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Direct numerical simulation of the
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turbulent boundary layer
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We perform a direct numerical simulation (DNS) investigation of the incompressible
temporally developing turbulent boundary layer. The approach is inspired by temporal
simulations of flows which are generally thought of as developing in space, such
as wakes and mixing layers. Compressible boundary layers have previously been
studied in this manner yet the temporal approach appears to be under-exploited in
the literature concerning incompressible boundary layers. The flow is the turbulent
counterpart to the laminar Rayleigh problem or Stokes’ first problem, in which a fluid
at rest is set into motion by a wall moving at constant velocity. An initial profile
that models the effect of a wall-mounted trip wire is implemented and allows the
characterisation of initial conditions by a trip Reynolds number. For the current set-up,
a trip Reynolds number of 500 based on the trip-wire diameter successfully triggers
transition yet only mildly perturbs the flow so it assumes a natural development at
the lowest possible Reynolds number based on momentum thickness. A systematic
trip study reveals that as the ratio of momentum thickness to trip-wire diameter
approaches unity, our flow approaches a state free from the effects of its starting trip
Reynolds number. The transport of a passive scalar by this flow is also simulated. The
role played by domain size is investigated with two boxes, sized to accommodate two
chosen final Reynolds numbers. Comparisons of the skin friction coefficient, velocity
and scalar statistics demonstrate that the temporally developing boundary layer is a
good model for the spatially developing boundary layer once initial conditions can
be neglected. Analysis of similarity solutions suggests such a rapprochement of the
spatial and temporal boundary layers may be expected at high Reynolds numbers
given that the only terms that asymptotically persist are those common to both cases.
If one seeks statistics for the turbulent boundary layer, the temporal boundary layer is
therefore a viable method if modest convergence is sufficient. We suggest that such
a temporal set-up could prove useful in the study of turbulence dynamics.

Key words: turbulent boundary layers, turbulent flows, turbulence simulation

1. Introduction
The central role played by turbulent boundary layers in countless modern

engineering applications motivates their rigorous study. Many investigations both
theoretical and experimental have shed light on their nature, with particular interest
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shown to the canonical zero-pressure-gradient incompressible turbulent boundary
layer over a flat plate. Increasing computational power in recent times has allowed
new opportunities for their study. Yet inhomogeneity in both the streamwise and
wall-normal directions renders spatially developing boundary layers more challenging
in comparison to streamwise-homogenous canonical flows such as channels and pipes.
Tied with this inhomogeneity in the streamwise direction is the need for inflow
conditions, further complicating the computational task.

Pioneering a new age in the study of turbulent boundary layers, Spalart (1988)
simulated such a flow at a number of discrete Reynolds numbers yielding widely
accepted statistics. The method of coordinate transfer of the Navier–Stokes equations
used in this work to force homogeneity in the streamwise velocity field, permitting
periodic boundary conditions, is nevertheless complicated owing to introduced ‘growth
terms’. Several decades ago, a number of studies used a temporal approach (e.g.
Brereton & Reynolds 1991), many of these being concerned specifically with
transition (e.g. Wray & Hussaini 1984; Spalart & Yang 1987; Laurien & Kleiser
1989), however it seems to have been abandoned and more generally, boundary
layer simulations themselves lost prominence as attainable periodic channel and
pipe simulations came to the fore. More recent studies of the turbulent boundary
layer use long computational domains in order to simulate the spatially developing
turbulent boundary layer. Broadly speaking, they fall into one of two groups: those
that simulate from the trip or transition to fully developed turbulence replicating
experimental studies (Schlatter et al. 2009; Wu & Moin 2009; Sayadi, Hamman &
Moin 2013), and those that employ a rescaling and recycling method (Ferrante &
Elghobashi 2004; Jiménez et al. 2010) based on the scheme introduced by Lund, Wu
& Squires (1998) to circumvent the simulation of transition. For those simulations in
the first group, a wall-normal forcing shortly after the inlet may be used to trigger
transition (e.g. Schlatter et al. 2009). Introducing patches of isotropic turbulence,
requiring a separate direct numerical simulation (DNS) computation, is an alternate
method used by Wu & Moin (2009). The recycling scheme generates turbulent inflow
by using the velocities from a reference plane downstream to synthesize the incoming
turbulence (Jiménez et al. 2010). A variation is to recycle in a precursor simulation,
which, in turn, provides the inflow to a main simulation (Ferrante & Elghobashi
2005). Since boundary layers were reconsidered by the research community when
computational power had increased sufficiently to motivate DNS of physically realistic
boundary layers at modest Reynolds numbers, it would appear the temporal technique
for boundary layers fell out of use due to shifting preoccupations of the research
community, not because it was shown conclusively to be of little use.

Temporal simulation has proved very effective for a number of canonical flows
which are generally thought of as developing spatially. In essence, a streamwise-
shortened domain is combined with periodic boundary conditions in this direction.
This is the standard method of simulating fully developed turbulent channel (e.g. Kim
& Moin 1987) and pipe (e.g. Eggels et al. 1994) flows, which are considered to be
homogeneous in the streamwise direction allowing periodic boundary conditions to be
imposed along this axis. There are many past studies of spatially developing free-shear
flows (e.g. Stanley & Sarkar 1997), however the temporal approach has also been
very useful in their study (e.g. Rogers & Moser 1994). Indeed such a flow becomes
statistically one-dimensional and time dependent as the ratio of characteristic velocity
difference Us to characteristic convection velocity Uc tends to zero (Pope 2000).
Plane and axisymmetric wakes become self-similar as Us/Uc asymptotically tends
to zero, which then drives the spreading parameter to a constant. It will be shown
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DNS of the incompressible temporally developing turbulent boundary layer 439

