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Suspensions are composed of mixtures of particles and fluid and are omnipresent
in natural phenomena and in industrial processes. The present paper addresses the
rheology of concentrated suspensions of non-colloidal particles. While hydrodynamic
interactions or lubrication forces between the particles are important in the dilute
regime, they become of lesser significance when the concentration is increased, and
direct particle contacts become dominant in the rheological response of concentrated
suspensions, particularly those close to the maximum volume fraction where
the suspension ceases to flow. The rheology of these dense suspensions can be
approached via a diversity of approaches that the paper introduces successively.
The mixture of particles and fluid can be seen as a fluid with effective rheological
properties but also as a two-phase system wherein the fluid and particles can
experience relative motion. Rheometry can be undertaken at an imposed volume
fraction but also at imposed values of particle normal stress, which is particularly
suited to yield examination of the rheology close to the jamming transition. The
response of suspensions to unsteady or transient flows provides access to different
features of the suspension rheology. Finally, beyond the problem of suspension
of rigid, non-colloidal spheres in a Newtonian fluid, there are a great variety of
complex mixtures of particles and fluid that remain relatively unexplored.
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1. Introduction
Suspensions that consist of mixtures of particles suspended in a liquid are
ubiquitous in daily life, e.g. in the kitchen when mixing flour in water, or on the
beach when playing with sand mixed with water, or during construction when
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FIGURE 1. The different regimes of a suspension of rigid spheres: dilute, semi-dilute
(or moderately concentrated) and concentrated regimes.

manipulating fresh concrete. However, these apparently simple materials have
intrigued many researchers for more than a century and the behaviour of these
suspensions still resists basic understanding and raises many unsettled questions
(see e.g. Mewis & Wagner 2011). The research on suspensions is motivated by
the fact that these mixtures of particles and fluid can be found in many industrial
products and procedures. Common examples include food and cosmetics, civil
engineering materials, pulp and paper, and materials of the petroleum industry.
Natural and geophysical processes also involve the flows of suspensions. Sediment
transport in rivers and oceans, landslides, debris flows and submarine avalanches
are examples of flows of mixture of grains and liquids that can be observed in the
environment.

This paper is dedicated to the rheology of non-Brownian suspensions, meaning
that the particles of interest are sufficiently large (i.e. have radius much larger
than a micrometre) for thermal fluctuations to be neglected. The fundamental study
of non-Brownian suspensions has a long history (see e.g. Guazzelli & Morris
2012) and the time arrow in figure 1 coincides with the evolution of research
progress towards the understanding of more concentrated suspensions. The story
started in the early 1900s with the seminal work of Einstein, who computed the
increase in viscosity when adding a few particles to a viscous Newtonian fluid.
Einstein (1906, 1911) calculated this first linear correction in volume fraction to
the viscosity by considering the perturbation induced by a single particle immersed
in a shear flow. In the 1970s and 1980s, important developments were made in the
semi-dilute regime (and even up to the moderately concentrated regime), starting
with the work of Batchelor, who derived the second-order correction in volume
fraction to the viscosity by considering pair hydrodynamic interactions. Numerical
simulations such as the widely used Stokesian dynamics were developed and have
been particularly useful for the understanding of the dynamics of the suspension
microstructure and its connection to the rheology.

In the 1990s, efforts were devoted to the quest of constitutive laws taking into
account non-Newtonian behaviours such as normal-stress differences. At even larger
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volume fractions, the viscosity is found to increase drastically and to diverge
when approaching a maximum volume fraction when the suspension ceases to
flow. In this regime, direct contacts between the particles become dominant and
overcome the hydrodynamic interactions. This concentrated regime has attracted a
lot of attention over the last 20 years with the development of new experimental
tools, numerical techniques and theoretical approaches. In this quest towards the
understanding of concentrated suspensions, the role of contact interactions has
become a central question as the grains in this dense limit experience enduring
contacts. This article focuses on this regime, which can be coined ‘dense granular
suspensions’ in reference to the numerous connections that can be made between
dense suspensions, wherein both hydrodynamics and contact interactions are present,
and dry granular media, which are solely controlled by direct contact interactions
(see e.g. Andreotti, Forterre & Pouliquen 2013).

The paper is organised as follows. First, the bulk rheological properties of dense
suspensions are discussed in §2 by considering the suspension as an effective fluid
with a focus on the effective viscosity and the normal-stress differences. To describe
situations wherein the particles and the fluid have different motions, it is necessary
to go beyond this effective-fluid description and to consider the suspension as
a mixture of a solid phase interacting with a fluid phase. This is done in §3
where the general framework of the two-phase approach is introduced and several
applications presented. An alternative description of the rheology of suspensions
exists in which the confining pressure on the granular phase is the control parameter
in place of the volume fraction in conventional rheology. This approach, inspired
by the development of the rheology of dry granular flows, is presented in §4.
Understanding the origin of the rheology from the dynamics at the grain scale
is still an open challenge, but basic mechanisms are discussed in §5. Describing
unsteady and transient flows also lacks a unified description, as discussed in § 6 in
the light of several flow configurations. Finally, beyond the problem of suspension
of spheres in a Newtonian fluid, novel avenues of study exist for more complex
systems consisting of particles of different shapes or properties and of interstitial
fluids with non-Newtonian behaviours. The paper concludes in § 7 with examples
of such complex suspensions and discussions about these more challenging issues.

Writing a review on a subject as broad as suspension rheology cannot be
exhaustive and we are fully aware that the personal views proposed in this paper
omit important results and areas of research. We take refuge behind the limited space
of the paper and the restricted number of bibliographical references to apologise
for neither discussing nor citing many studies and results that have contributed to
the rapid evolution of the subject.

2. The suspension as a single effective fluid

This section presents some classical features of suspension rheology. As pointed
out in § 1, our attention is focused on systems consisting of non-colloidal, rigid,
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monodisperse, neutrally buoyant spheres suspended in Newtonian fluids. While
the interactions between particles and their resulting microstructural arrangement
should be considered at the microscopic scale, the mixture of fluid and particles
can be seen as a continuous effective fluid at the macroscopic scale. Of course, this
macroscopic scale needs to be much larger than the size of the particles to contain
a sufficient number of particles for effective-fluid properties to be well defined.
This section describes these effective rheological properties. It starts by addressing
the effective viscosity of suspensions in §2.1 and then moves to non-Newtonian
phenomena observed at large concentrations in §§2.2 and 2.3.

2.1. Suspension viscosity

Adding suspended particles to a fluid increases the effective viscosity of the mixture
above that of the suspending fluid. This has been known for a Newtonian fluid since
the work of Einstein (1906), with a correction of Einstein (1911), who gave the
expression 7:(1 + 5¢/2) for the viscosity of a dilute suspension of rigid spheres,
where 7, is the viscosity of the solvent and ¢ is the volume fraction of the spheres.
(The viscosity was initially found to be 7,(1 + ¢) by Einstein (1906). Einstein
was later informed of the viscosity measurements performed by Bacelin under the
supervision of Perrin, which were significantly larger than his initial prediction.
He then asked Hopf to check his calculation and an error was found. The exact
expression, 1n,(1 + 5¢/2), was finally given by Einstein (1911).) Einstein calculated
this viscosity by considering the effect of immersing a single solid spherical particle
in a linear shear flow. Just looking at the flow around this single particle provides
some hint of the physical origin of this increase in viscosity. The particle is
considered to be freely suspended in the shearing flow, which means that the sphere
experiences no hydrodynamic force or torque. In practice, this can be achieved by
considering a neutrally buoyant particle, i.e. a particle having the same density as
the fluid. The ambient shearing flow can be decomposed into a rotational and a
straining flow (see figure 2). The sphere freely rotates in the rotational portion of
the flow and this freely rotating sphere embedded in a solid-body rotation creates
no disturbance. The rigid sphere, however, resists the straining component of the
shearing flow and this produces a disturbance flow that leads to an increase in the
rate of viscous dissipation. In simple terms, the viscosity is increased because of the
resistance of the non-deforming particle to the straining component of the shearing
flow.

A granular suspension of monodisperse spheres, i.e. a suspension of non-colloidal,
monodisperse, hard spheres, can be seen as the simplest case of suspensions. In
these conditions, there are no Brownian or colloidal forces (such as electric double
layer or van der Waals forces, i.e. all the forces that are not hydrodynamic or
frictional contact interactions and are expected to be important for small particles)
that can drive the suspension to a well-defined rest state when the flow is stopped
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FIGURE 2. Decomposition of a sphere in shear by combining a sphere in rotation plus
a sphere in strain. The sphere is considered as ‘freely mobile’, i.e. it experiences no
hydrodynamic force or torque. The disturbance flow generated by the sphere in shear is
solely due to its resistance to the straining component of the shearing flow since the freely
rotating sphere embedded in solid-body rotation creates no disturbance. This disturbance
flow leads to an increase in the rate of energy dissipation and thus to an increase in
viscosity.

and therefore no relaxation process with an intrinsic time scale. For now, we also
restrict the discussion to the condition of vanishingly small Reynolds numbers
(inertial suspensions are addressed in §7.4). When this suspension of neutrally
buoyant hard spheres is subjected to a steady shear flow, the linearity of the Stokes
equations implies that the shear stress 7 scales linearly with the shear rate y. In
other words, the scaling of the stress is viscous, T = n,n;y, where 7, is termed
the relative viscosity of the suspension. Moreover, dimensional analysis indicates
that, for this Stokesian non-colloidal suspension, there is only a single remaining
independent variable, the volume fraction of particles, ¢. The relative viscosity, 7;,
is thus solely a function of ¢, i.e. n; = n,(¢). This viscosity is independent of the
shear rate and has a unique value at every concentration. Hence, the suspension can
be seen as Newtonian with a viscosity increasing with increasing volume fraction.
Measuring the viscosity of suspensions may prove to be challenging as it
requires a specific procedure and analysis. Problems such as the wall-slip effect,
sedimentation or creaming (i.e. particles having a density higher or lower, respectively,
than the suspending liquid), and particle migration (shear-induced migration will
be considered in §3.3.1) can hamper the measurements. Macroscopic viscosity
measurements using classical rotational rheometers such as cone-and-plate, parallel-
plate and Couette rheometers have been commonly used (see figure 3). Macroscopic
viscosimetry has also been achieved with the less known inclined-plane rheometer,
which permits the exploration of a larger ¢ range (flow of suspensions along an
inclined plane will be further discussed in §4.2.1). To overcome problems such as
concentration inhomogeneities due in particular to the migration phenomenon,
local measurements can be performed using non-intrusive techniques such as
magnetic resonance imaging (MRI) or ultrasound coupled to a classical rheometer.
The extensive measurements performed for non-colloidal hard spheres show that
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FIGURE 3. Rheometry used for measuring the viscosity of suspensions. (a) Cone-and-plate
rotational rheometer. The fluid sample is put between the cone and plate and, when the
cone angle « is small enough (o < 0.1 rad), the viscosity is given by n=3aT/Q2nR*),
where R is the radius of the cone and the plate and 7 and 2 are the measured torque and
rotational velocity, respectively. (b) Parallel-plate rotational rheometer. The fluid sample is
put inside the gap, h, between the two plates and the viscosity based on a Newtonian fluid
assumption is given by n =2Th/(27R*), where again T and §2 are the measured torque
and rotational velocity, respectively. (¢) Couette rotational rheometer. The fluid sample is
put inside the annular gap between the two coaxial cylinders and, when the gap is small
enough (i.e. the radius of the cup R, and that of the bob R, are very close, R,/R. > 0.99),
the viscosity is given by n=T(R. — R;)/[nLS2 (R, —i—Rb)R,z,], where L is the length of the
cylinders and T and §2 are again the measured torque and rotational velocity, respectively.
(d) Inclined plane rheometer. The fluid flows down an inclined plane at an angle 6 with
the horizontal and (within the assumption of a Newtonian behaviour) measuring its free
surface velocity, Ug,pc., and its height, h, yields the viscosity n = pgh® sin 6/ Qutgurtace) s
where p is the fluid density.

the suspension viscosity increases with increasing ¢ and diverges at a jamming
transition where the particle concentration reaches a maximum value, ¢., for which
the suspensions cease to flow (see figure 4a).

This maximum flowable volume fraction generally differs from the maximum
close random packing fraction (=0.64) that can be obtained by vibrating or repeated
tapping and in practice it may be difficult to flow a suspension for ¢ = 0.55-0.62.
The precise value of ¢. varies depending on the size distribution of the particles
and also their surface interactions — more precisely their frictional interactions (this
jamming transition of suspensions under constant shear will be discussed in §5.3).
By using the reduced volume fraction, ¢/¢., with appropriate values for ¢., the
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plots of viscosity versus concentration can be collapsed onto a master curve, as
shown in figure 4(b) for a selection of data coming from both macroscopic and
local measurements using different combinations of monodisperse hard spheres and
Newtonian fluids. We have also added to these plots the data of Boyer, Guazzelli &
Pouliquen (2011a) and of Dagois-Bohy et al. (2015) coming from pressure-imposed
rheometry, which will be discussed in §4.1.

The linear dependence in ¢ given by the Einstein relative viscosity (=1 + 5¢/2)
only reproduces the viscosity curve in the very dilute regime, i.e. up to a volume
fraction of approximately 0.05, as can be seen in figure 4. For larger ¢, the
interactions between particles cannot be neglected. For instance, at ¢ =~ 0.1, the
average distance between particles having a diameter d is d/2¢'/* ~d, and therefore
neighbouring particles are affected by their respective disturbance flows. This pair
interaction effect is expected to yield a viscosity contribution of O(¢?). However,
the long-range nature of these velocity disturbances makes the calculation of this
contribution difficult. The disturbance flow created by a freely suspended sphere in
a shearing flow decreases at leading order as 1/r%, where r is the radial distance to
the centre of the sphere. It can be shown that this results in an incremental stress
on a neighbouring sphere of order O(1/r*). A simple integration over the volume of
the suspension assuming a uniform pair distribution function leads unfortunately to
a diverging integral and a special method known as hydrodynamic renormalisation
must be employed (Batchelor & Green 1972a,b). The expression up to terms of
order O(¢?*) for a pure straining flow is 7, = 1 + 5¢/2 + 6.95¢>. For a shearing
flow, there is a complication in defining the pair probability because of the existence
of closed trajectories due to the rotational portion of the shearing flow. Assuming
a random microstructure leads to a smaller coefficient (=5) of ¢?. This latter
expression seems to agree reasonably with the experimental data in the semi-dilute
regime (up to ¢ ~ 0.10-0.15) but fails to capture the rapid growth in viscosity
observed when ¢ is further increased (see figure 4).

Computing the viscosity for larger ¢ is very difficult as multi-body hydrodynamic
interactions must be computed together with determining the microstructure. Another
complexity is that the spheres can interact not only by hydrodynamic interactions
through the liquid but also by direct mechanical contact. Exact analytic calculations
do not exist, and in order to tackle this concentrated regime simulations with various
levels of approximation and sophistication have been performed, starting with the
now-classical Stokesian dynamics, which uses the properties of the Stokes equations
through computing the resistance and mobility functions, and going to the more
recent direct numerical simulations using lattice-Boltzmann or fictitious domains
methods. The accelerated Stokesian dynamics simulations of Sierou & Brady
(2002) that consider the shearing flow of a suspension of 512 hard spheres with a
repulsive interparticle force to prevent overlap are reported in figure 4, together with
the more recent fictitious-domain simulations of Gallier et al. (2014) that solve the
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long-range hydrodynamics and lubrication interactions for ~600-1000 spheres and
also incorporate a discrete element method to model contact forces (this contact
model assumes a Hertz law and includes roughness and friction). An important
outcome is that friction has a major impact as it is seen to increase the value of 7,
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FIGURE 4. For caption see next page.

in better agreement with the experimental data.

Frictional contacts between particles exist at lower ¢, as will be pointed out
later in § 5.1, but become essential to the rheology of the suspensions at large
¢ (typically ¢ = 0.20). For these large volume fractions, frictional contact forces

852 P1-8


https://doi.org/10.1017/jfm.2018.548

https://doi.org/10.1017/jfm.2018.548 Published online by Cambridge University Press

Rheology of dense granular suspensions

FIGURE 4 (cntd). Relative viscosity, 1y, versus (a) volume fraction, ¢, and (b) reduced
volume fraction, ¢/¢.. Experiments: of Boyer et al. (2011a) using pressure-imposed
rheometry with polystyrene (PS) spheres of diameter d = 580 wm suspended in
polyethylene glycol-ran-propylene glycol monobutyl ether as well as poly(methyl
methacrylate) (PMMA) spheres of diameter d = 1100 wm suspended in a Triton
X-100/water/zinc chloride mixture; of Bonnoit et al. (2010) using an inclined plane
rheometer tilted at two different angles with PS spheres of diameter d =40 pwm suspended
in silicone oil; of Dagois-Bohy et al. (2015) using pressure-imposed rheometry with PS
spheres of diameter d = 580 pwm suspended in polyethylene glycol-ran-propylene glycol
monobutyl ether; of Dbouk, Lobry & Lemaire (2013) using a parallel-plate rotational
rheometer with PS spheres of diameter d = 140 pwm suspended in a mixture of water,
UCON oil and zinc bromide; of Ovarlez, Bertrand & Rodts (2006) using MRI technique
and a wide-gap Couette geometry with PS spheres of diameter d =290 wm suspended
in silicone oil; and of Zarraga, Hill & Leighton (2000) using a parallel-plate rotational
rheometer with glass spheres of diameter d =44 pm suspended in three different fluids.
Numerical simulations: of Sierou & Brady (2002) and Gallier et al. (2014) with (u, =0.5)
and without (u, =0) friction; as well as those of Mari et al. (2014) with (u, =1) and
without (u, =0) friction, where w, is the friction coefficient between the spheres. Viscosity
laws: of Einstein (1906, 1911), of Batchelor & Green (1972b), of Krieger with exponent
o = —2.5¢. and o = —2 (Maron-Pierce), and of Eilers (Stickel & Powell 2005). The
corresponding ¢, used for each set of data in panel (b) are indicated in the legend.

overrun the long-range hydrodynamic interactions in such a way that it is no longer
necessary to include these long-range interactions to obtain realistic predictions.
This is evidenced in the simulations of Mari et al. (2014), which account for
frictional contact forces along with viscous lubrication only (see figure 4). These
simulations extend the previous numerical predictions for values of ¢ > 0.45. There
are clearly two n,(¢) curves (the open stars and open crosses, respectively) which
diverge at ¢¢ »*% ~0.60 and at o’ '~ 0.64 (at random close packing fraction) for
frictional and frictionless particles, respectively. Note that the friction coefficient
between the spheres is u, =1 in the simulations of Mari ef al. (2014) while it is
wup, =0.5 for those of Sierou & Brady (2002) and Gallier et al. (2014), resulting in
slightly larger values of n, for the data of Mari ef al. (2014) and a divergence at
a slightly lower packing fraction (= 0.58 rather than ~ 0.61). The better agreement
of the simulations including friction with the experimental observations implies
that the non-colloidal hard spheres are indeed experiencing frictional contacts in
experiments. As will be seen later in §§5.3 and 7.2, friction also plays a major
role in the understanding of jamming and discontinuous shear thickening.

