagating downstream of the throat, but
just velocity deviations caused by the separated flow, which quickly die away.

Therefore, it was possible to identify two distinct flow behaviours, one before and
another after the energy minimum. After the energy minimum there is one pulse front
per cycle detaching from the throat and propagating downstream. Before the energy
minimum the separated flow from the throat simply weakens and no pulse front is
observed downstream of the throat.

5.2.4. Energy gap effects
Now we are going to explore the effects caused in the flow field when the system

achieves the upper energy level. Since the energy gaps between the lower and upper
energy levels are very small, as observed in figure 4(b), the change in the flow field is
subtle (even so it is remarkable). So, the fundamental question here is: what happens
in the flow field when the two-dimensional Fourier mode goes to the upper energy
state of the bistable system?

In order to answer this question, contours of vorticity of the Fourier mode 0 from
the upper energy state subtracted from the lower energy state (difference between the
equilibrium states) at t/T = 0 are shown in figure 6. At Re= 45, the vorticity of this
resulting flow field is mostly located just downstream of the throat, in the recirculation
bubbles of the separated flow. Increasing the Reynolds number, the flow vorticity starts
to be distributed downstream of the throat and as a consequence a vortex pair begins
to grow soon after the separated flow with opposite vorticity, as can be observed at
Re = 90. Moreover, even though the two-dimensional modes have almost the same
energy level at Re=90 and Re=225 (figure 4a), these Reynolds numbers being before
and after the energy minimum, respectively, the wake is stronger and extends far away
downstream at Re = 225. This happens because for Reynolds numbers higher than
that of the energy minimum the flow shows one pulse front per cycle downstream of
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FIGURE 6. Contours of vorticity of the Fourier mode 0 from the upper energy state
subtracted from the lower energy state at t/T = 0. (a) Re= 45; (b) Re= 90; (c) Re= 225;
(d) Re = 270. Contours of vorticity vary from ωzD/ūm = −0.005 (dark contours) to
ωzD/ūm = 0.005 (light countours).

the throat. Finally, at Re = 270 the vortex pair was broken into two parts, which is
explained by the pulse front strengthening. The first part lies around x/D= 4 and the
second part is leaving the picture at x/D= 10, so that the vortex pair travels together
with the pulse front.

Once we understood the emergence of the vortex pair and its development process
with Reynolds number, we believe that it could be the cause of the energy gap
decrease observed in figure 4(b). Since the vortex pair has opposite vorticity compared
to the recirculation bubbles of the separated flow at the upper energy state, it produces
high energy dissipation in this region, which may slightly reduce the energy of the
upper energy state compared to the lower energy state where the vortex pair does
not exist. Moreover, the vortex pair becomes larger with Reynolds number, hence
explaining why the energy diagram has a monotonic decrease.

6. Conclusion

The pulse front emission through the throat for a pulsatile flow in a constricted
channel was found to be related to the energy of the two-dimensional Fourier mode.
In the subcritical regime, the energy of the two-dimensional modes went through
a minimum for a specific Reynolds number which marked the critical value for
which one pulse front started to be emitted per period cycle. Thus, before the energy
minimum there was no pulse front propagating downstream of the throat. However,
for Reynolds numbers higher than the energy minimum we observed one pulse front
per cycle being emitted from the throat, so that the system has two flow regimes
at subcritical Reynolds number. In addition, this physical mechanism related to the
energy minimum of the two-dimensional mode could be a possible explanation for
pulse front emissions in any constricted channel using a single-harmonic pulse in the
inflow, although different stenotic shapes and occlusions would change the Reynolds
number which triggers the pulse front emission.
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The flow investigated presented a bistable behaviour in two dimensions, which
was also dictated by the energy of the two-dimensional mode, but this bistability
did not appear in three dimensions, being a purely two-dimensional effect. The
two-dimensional bistability was characterized by two equilibrium states which have
distinct energy levels. Although it was demonstrated that the equilibrium states have
similar energy levels, the state with higher energy provoked the emergence of a vortex
pair soon after the recirculation bubbles of the separated flow with opposite vorticity,
which developed and became wider when the Reynolds number was increased. Finally,
the energy difference between the equilibrium states decreased monotonically from
the lower to the higher Reynolds numbers, which indicates that the system was
tending towards an unique solution at higher Reynolds numbers.
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