in this paper that a similar equivalence exists in boundary layers when uτ/U∞
tends to zero, where uτ is the friction velocity and U∞ is the free-stream velocity.
Simulation in time rather than in space is found to be very useful for the far-wake
study of Redford, Castro & Coleman (2012), rendering such a study efficient and
thus achievable. A temporal plane ‘jet’ is used in the study of van Reeuwijk &
Holzner (2014) investigating the structure of the turbulence interface. The temporal
technique is well accepted within the geophysical community, with temporal DNS
used study to buoyancy-driven flows as exemplified by Mellado (2012) and Jonker
et al. (2013). Compressible turbulent boundary layers have also been studied using a
temporal approach (e.g. Martin 2007) and streamwise periodic boundary conditions
were found to be valid if the flow can be considered to be quasi-steady and the time
sampling is shorter than the time scale for boundary layer growth.

To the authors’ knowledge, the temporal study of the incompressible turbulent
boundary layer represents a gap in the current literature. Whilst we acknowledge
the previous use of such a technique, prior studies have always focused on specific
effects (e.g. Esmaili & Piomelli 1992). We here aim to investigate it in a thorough and
generalistic manner. We propose here to study the temporally developing boundary
layer as a counterpart to the spatially developing boundary layer in a similar spirit to
those temporal counterparts studied for the various aforementioned canonical flows.
An interesting flow in its own right, a goal of the present endeavour is to investigate
the potential use of such a numerical tool to study the turbulent boundary layer,
which has proven to be particularly difficult. High-quality spatial DNS data, not
available until recent times, now permits a systematic comparison of the spatial and
temporal turbulent boundary layer. However we do not propose the use or reuse of
this technique solely as a substitute for a more costly spatial simulation. Since the
temporal boundary layer is the asymptotic form of the spatial boundary layer as our
analysis in § 5 attests, it stands to reason that this technique may serve to elucidate
which effects are due to spatial growth and which are due to pure wall-bounded
turbulence. It is pertinent to note that much has been learnt from comparing temporal
to spatially developing wakes for example, since in a parallel manner the temporal
wake is the analytical ‘far’ wake.

Since the flow is doubly periodic as in channel flow simulations, this numerical
scheme is relatively simple to set up, and holds the promise of a potential comput-
ational cost saving for a comparable Reynolds number since we replace the long
computational domain of previous studies with a shortened one in the streamwise
direction and employ periodic boundary conditions. For example, 6145×360×1536≈
3.4 × 109 collocation points are required in the spatial simulations of Jiménez et al.
(2010) for a final Reynolds number based on a momentum thickness of around 2000,
which we achieve using 512× 512× 384≈ 0.1× 109 grid points. As a demonstration
of the savings in computational cost, the present simulations are used to systematically
study the effect of trip size, which has not been attempted for the spatial boundary
layer, owing, perhaps, to the high computational cost of the spatial set-up.

Taking inspiration from experiments, a trip is implemented in our computational
domain so that our flow may transition to a turbulent regime. The role this trip plays
in achieving undisturbed, and therefore, canonical, evolution is firstly investigated.
Simulations are then carried out for two sets of representative initial conditions with
a larger computational domain (i.e. planned for a larger final Reynolds number) in
order to assess the effect of box size upon the final results, and to determine the
true persistence of the effects of large perturbations to the flow. At large Reynolds
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(a)

(b)

x

FIGURE 1. Comparison between the (a) spatially and (b) temporally developing boundary
layers.

numbers, we find that similarity solutions for the temporal and spatial boundary
layers are asymptotically equivalent. This points to an eventual analytic equivalence
of the two flows.

1.1. Analysis of the temporally developing boundary layer
Figure 1(a) provides a sketch of the spatially developing boundary layer, where the
boundary layer thickness δ, taken to be the 99 % thickness throughout, grows with
streamwise coordinate x. Below it in figure 1(b) we present the proposed temporally
developing boundary layer, shown at two different instances in time. The shortened
domain uses periodic boundary conditions in the streamwise direction, therefore the
boundary layer thickness δ is forced to take the same value along the streamwise
dimension, that is, there is no streamwise growth in the boundary layer – it may only
grow upwards in time. For the spatially developing boundary layer dδ/dx decreases
with increasing Rex, hence we might intuitively assume that the approximation
represented by the temporal set-up improves with time. This is consistent with the
idea that the parallel-flow approximation for the spatially developing boundary layer
becomes better with increasing Rex = U∞x/ν, where U∞ is the free-stream velocity,
x is the streamwise distance and ν is the kinematic viscosity. Note that the set-up in
figure 1 with a flow over a stationary plate has been shown for ease of comparison
with this most familiar of cases; the rest of this work will address a reversed set-up
where the wall is moving and the free stream is at rest.

An important difference between the spatially developing and the temporally
developing boundary layers is exposed by comparing their respective momentum
integral equations. Consider the Navier–Stokes equations governing incompressible
flow for a fluid with density ρ,

∂ui

∂t
+ ∂(ujui)

∂xj
=− 1

ρ

∂p
∂xi
+ ν ∂

2ui

∂x2
j
,

∂uj

∂xj
= 0, (1.1a,b)

which represent the momentum and continuity equations. We will take x1, x2 and
x3 (or x, y and z) to mean the streamwise, spanwise and wall-normal directions.
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(a) (b)

FIGURE 2. Illustration showing the streamwise velocity profile at (a) t= 0 and (b) t> 0.
D is the ‘trip-wire’ diameter. The grey shaded area on the profile represents the magnitude
and location of the white noise added to trigger transition.