At this stage of the discussion, it is worth returning to the dimensional analysis
introduced earlier in this section and emphasise that contact forces do not bring
any additional force scale with which to compare the hydrodynamic force, as hard-
sphere contacts can resist any applied load. This is valid whether the hard spheres
are frictionless or frictional, as friction does not generate an additional force either.
Therefore, the stress of suspensions of non-colloidal, frictional, hard spheres should
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scale viscously in Stokes flows and there should not be any shear-rate dependence
of the viscosity.

Finally, to be comprehensive on the viscosity of suspensions, it is important to
mention the numerous phenomenological equations relating the suspension viscosity
to the volume fraction that can be found in the literature. Some of these expressions
stem from mean-field approaches. They generally recover the Einstein viscosity limit
at low concentration and aim to account for the divergence of the viscosity at ¢..
One of the most popular is the Krieger viscosity, (1 —¢/¢.)*. The Einstein viscosity
is recovered with an exponent o = —2.5¢,. but it does not fit properly the data at
higher volume fractions, for which an exponent @ = —2 yields better results (this
latter expression is also known as the Maron—Pierce correlation); see figure 4.
Another interesting correlation is that of Eilers, [1 + (5¢/4)/(1 — ¢/¢p.)]>, which
happens to comply with both high- and low-concentration limits and is in fairly
good agreement with the experimental observations over the whole range of ¢.

2.2. Normal-stress differences

This quasi-Newtonian behaviour of the shear stress introduced in the preceding
section does not fully describe the rheology of suspensions. Indeed, it does not
account for the existence of normal-stress differences, i.e. for normal stresses that
are no longer isotropic under shear, which appear for non-dilute suspensions. Since
the suspension is incompressible, the pressure, i.e. the trace of the total suspension
stress denoted X, is of no rheological interest as it is prescribed by the flow and
the two pertinent quantities are the first and second normal-stress differences, which
are defined as Ny = X5, — X and N, = X, — X3, respectively, where the flow, the
gradient and the vorticity directions are labelled 1, 2 and 3 (see figure 5). Similarly
to the shear stress, these normal stresses scale viscously in Stokes flows. Since
the normal stresses do not depend on the sign of the shear rate, the normal-stress
differences are proportional to the modulus of the shear stress, |t|. They can be
written as N; = «;|t| and N, = a»|t|. The ratios of normal-stress differences to
shear stress, o; and «,, are called the normal-stress difference coefficients. They are
solely functions of ¢ and do not diverge at ¢. since the normal-stress differences
and the shear stress present the same divergence when approaching the jamming
point at ¢. (Morris & Boulay 1999).

This non-Newtonian feature is intimately linked to the loss of isotropy of the
suspension microstructure, which will be further discussed in §5.1. Looking at the
pair interactions between two spheres under simple shear offers some basic physical
understanding of the development of these normal-stress differences (see figure 5).
The trajectories of two perfectly smooth spheres are reversible and symmetric, as
this motion reflects the fore—aft symmetry of the flow lines around a single sphere
due to the reversibility of the Stokes flow (see figure 5a). Whereas this pair motion
creates additional shear stress as seen in the preceding section, it does not lead to
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(@) (b)

FIGURE 5. Sketch of the pair interactions between spheres under simple shear. (a) For
perfectly smooth spheres, the trajectories exhibit a fore—aft symmetry. (b) For rough
spheres, the trajectories are irreversible and asymmetric. In that latter case, when the
minimum approach distance for the pair is smaller than the roughness, the spheres enter
into contact in the compressional region of the flow (upper left and bottom right quadrants)
and move apart in the extensional region (upper right and bottom left quadrants), leading
to a region depleted in particles (areas shaded dark) and thus to weaker hydrodynamic
interactions in this extensional region. After the collision, the spheres do not come back to
their initial streamlines, but lay on two critical streamlines shifted by a minimum approach
distance corresponding to the roughness.

normal-stress differences, as the effects of the compressive and extensive portions
of the flow cancel. However, these reversible trajectories are extremely sensitive to
contact perturbations. If the spheres present some surface roughness, the trajectories
become irreversible and asymmetric, resulting in non-isotropic normal stresses (see
figure 5b). The spheres can collide in the compressional region of the flow when
the minimum approach distance for the pair is smaller than the roughness. After
the collision, the spheres do not come back to their initial streamlines but move
apart, leading to a region depleted in particles in the extensional region. This crude
sketch suggests that the normal stresses come from the repulsion between the two
spheres as they approach one another in the shear. Since most of the collisions take
place in the plane of shear, one expects N, to be negative. The sign of N, as we
will see in the following, is more uncertain but this simple description suggests
that the deficit in hydrodynamic interactions at the rear of the collision (i.e. in the
extensional region) leads to a negative N;.

Normal-stress differences are difficult to measure as they happen to be much
smaller than the shear stress for ¢ < 0.2. Standard rheological tools such as
cone-and-plate or parallel-plate rotational rheometers have been used but also
adapted, e.g. with pressure measurements at the wall (Singh & Nott 2003; Dbouk
et al. 2013), to enhance accuracy (see figure 6). Alternative approaches have also
been undertaken to infer the normal-stress differences from measurements of the
deflection of the free surface in a Weissenberg, or rotating-rod, geometry and in
a tilted trough. The first method is well known in polymers as the Weissenberg
or rod-climbing effect. For suspensions of spheres, the climbing is down instead
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FIGURE 6. Rheometry used for measuring normal-stress differences of suspensions.
(a) Cone-and-plate rotational rheometer. Measuring the normal force acting on the upper
plate yields a direct measure of the first normal-stress difference, N;. (b) Parallel-plate
rotational rheometer. Measuring the normal force acting on the upper plate gives the
difference between the first and second normal-stress differences, Ny — N,. (c) Parallel-plate
rheometer with differential pressure transducers fitted flush against the lower plate
surface. Measuring the radial profile of the normal stress along the velocity gradient
direction yields N, + N;/2 and N, + N, and thus the determination of both N, and N;,.
(d) Weissenberg, or rotating rod, flow. Measurement of the free-surface deflection induced
by the anisotropic stresses (rod dipping in the case of suspensions) provides the linear
combination N, + N,/2. (e) Tilted-trough flow. Measurement of the free-surface deflection
induced by the second normal-stress difference (a bulge in the middle) yields a direct
determination of N,.

of up the rod, and measurement of the free-surface profile provides a combination
of the normal-stress differences. The second tilted-trough method provides the
second normal-stress difference in isolation. These methods have some significant
advantages over using a standard rheometer as confinement effects can be reduced
and sensitivity improved (Boyer, Pouliquen & Guazzelli 2011b; Couturier et al.
2011; Dai et al. 2013). Using these non-conventional rheological tools (rotating
rod and tilted trough) in conjunction (Boyer et al. 2011b; Couturier et al. 2011)
or combining them with conventional rheometry (Zarraga et al. 2000; Dai et al.
2013) yields a complete measurement of the two differences, Ny and N,, which
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have both been shown to be linear in the modulus of the shear stress, |t|. Most of
the measurements available in the literature are collected in figure 7.

In spite of uncertainties and scatter in the data, some firm conclusions can be
drawn for N,. The second normal-stress difference is found to be negative and
its magnitude is seen to increase with increasing ¢, growing especially quickly
for ¢ 2 0.20 to reach a magnitude of ~ 0.4|t| at ¢ = 0.5 (see figure 7b). The
properties of the first normal-stress difference are more elusive. The magnitude of
N is unquestionably much smaller than that of N,, but assessing the sign is difficult
(see figure 7a). Some experiments find that N, is quite small and negative (Zarraga
et al. 2000; Singh & Nott 2003; Dai et al. 2013), while others report positive
values (Dbouk et al. 2013), and yet others consider that the value is too close
to zero to determine whether it is negative, positive or zero within experimental
accuracy (Boyer et al. 2011b; Couturier et al. 2011).

Analytical calculations of the pair interactions of hard spheres have been
conducted in the dilute regime (Wilson 2005) and predict that o, is proportional to
¢? with a proportionality coefficient that varies with surface roughness or minimum
separation (this coefficient goes to zero for smooth spheres, i.e. assessing that
a, =0 in that latter case). This O(¢?) prediction has been reported for a roughness
relative to the particle radius of 10~ (which is typically measured experimentally)
in figure 7(b). It is of the same order of magnitude as the experimental data
for ¢ < 0.25 but cannot capture the strong increase in magnitude observed for
larger ¢. Again, only numerical simulations can address the concentrated regime.
The accelerated Stokesian dynamics simulations of Sierou & Brady (2002) and
fictitious-domain simulations of Gallier er al. (2014) presented earlier for the
viscosity have been reported in figure 7. Again, friction between the particles has a
profound impact on the rheology, as it increases the magnitude of «, and decreases
that of «;, in better agreement with the available observations. An important finding
revealed by the simulations of Gallier et al. (2014) is that the two normal-stress
differences have different physical origins, as will be discussed further in §5.2.
The first difference N; is mostly of hydrodynamic origin, whereas the second N,
comes from the contact interactions. These simulations also provide some hints
to explain the discrepancies among observations for N;. Simulations performed
in a wall-bounded shear flow show wall-induced layering of the particles, which
has a moderate impact on o, but significantly affects «; (Gallier et al. 2016) (see
figure 7). Confinement together with friction can lead to positive value of «;, in
closer agreement with the experiments of Dbouk ef al. (2013), where pressure
measurements are taken at the lower plate of the rheometer cell.

The overall picture is that N, is large and negative, as most of the repulsive
collisions between spheres happen in the plane of shear, while N; is small because
the collisions happen fairly equally in the flow and the flow-gradient directions.
However, the flow-induced microstructure of the frictional spheres can explain the
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FIGURE 7. Normal-stress difference coefficients, (a) «; and (b) 5, versus volume
fraction, ¢. Experiments: of Zarraga et al. (2000) combining rotating-rod and parallel-plate
measurements with glass spheres of diameter d =44 nm; of Singh & Nott (2003) using
a cylindrical Couette and parallel-plate rheometers with PMMA spheres of diameter d =
196 pm; of Boyer et al. (20115) and Couturier et al. (2011) combining the rotating-rod
and tilted-trough methods with PS spheres of diameters d = 70 and 140 pm; of Dai
et al. (2013) combining tilted-trough and parallel-plate measurements with PS spheres of
diameter d = 40 pm; and of Dbouk er al. (2013) using wall-pressure measurements in
a parallel-plate geometry with PS spheres of diameters d =40 and 140 pm. Numerical
simulations: of Sierou & Brady (2002) and Gallier et al. (2014) with (u, = 0.5) and
without (u, =0) friction and with confinement (bounded) in the frictional case. The dotted
line in (b) is the O(¢?) theoretical prediction of Wilson (2005). The O(¢*) correlations
of Dai et al. (2013) are also shown (dashed lines).
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sign of N;. In the suspension bulk, the deficit in hydrodynamic interactions in
the extensional region leads to a negative sign, whereas, near a wall, the particle
layering results in a decrease of contact stresses (enhanced by friction) and thus
promotes a positive sign (at least for ¢ < 0.5 as documented in figure 7; for larger
¢ other behaviour may be seen but there is not enough data to conclude yet).

2.3. Other non-Newtonian phenomena

The fundamental results that have been described up to now are that suspensions
of non-colloidal hard spheres can be described by a single viscosity that is solely
a function of volume fraction but also possess some non-Newtonian features since
they develop non-isotropic normal stresses. Since there is no other force scale
than the hydrodynamic forces, one expects rate-independent properties. Nonetheless,
some shear-thinning behaviour has been reported in the concentrated regime starting
at ¢ ~ 0.45-0.5 (see e.g. Zarraga et al. 2000). This is not well understood and
clearly implies that some additional forces come into play (shear-thinning behaviour
is also observed for dense suspensions of fibres as discussed in § 7.1). This may
also explain the differences in 7n,(¢) and «;(¢p) or ay(¢) curves across experimental
work for large ¢.

Another cause of scatter may be due to differences in frictional particle contact
across samples resulting in differences in the magnitude of 5, and of the coefficients
oy and «p, in particular at large ¢. This frictional contact between the particles
also affects the values of ¢. as discussed earlier. In addition to contact or even
close contact between particles, there may be some other effects linked to fluid—
particle surface chemistry that may need to be accounted for. These subtle effects
are difficult to decipher and need further examination.

3. Beyond the single-fluid view: two-phase flow

In §2, the suspension has been viewed as an effective fluid having rheological
properties depending solely on particle concentration. This picture applies when
the solid grains and the fluid move together as a single phase with identical
average velocity. However, in many flow configurations, the fluid and the particles
experience relative motion. In other words, there exists a slip velocity between the
fluid and solid phases. The effective-fluid approach presented in §2 cannot capture
this differential dynamics of the two phases. Figure 8 shows three examples where
going beyond the single-phase description may be necessary. The first example
(figure 8a) is the observed irreversible migration of neutrally buoyant spheres in a
pipe flow. The particles have a tendency to move from the high-shear region at the
wall towards the low-shear region at the centreline. This phenomenon, known as
shear-induced migration, will be considered in § 3.3.1. Sediment transport sketched
in figure 8(b) is another example that is encountered in many geophysical situations.
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FIGURE 8. Examples of two-phase suspension flows. (a) Shear-induced migration of
neutrally buoyant spheres in pressure-driven Poiseuille flow in a tube: the particles migrate
irreversibly from the high-shear region at the wall towards the low-shear region at the
centreline. (b) Erosion of sedimented particles under the action of viscous fluid shearing
flows: the particles can be transported by the flow in a particular mode of particle motion
in which particles roll and slide but stay in continuous contact within the bed called
bedload transport. (¢) Submarine avalanches: the flow can involve several granular layers
and bears similarity with the erosion situation sketched in panel (b).

When a fluid flows over a sedimented bed of particles, the grains can be entrained
by the fluid and can flow along with the stream. The erosion of sedimented
particles under the action of viscous shearing flows will be discussed in §4.2.2.
The last example (figure 8c) is the triggering of granular avalanches which can be
dramatically influenced by the coupling between the granular and fluid phases. This
phase coupling is not captured by a single-phase approach and will be addressed
in §4.2.1.

In order to tackle these flow configurations, it is necessary to address separately
the liquid phase and the solid phase instead of considering a single mixture phase.
The two phases coexist at the same location and the strategy consists in writing the
mass and momentum conservations for the two phases separately while accounting
for the interaction between the phases. This two-phase modelling is presented
in §3.2 where the difficulties and open questions raised by this description are
discussed. This modelling is then applied to two flow configurations, namely
shear-induced migration and resuspension, in §3.3. Before embarking on this
two-phase formalism, we first introduce in § 3.1 the concept of particle pressure,
which produces the driving force for the motion of the particles and is a conspicuous
indication of the need for a two-phase description.
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FIGURE 9. Physical illustration of the particle pressure. In a sheared suspension of
particles, the collisions between particles, and between the particles and the walls, creates
a force against the wall. This leads to a ‘particle pressure’, i.e. a pressure coming from the
particulate phase. Since the total pressure created by a suspension mixture (particles plus
fluid) is constant because of the incompressibility of the suspension, this positive ‘particle
pressure’ is balanced by a negative pressure coming from the fluid phase. In other words,
the top plate is pushed up by the particles (red arrow) and pulled down by the fluid (blue
arrow).

3.1. Particle pressure

Whereas the whole suspension, i.e. the mixture of particles and fluid, is incompres-
sible, the particle phase is not. There exists a particle pressure, or more generally
particle normal stresses, coming from the dispersed particulate phase. Physical under-
standing of this particle pressure can be inferred by considering the simple situation
of a suspension uniformly sheared between two plates at a shear rate y, depicted
in figure 9. Because of the incompressibility of the suspension mixture, the entire
pressure exerted on the top plate is constant and independent of y as found for a
simple fluid. Suppose now that we ignore the fluid contribution and consider the sole
interactions of the particles with the top plate. In the dense suspension regime, the
shearing flow induces collisions between the particles and between the particles and
the walls. These collisions result in a force against the wall, leading to a ‘particle
pressure’. Since the total pressure must be a constant (i.e. the reference pressure),
this particle pressure is compensated by a negative pressure in the liquid. In other
words, in a sheared suspension, the particles push on the wall, which in turn pulls
on the fluid.

This particle pressure has been considered an analogue to the osmotic pressure
exerted by colloidal particles or dissolved molecules and ions, where here the shear
rate plays the role of the temperature to induce agitation and collisions between
the particles. An experiment carried out to illustrate this analogy is depicted in
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FIGURE 10. Analogy with osmotic pressure (from Deboeuf et al. 2009). (a) Osmotic U
tube. The solution is separated from the pure solvent (or a lower-concentration solution)
by a semipermeable membrane permitting the flow of the solvent but restricting the solute
to the solution side. Osmotic pressure is associated with the solvent flow into the solution
and is measured by a reduced pressure in the solvent. (b) Analogous experiment using a
Couette device where a hole is drilled through the outer stationary cylinder. A grid placed
on the hole plays the role of the semipermeable membrane and restricts the particles on
the side towards the annulus. A tube is fixed on the hole and is filled with the suspending
fluid. When the suspension is sheared, the liquid is sucked from the tube through the grid.
The liquid suction pressure is a way of evidencing and measuring the particle pressure.

figure 10(b) (Deboeuf et al. 2009). The device used is a Couette rotational cell
where a hole is drilled through the outer stationary cylinder. A grid with mesh
openings small enough to retain the particles is positioned on the hole and a small
tube is connected to the hole and filled with the suspending fluid. The grid is the
equivalent of a semipermeable membrane permitting the flow of the solvent but
restricting the solute to the solution side in a classic U-tube osmometer sketched
in figure 10(a). When the suspension is sheared in the Couette device, the pore
pressure between the particles decreases and sucks liquid from the tube through the
grid, until the hydrostatic pressure induced by the difference of filling level on both
sides exactly balances the negative pore pressure created by the shear. This effect
is similar to the solvent flow into the solution in the U-tube osmometer where the
osmotic pressure is associated with a reduced pressure in the solvent.

Quantitative measurements of the particle pressure, or more generally of particle
normal stresses, are not easily performed, in large part because it is difficult
to differentiate between the particle and the fluid pressures as explained above.
Conventional rheometers measure the total force exerted by the suspension and thus
need to be adapted to measure either the force coming from the particles or that
from the fluid (see figure 11). A first direct method consists in using a grid as a top
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FIGURE 11. Methods for measuring particle normal stresses. (a) Grid pressure
measurement. The top plate of the rheometer consists of a grid permitting the fluid to
pass through but retaining the particles. Measuring the forces exerted on the grid thus
gives access to the pressure exerted by the particles. (b) Pore pressure measurement. The
fluid pressure is measured behind a hole covered by a grid but connected to a tube
filled with the suspending fluid. The total pressure of the suspension is measured by a
pressure sensor. The difference between the two measurements provides an estimation
of the particle pressure. (c,d) Viscous resuspension. When a settled bed of particles is
sheared, particle normal stresses develop and lead to the rise of the bed height until
an equilibrium suspension height is reached when the gravity force is balanced by the
divergence in particle normal stresses. Measurement can be conducted in (c) the plane of
shear or (d) the plane perpendicular to the plane of shear (i.e. in the vorticity direction).

plate which enables fluid flow through it but not particles owing to mesh openings
smaller than the particle sizes, as done in an annular shearing cell by Boyer et al
(2011a) (see figure 11a). Measuring the forces exerted on the grid thus gives access
to the pressure exerted by the particles (while the grid pressure coincides with the
particle pressure for dense suspensions, this may not be completely true otherwise,
as we shall see later). An alternative method is to measure the fluid pressure and
infer the particle pressure by subtraction from the total pressure as done by Dbouk
et al. (2013) in a parallel-plate rheometer and by Garland et al. (2013) in a Couette
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rheometer (see figure 11b). This can be achieved by measuring the pore pressure
behind a hole covered by a grid in a tube filled with the suspending fluid as done
in the analogous osmotic pressure experiment described in the preceding paragraph
(Deboeuf et al. 2009). A second pressure sensor measures the total pressure exerted
by the suspension, and the difference between the two measurements provides an
estimation of the particle pressure.

Other configurations, such as viscous resuspension of an initially settled layer of
negatively buoyant spheres, also provide indirect information on the particle pressure
(see figure 11c,d). Measurements can be conducted in the plane of shear using an
annular parallel geometry (Leighton & Acrivos 1986) or in the plane perpendicular
to the plane of shear (i.e. in the vorticity direction) using a Couette device (Acrivos,
Mauri & Fan 1993). When the suspension is sheared, particle normal stresses
develop, leading to a dilatation of the sediment layer. An equilibrium resuspension
height is reached when the gravity force which pulls the particles downwards is
balanced by the divergence of the particle normal stresses which tends to dilate
the sediment. Viscous resuspension will be treated in more detail in § 3.3.2. Along
the same lines, shear-induced migration that we introduce in figure 8(a) can also
give some indirect information on particle normal stresses, as the divergence of
the normal stresses becomes zero when the flow is fully developed. This migration
phenomenon will be addressed more fully in § 3.3.1.

Using the same dimensional arguments as those used in §2 for the viscosity
and the normal-stress differences, particle normal stresses are also found to scale
viscously and are linear in the modulus of the shear rate, since they must be
independent of the sign of the shear rate as previously noted for the normal stresses
of the whole suspension. As suggested by the physical discussions of the previous
paragraphs of this section, particle pressures are positive, meaning that normal
stresses are negative. The particle normal stress along the direction perpendicular to
the shearing flow direction can thus be written as —o3, = 1,27,|y|. We introduce
here a so-called relative normal viscosity, 71,,(¢), which again is solely a function
of ¢ and presents the same divergence with ¢ as n,(¢) when approaching the
critical volume fraction ¢, i.e. n, and n,, both diverge as ~ (¢. — ¢)~> at jamming.
Note that, for the moment, only the normal-stress component along the flow-gradient
direction is discussed; the other components are discussed in the following.

Figure 12 shows a collection of most of the available experimental data obtained
by using the methods presented earlier and sketched in figure 11. As for the
normal-stress differences of the whole suspension presented in §2.2, we have
plotted the ratio of particle pressure to shear stress, —o3,/7. This ratio is also that
of the normal and shear viscosities and is related to an effective friction coefficient,
W, aS —05 /T = Nu2/ns = 1/ (the frictional approach to suspension rheology will
be further discussed in §4.1). It is important to emphasise that p is a ‘macroscopic’
effective friction coefficient of the suspension and thus differs from the ‘microscopic’
friction coefficient between particles, w,, introduced earlier in §2.1. Despite some
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FIGURE 12. Ratio of particle pressure in the gradient direction to shear stress, —o5,/T =
Nn2/ms =1/, versus ¢. Experiments: of Boyer et al. (2011a) with PS spheres of diameter
d = 580 pm suspended in polyethylene glycol-ran-propylene glycol monobutyl ether as
well as PMMA spheres of diameter d =1100 pm suspended in a Triton X-100/water/zinc
chloride mixture; of Dagois-Bohy et al. (2015) with PS spheres of similar sizes, both
measuring the pressure on a grid; of Dbouk er al. (2013) with PS spheres of diameter
d=140 pm suspended in a mixture of water, UCON oil and zinc bromide; and of Garland
et al. (2013) with PS spheres of diameters d =40 and 140 pwm suspended in polyethylene
glycol-ran-propylene glycol monobutyl ether, both combining measurements of pore
pressure and total pressure. Correlation: of Zarraga et al. (2000), 2.17¢° exp(2.34¢), using
the resuspension data of Acrivos e al. (1993) to infer o}; and their measurement of
the second normal-stress difference, N, = X5, — X33, of the whole suspension mixture
(assuming that the differences in normal stresses of the whole suspension and of the
particle phase are identical). Numerical simulations: of Gallier et al. (2014) containing
only the contact contributions for o3, with p, = 0.5. Rheological models: that proposed
by Morris & Boulay (1999), 7,(¢) = 1 + (5/2)¢(1 — ¢/d) " + K,($/$.)>(1 — ¢/p)
and 1,(¢) =K, (¢/p.)*(1 — ¢/p.)~> with K, ~0.1, K, ~0.75, 1, ~0.8 and A3 ~0.5; and
that proposed by Boyer ef al. (2011a), ny(@) =1+ (5/2)¢(1 —$/¢)~" + (@) (¢ /pe)*(1 —
$/0) 2 and 1,(d) = (¢/$0)> (1 — p/b) 2 with p($) = 01 + (1 — 1) /11 + Lo (b — $) 2]
and p; ~0.32, up, ~0.7, Ih~0.005, 2, ~0.95 and A; >~ 0.6. In both cases, we have
plotted 1,./ns = A2n,/ns and have chosen ¢. = 0.585 as found experimentally by Boyer
et al. (2011a) but have also plotted the correlation of Morris & Boulay (1999) with their
originally chosen ¢. = 0.68.

scatter, the data coming from different methods and using different fluid—particle
combinations show a reasonable collapse onto the same curve (with the exception
of the correlation of Zarraga et al. (2000), which presents deviations at large ¢).
Importantly, the ratio 1, ,/n, tends towards a constant value (X3, i.e. u.~0.3) when
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¢ reaches ¢.(~0.58-0.59), implying that the divergences of the two viscosities are
similar. In the dilute limit, this ratio is seen to vanish, meaning that n,, also
vanishes since 5, stays finite (n, = 1 at ¢ = 0). Whether there exists a critical
volume fraction below which the particle pressure disappears remains an open
question. We have also reported in figure 12 the contact contributions to the normal
stress coming from the simulations of Gallier et al. (2014) presented earlier for
the viscosity and normal-stress differences in §2 (see figures 4 and 7). These
simulations, which account for particle roughness and frictional contacts between
the particles, agree well with the experiments. This suggests that contact may act
as the dominant component in the particle pressure in particular at large ¢ (this
will be discussed further in §5.2).

Up to now, only the component of the particle stress along the gradient direction,
i.e. —o3,, has been addressed. In some configurations, it is also possible to measure
the other components, —of, and —ol;, and to show that differences in particle
normal stresses exist. However, experimental data are scarce and often rely on
measurements of the differences in normal stresses of the bulk suspension presented
in § 2.2. This is, for instance, the case for the different components given by Zarraga
et al. (2000), who use the resuspension data of Acrivos ef al. (1993) to infer oi,
and their measurement of N; and N, (see figure 7), as well as for those given
by Dbouk er al. (2013), who use their measurement of o}, (see figure 12) and of
N; and N, (see figure 7). Whether the differences in normal stresses of the bulk
suspension and of the particle phase coincide is not completely deciphered and
is a question related to the origin of the stresses that we will try to address in
the following § 3.2. In the dense regime, where contacts between the particles are
pre-eminent, it is likely that the two may be similar.

The particle normal stresses can be written in a tensorial form as

Nn.1(@) 0 0
—7yly| 0 m2e) 0 ; (3.1
0 0 nn3(¢)

where the normal viscosities in each direction, 1, ;(¢) (with i =1, 2 and 3), tend
towards zero in the dilute limit and diverge in a similar way as n,(¢) when
approaching ¢.. While having similar high- and low-concentration limits, the
different components of the particle normal stress may not vary in exactly the
same way with ¢ (Dbouk er al. 2013). However, there are not enough observations
to yield firm conclusions on their respective behaviours. In the literature, a simplified
form of this particle normal-stress tensor has often been used, assuming a similar
¢ dependence in all directions (Morris & Boulay 1999). The particle normal-stress
tensor (3.1) then takes the simpler form

1 0 0
M @nelyl {0 4 0], (3.2)
0 0 A
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¢’ 33
(@) =Kui o s (3.3)
which gives an O(¢?) dependence at small ¢ and a divergence in (¢. — @)~ similar
to that of n, near ¢.. This is a practically useful simplification as the particle
normal-stress tensor is only determined by a single scalar function, 1,(¢), and two
constant anisotropy coefficients, A, and A3, and thus is amenable to computation,
e.g. for shear-induced migration or resuspension calculations, as will be seen
in §3.3. The coefficients were found to be K, ~ 0.75, 1, ~ 0.8 and A3 ~ 0.5
by Morris & Boulay (1999), who chose them to match experimental results on
shear-induced migration, and K, & 1, 4, ~0.95 and 43 ~ 0.6 by Boyer et al. (2011a)
and Couturier et al. (2011), who inferred them from pressure-imposed rheological
and normal-stress difference measurements. The correlations proposed by Morris
& Boulay (1999) as well as Boyer et al. (2011a) and Couturier et al. (2011) are
reported in figure 12 with ¢. =0.585. The equations used for 5, are similar to that
of Eilers that we gave at the end of § 2.1. While a quantitative difference is observed
at high concentrations, in particular for the values at ¢, as 1/u(¢.) = A/, =2.97
in the Boyer e al. (2011a) rheology while 1/u(¢.) = 1,K,/K;~ 6 in the Morris &
Boulay (1999) rheology, similar trends are observed over the lower range of ¢. Note
that Morris & Boulay (1999) originally used ¢. = 0.68; this original correlation is
also plotted in figure 12.

3.2. Two-phase modelling of viscous suspensions

In principle, a complete calculation of the motion of solid particles in a Newtonian
fluid is given by solving Newton’s equations of motion for the translation and the
rotation of each particle and the Navier—Stokes equations, or the Stokes equation
in the absence of inertia, for the fluid with no-slip conditions on the surface of
each particle and on the walls. Such type of direct calculation can now be done
numerically, as we have seen in the above sections, although this may prove to be
quite a complex task. An alternative route is to use continuum two-phase modelling,
which assumes that the interstitial fluid and the particles are two intertwined
continuous phases, and to derive the governing equations that describe the system
in an average sense for each phase. This has important practical interest as it
provides the knowledge of average quantities, e.g. the average values of the fluid
velocity, particle velocity and fluid pressure over some small region surrounding
each point of the system of interest, which is all that may be required in most of
the flow situations. Different ways of performing the averaging process have been
used: (i) local space averaging over regions smaller than the macroscopic length
scale but larger than the particle size or (ii) ensemble averaging at each point of
space over ‘macroscopically equivalent’ systems. Each type of averaging is purely a
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formal process and should lead to essentially the same equations if properly done. It
generates a greater number of averaged quantities than there are available equations
and therefore there is a closure problem, i.e. a need for some constitutive relations,
which is a central issue in the modelling.

We do not provide here the details of the formal derivation of the governing
equations but give some hints on how to proceed. For this purpose, we follow
Jackson (1997) by using local space averages which are closer to the way quantities
are measured experimentally. The basic idea behind this approach is to replace
the point variables by local mean variables by averaging the point variables over
a representative region that contains enough particles but is still smaller than the
length scale of macroscopic spatial gradients. The formal averaging process is
performed using a weighting function having a radius of precisely the size of the
representative region so that the obtained volume average of a property is the
reflection of its value only in the vicinity of a given location, x. Considering a
suspension of non-colloidal rigid spheres of density p, suspended in a Newtonian
fluid of density pr and viscosity 1y, we can then define at each point, x, the volume
fraction of the solid and fluid phase, ¢ and 1 — ¢, respectively, and the local mean
particle and fluid velocity, u” and w’, respectively. We can also derive the stresses
of each phase and the interphase force. As in any continuum treatment, the forces
are divided into body forces and surface forces and this needs to be done in a way
that reflects the fact that the particles are dispersed in the fluid phase.

Considering the interphase force first, the way to proceed to obtain the quantity of
interest for a dispersed mixture of particles is (i) to integrate the fluid stress on the
boundary of a particle to obtain the force exerted by the fluid on a particle, f" (i.e.
the zeroth moment of the fluid traction about the particle centre), and then (ii) to
average over all the particles present in the same representative volume to obtain
the net fluid force acting through the centre of mass of this assembly of particles,
n(f"?, where n is the particle number density (number of particles per unit volume).
The hydrodynamic force on the particle phase is thus a particle-averaged force as
is intuitively reasonable for a dispersed mixture. Because of the partition into body
and surface forces already mentioned above, the effective continuum stresses of the
two phases cannot involve this hydrodynamic force any more. The effective stress
of the particulate phase, ¢””, is found to comprise solely of terms coming from
non-hydrodynamic interparticle (contact) interactions (i.e. the particle-averaged first
moment of the contact traction and higher-order terms), while that of the fluid phase
contains the mean fluid stress tensor, (1 — ¢)(o )/, but is also augmented by terms
coming from fluid—particle interactions (i.e. the particle-averaged first moment of the
fluid traction and higher-order terms), /7. Further details of the derivation can be
found in Jackson (1997) and Nott, Guazzelli & Pouliquen (2011). We give below
the obtained governing averaged equations.
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The equations of continuity for the fluid and the particles are, respectively,

8(182@ LV [ =pul1=0, (3.4)
%‘f LV . (¢u’) =0. (3.5)

Adding (3.4) and (3.5), the suspension, i.e. the mixture of fluid and particles, is
found to be incompressible as previously noted,

V.-U=0, (3.6)

where U = ¢u” + (1 — @)/ is the volume-averaged velocity.
In the absence of inertia, the momentum equations for the fluid and particle phases
are found to be, respectively,

VA =)oY + a1 —n(f")y + p(1 — $p)g =0, 3.7)
Vo +n(f" + p,g =0, (3.8)

where g is the specific gravity force vector. Comparing (3.7) and (3.8), the interphase
force is seen to appear in the same form but with opposite signs. If the fluid is
Newtonian, the mean fluid stress tensor can be written as (1 — ¢)(c) = —(1 —
®)p’l + 2nsE, where p/ is the mean fluid pressure, E is the mean strain rate of
the whole suspension and / is the identity tensor. Adding (3.7) and (3.8) yields the
momentum equation for the suspension as a whole, i.e. for the mixture,

V. [—(1 = @)p 14+ 20E + 0" + 6”1+ [po(1 — $) + p,0lg, (3.9)

which is simply the balance between gravity and the divergence of the stress tensor
of the whole suspension mixture. This total stress tensor can be written as

Y=—(1-¢)p/1+2nE+ X7, (3.10)

where the first term is a purely isotropic contribution, the second term is the
deviatoric stress that would be present in the absence of particles, and the
third corresponds to the particle contribution to the whole suspension stress,
¥ = g 4 ¢PP, which arises from moments of the whole (fluid and contact)
traction. This latter contribution corresponds to the ‘particle stress’ defined by
Batchelor (1970) for the bulk stress of a suspension. Note that the particle
contribution in Batchelor (1970) just encompasses the first moment called the
‘stresslet’” while in the present approach X” includes higher-order terms to account
for a non-uniform suspension state. However, as noted before, the ‘particle-phase
stress’ contains only the interparticle (contact) portion, ¢””, whereas the ‘fluid phase
stress’ comprises the hydrodynamic portion, o/

The averaged equations have been written for the two phases and for the whole
suspension but only two sets are really needed. In the particulate flow community,
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one commonly uses the equations for the two phases; while in the suspension
community, one favours the equations for the whole suspension seen as a continuum
as presented in §2 and complements them by those for one phase when two-phase
modelling is needed as described in §3. This latter description, which uses the
averaged equations for the suspension, (3.6) and (3.9), supplemented by those for
the particle phase, (3.5) and (3.8), has been developed, in particular, to describe
the phenomenon of shear-induced migration introduced in figure 8(a), which will
be considered in §3.3.1. However, at this stage, the averaged momentum balances
are formal equations, and do not form a closed set of equations together with
the continuity equations. The closure problem requires constitutive laws giving
expressions for the interphase force and for the stresses of the bulk suspension and
particle phase in terms of the local averaged variables and their derivatives.