We choose the frame of reference in which the wall (z = 0) is moving at constant
velocity (u = Uw) whilst the the far field (z→ ∞) remains at rest (u→ 0). This
‘conveyer-belt’ set-up is the well-known Rayleigh problem or Stokes’ first problem
as shown in figure 2(b). The appropriate Reynolds decomposition for the temporally
developing turbulent boundary layer is given by ui = u(z, t)δi1 + u′i(x, y, z, t), where
(·) indicates averaging in the homogeneous xy-plane. Substituting this decomposition
in (1.1) and averaging in the homogeneous plane, we obtain

∂u
∂t
= ν ∂

2u
∂z2
− ∂(w

′u′)
∂z

. (1.2)

In contrast, in the absence of a pressure gradient, recall that a similar analysis for the
spatially developing boundary layer yields

u
∂u
∂x
+w

∂u
∂z
= ν ∂

2u
∂z2
− ∂(w

′u′)
∂z

− ∂(u
′2 −w′2)
∂x

. (1.3)

Since the difference in normal Reynolds stresses ∂(u′2 − w′2)/∂x is often neglected
for further analysis of the spatially developing turbulent boundary layer, the difference
between the two cases therefore amounts to a different left-hand side. Integrating (1.2)
from the wall to the quiescent far field and imposing appropriate boundary conditions
for the viscous and Reynolds stresses, we obtain

dδ∗

dX
= 1

2
τ0

1
2ρU2

w

≡ Cf

2
= u2

τ

U2
w

= 1
(U+w )2

, (1.4)

where δ∗ ≡ ∫∞
0 (u/Uw) dz, the displacement thickness, X = Uwt, the temporal

counterpart to x in the spatially developing boundary layer, τ0 ≡ −µ∂u/∂z|0 > 0,
the wall shear stress and uτ ≡ √τ0/ρ is the friction velocity. The definition of
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the displacement thickness here differs from the usual δ∗ ≡ ∫∞
0 (1 − u/U∞) dz

due to the moving-wall frame of reference used in our set-up. For comparison,
recall that the analogous expression for the spatially developing boundary layer
is given by dθ/dx = Cf /2, where θ is the momentum thickness, defined by
θ ≡ ∫∞0 u/U∞(1 − u/U∞) dz. The preceding analysis suggests that δ∗ plays an
important role in the temporally developing turbulent boundary layer.

1.2. Resistance laws
We now develop resistance laws that will be used for setting up the simulations. The
analysis assumes Coles’ law of the wall/wake for the turbulent boundary layer (Coles
1956):

Uw − u
uτ
= 1
κ

log
(zuτ
ν

)
+ A+ Π

κ
w
( z
δ

)
, (1.5)

where δ= δ99 the 99 % boundary layer thickness, w(z/δ) is Coles’ wake function, Π
measures the wake strength and κ and A are the log-law constants. From the definition
of the displacement thickness and outer-layer similarity, we arrive at:

δ∗

δ
=C1

uτ
Uw
= C1

U+w
, (1.6)

as shown in Coles (1954), where U+w ≡Uw/uτ and C1 is a constant, defined as

C1 =
∫ ∞

0

u
uτ

dη, (1.7)

where η= z/δ. Subjecting the wake function w(z/δ) to normalising conditions w(0)=
0, w(1)= 2 and

∫ 2
0 (z/δ)(w) dw= 1, this constant may be written as C1 = (1+Π)/κ

following Coles (1956). We seek an expression for U+w = U+w (ReX). The following
repeats the analysis of Coles (1954). To this end, we first rearrange (1.5) written at
z= δ to obtain

Reτ ≡ uτ δ/ν = exp(κ[U+w − φ(1)]) (1.8)

or
Reδ ≡Uwδ/ν =U+w exp(κ[U+w − φ(1)]), (1.9)

where we use the shorthand, φ(1)= A+ w(1)(Π/κ)= A+ 2Π/κ . Rewriting the left-
hand side of (1.9) as (δ/δ∗)Reδ∗ , using (1.6), then substituting in (1.4) and invoking
the change of variables that replaces Reδ∗(ReX) with Reδ∗(U+w (ReX)), we arrive at the
following expression:

1
(U+w )2

= d
dU+w

[
C1 exp(κ[U+w − φ(1)])

] dU+w
dReX

. (1.10)

Carrying out the differentiation with respect to U+w as written and then integrating by
parts gives

ReX =C1eκ[U
+
w−φ(1)]

[
(U+w )

2 − 2U+w
κ
+ 2
κ2

]
− 2
κ2

C1e−κφ(1), (1.11)
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where the initial condition U+w (ReX=0)=0 is assumed. For θ ≡ ∫∞0 u/Uw(1−u/Uw) dz
and using outer-layer similarity, it can also be shown that

θ

δ
= C1

U+w
− C2

(U+w )2
, (1.12)

where C2 is another constant, defined as

C2 =
∫ ∞

0

(
u
uτ

)2

dη. (1.13)

Then by using (1.9) we may write an expression for Reθ as a function of U+w :

Reθ ≡Uwθ/ν =
(

C1

U+w
− C2

(U+w )2

)
U+w exp(κ[U+w − φ(1)]). (1.14)

2. Simulation set-up
The present code has been validated in Chung, Monty & Ooi (2014). The domain

size, (Lx, Ly, Lz), is determined by the largest boundary layer thickness, δf , which
occurs at the end of the simulation (the subscript f refers to final). An important step
in setting up the simulations is accurately predicting the final boundary layer thickness
for a desired final Reynolds number, or alternatively to halt the simulation when the
boundary layer ‘outgrows’ the domain. For this purpose we made use of relations
from § 1.2 above. Following the work of Lozano-Durán & Jiménez (2014), we set
the wall-parallel domain size to Lx= 2πδf , and the spanwise domain size to Ly=πδf .
Following Schlatter & Örlü (2010), we set the wall-normal domain size to Lz = 3 δf .