The interphase hydrodynamic force contains not only the buoyancy force and the
interphase drag, but also a non-drag part (Lhuillier 2009; Nott et al. 2011), thus

n(fh>p = _pf¢g + (fh>5rag + n(fh>Zan—drag' (31 1)

The interphase drag can generally be approximated by a drag force proportional to
the relative velocity between the phases, which can be written for spherical particles
of diameter d as

18n, ¢
N g = ——5- 7 W@’ = U), (3.12)
Sl == f9)
where one can use the empirical hindered settling function
f@)=0—-o)" (3.13)

(with n, >~ 5 at low Reynolds numbers) proposed by Richardson & Zaki (1954).
The non-drag portion is more difficult to capture. It is related to forces acting on
the particles and involving gradients in the velocity field (Jackson 1997; Lhuillier
2009). An attempt at a rigorous derivation by Nott et al. (2011) has shown that this
non-drag portion can be written as the divergence of a hydrodynamic stress, o .
This stress has been found to be related to the moments of the interphase force
taken at the midpoint between particles. It differs from the particle contribution to
the hydrodynamic part of the whole suspension stress, /7, which is related to the
moments of the fluid traction on the surface of the particles about their centres.
We can then revisit the particle-phase momentum equation (3.8) and rewrite it as

V0?40l + (0 — 1) bE =0, (3.14)
where the stress of the particle phase, o” = 0”” + ¢, comprises an interparticle
contact stress, ¢”?, and a hydrodynamic stress, o7, coming from the non-drag
portion of the interphase force. This stress can be inferred from the measurements
and proposed expressions discussed in § 3.1. However, as noted earlier, it is unclear
whether these measurements completely capture o”. For instance, the pressure grid
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measurement may only capture the contact portion, o””, and it is also unclear
whether the pore pressure measurements can seize the hydrodynamic portion, o
However, we expect that, at large ¢, 0”” may be the dominant portion as suggested
by the comparison with the numerical simulations of Gallier et al. (2014) reporting
only the contact contribution in figure 12. Along the same lines, the proposed
expression (3.3) for the normal viscosity may not be valid for the whole range of
¢ and may only be realistic for large ¢.

Lastly, we come back to the suspension momentum equation (3.9). The
measurements and proposed correlations discussed in §2 provide some information
on the stress tensor of the whole suspension, ¥ (in particular on the shear
viscosity, 71,(¢), and normal-stress differences, N; and N,), but there are still
some uncertainties and we do not yet possess a full tensorial form.

3.3. Two-phase flows of suspensions

3.3.1. Shear-induced migration

This phenomenon was first clearly identified in a Couette rheometer, such as
that shown in figure 3(c), where the particles were seen to migrate from the
high-shear-rate region in the gap to the low-shear-rate region in the cavity beneath
the inner cylinder (Gadala-Maria 1979; Leighton & Acrivos 1987) and motivated a
large body of research due to its implication for the characterisation of suspension
rheology. In pressure-driven Poiseuille flow, the particles are seen to migrate towards
the centreline, as illustrated in figure 8(a). Again, since the first observation of such
suspension inhomogeneities in pipe flows by Karnis, Goldsmith & Mason (1966)
and in channel flows by Koh, Hookham & Leal (1994), several experimental
studies have been performed to measure migration in pressure-driven flow in a pipe
or a channel. Earlier simulations of the pressure-driven flow in a two-dimensional
channel of a suspension were conducted using Stokesian dynamics (Nott & Brady
1994). The important output of these simulations was to show that the phenomenon
was not due to inertial effects since Stokesian dynamics imposed a zero Reynolds
number. More recent methods, such as the force coupling method of Yeo & Maxey
(2011) wherein the flow disturbance induced by each particle is represented by a
low-order multipole expansion, are now also providing effective information on the
migration process.

Since the first observation of shear-induced migration, two types of migration
models have been proposed. Early efforts used a diffusion model, in which the
particle migration flux was expressed in terms of the gradients of the particle
concentration and shear rate. This diffusion model is successful in predicting
migration in wide-gap Couette and pressure-driven Poiseuille flows, but fails to
predict the absence of migration in curvilinear torsional flows (Morris & Boulay
1999). A more recent and rather successful model, termed the suspension balance
model, relates the migration flux to the divergence of the normal stress of the
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particle phase (Nott & Brady 1994; Morris & Boulay 1999; Lhuillier 2009; Nott
et al. 2011) and uses the two-phase approach described in §3.2. We will now
use this two-phase modelling to give some indication of the physical mechanisms
involved and its connection to the suspension rheology.
To derive the migration equation, we combine the continuity equation for the
particles (3.5) with the incompressibility of the suspension (3.6),
d¢

o, TU-Vo=-V. 9@’ -V) (3.15)

to exhibit the migration flux ¢ (w” — U). For neutrally buoyant particles (o = p, = py),
this flux can be inferred from the particle-phase momentum equation (3.14) together
with the expression for the drag (3.12),

d’f ()
187’]f

oW’ —U) = V.o’ (3.16)
This modelling thus predicts that particle migration is driven by the divergence of
the normal components of the particle-phase stress.

Considering a pressure-driven flow in a two-dimensional channel of width H as a
basic example, the migration equation can be written as

at 181 dxy 9
42 [na2(P)nys 1]
= fgam O e

where x, is the flow-gradient axis (note that the above expression assumes
U-V¢ =0, since the cross-stream migration is much slower than the mean flow
dynamics and the volume-averaged velocity U is considered to be mostly along
the flow direction 1, and not to depend on x;). To solve the problem, this equation
needs to be complemented by the momentum equation for the whole suspension
along xi,
oln, ()71
0x, o

which means that the gradient of shear stress across the channel, T = n,(¢)ny, is
constant (G is the pressure gradient along the flow direction, x).

When the flow is fully developed, the particle pressure is constant across the
channel as

-G+ 0, (3.18)

30y, @yl

00X, - 0x, -

Since y varies in the gradient direction (zero at the centre and large at the wall),
Nn2(¢) and thus ¢ must also vary to keep o3, constant. Consequently, where the
shear rate is low, the concentration is high and vice versa and the particles must
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have migrated to the centre. To go a little bit further and obtain the concentration
variation, we can circumvent singularities arising at the centre of the channel by
computing the friction coefficient using equations (3.18) and (3.19),

_ 1s(9)
M(¢) B 77,1,2(¢)

where u, is the friction coefficient at the channel wall (the origin O is taken at
the centre of the channel). The volume fraction ¢ reaches the maximum packing
fraction, ¢., in a central region of the channel delimited by X, = £u(d:)/ 1ty
Outside of this plugged region, the concentration profile is given by inverting the
friction function (3.20) while ensuring that the total volume fraction in the channel
corresponds to the initial (uniform) volume fraction ¢, (therefore setting the value
of w,).

To obtain the dynamics of the migration, (3.17) needs to be integrated numerically
using the shear rate given by (3.18). There are some difficulties at the centreline of
the channel where the shear rate approaches zero and the volume fraction reaches
¢., which can be resolved either by adding a minuscule constant offset to relieve the
singularity or by placing a constraint on the fluxes that prevents ¢ from exceeding
¢. as used in the preceding frictional approach used for the steady state. Having
a phenomenological form for the normal and shear viscosities (or for the effective
friction coefficient) is essential if one wishes to use this modelling.

The evolution of the concentration profiles is depicted in figure 13 for different
initial uniform concentrations, ¢, and confinements, H/d, using the correlations
proposed by Morris & Boulay (1999) and Boyer et al. (2011a) that we introduced
at the end of §3.1 (with a realistic ¢, = 0.585) and displayed in figure 12.
Shear-induced migration is seen by the progressive increase in particle volume
fraction at the centre of the channel and its decrease near its edges. The fully
developed profiles show a central plug where the volume fraction is equal to ¢..
This steady profile, given by solving (3.20), is independent of the confinement
H/d and depends only on the initial bulk volume fraction ¢,, as evidenced by the
similar steady profiles obtained for ¢y = 0.3 at two different values of H/d (11
and 20) in figure 13. The dynamics to achieve steady state is much faster for the
smaller confinement (typically four times larger) in agreement with the scaling of
d?/H? given by the migration equation (3.17). The two rheological laws of Morris
& Boulay (1999) and Boyer et al. (2011a) give similar trends, but with a slightly
wider central plug obtained in the case of the correlations of Boyer et al. (2011a).

Comparisons are also provided with steady profiles obtained in the numerical
simulations of Yeo & Maxey (2011) and the experimental measurements of Lyon &
Leal (1998). The main disagreement is that the two-phase modelling always predicts
a centreline concentration at maximum packing ¢. (=0.585) while the experiments
and numerical simulations present a maximum central volume fraction that decreases
with decreasing volume fraction (this central volume fraction decreases down to
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FIGURE 13. Shear-induced migration in a channel flow. Evolution of the concentration
profiles for different confinement, H/d =11 in (a,b) and H/d =20 in (c,d), and different
initial bulk volume fraction, ¢, from solving the migration equation (3.17) using the
rheological laws (with a realistic ¢, = 0.585) of Morris & Boulay (1999) (green solid
lines) and Boyer ef al. (2011a) (blue dashed lines) at different dimensionless times
(made dimensionless by using the channel half width H/2 as the length scale and the
mean velocity of the channel flow as the velocity scale) 0, 10, 50, 200, 500 (a,b) and
0, 10, 50, 100, 1000, 2000 (c,d); thicker lines indicate the steady solutions. Also shown are
fully developed concentration profiles from the numerical simulations of Yeo & Maxey
(2011) and the experimental measurements of Lyon & Leal (1998) at similar values of
H/d and ¢y. Comparison is also provided in (b) with the experiments of Snook, Butler &
Guazzelli (2016) in a pipe flow at a similar value of D/d=8.21, where D is the diameter
of the pipe.

0.4 at ¢9 = 0.2). To remedy this failure of the modelling, a non-local correction
has been used to reduce the concentration in the middle of the channel. However,
this non-local approach relies on ad hoc parameters and can lead to a faulty shape
of the profile at the centre (see e.g. Snook et al. 2016). Another difference is that
the continuum modelling is, of course, unable to predict the formation of particle
layers near the wall observed in the simulations of Yeo & Maxey (2011). While
not seen in the channel flow experiments of Lyon & Leal (1998), this layering due
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to the confinement of the particles has been reported in the pipe flow experiments
of Snook et al. (2016) that are shown for comparison in figure 13.

We have made comparison for the steady-state regime but not for the transient
dynamics, as there is a lack of numerical simulations and experiments that have
addressed this issue. Experiments measuring the transient dynamics of the migration
process have been performed in an oscillating pipe flow (Snook er al. 2016) and
present a slower dynamics than the predictions for a steady pressure-driven pipe
flow using the rheological laws of Morris & Boulay (1999) and Boyer et al. (2011a)
(see §6.2 for a discussion of oscillatory flows of suspensions). Another point that
is still unclear is whether there is a threshold in bulk volume fraction, ¢,, below
which migration ceases. Some experiments did not detect migration for ¢ < 0.1
while others did. This is, of course, linked to the open question of the existence
of a critical volume fraction below which the particle pressure disappears that we
addressed earlier in § 3.1.

The suspension balance model presented here gives a physical understanding
of the migration process through the concept of the particle normal stress which
produces the driving force for the motion of the particles. The predictions are
reasonable at large volume fractions, but discrepancies regarding the centreline
concentration and the rate of migration are seen at lower volume fractions.
This modelling relies heavily on having well-founded rheological laws. The two
rheological laws of Morris & Boulay (1999) and Boyer et al. (2011a) may not
be valid for the whole range of volume fractions and certainly do not account for
variation in the rheology between the bulk region and the near-wall region where
layering occurs. More work is needed to obtain the proper stress functions.

3.3.2. Viscous resuspension

The phenomenon of viscous resuspension was first discovered by Gadala-Maria
(1979) while measuring the rheological properties of suspensions of coal particles
in viscous Newtonian fluids using a parallel-plate device. Under shear, the initially
settled bed of heavy, non-Brownian particles was observed to resuspend and the
flowing suspension was seen to achieve a non-uniform concentration profile. The
study was pursued by Leighton & Acrivos (1986), who used an annular parallel-
plate geometry to measure resuspension in the plane of shear. They showed that
the equilibrium resuspension height achieved by the initially settled bed of particles
could be modelled as a diffusive flux process balancing the downward gravitational
flux of particles, both fluxes acting in the shear-gradient direction as depicted in
figure 11(c). Measurements were later performed by Acrivos et al. (1993) using a
narrow-gap Couette device where the shear rate was approximatively constant across
the gap, and unlike the previous case, the fluxes were normal to the plane of shear,
i.e. along the vorticity direction as sketched in figure 11(d). Resuspension can be
treated equivalently as a process caused by the divergence of particle normal stresses
using again the two-phase modelling introduced in § 3.2.
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We analyse here the situation described by Acrivos et al. (1993) where the
resuspension of particles is in the vorticity direction, along x; opposing gravity,
while the shear has a constant value in the horizontal 1-2 plane, as shown in
figure 11(d). Initially, the spheres are settled and form a layer of height A, having
a uniform volume fraction ¢y ~ ¢.. Under shear, the settled layer of particles
resuspends and eventually adopts a steady concentration profile varying from an
unknown volume fraction ¢, at the bottom of the suspension, at x; =0, to a zero
concentration at the interface between the resuspended layer and the pure fluid, at
x3 = h. In the fully developed state, the particle-phase momentum equation (3.14)
in the direction of gravity becomes

do3s A[mn3(P)nyly ] . 0[ma3(8)]
= — ’ = — — = — Of s 3.21
o1, ox, el ox, (op — £r)PE (3.21)
which, by rewriting it as
1 dn, dx
A= gy = 28 (3.22)
¢ do ho

and by integrating from the bottom to a given position, provides direct information
on the concentration profile, and by integrating across the whole resuspended
layer, gives the normalised resuspension height, h/h,. Equation (3.22) exhibits the
dimensionless parameter of the problem, A = n|y|/(p, — pr)gho, Which represents
the ratio between viscous and buoyancy forces. It must be complemented by the
conservation of the total volume of particles,

h
hogo :/ ¢ dx;, leading to ¢ = An,s(¢,) from (3.22), (3.23)
0

to infer the particle volume fraction ¢, at the bottom.

As in shear-induced migration, the model relies on having a reliable correlation
for the normal viscosity (here along the vorticity direction, 1,3). We have again
chosen to use the correlations proposed by Morris & Boulay (1999) and Boyer et al.
(2011a) introduced at the end of §3.1. They both give 1,3(¢) xx ¢?/(Pp. — ¢)* with
a proportionality coefficient here chosen to be 0.6 (as predicted by the correlation
of Boyer et al. (2011a)) and ¢. = 0.585 (see (3.3)). Fully developed concentration
profiles are displayed in figure 14(a). For low A, they are consistent with the
existence of a sharp interface between the clear fluid and the resuspended layer.
The interface grows softer as the parameter A and thus the resuspended layer depth
increases. Unfortunately, no experimental data are available for comparison. The
only available information from the experiments of Acrivos et al. (1993) is the
normalised height of the resuspended layer, h/hg, plotted versus A in figure 14(b).
The experimental data coming from combinations of different fluids and particles
are seen to collapse onto a single curve, thus evidencing that A is the single
parameter of the problem. The model, however, agrees well with the data only
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FIGURE 14. Viscous resuspension: (a) theoretically determined concentration profile for
various A and (b) height of the resuspended layer as a function of A. The two-phase model
uses 1,3(¢) o ¢*/(¢. — ¢)> with a proportionality coefficient chosen to be 0.6 and with
¢.=0.585. The symbols in panel (b) correspond to the experimental data of Acrivos et al.
(1993) with different combinations of fluids and particles.

at low values of A, i.e. when the resuspension front is not very wide. It may be
that the correlation used for 7,; may not be adequate at low ¢. This correlation,
however, presents a realistic divergence as (¢. — ¢) 2 in the high-¢ limit, i.e. near
maximum packing. It is worth mentioning that these experimental data were the
basis for Zarraga et al. (2000) to propose an 7,3 that diverges at maximum packing
with an exponent —3; this correlation is shown in figure 12 and does not agree well
with other measurements of the particle pressure and more importantly does not
agree with the —2 divergence of the viscosity. Clearly, this needs further exploration
to seek the origin of the disagreement.

4. An alternative frictional approach

The classical approach to the rheology of suspensions presented in §§2 and 3
considers that the ruling parameter is the particle volume fraction, ¢p. The rheological
laws for the viscosity, for the normal-stress differences and for the particle
stresses are thus expressed solely as functions of ¢. However, under some flow
configurations, the volume fraction is not controlled and is a free adjustable
parameter. This situation occurs in particular in the case of gravity-driven flows.
The flow of heavy particles down an inclined plane (a configuration of interest for
the understanding of submarine avalanches in geophysics) or the flow of heavy
grains in a tumbler (a configuration of interest for mixing processes), depicted in
figures 15(a) and 15(b), respectively, are examples of immersed granular flows in
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FIGURE 15. Examples of gravity-driven flows of suspensions of negatively buoyant
particles. Flows of immersed heavy particles (@) down an inclined plane and (b) in
a tumbler. In both cases, the driving force is gravity; it controls the level of stress
experienced by the particle phase whereas the volume fraction is free to adjust to the
flow condition.

which ¢ is not imposed. Gravity is the driving force; it controls the level of stress
experienced by the particle phase whereas the volume fraction is free to adjust to
the flow condition. This suggests a description of the constitutive laws in which
the control parameter is the stress imposed to the particle phase and no longer the
volume fraction. This alternative description, coined ‘pressure-imposed rheology’ by
contrast to the classical ‘volume-imposed rheology’, is derived from the rheological
approach developed to describe dry granular flows and hinges on a frictional view
of the problem (see e.g. Forterre & Pouliquen 2008).

The pressure-imposed rheology of suspensions is presented in §4.1. The
alternative scaling laws are first introduced by dimensional arguments, as was
done in § 2 for the classical volume-imposed rheology, and then compared to those
found for dry granular material. Experimental and numerical data available in
the literature are also presented. The two pressure-imposed and volume-imposed
approaches are shown to be equivalent representations of the suspension constitutive
laws. The relevance of the pressure-imposed description is finally seen in § 4.2 when
applied to two flow configurations where gravity controls the stress experienced by
the particle phase, namely flows down inclined planes and sediment transport.

4.1. Pressure-imposed rheology of viscous suspensions

The basic configuration for studying pressure-imposed rheology is sketched in
figure 16(b). Neutrally buoyant particles of mean diameter d suspended in a fluid
of viscosity 7y are confined and sheared between two (roughened) plates. The top
plate of the shearing device is a grid which enables fluid to flow through it but
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FIGURE 16. Volume-imposed versus pressure-imposed rheometry. (a) Volume-imposed
rheometry. A suspension of neutrally buoyant particles is confined between two
(roughened) plates; the suspension is sheared at a constant shear rate; the gap between
the plates is kept constant; the suspension is thus sheared at a given shear rate and
constant volume fraction. (b) Pressure-imposed rheometry. Neutrally buoyant particles are
confined between a (roughened) fixed lower plate and a (roughened) porous, top plate
which enables fluid to flow through it but not particles; the top plate is moved horizontally,
shearing the suspension at a constant rate, but is free to move vertically; a constant,
vertical force is applied to the top plate, the height of which can adjust in response to
dilatation or compaction of the sheared suspension; the assembly of immersed particles is
thus sheared at a given shear rate under a confining pressure.

not particles as the grid mesh openings are smaller than the particle sizes. This
device, which has been introduced in § 3 as one method to measure particle pressure
(see also the sketch in figure 11a), is described more fully here. The grid is moved
horizontally to impose a shear rate y but more importantly its vertical position is not
fixed, in contrast to the volume-imposed case depicted in figure 16(a). A constant
force is applied to the grid and its vertical position adjusts to the flow conditions.
The control parameter is no longer the volume fraction, ¢, but is the normal stress
imposed by the top plate on the particles. In this configuration, increasing the shear
rate induces more collisions between particles, i.e. a higher particle pressure exerting
a larger thrust on the top plate. As a consequence, the fluid can flow through the
grid inside the cell and this leads to dilating the suspension, i.e. a decrease in
volume fraction. At steady state, the applied normal stress on the grid is balanced
by the shear-induced granular pressure, —o3,. For the sake of simplicity, we denote
P’ = —o?,, the particle pressure imposed on the grid, in the following.