In contrast, the grid spacing, (1x, 1y, 1z), is determined by the smallest wall
unit, ν/uτ ,p, which occurs earlier in the simulation when the skin friction reaches
its maximum (the subscript p refers to peak). The wall-normal grid spacing obeys
a half-cosine mapping, giving a finer grid at the wall and a coarser grid away from
it. Setting the coarsest grid spacing at the top of the domain 1z+t ≈ 10, this cosine
mapping results in the first wall-normal grid spacing 1z+1 < 0.2 at all times. Grid
spacing is uniform in both the streamwise and spanwise directions. The simulation of
Moser, Kim & Mansour (1999) guides the choice in grid points, in order to maintain
1x+< 9.7 and 1y+< 4.8 for the duration of the simulation. The grid spacings in wall
units are monitored to ensure that the simulation is resolved at all times. More details
regarding the calculation of domain size and grid spacing can be found in Kozul &
Chung (2014). Table 1 summarises grid parameters. The grid spacings noted are the
coarsest observed over the duration of the simulations, occurring toward the beginning
where there is a peak in skin friction.

Crucially, the boundary condition in the streamwise direction x is periodic.
Additionally, periodic boundary conditions are used for the spanwise y direction.
No-slip and impermeable boundary conditions representing a moving wall, u = Uw
and v=w= 0, are imposed at the bottom boundary (z= 0). The top boundary (z= Lz)
is a fixed wall, where no-slip and impermeable boundary conditions are also applied,
u = v = w = 0. The pressure gradient is set to zero which is trivial for this set-up
given the periodic streamwise boundary condition. In contrast, enforcing dp/dx = 0
in the spatial case requires non-trivial suction at the top boundary in order to ensure
mass conservation (see Wu & Moin 2009; Jiménez et al. 2010).
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ReD Reτ ,f Reδ,f Reθ,f LxUw/ν × LyUw/ν × LzUw/ν 1x+ 1y+ 1z+1 1z+t
Series A – 512× 512× 384 grid

250 72 2 520 323 90 500× 45 200× 43 200 8.81 4.41 0.126 8.81
500 800 19 000 2187 90 500× 45 200× 43 200 9.88 4.94 0.141 9.88

1000 769 18 070 2100 90 500× 45 200× 43 200 9.79 4.89 0.140 9.79
1500 792 18 760 2170 90 500× 45 200× 43 200 8.79 4.40 0.126 8.79
2000 791 19 000 2279 90 500× 45 200× 43 200 7.91 3.95 0.065 7.91

Series B – 1024× 1024× 512 grid
500 1000 24 780 2939 153 800× 76 900× 73 400 9.01 4.51 0.021 13.5

2000 1005 24 970 2922 153 800× 76 900× 73 400 6.68 3.34 0.015 10.0

TABLE 1. Simulation parameters for the present temporally developing boundary layer
simulations. Domain dimensions are given in terms of ν/Uw, which can be arbitrarily
chosen. The grid spacings in wall units are the coarsest observed over the duration of
the simulation for each trip Reynolds number, ReD, occurring at the peak in Cf toward
the beginning of the simulation. The wall-normal grid spacings, 1zt and 1z1, correspond,
respectively, to those at the top and the bottom of the domain. The grid is set up such
that 1x≈1zt for series A.

The computational set-up is that for a Couette flow simulation. If we let the
simulation run indefinitely, we would have a fully developed Couette flow. However,
we monitor the skin friction coefficient Cf at the top wall relative to that at the
bottom and terminate the simulation before the flow begins to ‘feel’ the top wall.
The top wall Cf remains at least five orders of magnitude smaller than the skin
friction coefficient at the moving wall at every point in time and for all simulations
presented in this work.

We are required to set initial conditions for the simulation. For this purpose, we
take inspiration from the wall-mounted wire trips often employed by experimentalists.
We seek to replicate the momentum deficit that is found directly after such a trip and
more importantly its function in triggering a transition to a turbulent regime. The exact
transition mechanism is not within the scope of the current work, however, we refer
the interested reader to the large body of research that exists to study such questions
(i.e. Gaster & Grant 1975; Narasimha 1985; Rist & Fasel 1995).

We set ui,0 = ui,0(z)+ u′i,0(x, y, z), where

u0(z)= Uw

2
+ Uw

2
tanh

[
D

2θsl

(
1− z

D

)]
, (2.1)

for the streamwise initial velocity profile (cf. da Silva & Pereira 2008), as well as v0=
w0 = 0 as initial conditions. Physically, such an initial velocity profile resembles the
wake of a wall-mounted trip wire with diameter, D, and may be compared to physical
trips placed at the beginning of a boundary layer wind tunnel. A similar initial velocity
profile is found in the tow-tank experiment of Lee et al. (2014), where the trip wire
was pulled through the flow, leaving a shear layer in its wake. Hereafter, we will refer
to ReD≡DUw/ν as the trip Reynolds number. The step-function-like shape of the tanh
profile also means that the trip diameter can be identified with the initial boundary
layer displacement thickness, that is, D ≈ δ∗0 . It is important to note that if ReD is
below some critical value, transition to a turbulent regime will not occur.
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The momentum thickness of the shear layer is set to θsl ≈ 54 ν/Uw. The Strouhal
number of the primary Kelvin–Helmholtz instability is given by Ssl ≡ fslθsl/(Uw/2)≈
0.033 (e.g. da Silva & Pereira 2008), from which the associated instability length scale
is λsl= (Uw/2)/fsl. Therefore the number of Kelvin–Helmholtz rollers that form in our
boundary layer from the inflectional profile can be estimated by Lx/λsl≈0.033 Lx/θsl≈
55.3. The small size of these rollers ensure that they will be quickly forgotten as time
progresses, leading to a natural development at the earliest possible time. Finally, to
trigger transition, white noise, |u′i,0|< 0.1 Uw, is added to all velocity components near
the wall where Uw − u0 < 10−2Uw (see figure 2a).

Series A is a smaller domain size, planned for a final Reτ ≈ 590 so as to be
comparable to the channel flow of Moser et al. (1999). It allows for rapid simulation
and thus a parametric study of the trip Reynolds number ReD. The purpose of a
larger domain size for series B is twofold. We wish to both study the effect of
domain size, and the persistence of the impact of the initial trip on the flow at higher
Reynolds number (i.e. for the largest ReD ≈ 2000). Planned for a larger Reτ ≈ 1000,
it is vastly more computationally demanding and is thus used only for two indicative
trip Reynolds numbers to address both matters.

3. Results
The transport of a passive scalar c with Schmidt number of Sc = 1 allows us to

visualise the flow. For symmetry with the streamwise velocity field, the scalar takes
the same boundary values as the streamwise velocity, that is, Cw = 1 and C∞ = 0.
Figure 3 shows snapshots throughout the simulation for the ReD≈ 500 (series B) case
offering a first view of the set-up. The visualisations show many similarities with
the well-known structures of the spatial boundary layer. We are able to identify both
large-scale motions and ‘typical eddies’ as depicted by figure 1(b) in Falco (1977).
We too find that the non-turbulent regions persist deep into the boundary layer. Eddy
structures resembling the hairpins and bulges marked on figure 2(a) of Adrian (2007)
are also discernible.

Visualisations such as those shown in figure 3 for the different cases suggest the
exact mode of transition depends on ReD (e.g. for the larger trip Reynolds numbers
ReD = 1000, 1500 and 2000, similar snapshots of the scalar field clearly show the
formation of Kelvin–Helmholtz rollers). However, we are here principally concerned
with how trip Reynolds number ReD impacts upon the development of statistics at a
later point in time (‘downstream’). Results related to the scalar will be addressed in
§ 6. The simulations of series A are run somewhat beyond the planned-for Reτ = 590,
reaching Reτ ≈ 800. This results in smaller domain sizes at the end of this set of
simulations (Lx/δf ≈ 4.5) than planned (Lx/δf ≈ 6.0).

In order to make use of the resistance laws developed in § 1.2, the constants
introduced for the problem must be established. Values for κ = 0.384 and A= 4.173
are set following the compilation of Nagib, Chauhan & Monkewitz (2007). The time
history of U+w δ

∗/δ in (1.6) reveals that the value of C1 stabilises well after transition
as shown in figure 4(a) and being very similar to the value of Coles (1954) it is set
to that value of 4.05. Similarly, using (1.12), we are also able to plot the evolution
of C2 as shown in figure 4(b). The relation of Coles (1956) then allows us to deduce
Π = κC1 − 1≈ 0.55 which is the same as that given in Coles (1956). This value of
Π found from the definition of C1 is also verified graphically for our simulation from
the outer-scaled velocity defect profile. We can then calculate φ(1)=A+ 2Π/κ ≈ 7.1.
The relevant constants used for this simulation are noted in table 2, where they are
compared against those of Coles (1954) and Nagib et al. (2007). All subsequent plots
will use those constants labelled ‘Present’, unless otherwise specified.
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FIGURE 3. Scalar for ReD ≈ 500 (series B) at (a–e) Reθ = 337, 555, 861, 2007, 2939
(Reτ = 144, 241, 340, 720, 1000). The wall is moving to the right.

3.1. Bulk and first-order statistics

Figure 5 shows the development of Cf = 2/(U+w )
2 versus Reθ , ReX and Reδ∗ with the

five different trip Reynolds numbers ReD for series A. The skin friction coefficient
is zero to machine precision for the first few iterations of the simulation. We are
able to now examine how the turbulent resistance laws developed in § 1.2 perform
against the data. Given that Cf is a function of U+w only, we are able to plot it against
expressions for Reδ∗(U+w ), Reθ(U+w ) and ReX(U+w ) given by (1.11) and other similar
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FIGURE 4. (Colour online) (a) C1 as a function of Reθ calculated using (1.6); series A
in solid lines: —— (black), ReD ≈ 500; —— (blue), ReD ≈ 1000; —— (orange), ReD ≈
1500; —— (green), ReD ≈ 2000; series B in dashed lines: – - – - (black), ReD ≈ 500; – - – -
(green), ReD ≈ 2000; thin horizontal dashed line, at C1 = 4.05; (b) C2 as a function of
Reθ using (1.6) and (1.12); thin horizontal dashed line, at C2 = 29.0.

κ C1 C2 A

Coles (1954) 0.4 4.05 29.0 5.1

Nagib et al. (2007) 0.384 4.5 — 4.173

Present 0.384 4.05 29.0 4.173

TABLE 2. Comparison of constants obtained from the present temporally developing
boundary layer simulations.