In this configuration, the shear rate y and the particle pressure PP are imposed,
and the unknowns are the shear stress, 7, on the top plate and the particle volume
fraction, ¢. Two constitutive laws are then needed to express t and ¢ as functions
of PP and y. The same assumptions as those made in §2.1 hold, namely that:
(i) the particles are rigid, i.e. no elastic stress scale linked to the deformability
of the particles is taken into account; (ii) the regime considered here is viscous
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(no inertia), i.e. the problem does not involve the density of the particles; (iii) the
particles interact only through hydrodynamics or frictional contact interactions,
which again do not introduce any stress scale other than the imposed stress PP;
and (iv) the system size is large enough for the distance, h, between the two plates
(much larger than the particle size d) to play any role. Under these assumptions,
dimensional analysis implies that the system is controlled by a single dimensionless
number called the viscous number,

_ Wy
J= 7R 4.1)

This dimensionless shear rate, J, can also be interpreted as the ratio of the typical
viscous stress, 7y, to the imposed pressure, PF, or as the ratio of the time scale
of the deformation, 1/y, to a viscous time scale, n,/P?. Considering that J is the
single dimensionless number, and that P” is the only stress scale in the system, the
constitutive laws can be written as

t=uP’ and ¢=¢(), (4.2a,b)

where the shear stress t is proportional to the imposed P? through a coefficient of
proportionality, the macroscopic friction coefficient p, which is a function of only
J, and where the volume fraction ¢ is also solely a function of J. At first glance,
the frictional character of these constitutive laws contrasts with the viscous nature
of the suspension rheology discussed in §2.1. In fact, the two approaches are fully
reconcilable, as discussed in the following.

Before connecting these two views of the rheology of viscous suspensions, it is
worth comparing the predicted forms of the constitutive laws for viscous, immersed
granular media to those found in the dry case. In this latter situation, the influence
of the interstitial fluid is negligible and the viscosity 7, is thus irrelevant. Conversely,
since particle motions are controlled by inertia, the particle density p, is pertinent
to the problem. Dimensional analysis is also sufficient to infer the form of the
constitutive laws and a single dimensionless number can be constructed from the
imposed parameters, P’ and y, and from the particle properties, d and p,. This
number is called the inertial number and is given by

=14
NG
The constitutive laws adopt the same expressions as (4.2), with the inertial number /
in place of the viscous number J. Note that, in the viscous case, the constitutive laws
do not involve the particle size d, meaning that, under the same shear rate and same
confining pressure, T and ¢ are kept the same independently of the particle size,
whereas, in the dry case, the inertial number / explicitly depends upon d, meaning
that particle size plays a crucial role in dry granular media.

Returning to viscous suspensions, we examine the friction and volume fraction

laws, w(J) and ¢(J), respectively, obtained using pressure-imposed rheometry
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measurements. The experiments were conducted using a custom-built theometer that
was originally designed by Boyer et al. (2011a) and then modified by Dagois-Bohy
et al. (2015). This rheometer consists of an annular shearing cell covered by a
porous top plate free to move vertically. The force applied on the top plate controls
the particle pressure whereas the volume fraction is free to adjust during the
shear, as sketched in figure 16(b). The advantage of this pressure-controlled device
where the suspension is free to dilate (or to contract) is to provide rheological
measurements extremely close to the jamming transition, in a range of concentration
where conventional rheology usually fails. The drawback is that the measurements
are less accurate for dilute suspensions as the particle pressure becomes very small
and thus difficult to evaluate.

Figure 17(a,b) presents a collection of data for J <0.1 (¢ = 0.45) using different
combinations of particles and fluids. We have supplemented these graphs with the
simulation data of Gallier et al. (2014) obtained for a higher range of J (lower range
of ¢), using the contact contribution of the normal stress as the confining pressure.
These data from experiments and simulations of frictional particles reasonably
collapse onto the same constitutive curves. There are some discrepancies for the
w(J) curve at high J, i.e. low ¢. The friction coefficient, u, is found to be an
increasing function of the viscous number J, starting from a finite value u.~ 0.3
at vanishing J and continuously increasing with increasing J. The volume fraction
is a decreasing function of the viscous number J, starting from a critical value
¢, ~ 0.58-0.59 at vanishing J and rapidly decreasing with J at larger J. The
limit of vanishing J corresponds to y going to zero, which is commonly called
the ‘quasi-static’ limit in the granular community. Interestingly, the values of this
limit for granular suspensions and dry granular media seem to coincide. The
critical values for the friction coefficient, u., and for the volume fraction, ¢,., are
found to be identical in suspensions at vanishing J and in dry granular media at
vanishing /. This may suggest that, in this limit, the interstitial fluid and therefore
the hydrodynamics interactions do not have a significant role.

To be comprehensive, we have also plotted in figure 17 the rheological models
proposed by Morris & Boulay (1999) and Boyer et al. (2011b) introduced
in §3. The correlations of Morris & Boulay (1999) were deduced from matching
experimental results on shear-induced migration, while that of Boyer et al. (2011b)
is based on their experimental results (plotted in figure 17) and include two
contributions: one coming from hydrodynamic stresses, and one due to contact
stresses similar to that found in dense granular flow. The trend is correct even though
the model of Morris & Boulay (1999) underestimates the values of u (in particular
in the quasi-static limit) as previously noted when discussing figure 12. Again, these
correlations are both plotted using the experimentally measured ¢. = 0.585 but we
have also shown the original correlation of Morris & Boulay (1999) using ¢.=0.68
in figure 17(a,b).
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FIGURE 17. (a,b) Pressure-imposed u(J) and ¢(J) and (c,d) volume-imposed n,(¢) and
n..2(¢) rheologies, respectively. Insets of (c,d) show logarithmic plots of n,(¢) and 1,,(¢)
versus ¢, — ¢. Experiments: of Boyer er al. (2011a) with PS spheres of diameter d =
580 pm suspended in polyethylene glycol-ran-propylene glycol monobutyl ether as well
as PMMA spheres of diameter d = 1100 pm suspended in a Triton X-100/water/zinc
chloride mixture; and of Dagois-Bohy et al. (2015) with PS spheres of similar sizes.
Numerical simulations: of Gallier et al. (2014) using only the contact contributions of
—o%, as the confining pressure (with 1, = 0.5). Rheological models: those proposed by
Morris & Boulay (1999) and Boyer et al. (2011a) and correlation of Eilers. These data
were used to infer the variation of 1/u (ratio of particle pressure in the gradient direction
to shear stress) as a function of ¢ in figure 12, where they are plotted together with other
measurements of the particle pressure.

To sum up, the rheology of dense granular suspensions under imposed-pressure
flow conditions is well described by the constitutive laws (4.2) and shares similar

features with dry granular rheology as long as the viscous number J defined by
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(4.1) is substituted for the inertial number / given by (4.3). On the other hand, in
the classical description of the rheology of suspensions (presented in §§2 and 3)
in which the particle volume fraction is imposed, the shear stress and the particle
pressure are linear functions of the shear rate,

T=nP)ny and P’ =mn,2(d)nsy, (4.4a,b)

where 1,(¢) and 7,,(¢) express the rheological functions for the shear and normal
viscosities. These two descriptions, (4.2) and (4.4), are equivalent and are two
different ways of writing the same rheological laws. For a steady simple shear, it
is easy to show that the two functions n,(¢) and 7,,(¢) are related to the two
functions ©(J) and ¢(J) by the following two relations:

1 u(ed)
) =— d n(p)="02 4.5a,b
Nn2(P) 76 and  n,(¢) 76) (4.5a,b)

where J(¢) is the inverse function of ¢(J), which is unambiguously defined since
¢ is a monotonic function of J.

Using these relations (4.5) for the u(J) and ¢(J) data in figure 17(a,b), the
viscosity laws, n,(¢) and n,,(¢), can be inferred, as shown in figure 17(c,d). Both
viscosities increase with increasing ¢ and diverge at ¢., as previously discussed
in §§2 and 3 (see figures 4 and 12). It is important to emphasise again that the
shear and normal viscosities present the same divergence (¢, — ¢) 2 as evidenced in
the insets of figure 17(c,d) and also stressed by the finite value of i for vanishing J.
The divergence of the viscosities at ¢, in the volume-imposed approach corresponds
to the quasi-static limit at vanishing J in the pressure-imposed view. This latter
frictional approach is particularly well suited to study the jamming transition,
because it circumvents the divergence of the viscosities. Decreasing the shear rate
while keeping the confining particle pressure constant is indeed a more amenable
way to approach the jamming than increasing the volume fraction in a fixed-volume
configuration.

A last remark is that, although the two configurations are equivalent when
considering the averaged values of the variables, they are not fully equivalent
for the fluctuations. In the pressure-imposed configuration, the volume fraction is
free to adjust, meaning that it may fluctuate during shear under constant particle
pressure, whereas in a volume-imposed configuration, the volume fraction is strictly
constant and the pressure fluctuates. These differences may influence behaviours
like finite-size effects in small systems and explain why the study close to the
jamming transition in a pressure-imposed rheometer is easier than in a conventional
rheometer, as some freedom is given to the system to dilate transiently and avoid
transient jamming. The question of the fluctuations and their role close to the
maximum volume fraction remains an important and open question.
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FIGURE 18. Flows down an inclined plane. (a) Flow of heavy particles released at the
top of an inclined plane totally immersed in a viscous liquid, corresponding to a pressure-
imposed condition (typical values for glass beads are 6. &~ 20° and ¢. =~ 0.59). (b) Flow
of a layer of a neutrally buoyant suspension on an inclined plane, corresponding to a
volume-imposed condition. For both cases, evolutions of the flow rate Q and of the volume
fraction ¢ as functions of the inclination 6 are sketched for different thicknesses h.

4.2. Flow of immersed granular media

4.2.1. Flows down an inclined plane

To illustrate the difference between the pressure-imposed and volume-imposed
situations, it is worth starting by discussing the flow of a suspension down an
inclined plane. Two different configurations have been studied in the literature,
which should not be confused, as they correspond to the two different rheological
approaches. The first configuration is illustrated in figure 18(a). It corresponds to
the classical case of granular flows down inclined planes extensively studied in
dry granular media (see e.g. Forterre & Pouliquen 2008). Heavy (i.e. negatively
buoyant) particles are released at the top of an inclined plane totally immersed
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in a viscous liquid (Cassar, Nicolas & Pouliquen 2005). The second configuration
depicted in figure 18(b) corresponds to the flow of a layer of a neutrally buoyant
suspension on an inclined plane (Bonnoit et al. 2010) that was introduced as a
means of measuring suspension viscosity in §2.1. Although the two configurations
are seemingly similar, their flow properties are different, as, in the first case, the
granular phase is free to dilate but is confined by gravity, whereas in the second
case, the volume fraction is prescribed.

We first analyse the granular situation of figure 18(a). Dense particles of density
pp are released at the top of a rough plane inclined at an angle 6, the whole system
being immersed in a liquid of viscosity 7y and density o < p,. We consider that
a steady uniform regime can be achieved, with a layer of particles of thickness
h flowing with a steady velocity and concentration profiles, u(x;) and ¢(x;),
respectively, where x, is the flow-gradient axis. In this steady uniform regime,
neglecting the drag force between the flowing layer and the fluid at rest above, the
momentum balance of the particle phase, (3.14), imposes that the shear stress of
the particle phase, 77, and the particle pressure, P, at each position x, are given
by

at?
ax,

4

P
e (0p — PP)P(x2)g cos b.

= (0p = PP (x2)g sin 6,
(4.6)

After integrating between the position x, and the free surface # where the particle
stresses vanish, t¥ and PP are given by

h
7(x) = —(pp — py)g sin b / ¢ (x}) dxj,
2 4.7)

h
P) = (0 = pgcost | Bl d,

In the dense regime controlled mainly by contacts between the particles, the bulk
shear stress coincides with the particulate shear stress T &2 t” and the above equations
thus imply that the friction coefficient © =1t /P’ ~ t” /P’ is constant across the layer
and is equal to the tangent of the inclination, i.e. uw =tan #. A first consequence
of this result is that flow is possible only if tan 6 > pu., i.e. only above a critical
angle 6. =tan"!(u.), where u. is the critical friction coefficient. Above this critical
angle, the flow characteristics can be derived from the pressure-imposed rheology
stipulating that @ and ¢ are functions of the viscous number J only. The friction
coefficient u being constant across the layer, the viscous number J is also constant,
and subsequently the volume fraction ¢ is independent of x,. The rheology thus
predicts that the volume fraction across the immersed granular avalanche is constant
in the steady uniform regime. As a consequence, the stresses, 77(x,) and P’(x,),

852 P1-41


https://doi.org/10.1017/jfm.2018.548

https://doi.org/10.1017/jfm.2018.548 Published online by Cambridge University Press

E. Guazzelli and O. Pouliquen

given by equations (4.7) vary linearly with # —x,. From the definition of the viscous
number, J =,y /P?, a constant J implies that y is proportional to P’ and thus to
h — x,, leading to a parabolic velocity profile,
(op — Pr)g 2
Ny

where F(6) is a function of the inclination vanishing at the critical angle 6..
The flow rate Q = foh u(x,) dx, varies as Q o< ((p, — pr)g/np)F (@)h*. The qualitative
behaviour of the granular avalanche is sketched in the bottom graphs of figure 18(a).
As previously noted, no flow is possible below 6.. When the inclination 6 is
increased above 6., the particles flow. In the steady regime, the volume fraction
decreases and the flow rate increases when increasing 6. Increasing the thickness A
has no influence on the volume fraction but increases the flow rate. Experimental
measurements reported by Cassar et al. (2005) partially agree with these predictions.
The observed scalings for the flow rate are consistent with the above theoretical
description. However, the flow threshold is found to depend on the thickness of the
layer and not only on the inclination, an observation not captured by the simple
rheology used above.

We now turn to the second configuration, depicted in figure 18(b). The particles
now have the same density as the fluid (o = p,) and the average volume fraction
cannot change owing to surface tension preventing the grains from popping out
of the interface. In this case, the system can be described as a flowing film of
a viscous liquid of effective viscosity nyn,(¢). The momentum balance for the
suspension mixture as a whole, equation (3.9), implies that the suspension shear
stress, T, is given by

u(xy) < F(6) — (h—x)], (4.8)

0T .

a—xz = prg sinf. 4.9)
Using a zero-stress condition at the surface of the suspension layer, i.e. t(h) =0, the
integration of this equation leads to T = psg(h — x,) sin 6, which, according to the
constitutive law introduced in §2.1, should also be equal to v = nyn,(¢)y (x»). This
implies that the shear rate y varies linearly with x, and with sin 6. Flow is then

possible at any inclination and the velocity profile is parabolic,

Pr8
277f77s (¢)

leading to a flow rate Q = (pfg/377_,c77s(qﬁ))h3 sin & and a surface velocity u(h) =
(prg/2nns(¢))h* sin 6. The rheological measurements of Bonnoit ef al. (2010)
are based on this principle and provide the value of the viscosity 7,(¢) from the
measurement of the suspension layer thickness and surface velocity (see figures
3dand 4). It is important to note that the above prediction only holds in the first
instant of the flow. Because of the existence of gradients of shear rate, the particles
migrate towards the regions of low shear at the free surface, as discussed in § 3.3.1.
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Therefore, the volume fraction does not stay uniform across the layer. However,
migration being a slow process (with a typical scaling of d?/h* given by the
migration equation as explained in §3.3.1), the volume fraction can be considered
as uniform in the first instant of the flow.

In conclusion, despite the similarity between these two configurations and the
physics involved, a change in experimental conditions (pressure-imposed condition
for heavy particles without a free surface versus volume-imposed condition for
neutrally buoyant particles with a free surface) can dramatically influence the flowing
behaviour by introducing the existence of a critical angle. In many geophysical
problems, such as debris flows or landslides, the situation is intermediate between
these two simplified situations. In debris flows, particles heavier than the surrounding
fluid are entrained by a free surface flow of liquid. In this case, the fluid phase
and the solid phase move at different velocities and a full two-phase approach is
necessary to capture the richness and diversity of behaviours encountered in these
complex flows (Pitman & Le 2005).

4.2.2. Bedload sediment transport

Sediment transport involves the erosion, entrainment and deposition of sediment
particles and can give rise to self-formed morphologies such as ripples and dunes.
This is a vast area of research in which a considerable number of experimental and
theoretical studies have been carried out. We do not pretend here to cover the whole
extent of the problems encountered in this field, and restrict the discussion to a
situation in which beds constituted of sedimented spheres (o, > p;) are submitted
to viscous shearing flows as depicted in figure 19 and that we introduced at the
beginning of §3 as an example of two-phase suspension flows. In this situation,
which has been referred to as bedload transport, the motion of the bedload particles
is due to the shearing forces exerted by the fluid at the surface of the particle layer
and the particle packing is confined by gravity but is free to dilate, corresponding
to a pressure-imposed configuration.

In the steady regime of parallel shearing flows, the particle momentum equation
(3.14) along the vertical direction, x,, shows that the pressure of the particle phase
is proportional to the apparent weight of the solid phase and increases when
penetrating inside the bed,

PP =—(pp — p)pgx2, (4.11)

where the origin is taken at the bed interface and x, is opposing gravity. The
momentum equation for the whole suspension mixture (3.9) along the flow direction,
X1, can be integrated from the bed interface position to an arbitrary vertical position
x, inside the sediment and leads to

(%) = 7(0) = 7/ (0). 4.12)
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Y

FIGURE 19. Bedload sediment transport. ‘Bedload’ describes particles that are transported
along the bed in a mode of motion in which particles roll, bounce and slide but stay in
continuous contact within the bed. The situation depicted in the sketch corresponds to
a bed of sedimented spheres submitted to viscous shearing flows. The bedload motion
is due to the shearing forces (along the flow direction x;) exerted by the fluid at the
surface of the particle layer, and the particle packing is confined by gravity (opposing the
flow-gradient direction x,) but is free to dilate. The mobile particle layer of thickness #.,
given by (4.13), is delimited by the two horizontal dashed lines.