relations. We are therefore able to plot these predictive curves for a chosen range of
U+w . Here we begin them at U+w ≈ 20, roughly where our simulations have transitioned,
and extend them beyond the span of the data. We also plot the laminar branch of Cf
derived from the well-known erfc profile. Figure 5 suggests that, provided the trip
is large enough to trigger transition to turbulence, the temporal development of the
turbulent boundary layer as measured by Cf eventually collapses to a natural evolution
independent of the initial ReD. When ReD . 250, the perturbations are not strong
enough to result in transition to a turbulent regime, however for ReD & 500 they are. A
useful comparison is with the tow-tank experiment of Lee et al. (2014) which made
use of a trip Reynolds number of ReD≈ 870. Provided transition is initiated, the flow
that is least perturbed (smallest ReD) leads to a natural or undisturbed development
from the smallest possible Reθ . This can be observed in figure 5(a,b), where first
the ReD ≈ 1000 curve, then the ReD ≈ 1500 curve and finally the ReD ≈ 2000 curve,
track the ReD ≈ 500 curve. Convincing collapse of Cf is best observed with Reδ∗ , in
agreement with the analysis in the Introduction, although a fair collapse of Cf is also
observed with Reθ . We do not observe convincing collapse in figure 5(c) with ReX
owing to the ill-defined virtual origin. Recall that the initial condition U+w (ReX=0)=0
is used in the derivation leading to (1.11). However, we expect to see collapse if we
allow for a simple shift in ReX by ReX,0. In any case, the virtual-origin effect becomes
unimportant at large ReX because ReX−ReX,0∼ReX . Despite this non-collapse, plotting
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FIGURE 5. (Colour online) Variation of skin friction coefficient versus (a) Reδ∗ , (b) Reθ
and (c) ReX: —— (brown), ReD ≈ 250; —— (black), ReD ≈ 500; —— (blue), ReD ≈
1000; —— (orange), ReD ≈ 1500; —— (green), ReD ≈ 2000; – – –, turbulent resistance
law (1.11); · · · · · ·, laminar resistance law.

as a function of ReX is important since this quantity is directly proportional to the time
taken for the various simulations (X =Uwt) and indicates the relative development of
each case in time.

Evolution profiles are plotted in figure 6 for all five trip Reynolds numbers, that is
(a) Reτ , (b) shape factor H, (c) Reδ∗ and (d) ReX=Uwt as a function of Reθ . Reference
curves from § 1.2 (functions of a range of U+w on both axes) are plotted for all the
profiles; for this purpose constants in table 2 (Present) are used. Figure 6(a) suggests
that the ReD ≈ 2000 case has not yet collapsed with the others. This motivates
a simulation with a larger domain size in order to continue this simulation for
higher Reθ , and discover the true ‘recovery’ time of this case. Curves for series B
(dashed lines) for ReD≈ 500 and ReD≈ 2000 collapse very well however and give an
indication of the magnitude of the scatter that might be expected in computing Reτ .
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FIGURE 6. (Colour online) Evolution profiles for the trip study as a function of Reθ :
series A in solid lines: —— (brown), ReD ≈ 250; —— (black), ReD ≈ 500; —— (blue),
ReD ≈ 1000; —— (orange), ReD ≈ 1500; —— (green), ReD ≈ 2000; series B in dashed
lines: – – – (black), ReD ≈ 500; – – – (green), ReD ≈ 2000; thin black lines are functions
of U+w as developed in § 1.2; spatially developing DNS data:u, Schlatter et al. (2009);q,
Jiménez et al. (2010). For (d), a virtual origin is subtracted from the expression (1.11) to
fit each ReD.

Indeed, curves for the other three plots shown in figure 6 are computed using only
integral values, whereas plotting Reτ requires the computation of the instantaneous
99 % boundary layer thickness δ, making this quantity more liable to scatter. It has
been verified that it is not due to a spurious flow at the top of the box (i.e. a
domain size effect). We find the largest difference between our simulation data and
the curves developed in § 1.2 for shape factor H in figure 6(b), however plotting
spatially developing data by Schlatter et al. (2009) and Jiménez et al. (2010) places
this difference in context. To aid comparison, the vertical axis range for H is the
same as that in Nagib et al. (2007). Again reinforcing what we saw in the skin
friction profiles, we find good collapse of Reδ∗ in figure 6(c). In figure 6(d), the
curve for ReX(U+w ) is shifted for each ReD thus allowing the estimation of ReX,0,
which is plotted against ReD in figure 7(a). We find that it grows linearly with trip
Reynolds number, which we expect following the proportional response of the flow
to ReD.

Mean profiles for the streamwise velocity are plotted in figure 8 for two different
Reθ , with dashed curves also plotted for reference identifying both the viscous
sublayer and the logarithmic region, confirming that we have a turbulent boundary
layer forming. For the logarithmic layer, the constants of Nagib et al. (2007) represent
a good match with our mean streamwise velocity profile. For all statistics presented at
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FIGURE 7. (Colour online) (a) Virtual origin ReX,0 versus trip Reynolds number ReD; ×,
ReX,0 used in figure 6(d); ——, least-squares fit for ReX,0 shown on figure; (b) +, collapse
of u+rms contours at z+= 10 (same markers as shown on figure 10a); – – –, least-squares fit
for Reθ,collapse shown on figure; ×, collapse of u+rms contours at z/δ = 0.15 (same markers
as shown on figure 10c); ——, least-squares fit for Reθ,collapse shown on figure.
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FIGURE 8. (Colour online) Mean streamwise velocity profile at two different Reθ for
series A: —— (black), ReD ≈ 500; —— (blue), ReD ≈ 1000; —— (orange), ReD ≈ 1500;
—— (green), ReD ≈ 2000; – – –, U+w − u+ = z+ and U+w − u+ = (1/κ) log z+ + A with
constants from table 2 (Present).

specified Reynolds numbers in this work, profiles were averaged across time windows
of αδ/uτ where α = 0.5 is used to smooth the statistics and limit the effect of a
single eddy on profiles of various quantities presented herein (see appendix A). In
terms of development, these profiles corroborate the story told by the skin friction
profiles shown in figure 5(b): the least perturbed boundary layer at ReD ≈ 500 is the
case that assumes undisturbed development at the lowest Reθ . At Reθ = 1100, the
larger two trips (ReD & 1500) have not yet tracked the other curves; later at the larger
Reθ = 1968, both the ReD ≈ 1500 and ReD ≈ 2000 flows appear to have relaxed to a
natural development for this first-order statistic.
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FIGURE 9. (Colour online) Second-order statistics at two different Reθ for series A:
—— (black), ReD ≈ 500; —— (blue), ReD ≈ 1000; —— (orange), ReD ≈ 1500;
—— (green), ReD ≈ 2000.