Equation (4.12) evidences the transfer between the stress of the fluid phase at the
top of the bed, ©/(0), and the whole stress, 7(x;) = v/ (x,) + 77(x,), inside the bed
(there is in fact an exchange between the stresses of the fluid and solid phases, as
1t/ decreases while 77 increases inside the bed). This constant shear stress, equation
(4.12), together with the increasing granular pressure, equation (4.11), imply that the
effective friction coefficient ;=1 /P” =1/(0)/P" decreases with increasing depth. As
a result, there exists a critical depth inside the bed where u reaches its critical value
WUe. This critical depth for which motion stops (¢ ~ ¢. and u = u.) implies that the
thickness of the mobile particle layer is

O
oy — pBeg

Equation (4.13) also provides information on the threshold of motion, even though
the validity of using a continuum approach in that case could be questioned. The
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initiation of motion is controlled by a dimensionless number, the Shields number,
which is constructed as the ratio of the shear stress at the top of the bed to the
hydrostatic pressure difference across the grains of diameter d. Assuming that
incipient motion corresponds to a particle monolayer in motion, i.e. h. ~ d, the
critical Shields number is given by ©. = t/(0)/ (pp — pr)gd ~ .., in reasonable
agreement with experiments in the viscous regime (®, is predicted to be ~0.18
with ¢, ~0.59 and pu.~ 0.3, while it is found to be ~0.12 in experiments (see e.g.
Ouriemi, Aussillous & Guazzelli 2009)).

Finding the complete motion of the particle and fluid phases is more challenging,
as this needs one to fully solve the two-phase equations presented in §3.2. The
difficulty then is to have the correct constitutive laws that account for the rheological
behaviour of each phase. The problem has been tackled by using a granular frictional
rheology for the particle phase and a Newtonian rheology for the fluid phase
(Ouriemi et al. 2009). Some further simplification can be obtained by noting that
there is no (or little) slip between the fluid and particle phases (' =u” = U) shortly
after penetrating inside the bed (typically after one layer of particles), as the drag
term is dominant in the fluid phase equation (3.7). This last assumption is significant,
as the problem is reduced to solving just the mixture equation (4.12). This type
of modelling using a granular frictional rheology has been compared successfully
to experiments in the case of a Poiseuille geometry (Aussillous et al. 2013). The
choice of a Poiseuille over a Couette flow (chosen here for its simplicity) is more
realistic if one is interested in sediment transport in pipes or in rivers (of course,
the Reynolds number may be much larger in these flows). Another point is that the
pressure gradient that drives the flow can produce a larger particle flux involving a
much thicker mobile layer which better justifies the use of a continuum modelling.

5. Microscopic origin of the rheology

The previous §§2-4 have been devoted to the macroscopic properties of a
suspension seen as a continuum or as a two-phase mixture, and have described the
constitutive laws obtained from volume- or pressure-imposed rheological approaches.
Relating the mechanics of the particles at the microscopic scale to these macroscopic
or bulk properties is still quite a challenge. The difficulty in tackling this issue
is twofold. First, the particles interact not only through complex hydrodynamic
interactions (long-range hydrodynamic interactions as well as lubrication forces)
but also through frictional contacts. Second, the typical multi-body nature of the
problem leads to nonlinear and irreversible dynamics which share features with
far-from-equilibrium and chaotic systems. The microscopic origin of the observed
macroscopic rheological properties has been previously mentioned, but mostly in
passing. The present section is dedicated to pointing to the basic mechanisms at the
grain scale that are important in the understanding of the suspension macroscopic
properties. It starts by discussing the microstructure that develops under shear in
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granular suspensions in §5.1 and then moves on to the role of frictional contact
in §5.2. Then §5.3 presents theoretical attempts at explaining the divergence of the
viscosities when approaching the jamming transition.

5.1. Microstructure

When a suspension of neutrally buoyant hard spheres is sheared, the particles follow
the mean motion imposed by the shear but also interact with each other, leading to
fluctuating motions that result in a random walk and ultimately lead to a diffusion
process. (We do not intend to discuss this irreversible dynamics but will touch on
the subject in § 6.2.) However, a certain organisation exists in the averaged position
of the particles relative to each other and the particle microstructure that develops
is anisotropic, as previously mentioned in § 2.

A convenient way of characterising this structure is to introduce the pair
distribution function, g(r), which indicates how the particle density varies as a
function of distance from a reference particle at the origin. Note that this probability
is normalised by the number density and that g(r) is a correlation function giving
the probability of finding a particle at position r away from the reference particle,
relative to the probability of finding a particle at any position without knowledge
of any particle positions.

The experimental determination of g(r) is difficult, and particularly challenging in
the dense regime because it requires a very accurate determination of the positions
of all the particles. Averaging also needs to be performed in order to accumulate
enough data for accurate statistics. The first attempt at obtaining g(r) in concentrated
suspensions measured the relative arrangement of the particles located near the top
layer of a concentrated suspension sheared in a Couette cell (Parsi & Gadala-Maria
1987). More recent experimental determinations of g(r) use non-intrusive methods,
such as the refractive-index-matching technique or X-ray tomography, to explore the
microstructure inside the bulk of the suspension (see e.g. Blanc et al. 2013). The
function g(r) can also be estimated from numerical simulations, in particular using
the Stokesian dynamics method (see e.g. Blanc et al. 2013).

The pair distribution function of granular suspensions is expected to be independent
of the shear rate, y, and to depend only on the volume fraction, ¢. This again
comes from dimensional analysis and from the lack of any intrinsic time scale in
the system, as previously discussed in § 2. Studying the variation of g(r) with solely
the volume fraction ¢ is then appropriate. Two-dimensional maps of g(r) in the
plane of shear, obtained by Blanc et al. (2013) using an index-matching technique
of high quality, are shown in figure 20 for different volume fractions, ranging from
the dilute to the dense regime.

In the dilute regime (¢ = 0.05), the pair distribution function is fore—aft
asymmetric. There is a strong pair correlation zone at contact in the approach
side of the reference particle (near |r| & 2a) and a depletion of pairs close to
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FIGURE 20. Experimental pair distribution function, g(r), in the plane of shear. Data of
Blanc et al. (2013) for three different particle volume fractions, (a) ¢ =0.05, (b) ¢ =0.35
and (c) ¢ =0.55. The suspensions consisting of neutrally buoyant particles dispersed in a
fluorescent index-matched Newtonian liquid were sheared in a wide-gap Couette rheometer.
A thin laser sheet, perpendicular to the cell axis, illuminated the suspension. Owing to
an index-matching of high quality, Blanc er al. (2013) were able to detect accurately
the relative position vectors of particle pairs and, by averaging over different images, to
compute the normalised probability (plotted in colour scale) of finding particles at position
(x1, x,) away from the reference particle (the white disc) at position (0, 0), in the plane
of shear.

the velocity direction (at a small angle = 6°) in the receding side. There is also
a tail-like high particle concentration zone in the recession quadrant that is not
present in the approach quadrant. In this dilute regime, the interactions are mainly
two-body interactions, and thus g(r) mostly results from the dynamics of single
collisions between pairs, as sketched in figure 5. As already discussed in §2.2,
the observed asymmetry is the signature of the existence of non-hydrodynamic
forces acting between the spheres. Whereas, for perfectly smooth spheres, the
reversibility of the Stokes flow leads to reversible and symmetric trajectories and
thus to a symmetric g(r), particle surface roughness creates irreversibility, leading
to asymmetric collisional trajectories (with collisional contact in the approach side
and separation in the receding side) and to non-isotropic g(r).

As ¢ is increased, the pair distribution function, g(r), becomes more peaked at
close contact (|r| &~ 2a) but the depleted zone that is close to the velocity direction
for ¢ =0.05 rotates towards the dilatation axis direction (i.e. the 7/4 direction). At
high concentration (¢ > 0.45), a secondary depletion zone in the compressional
quadrant and a new high pair correlation zone near the mean flow direction
are observed. Stokesian dynamics simulations, wherein repulsive forces between
particles have been tuned to reproduce the particle roughness effects, present the
same qualitative features as those experimentally observed (Blanc et al. 2013).

The essential point is that the microstructure loses isotropy, establishing a
preferred direction for finding the close-contact pairs that control the observed
rheology of concentrated suspensions. In the dilute regime controlled by pair
interactions, knowledge of the position of the particles given by the pair distribution
function provides enough information to compute the stresses and to obtain
information about the rheology (see e.g. Wilson 2005). However, in the dense
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FIGURE 21. Relative contributions of the frictional contact (red squares) and the
hydrodynamic (blue circles) stresses to (a) the viscosity, and the (b) first and (¢) second
normal-stress differences as a function of the volume fraction, ¢. Data are from
the numerical simulation of Gallier ef al. (2014) including particle roughness (the
dimensionless roughness, normalised by the particle radius d/2, is 5 x 107%) as well as
frictional contacts between the particles (the friction coefficient between the particles is

11, =0.5).

regime for which multi-body interactions are dominant and frictional contact forces
start to prevail over hydrodynamic forces, analytic calculations are not possible and
one must rely on numerical simulations, as previously noted in §2. An important
issue is then to assess the relative importance of the hydrodynamic and contact
contributions to the stresses. This cannot be accessed in experiments, as it is
impossible to discriminate between true contacts or tiny open gaps between particles,
and thus inferring contact forces is difficult, but can be accessed in simulations as
discussed in the following section.

5.2. Role of contact

The development of numerical methods taking into account both hydrodynamic and
frictional contact interactions between particles that can possess some roughness
represents an important advance in the study of dense suspensions, as previously
discussed in §2. In these simulations, from the direct computation of the forces
between particles, it is possible to estimate the relative importance of the stresses
carried by the contacts and those due to hydrodynamics forces, and thus to determine
what contribution controls the observed rheological behaviours.

Figure 21(a) reports the results of Gallier ef al. (2014) showing the relative
contribution of the contacts (red squares) and the hydrodynamics interactions (blue
circles) to the shear viscosity, n,, of a suspension. A first observation is that
the contribution of the contacts remains negligible when the volume fraction is
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relatively low, typically ¢ < 0.25. For larger ¢, the contact contribution rapidly
increases with increasing ¢ and becomes dominant for ¢ = 0.4 for frictional
particles (for ¢ = 0.48 for frictionless particles). The hydrodynamic contribution also
increases with increasing ¢ but at a much slower rate, showing that the rheology
of suspensions is dominated by contacts in the dense regime and in particular close
to the jamming transition.

The same analysis can be carried out for the normal-stress differences to
gain insights about their origin. For the first normal-stress difference coefficient,
oy = Ni/|t|, plotted in figure 21(b), the hydrodynamic contribution is always
negative, with a magnitude increasing with increasing ¢ at moderate ¢ and then
slightly decreasing at ¢ = 0.4, whereas the contact contribution changes sign
for ¢ ~ 0.4. For moderate ¢, the hydrodynamic contribution slightly dominates
while for larger ¢ the two contributions are of the same order of magnitude.
The scenario strongly differs for the second normal-stress difference coefficient,
o, = N, /|t|, shown in figure 21(c). This second coefficient is dominated by the
contact contribution, which presents a strong negative value. These findings show
that the first and second normal-stress differences have different physical origins, as
already discussed in §2.2. The second normal-stress difference is mainly controlled
by the contacts, whereas hydrodynamic interactions play a role in the first difference
and may be decisive in explaining the sign of N;.

To be complete on this issue, we must also recall that contact may act as the
dominant component in the normal stress of the particle phase, in particular at large
¢, as noted in § 3.1. This is evidenced by the good agreement between experiments
and the sole contact contribution of the simulations of Gallier et al. (2014) shown
in figure 12 of §3.1.

5.3. Origin of the divergence of the viscosity

The numerical studies, discussed in §5.2, show that, close to ¢., where the
suspension viscosity diverges, the dynamics is mainly controlled by contact
interactions and hydrodynamics becomes of minor importance. In this extreme
regime of concentration, the rheology results from geometrical constraints and
interlocking between the particles and not from long-range hydrodynamics interactions
or lubrication forces. This represents a change of paradigm, as the prediction of
the rheological behaviour in this regime can come not from a better account of
the multi-body hydrodynamic interactions but rather from the understanding of
the contact interactions. A promising approach (Lerner, Diiring & Wyart 2012;
Trulsson, DeGiuli & Wyart 2017) takes inspiration from theoretical developments
on the jamming transition (O’Hern et al. 2003; Olsson & Teitel 2007). The theory
focuses on the properties of the contact network between the particles and on the
analysis of the possible modes of deformation of the granular packing close to
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jamming. Deriving the complete theory is beyond the scope of this review, and we
restrict the discussion to the key concepts introduced in this approach.

To gain insight into the origin of the divergence of the viscosity, we first introduce
the concept of a local shear rate, .., which is linked to the magnitude of shear rate
experienced by the interstitial fluid between the particles (e.g. the standard deviation
of the modulus of the shear rate). Because of the presence of the rigid particles, this
local shear rate, 9.4, is larger than the macroscopic shear rate, y, imposed onto the
whole suspension mixture. Dimensional analysis for rigid spheres implies that this
averaged local shear rate has to be proportional to the macroscopic shear rate,

J}lacal = £(¢)% (51)

with an amplification factor called the lever function, L£(¢), depending solely on
¢. A relation can then be derived between the viscosity of the suspension, n(¢),
and the lever function, £(¢), by using a dissipation argument, i.e. by estimating the
energy dissipated per unit of time and volume, P (Chateau, Ovarlez & Trung 2008).
Considering the whole suspension mixture, the dissipated energy is equal to the
shear stress times the shear rate, i.e. P = n,(¢)n;y>. Assuming that the dissipation
mainly occurs in the interstitial fluid and not at the contact between the particles
(which is exact in the limit of frictionless particles), P can also be related to the
local shear rate, such as P = (1 — ¢)ny2,,- Equating these two expressions leads
to the following relation between the shear viscosity and the lever function:

(1 - ¢))}l(2)ml _
. 2 -

ns(¢) = (1 - ¢)L(9)*. (5.2)

This simple homogenisation argument states that the increase in viscosity is
related to the lever function, i.e. to the amplification in local shear rate when
approaching ¢..

To understand the evolution of the lever function in the very dense regime, it
is thus necessary to focus on the motion of the particles themselves, as illustrated
in figure 22. In the dense regime, the particles do not merely follow the imposed
macroscopic shear but experience highly fluctuating motions. When approaching ¢.,
the possible mode of deformation of the grain assembly, the so-called floppy modes,
becomes highly constrained by the non-overlapping condition, leading to a dramatic
increase in the fluctuating motions. This effect is illustrated in figure 22(a.b),
which displays the particle motions obtained in the simplified simulations of
two-dimensional sheared suspensions performed by Trulsson et al. (2017) for two
volume fractions with that shown in figure 22(b) being very close to the jamming
point. When approaching ¢., the fluctuations increase by a strikingly large amount,
as the modes of deformation compatible with the imposed mean shear are more
and more tortuous.

A cartoon illustrating this amplification effect for a pair of spheres is proposed
in figure 22(c,d). If a horizontal velocity V, is imposed onto the left particle, the
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FIGURE 22. (a,b) Fluctuating particle motions from the two-dimensional simulations of
Trulsson et al. (2017) at (a) ¢ =0.791 and (b) ¢ = 0.812. The blue scale indicates the
number of contacts between particles and the size of the arrows indicates the magnitude
of the velocities around the imposed mean shearing velocity. (c,d) Cartoons explaining the
lever effect for a pair of spheres. When a horizontal velocity V, (in red) is imposed onto
the left particle, the motion occurs with a higher velocity V (in green) when closer to ¢,
(d) owing to geometrical constraints.

geometrical constraint closer to ¢, (figure 22d) imposes a larger vertical motion and
thus an actual velocity V > V, as the left particle needs to climb over the right
particle. In this cartoon, increasing ¢ to approach ¢, is equivalent to rotating the
pair of particles in order for their centres to become more closely aligned with the
horizontal line. The total velocity V induced by the imposed horizontal velocity V,
increases and diverges when the two particles becomes aligned with the horizontal
line, which can be seen as a ‘lever’ effect: V varies as V,/cos 8, where 6 is the angle
of the plane of contact with the horizontal direction. In the real packing, a similar
rigidity transition occurs. The geometrical constraint becomes more stringent when
approaching the jamming point, ¢., under shear. This results in particle fluctuating
motion becoming faster and stronger and this eventually leads to a divergence of the
averaged fluctuating velocity when approaching ¢., shown in figure 23, and hence
to a divergence of the lever function L(¢).

The theoretical challenge then lies in predicting how the fluctuating velocity scales
with the distance to the jamming point, (¢, — ¢). Exact theoretical results have
been obtained in the case of frictionless particles and the viscosity has been found
to diverge as n, ~ (¢. — ¢)~>% (Diiring, Lerner & Wyart 2016), with an exponent
of 2.8 in agreement with numerical simulations for frictionless particles but which
happens to be larger than that measured in experiments for frictional particles (see
§2.1 as well as §4.1). In the case of frictional particles, the sliding contacts can
indeed produce an additional source of dissipation, and the relation (5.2) between
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FIGURE 23. Averaged fluctuating velocity of the particles, §V, scaled by the imposed
velocity, yd, as a function of the volume fraction, ¢, for frictionless and frictional particles
(from the two-dimensional simulations of Trulsson et al. (2017)).

the lever function and the viscosity becomes debatable. It is possible in numerical
simulations to discriminate between conditions wherein the dissipation is dominated
by the interstitial fluid or by the sliding contacts. The dissipation occurs in the
interstitial liquid for low friction coefficient as expected, but also at high friction
coefficient, because particles no longer slide but roll relative to each other. However,
in the intermediate range of interparticle friction coefficients, dissipation due to the
sliding contacts becomes important, which may lead to a change in scaling relations.

Although not quantitative for frictional particles, this scenario based on the lever
function provides a physical explanation for the origin of the viscosity divergence by
linking it to an amplification of the particle fluctuating motions due to geometrical
constraints induced by the proximity to a rigidity transition. This is clearly a
promising path, but much remains to be discovered.