3.2. Second-order statistics
3.2.1. Profiles

Turbulence statistics at Reθ = 1100 and Reθ = 1968 for trips ReD ≈ 500 and above
are shown in figure 9. Despite the smoothing effect of the time-window averaging,
it is clear that the ReD ≈ 2000 case in particular has not yet collapsed at the higher
Reθ = 1968. Consistent with spatially developing boundary layers (Schlatter & Örlü
2012), we observe an earlier convergence in the mean profiles shown in figure 8
compared to the turbulent statistics, an effect clearly seen at Reθ = 1968 for
ReD ≈ 2000.

3.2.2. Contours of u+rms
To further quantify the extent to which initial conditions hasten or delay collapse to

a natural evolution, contours of constant root-mean-squared values of the streamwise
velocity fluctuations (u+rms) are plotted in figure 10(a) following the example of
Schlatter & Örlü (2012). As expected, we find collapse of the inner region at higher
Reynolds numbers by plotting with z+ on the vertical scale. Such contours provide
us with a ‘map’ in time from which we are able to estimate which Reynolds number
must be attained for various cases to relax to an undisturbed state that does not
‘remember’ its original trip Reynolds number ReD. Scaling the vertical axis by δ
collapses the outer region, yet we see that the contours only become aligned at the
highest Reynolds numbers shown at the right. Horizontal cuts are taken through the
contours at z+ = 10 in figure 10(a) and at z/δ = 0.15 in figure 10(c). The resulting
cross-sections are shown in figures 10(b) and 10(d). Markers are placed where we
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FIGURE 10. (Colour online) Contours of constant root-mean-squared values of the
streamwise velocity fluctuations (u+rms) for series A in steps of 1u+rms = 0.5: (a) as a
function of Reθ ; (b) cross-section of (a) at z+ = 10 with markers at collapse the same
as those on figure 7(b); (c) same as (a) but scaled with δ on the vertical axis; (d)
cross-section of (c) at z/δ=0.15 with markers at collapse the same as those on figure 7(b);
(e) same as (a) but scaled with trip height D along the horizontal and vertical axis;
( f ) cross-section of (e) at z/D = 1; —— (black), ReD ≈ 500; —— (blue), ReD ≈ 1000;
—— (orange), ReD ≈ 1500; —— (green), ReD ≈ 2000.

estimate that the u+rms profiles have collapsed, and these are plotted against ReD in
figure 7(b). We find a convincing linear relationship, that is, the Reθ required to
ensure collapse scales linearly with trip Reynolds number ReD. We find that a slightly
higher Reynolds number must be achieved to ensure collapse in the outer layer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

20
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.207


DNS of the incompressible temporally developing turbulent boundary layer 453

101 102 103 101 102 103
–1.6

–0.8

0

0.8

1.6

101 102 103 101 102 1032

3

4

5

6(a) (b)

FIGURE 11. (Colour online) (a) Streamwise velocity skewness (negative sign due to the
reversed moving-wall reference frame) and (b) flatness at two different Reθ for series A: —
— (black), ReD≈ 500; —— (blue), ReD≈ 1000; —— (orange), ReD≈ 1500; —— (green),
ReD ≈ 2000.

Scaling the horizontal and vertical axis by D as shown in figure 10(e) causes the
contours from the different cases to be more aligned, particularly in the outer region,
although we note that the ReD ≈ 500 case (black curves) suggests an alternate route
to transition. A cross-sectional cut at z/D = 1 confirms this suspicion, although the
curves do not differ excessively. It may be more pertinent to consider which universal
value of θ/D must be obtained to be confident that all simulations have converged to
a similar behaviour. Intuitively, the larger the initial disturbance or trip, the longer the
flow will take to recover and ‘forget’ its initial conditions.

We propose a relative indicator of θ/D ≈ 1, below which the effect of the trip
is strongly felt, suggested by the clear collapse of u+rms with θ/D at fixed z/D
(except ReD ≈ 500). Translated to a wind tunnel drawing air, this implies that for a
trip wire of ≈1 mm with U∞ ≈ 20 m s−1 and a kinematic viscosity of air around
ν ≈ 1.5 × 10−5 m2 s−1, giving ReD ≈ 1300, that one would have to wait until
Reθ ≈ 1300 for the flow to no longer be dictated by its specific initial trip. From
figure 6(d) we can graphically estimate that ReX ≈ 8× 105 at this Reθ (assuming no
virtual origin), which translates to measuring ≈0.6 m downstream of the trip. This
generalises the previous work of Schlatter & Örlü (2012) that suggests if transition
is effected inside the boundary layer at Reθ < 300, all quantities agree well for
Reθ > 2000. Such a metric may prove useful in situations where a very large initial
trip is employed.

3.3. Higher-order statistics
Skewness and flatness of the streamwise velocity are plotted in figure 11 for the trip
study (series A) at Reθ = 1100 and Reθ = 1968 as for the other statistics. All of the
cases appear to have collapsed fairly well at the higher Reynolds number, although
there is some scatter, in particular at the wall for the fourth-order flatness, K, shown
in figure 11(b). Although these profiles have been time-window averaged, we do not
have converged statistics since there is only one realisation of the temporal simulation.