6. Beyond steady flows

The rheology discussed up to now (i.e. in §§2-5) is only valid in steady and
uniform flows. However, in many situations, the shear rate may vary, in both
direction and intensity as well as in time or space. In those situations, the underlying
microstructure no longer coincides with the equilibrium microstructure discussed
in §5.1, and additional complexities in the rheological behaviour are observed.
There is not yet a solid and unified framework that can encompass the diversity
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FIGURE 24. Sketch of the evolution of the viscosity as a function of the accumulated
strain, y = pt, during a shear reversal experiment at large ¢, i.e. typically ¢ = 0.4 (from
the data of Blanc, Peters & Lemaire (2011)). The suspension is initially sheared in one
direction with y <0 (blue path), and suddenly sheared in the reverse direction y >0 (red
path). The viscosity exhibits a sudden drop, corresponding to the loss of the contacts, and
then increases to return to its steady value as the contact arrangement slowly rebuilds.

of the phenomena seen in unsteady shear flows of suspensions. In this section, our
aim is to give a flavour of the observed problems by discussing three typical cases:
(1) the response of a suspension when undergoing a shear reversal in § 6.1, (ii) the
response of a suspension to a periodic shear flow in §6.2, and (iii) the transient
dynamics observed during the initiation of immersed granular flows in §6.3.

6.1. Shear reversal

The shear reversal situation that we first address consists in shearing initially the
suspension in a constant direction at a constant shear rate, y, during a long enough
time for a steady regime to be achieved and then suddenly reversing the flow, at
t =0, in the opposite direction. The first experimental measurements were obtained
by Gadala-Maria & Acrivos (1980) in a Couette cell and the problem has been
revisited more recently using local measurements and numerical simulations (Blanc
et al. 2011; Peters et al. 2016). The response of the suspension to the sudden change
in shearing direction that emerges from these studies is sketched for large ¢ (i.e.
typically ¢ = 0.4) in figure 24 where the viscosity is plotted as a function of the
accumulated strain, y = yt. During the first phase before shear reversal, the viscosity
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is constant and equal to its steady value, as represented by the blue path in figure 24.
When the shear is reversed, the viscosity experiences a sudden drop and then further
increases to reach eventually the same plateau steady value after a strain typically
equal to y &2, as shown by the red path in figure 24. Note that the minimum of
viscosity is less pronounced and the strain necessary to reach the plateau value of
the viscosity slightly larger for smaller ¢; the effect is not detectable in the dilute
regime (i.e. ¢ < 0.25).

The evolution of the viscosity can be interpreted in terms of the evolution
of the microstructure. Under steady shear conditions, the particles organise
into a microstructure where the contacts are predominantly oriented along the
compressional direction, as discussed in §5.1. When the shear is reversed, the
contacts open, and the contribution of the interparticle contact forces to the
suspension stress suddenly vanishes, leading to the sudden drop in viscosity observed
in experiments. The initial microstructure is then destroyed but slowly rebuilds in
the reversed direction, leading to the further increase in viscosity. Ultimately, the
steady equilibrium microstructure is recovered in the new shearing direction, with
contacts mobilised in the new compressional zones. Consequently, the viscosity
returns to its steady value. It is important to emphasise that the evolution of the
microstructure in this experiment is controlled by the strain and not by the shear
rate, as no intrinsic time scale exists in the problem. In an experiment performed
twice as fast, the microstructure evolves twice as fast, but reaches the steady state
at the same strain. The curve plotted in figure 24 showing the evolution of the
viscosity as a function of the strain is thus independent of the shear rate.

These observations during shear reversal of a suspension yielded the first
macroscopic evidence of the existence of a shear-induced anisotropic microstructure
in a sheared suspension (Gadala-Maria & Acrivos 1980). From the measured
evolution of the viscosity in figure 24, it is possible to go further and to acquire
information about the origin of the stress in suspension. Assuming that the drop
in viscosity just after shear reversal is induced by the loss of contact between
particles, the shear reversal experiment provides direct access to the hydrodynamic
contribution to the suspension stress and enables one to distinguish between the
two (contact and hydrodynamic) contributions. The minimum viscosity corresponds
to the sole hydrodynamic contribution whereas the plateau value stands for the
total, and thus the difference between the steady and minimum values gives
the contact contribution. By a systematic analysis in volume fraction, Blanc
et al. (2011) showed that both hydrodynamic and contact contributions to the
viscosity diverge when approaching ¢., but with contrasting divergences. The
hydrodynamic contribution diverges as ~ (¢, — ¢)~' whereas the contact contribution
as ~ (¢. — ¢)~2. The shear reversal experiment thus provides further evidence that
the rheology of granular suspensions in the dense regime is mainly controlled by
the contacts between particles as previously discussed in §§5.2 and 5.3.

852 P1-54


https://doi.org/10.1017/jfm.2018.548

https://doi.org/10.1017/jfm.2018.548 Published online by Cambridge University Press

Rheology of dense granular suspensions
6.2. Periodic shear flows

Another type of unsteady flow widely used for characterising the rheological
behaviour of complex fluids is the oscillatory shear flow, where a periodic strain
y =y sinwt is applied to the material. For a viscous suspension, the frequency w
of the oscillation plays no role as long as inertial effects remain negligible and the
only important parameter is the strain amplitude y°.

If the amplitude is sufficiently large (typically larger than the strain necessary
to recover the plateau value of the viscosity depicted in figure 24), the oscillatory
shear flow can be seen as a succession of shear reversal events, as described in the
previous §6.1. At the end of each oscillation, the arrangement coming from the
contact interactions between the particles is fully reconstructed and the suspension
has recovered its steady-state configuration. Consequently, oscillating the flow with
sufficiently high amplitude compares well with a constant flow, as seen for the
shear-induced migration of a suspension in a pipe (see e.g. Snook et al. 2016). The
fully developed flows seem to be equivalent but there may be some difference in
the dynamics as the microstructure takes some strain units to rebuild after each
oscillation (see §3.3.1).

For smaller amplitudes, the particles may not be able to recover completely
the microstructure produced by their irreversible contact interactions and the
oscillatory flow can be used as a means of probing the onset of irreversibility
in sheared suspensions (see e.g. Pine et al. 2005; Corte et al. 2008; Metzger &
Butler 2012). This threshold characterisation is undertaken by recording the position
of the particles once each cycle. Particles that undergo perfectly reversible periodic
trajectories stay at the same position in successive recorded images, while particles
that have encountered irreversible contact interactions are displaced. The particles
that experience irreversible displacements are called ‘active’; their irreversible
motion under oscillatory shear is chaotic and leads to a diffusive behaviour. If
the strain amplitude is small enough, complete reversibility can be achieved. After
some initial rearrangements, the fraction of active particles decreases and eventually
appears to vanish, meaning that the suspension has self-organised into a quiescent
absorbing state wherein the particles avoid each other (see figure 25a). Conversely,
for higher amplitudes, the fraction of active particles initially decreases but then
saturates at a finite value, meaning that the suspension has reached a steady state
wherein a finite fraction of particles experience random diffusive motions. The
transition between the quiescent and fluctuating states is characterised by a critical
strain amplitude, y°, which is a decreasing function of the volume fraction (see
figure 25b,c).

A suspension subjected to a periodic shearing flow is thus another example where
contact interactions play a crucial role, leading to a transition between a quiescent
absorbing state and a fluctuating state. The irreversible contact interactions produce
random fluctuating motions in the irreversible state but also cause the suspension
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FIGURE 25. Threshold of irreversibility in an oscillatory shearing flow of a suspension
(sketches inspired by Pine et al. (2005), Corte et al. (2008) and Metzger & Butler (2012)).
(a) Evolution of the fraction of active particles as a function of the number of oscillations
for two different strain amplitudes, y < y? (blue) and y, > ¥ (red), where y? is the
critical strain amplitude controlling the transition between the reversible and fluctuating
states. (b) Steady value (reached after a large number of oscillations) of the fraction of
active particles as a function of the strain amplitude showing the existence of a critical
strain, . (c) Phase diagram showing the volume-fraction-dependent strain threshold
separating the reversible (blue region) and fluctuating (red region) states.

to self-organise in order to minimise the interactions in the reversible state. The
structure reached in this latter regime (close to the transition) is sometimes called
hyper-uniform, as the distribution of the particles, although random, presents very
low density fluctuations. This property might be of interest in the design of new
materials.

6.3. Initiation of immersed granular flows

In the shear reversal and periodic shear cases discussed above in §§6.1 and 6.2,
the transient dynamics is controlled by the evolution of the microstructure, the
particle volume fraction remaining constant. However, as discussed in §4.2, in
many configurations, like submarine avalanches or sediment transport, the controlled
parameter is the confining stress and not the volume fraction, meaning that the
volume fraction may vary and adjust when flow conditions change. The variation of
the volume fraction may induce relative motion between the interstitial fluid and the
granular phase, which may dramatically alter the dynamics. The main effect of this
coupling is called the ‘pore pressure feedback’ mechanism (Iverson et al. 2000). It
is illustrated in figure 26 in the case of the simple pressure-imposed shearing device
introduced in §4.1 (see also figure 16b). A layer of neutrally buoyant suspension
having a thickness i is sheared by a top porous plate which enables the fluid to
flow through it but not the particles. This top grid is moved horizontally to impose
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FIGURE 26. Transient dynamics in a pressure-imposed shearing device. An initially dense
packing dilates when sheared, inducing an inward flow of fluid and a transient increase of
the granular pressure P’. A loose packing compacts when sheared, inducing an outward
flow and a transient decrease of the granular pressure. The intensity of the interparticle
contacts is indicated by the red lines.

the shear but is free to move vertically. A pressure P, is applied to the grid, the
height of which can adjust in response to dilatation or compaction of the sheared
suspension.

In the steady regime discussed in §4.1, the system reaches an averaged volume
fraction, which is a function of the viscous number, ¢g..qay(J) (see equation (4.2)).
However, before reaching this stationary state, one observes a transient dynamics
which depends on the initial preparation of the granular layer. If the suspension
is prepared in a dense state (e.g. by applying some vibration before starting the
experiment), the layer has to dilate before achieving steady state. During the
dilatation, the fluid is sucked into the cell, creating an inward flow through the
granular medium. This creates an additional pressure on the granular skeleton and
a negative pore pressure in the fluid. Since the shear stress necessary to shear the
material is proportional to the granular pressure, a strong peak in the shear stress is
thus observed. Conversely, if the suspension is prepared in a very loose state (e.g.
by a slow sedimentation process), the layer needs to compact before reaching steady
state. During the compaction, the fluid is expelled from the granular medium, and
the viscous stress induced by the outward flow leads to an increase in pore pressure,
which consequently screens the imposed granular pressure. The shear stress then
presents a minimum.
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To quantify this pore pressure feedback effect, it is essential to have a constitutive
law that describes the relaxation of the initial volume fraction towards the
steady-state value. A simple model has been proposed by introducing the idea of a
dilatancy angle, ¢ (Pailha & Pouliquen 2009). This angle i is defined as the angle
of the trajectory of the top plate of the shear cell during an incremental horizontal
displacement dX, i.e. tan ¥ = dh/dX, as sketched in figure 26. This dilatancy
angle can be either positive (dilatation) or negative (compaction) and, as a first
approximation, can be assumed to depend only on the departure of ¢ from steady
state, i.e. tan ¥ = K(¢ — ¢geaqy) With a constant coefficient K. The time evolution
of the volume fraction can be computed by considering the mass conservation
equation, d(¢h)/dt = 0, which can be written as (1/¢)(d¢/df) = —(1/h)(dh/d).
Since dh/dt = tan ¥ dX/dt and y = (dX/dr)/h, the relaxation equation for ¢ is
found to be

d .
g = _¢K(¢ - ¢steady)y- (61)

Equation (6.1) shows that the relaxation of ¢ towards its steady value is controlled
by a critical strain (typically 1/K) since the time derivative of ¢ is proportional to y.
Knowing the evolution of the volume fraction, the variation of the granular
pressure during the transient can be obtained by considering the two-phase flow
model described in § 3.2. From the momentum equation of the particle phase (3.14)
with the drag equation (3.12), the vertical gradient of the particle normal stress
dP?/0x, at each position in the layer is found to be simply related to the vertical
velocity of the granular phase ub:
opr 18n; ¢
oy & f@)
Note that in the drag equation (3.12) the average velocity U has been taken equal
to zero as imposed by the impermeable bottom plate. A rough estimate of the
variation of the particle pressure during the transient is obtained using the following
approximations. First, the order of magnitude of the pressure gradient is given by
oP’/dx, =~ APP/h, where AP? is the particle pressure difference between the bottom
and the top of the cell. Secondly, the order of magnitude of the vertical velocity is
the displacement of the top plate u5 ~ dh/df = tan ¢ U,. Finally, assuming that, in
the expression of the permeability in (6.2) the volume fraction can be approximated
by the critical volume fraction ¢., an estimate of the departure of the particle
pressure from the imposed P, is given by

(6.2)

h
AP” ’Z—zmpux, 6.3)

using tan Y = KA¢, where A¢p =¢; — ¢. is the difference between the initial volume
fraction, ¢;, and the critical volume fraction, ¢.. This estimation shows that the sign
of the excess granular pressure is given by the sign of A¢ and that its amplitude is
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FIGURE 27. Three examples of transient flows affected by the variation of the volume
fraction. (a) Collapse of a granular column immersed in a viscous fluid (from Rondon,
Pouliquen & Aussillous 2011). The dynamics differs depending on the initially dense or
loose preparation. White lines are the predictions of a model based on the dilatancy law
(6.1). (b) Impact of a sphere on an immersed granular packing for a dense and a loose
case (from Jerome, Vandenberghe & Forterre 2016). (¢) Flow of a suspension through a
constriction; for certain conditions, a pulsating flow is observed wherein a negative pore
pressure develops at the outlet (from Kulkarni, Metzger & Morris 2010).

large when the particle diameter d is small, the fluid is viscous, the layer is thick,
or when the imposed motion is rapid.

Beyond the simple shear case, other configurations have been studied to illustrate
the striking effect of the pore pressure feedback. The initiation of granular
avalanches is a first example shown in figure 27(a). A sudden release of a heap
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of grains in a fluid presents different dynamics depending on its initial preparation
(Rondon et al. 2011). An originally loose heap collapses much more rapidly and
flows much further than an initially dense heap. The pore pressure that can be
measured below the granular layer during the flow happens to be positive for the
loose case, meaning that fluid is expelled from the granular medium and partially
fluidises the material. Conversely, it becomes negative during the collapse of the
dense pile, meaning that the fluid is sucked and partially stabilises the heap. These
physical mechanisms based on the pore pressure feedback are proposed to explain
the wide variety of landslide dynamics observed in nature. A second example shown
in figure 27(b) is the impact of an object on an immersed granular packing (Jerome
et al. 2016). The impactor sinks into the packing when the packing is prepared in
a loose state, whereas it is abruptly stopped when the packing is dense. The two
different dynamics are due to the compaction or dilatation induced by the impact,
which again either fluidises or stabilises the packing. A last example showing the
importance of the variation of volume fraction is observed during the drainage of
a suspension through a constriction (Kulkarni ef al. 2010). When approaching the
outlet, the suspension is sheared, provoking a dilatation, which sucks the fluid and
reduces the flow rate. In some regime, this self-filtration process induces periodic
oscillations of the flow rate as illustrated in figure 27(c). These phenomena coming
from the change in ¢ may look like shear thickening or thinning (see § 7.2) but in
fact are transient effects.

7. Towards more complex suspensions

The important message that we hope we have been able to convey in the
preceding pages is that the rheology of dense granular suspensions of spheres
is mainly controlled by the contact interactions between particles. While long-range
hydrodynamics interactions or lubrication forces are essential in the dilute regime,
they become of lesser importance as the concentration is increased to a point
that solely the contact interactions matter to predict realistically dense suspension
dynamics. This is a major change in paradigm, as the prediction of the rheological
behaviour close to the jamming transition can only come from the understanding of
the contact network interactions and not from a better account of the hydrodynamic
interactions.

Another point that we expect to have been able also to relate is that dense
suspension rheology can be approached in different ways which are not contradictory
but can be considered as complementary and compatible. The suspension can be
seen as an effective fluid but also as a two-phase system when there is some
slip between the fluid and the solid phases. The rheometry of dense granular
suspensions under volume- or pressure-imposed flow conditions are two different
but equivalent ways of accessing the suspension constitutive laws. Choosing the
appropriate approach then depends not only on the flow configuration that one
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considers but also on the parameters that one wishes to obtain. We hope that we
have been able to provide some guidance to select the most suited approach.

Many of the problems that we have discussed are close to being understood,
although there maybe some issues (e.g. obtaining the full tensorial form of
the suspension stress or understanding transient or non-uniform flows of dense
suspensions) which still need to be addressed more thoroughly. But beyond the
problem of a dense granular suspension of hard spheres, there are entirely novel
avenues of study concerning more complex mixtures of particles and fluids. In the
following, we discuss the open areas of research that first spring to mind. We are
probably touching on the most obvious subjects, and we do not want to suggest
that the different topics that we are mentioning are the only paths to undertake, as
we may be overlooking some important other questions.

7.1. Non-spherical particles

The previous sections have dealt with spherical particles, but in practice particles
happen to be of a large variety of forms. Studies regarding the rheology of
suspensions of non-spherical particles are scarce relative to the case of spheres.
Most of what can be found in the literature concerns fibres or platelets, which
represent the two basic deviations from sphericity. The major additional difficulty is
that the rheology strongly depends on the particle orientation during the flow, since
motion and orientation are coupled for non-spherical bodies. The case of suspensions
of elongated particles is the most advanced, not only because of its importance in
industrial applications such as pulp and paper as well as fibre-reinforced materials,
but also because there are some specific methods, such as slender-body dynamics,
that can be used. We certainly cannot cover the whole research area, but we would
like to give some hints of the recent findings in the case of dense suspensions of
fibres.

Rod-like particles, i.e. fibres, are bodies of revolution that possess two typical
dimensions: a length, L, along their axis of symmetry, and a diameter, d, along their
minor axis. For elongated objects, their aspect ratio, A, = L/d, is supposed to be
much larger than one. The dilute regime is usually defined as nL® < 1 where n
is the fibre number density (see figure 28). The mean spacing between the fibres
is then large compared to their length and interactions between particles are thus
negligible in this limit. Describing the rheology is essentially carried out in the
same way as for the case of spheres, as it is necessary to compute first the particle
motion, then the microstructure, and finally the average particle contribution to the
whole suspension stress. But in the case of fibres, the rheological properties strongly
depend on the microstructure, as the particle contribution to the suspension stress
depends on the fourth moment of the particle orientations. This means that it is
unavoidably necessary to determine the microstructure of the fibres even in the dilute
limit. This contrasts with the case of spheres, for which the rheology depends upon
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FIGURE 28. The different regimes of fibre suspensions: from left to right, the dilute
(n < 1/L%), semi-dilute (1/L* <n <« 1/L?d) and concentrated (n > 1/L?d) regimes and
the ordered nematic state (n>> 1/L%d).
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the relative arrangement between the spheres exclusively in the non-dilute regime
(see §2.1).

Suspensions of fibres become semi-dilute when free fibre rotations are no longer
maintained, i.e. nL? ~ 1. Hydrodynamic interactions then need to be accounted
for in order to predict the fibre dynamics and rheology. For larger concentrations,
typically nL?’d > 1, fibre suspensions become concentrated. The mean spacing
between the particles falls below the fibre diameter and the rotation of a given
fibre within the suspension is strongly hampered by collisions with its neighbours.
Including hydrodynamic interactions in calculating the microstructure becomes
of lesser importance for these concentrated suspensions, as the collisional contacts
between the fibres dominate the dynamics (see e.g. Butler & Snook 2018). At much
higher concentrations, the fibres can undergo orientational alignment reminiscent of
a nematic phase ordering.

The rheology of fibre suspensions is much less explored in the concentrated
regime. The viscosity is seen to increase with increasing concentration and to diverge
at a critical volume fraction depending on the fibre aspect ratio, A,. However, there
is a great variability among experiments and many studies indicate a shear-thinning
behaviour which is even more notable for larger ¢ (see e.g. Butler & Snook
2018). A similar non-Newtonian phenomenon has been reported for suspensions
of spheres at large ¢ (see §2.3) but the effect is much enhanced in the case of
fibres. For suspensions of elongated particles that are rigid and large enough to be
free of colloidal forces, the viscosity can vary with the strain when the orientation
distribution evolves, e.g. from an initial isotropic distribution to a more oriented
distribution, but when steady state is reached, the viscosity should not depend upon
the shear rate. Different explanations have been advocated to explain the origin of
the departure from a Newtonian behaviour, such as some flexibility of the fibres
under the imposed conditions, imperfect neutral buoyancy of the particles, or the
existence of adhesive forces between the fibres.

The recent use of pressure-imposed rheometry, which enables us to approach the
jamming transition closely (see §4.1), has shed light on the issue for suspensions of

852 P1-62


https://doi.org/10.1017/jfm.2018.548

https://doi.org/10.1017/jfm.2018.548 Published online by Cambridge University Press

Rheology of dense granular suspensions

large, non-colloidal, rigid, neutrally buoyant fibres (Tapia et al. 2017). The apparent
shear thinning has been found to be due to the existence of yield stresses that
increase with increasing volume fraction. Subtracting this yield-stress effect leaves
a purely Newtonian viscous response. It is debatable whether attractive forces can
be responsible for the observed yield stresses for the large particles used in this
experiment or whether flexibility can be blamed, as the fibres are extremely rigid.
Another explanation that has been proposed is the occurrence of transient jamming
due to finite-size effects. The resulting large fluctuations close to the jamming
transition may impact the averaged rheological measurements, which consequently
reveal yield stresses. The problem is far from being deciphered and in particular
more should be done in understanding the structure of the suspension, but this study
provides some information on the rheology close to the jamming transition. The
critical volume fraction, ¢., is found to decrease with increasing aspect ratio, A,,
and when rescaling is done using ¢.(A,), the shear and normal viscosities present a
divergence ~ (¢. — ¢)~!, in stark contrast with the divergence ~ (¢, — ¢) > observed
for spheres.

Dissimilarity with the case of spheres is also seen for normal-stress differences
(Snook et al. 2014). The second normal-stress coefficient, oy = N,/7, is found
to be negative and its magnitude increases as the concentration is raised and the
aspect ratio is lowered. The first normal-stress coefficient, oy = N;/t, is positive
and approximately twice the magnitude of the second normal-stress coefficient
(0y = —2a,), and its magnitude increases as the concentration is raised and aspect
ratio is lowered as for «,. This differs from the results obtained for spheres
presented in § 2.2 for which «, is indeed negative but «; is small and found to be
negative in the bulk suspension (for ¢ < 0.5). An important point revealed by the
three-dimensional, slender-body, numerical simulations of Snook et al. (2014) is
that contact interactions are primarily accountable for these observed normal-stress
differences. The simulations also show that the fibres strongly align with the flow
direction. The repulsive contact interactions act primarily in the gradient direction
and weakly in the flow direction, making N; positive. They are also more important
in the vorticity direction than in the flow direction, but not as intense as in the
gradient direction, making N, negative. These results are obtained using unbounded
simulations and surface deflection measurements in rotating or tilted trough flows
where the particles are relatively unconfined by the boundaries (see figure 6d,e).
For confined geometry, e.g. the parallel-plate measurements of Bounoua, Kuzhir
& Lemaire (2016) and the confined simulations reported by Snook et al. (2014),
very different (in fact much larger) values are observed. Confinement has a strong
influence for concentrated suspensions of fibres, well past the usually alleged limit
of a few fibre lengths.
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7.2. Colloidal interactions and nonlinear rheology

In §§2-6, we have restricted the discussion to large, non-colloidal particles. The
particles were non-Brownian and the interactions were dominated by hydrodynamic
interactions and frictional contacts. The absence of a time scale besides the imposed
shear rate y~! implied a linear rheology. However, when the particles become
smaller, other interactions come into play, such as electrostatic forces, van der
Waals interactions, or forces induced by some coating on the particles. For particles
smaller than a micrometre, thermal fluctuations are also non-negligible. In these
colloidal suspensions, additional time scales are present. They are at the origin
of complex nonlinear rheological behaviours such as the existence of a minimum
stress to flow (a yield stress), a shear-rate dependence of the viscosity (shear
thinning or thickening when the viscosity decreases or respectively increases with
y), or a time dependence of the viscosity (thixotropy). Describing the diversity of
behaviours observed in a unified framework is a real challenge, as the rheology
strongly depends on the precise nature of the particle interactions. However, a crude
classification can be made depending on the repulsive or attractive nature of the
interactions and on the existence or absence of Brownian motion.

Suspensions of particles interacting through attractive forces are mainly controlled
by aggregation processes. Aggregation being a slow process, a first characteristic is
that the rheological properties depend on the age of the suspensions, i.e. the waiting
time before shear is applied. A second consequence is that aggregates percolating
throughout the whole sample may form, leading to the occurrence of a yield stress.
A last effect is that aggregates are broken when the suspension is sheared, giving rise
to a shear-thinning behaviour. The rheological properties under steady conditions are
thus controlled by the competition between the aggregation process induced by the
attractive forces and the disaggregation induced by the shear.

Suspensions of particles interacting through repulsive forces have recently attracted
a lot of attention in the context of shear-thickening fluids; we devote the discussion
to this latter subject. Repulsion can be due either to electrostatic forces or to
polymer brushes grafted on the particles. The archetype of a shear-thickening
fluid is a suspension of cornstarch particles, which exhibits a violent discontinuous
transition between fluid behaviour at low shear rate and solid behaviour at high shear
rate, a property that enables running on a pool full of cornstarch. The elucidation
of this striking phenomenon has been long sought and has been the matter of
active scientific debate. Several explanations, such as the formation of hydroclusters
(Wagner & Brady 2009), the role of granular dilatancy (Brown & Jaeger 2014), or
the importance of inertial effects (Fall et al. 2010), have been proposed.

Here we discuss a promising model that has recently emerged, based on the
crucial role of contacts and friction between the grains (Mari et al. 2014; Wyart
& Cates 2014). The proposed scenario is the following. At low shear rate, the
short-range repulsive force F, prevents the particles from coming into contact,
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FIGURE 29. A scenario for the shear-thickening transition. (a) At low shear rate, repulsive
forces (sketched in dotted lines) prevent the particles from touching, whereas (b) at high
shear rate, contacts form and friction comes into play. (¢) The two viscosity curves
corresponding to frictionless and frictional behaviours, with the arrows indicating the
different rheological transitions. (d) The three types of rheological responses: (i) at low
volume fraction, the shear thickening is continuous (orange curve); (ii) at intermediate
volume fraction, the viscosity discontinuously switches from the frictionless to the

frictional branch (black line); and (iii) at higher volume fraction ¢ > qb“ "7, the suspension
suddenly jams (green line).

as depicted in figure 29(a). The rheology corresponds to that of a suspension
of frictionless particles, with a viscosity diverging at a critical volume fraction

=" When the shear rate increases, the particle pressure increases and eventually
becomes strong enough to overcome the repulsive forces and to create contacts
between the grains (see figure 29b). Friction is mobilised and the rheology at high
shear rate switches to that of a suspension of frictional particles, with a viscosity
diverging at a critical volume fraction ¢.” 70 7= Note that this difference in
viscosity curves corresponding to frictionless and frictional suspensions has been
previously discussed in §2.1; see the numerical data of Mari et al. (2014) plotted
in figure 4. The transition between these two rheological regimes is illustrated in
figure 29(c,d); see also the theoretical description of Wyart & Cates (2014). At low
¢, the transition is continuous, with a viscosity gently evolving when increasing
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y from values on the frictionless and frictional viscosity curves which are not far
apart. At intermediate ¢, a discontinuous transition is observed when increasing
y and the viscosity abruptly switches from one branch to the other. Finally at
high ¢ (for ¢e” < p <Pl the suspension flows at low y but suddenly jams
when the shear rate increases and the suspension becomes frictional since the
volume fraction is larger than the maximal volume fraction for frictional particles,
¢ > Q" * Cracks and fractures are observed when this transition occurs. The
shear-thickening transition is thus a transition from a frictionless to a frictional
suspension occurring when the stresses overcome the repulsive forces (Wyart &
Cates 2014). This scenario is supported by different experimental observations (see
e.g. Clavaud et al. 2017) and numerical simulations (see e.g. Mari et al. 2014). The
transition occurs at a critical stress that depends only upon the repulsive force and
the particle size, t., and a critical shear rate that is a decreasing function of the
volume fraction, y,, given by

Fre d . /3 Fre
=P aMQ Ye=P— o
ns" (¢)d?

c d2
with 8~ 0.04 as inferred in the numerical simulations of Mari et al. (2014).

A similar scenario also applies when the particles are Brownian. Numerical and
theoretical studies have shown that the fluctuating thermal motion also prevents the
formation of frictional contacts and thus plays a role similar to that of a repulsive
force. The rheology of Brownian suspensions can then be divided into three regimes.
The first regime at very low shear rate is a viscosity plateau, corresponding to a
suspension of hard spheres at thermal equilibrium. The viscosity of the plateau
increases when increasing the volume fraction and diverges close to the glass
transition (not to be mistaken for the jamming transition). The plateau is observed
at low Péclet number, i.e. Pe (x nf)}d3 /kT) < 1 (where k is the Boltzmann constant
and T the temperature), where the Péclet number measures the ratio of the rate of
advection to the rate of diffusion. At larger Péclet number, Brownian effects become
less predominant and the viscosity decreases, leading to shear-thinning behaviour.
In this regime, both thermal agitation and repulsive forces prevent the particles
from coming into contact. At larger shear rate, a discontinuous shear thickening
is observed when the particle pressure becomes large enough to induce frictional
contacts between the particles. In this Brownian repulsive suspension, the transition
has been shown to be controlled by a critical stress with two additive contributions
(Mari et al. 2015),

(7.1a,b)

kT
&’
one coming from the repulsive force, and one from the thermal fluctuations. The
Brownian component prevails only for very small particles, typically less than
0.1 wm. For larger particles, the shear-thickening transition is controlled by the
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repulsive forces, although thermal agitation may modify the rheology prior to the
transition.

Although many issues of the rheology of colloidal suspensions remain to be
deciphered, the recent progress reported above regarding shear-thickening fluids
conveys the same message as that expressed across the present paper, i.e. that for
dense suspensions (even in the colloidal regime) contact interactions are of central
importance.

7.3. Non-Newtonian fluids

We have previously considered that the suspending fluid was Newtonian. In many
industrial or even natural suspensions, particles are dispersed in a non-Newtonian
fluid that can be shear thinning, shear thickening, viscoplastic, viscoelastic,
thixotropic or rheopectic. Examples include cosmetic or food products, composites,
cement and concrete, drilling mud, slurries, debris flows and lavas. The non-
Newtonian nature of the suspending fluid affects the dynamics of the particles, which
can differ in a significant manner from the corresponding motion in a Newtonian
medium. Covering the diversity of behaviours observed is obviously beyond the
scope of the present section, and we just limit the discussion to pointing to the
problems that are encountered in tackling the rheology of these complex suspensions
in the dense regime.

The major difficulty lies in the fact that additional stress or time scales enter
into the problem aside from the time scale imposed by the shear rate, y~!, and
that consequently dimensional arguments cannot provide the complete form of the
constitutive laws. As a typical example, the rheology of viscoplastic suspensions is
no longer described by a single dimensionless parameter as seen for a Newtonian
suspension in § 2.1, as the yield stress introduces an additional stress scale. One then
needs to rely on additional assumptions to infer the detailed rheological laws. In the
dense regime (in particular close to jamming), one can use the fact that the rheology
is dominated by steric constraints as sketched in the following.

Many of the rheological properties of non-Newtonian suspensions are observed
to be qualitatively similar to those of the non-Newtonian suspending fluid but the
addition of particles usually induces an intensification of these properties similarly
to those seen for the increase in shear viscosity for a Newtonian suspension in § 2.1.
Again, as a typical example, adding spherical particles to a viscoplastic fluid leads
to a gradual augmentation of the viscosity and the yield stress (see e.g. Chateau
et al. 2008; Dagois-Bohy er al. 2015). This rheological intensification caused by the
addition of particles can be addressed by the homogenisation approaches introduced
in §5.3. The main idea is that this is a purely steric effect due to the presence of
the particles which locally enhances the shear rate in the suspending fluid. This
amplification effect is thus linked to the lever function, L£(¢), which is a function
solely of ¢ and relates the magnitude of the local shear rate (which develops in the
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fluid interstices between the particles) to the macroscopic shear rate (imposed on
the whole suspension mixture); see equation (5.1). This type of mean-field approach
is successful in addressing smooth increases such as seen in viscoplastic suspension
(see e.g. Chateau et al. 2008; Dagois-Bohy et al. 2015) but cannot grasp sharper
amplifications such as the enhancement of the shear-thickening transition by the
addition of large spherical particles to a dense cornstarch suspension (Madraki ef al.
2017). Further theoretical studies are needed to tackle these nonlinear rheological
particulate systems.

7.4. Inertial suspensions

In the preceding pages, the discussion has been limited to the viscous regime,
assuming that inertia was negligible. However, when the viscosity of the suspending
fluid becomes smaller or the size of the particles becomes larger, inertia comes
into play and the rheological constitutive laws are impacted by new sources of
dissipation. In the dilute regime, the dissipation in the interstitial fluid can be
modified when inertial or turbulent flows develop. For the dense suspensions of
interest in this paper, the main new source of dissipation when entering the inertial
regime comes from the inelastic collisions between the grains. In the fully inertial
limit, the viscosity of the suspending fluid no longer plays a role and dimensional
analysis implies that, for a suspension made of particles of diameter d and density
pp sheared at a constant volume fraction ¢, the shear stress 7 scales with the square
of the shear rate y,

T =p,d’ ()Y, (7.3)

where 7,(¢) is a dimensionless function of the volume fraction, which diverges
when approaching the maximum volume fraction, ¢.. The normal particle stress
scales identically. This scaling is called the Bagnold scaling, in reference to the
pioneering experimental work of Bagnold (1954), who first discovered the existence
of two different regimes for the rheology of suspensions. In the dual description of
pressure-imposed rheology discussed in § 4.1, the relevant dimensionless parameter
for the inertial regime is no longer the viscous number, J, but is the inertial number,
I=yd/ m, and the friction coefficient @ (/) and the volume fraction ¢ (/) are
functions of /. The limit when the interstitial fluid plays no role corresponds to
the flow of dry granular media, which has been extensively studied and for which
empirical correlations have been proposed for the constitutive laws (see e.g. Forterre
& Pouliquen 2008).

The question of the transition between the viscous and the inertial regimes has
been less investigated. Assuming that the transition occurs when the viscous stress
T = n,(¢)y and the collisional stress (7.3) are of the same order of magnitude
(Lemaitre, Roux & Chevoir 2009) provides an estimate of the critical shear rate
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above which inertia dominates,

ny ns(P)
ppd2 ni (¢) .

This critical shear rate, y., decreases with decreasing fluid viscosity or with
increasing particle size and density. Its variation with ¢ depends on the relative
¢ dependence of the two functions n,(¢) and n;(¢). However, no consensus can
be found in the literature regarding the behaviour of y.(¢) close to the maximum
volume fraction. Some studies suggest that both functions diverge as ~ (¢, — ¢) 2
close to jamming, leading to a critical shear rate independent of the volume fraction
(Trulsson, Andreotti & Claudin 2012; Amarsid et al. 2017), while some others find
that the divergence of n,(¢) is slower than that of 5,;(¢) and thus that p.(¢)
goes to zero when ¢ reaches ¢, (Fall et al. 2010; DeGiuli et al. 2015). Further
investigations are clearly necessary to grasp the important parameters controlling
this transition between the viscous and inertial regimes of dense suspensions.

Ve(@) = (7.4)

7.5. And more . ..

There are some more domains that are completely open for future research. The
following is a tentative list of those areas wherein questions are left quite open.

(i) Dense suspensions of polydisperse particles. While only monodisperse systems
have been considered in the preceding pages, dispersion in size is particularly
relevant in practice. Polydispersity certainly affects the critical packing fraction
at jamming but could also lead to segregation phenomena. Much needs to be
comprehended on these issues.

(i) Dense suspensions of deformable particles. These particles comprise capsules,
vesicles, flexible bodies, or soft particles. The single-body flow problem is quite
advanced but the dense regime is quite unexplored.

(iii)) Dense suspensions of active particles. The research on swimming micro-
organisms has been exploding lately and many studies now focus on the
collective dynamics of these swimmers wherein the mode of propulsion seems
to be a determining factor.

(iv) Dense suspensions at interfaces. The formation of drops and their dynamics as
well as the behaviour of free-surface flows are problems that have attracted
a lot of interest in the fluid mechanics community. They have begun to be
revisited for suspensions wherein the presence of particles at interfaces raises
new questions that are left quite unexplored and need to be addressed.

(v) Elongational rheology of dense suspensions. To describe some flow configur-
ations like the pinch-off of suspension threads, a better knowledge of the
suspension elongational rheology is necessary, which remains to be developed.

(vi) Non-locality. Close to the maximum volume fraction, the particles experience
highly correlated motions which are not taken into account by the local
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rheological models discussed in this paper, as shown for example in §3.3.1
when discussing shear-induced migration in pipe flows. Development of more
elaborate non-local models is an active domain of research for dry granular
flows, which should also be relevant for a better understanding of dense
suspension flows.
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