3.4. Spectra

In figure 12 we plot streamwise energy spectra, normalised such that
∫∞

0 Φuu(kx) dkx=
u2

rms, for the trip study (series A) at the same two wall-normal locations where cross-
sectional cuts were taken through the contours of u+rms in figure 10: in (a–d) at z+= 10
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FIGURE 12. (Colour online) Streamwise spectra at (a–d) z+= 10 and at (e–h) z/δ= 0.15
for the trip study (series A) at two different Reθ : —— (black), ReD ≈ 500; —— (blue),
ReD ≈ 1000; —— (orange), ReD ≈ 1500; —— (green), ReD ≈ 2000.
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and in (e–h) at z/δ=0.15. Plotted at two Reynolds numbers, these figures demonstrate
the different rate of collapse of various scales depending on trip Reynolds number ReD.
At the earlier Reθ = 1100, we find that all scales have already collapsed at the two
distances z from the wall for the smaller ReD≈ 500 and 1000, whereas the ReD≈ 2000
case differs at all scales. However, at the larger Reθ = 1968, all scales for all trip
Reynolds numbers have visibly collapsed. Note the limitations that our box places on
spectra of larger scales (small wavenumber k+x ). This results in jagged lines for want
of features over which to average. The spectra are somewhat smoother near the wall
at z+= 10 than at z/δ= 0.15, although collapse is already achieved for all ReD at the
higher Reynolds number according to figure 7(b) (i.e. Reθ,collapse≈ 1800 for largest trip
ReD ≈ 2000).

4. Impact of box size
Given the short length of our computational domain in the streamwise dimension,

it is reasonable to question the impact of this on our flow, in particular with regards
to larger structures. As mentioned earlier, the simulations for the trip study (series A)
were continued beyond the planned Reτ ≈ 590 to Reτ ≈ 800, resulting in a smaller
domain size of Lx/δ ≈ 4.5, compared to the planned Lx/δ ≈ 6.0, although all profiles
of statistics that are shown in this work are at an earlier point (i.e. Reθ ≈ 2000),
where the domain is Lx/δ > 5.2, the exact value depending on the trip Reynolds
number ReD.

The small domain clearly possesses a domain size that is below that recommended
by Schlatter & Örlü (2010) and Lozano-Durán & Jiménez (2014), however we
note that these guidelines are only breached toward the end of the small domain
simulations, and a larger domain would not change the broad conclusions of the study.
For example, considering figures 5 (skin-friction coefficient profiles), 6 (additional
bulk statistics) and 10 (contour plots of u+rms), we could indeed clip the figures at
approximately Reθ ≈ 1800 so as to abide by the guidelines on domain size, but
it would not change any of the conclusions we make about the effect of the trip
Reynolds number upon the flow and its recovery.

Two simulations with a larger domain size, planned for Reτ ≈1000, were undertaken
for ReD≈ 500 and 2000 (series B) to investigate this issue. The number of grid points
and box dimensions are scaled up with the new final Reτ , compared to the previous
Reτ = 590.

Contours of premultiplied one-dimensional energy spectra are plotted in figures 13
and 14 for the ReD≈500 case from both series A and B in order to quantify the effect
of box size on results. This is done at Reτ = 590 to ensure that the small domain
had here adhered to the aforementioned guidelines. Whereas at Reτ = 590 the smaller
simulation has a domain size of Lx/δ ≈ 6.7, the larger simulation has a much bigger
domain size of Lx/δ≈ 11.2. These figures clearly show that this larger domain affects
the streamwise results more so than in the spanwise direction y, whose contours are
much the same regardless of domain size. This confirms that our smaller domain is
able to faithfully capture the main dynamical features of the flow up to its planned
Reτ ≈ 590. More precisely, since the premultiplied spectra of the two simulations are
equivalent for λx/δ < 0.6 and λy/δ < 0.3, the two flows are energetically similar in
this region.

5. Comparison with the spatial turbulent boundary layer
This section will investigate how well the temporal boundary layer set-up models

the spatially developing boundary layer, as proposed by the schematic shown in
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FIGURE 13. Premultiplied one-dimensional spectra of (a,b) streamwise velocity and
(c,d) scalar for ReD ≈ 500 at Reτ = 590 as a function of z+. For (a,c) plotted against
streamwise wavelengths and for (b,d) against spanwise wavelengths: ——, series A (small
domain); – - – -, series B (large domain). A Gaussian filter with σ = 1.5 was used on the
time-window averaged (see appendix A, α = 0.5) data to smooth contour lines. Contour
levels for each subfigure: (a) kxΦuu/u2

τ = 0.6, 1.0, 1.4, 1.8; (b) kyΦuu/u2
τ = 0.8, 1.6, 2.4,

3.2; (c) kxΦcc/c2
τ = 0.6, 1.0, 1.4, 1.8; (d) kyΦcc/c2

τ = 0.8, 1.6, 2.4, 3.2.

figure 1. In the following, we make use of data from series B (large domain).
To begin with, the skin friction Cf profile as a function of Reθ is replotted in
figure 15 for ReD ≈ 500, that of the smallest trip Reynolds number which triggered
transition to a turbulent regime and the case that collapsed at the earliest Reθ .
As before on figure 5(b), we plot Cf = 2/(U+w )

2 against the turbulent resistance law
for Reθ(U+w ) (1.14) developed in § 1.2 for an arbitrary range of U+w . In addition we
now also plot the well-known Coles–Fernholz relation from Nagib et al. (2007) for
the spatially developing turbulent boundary layer. We find that it agrees well with
our resistance law. Comparison with data for spatially developing turbulent boundary
layers will allow us to further gauge the success of our model in this respect. Hence
we plot both experimental data by Erm & Joubert (1991) and the numerical data of
the spatially developing DNS by Jiménez et al. (2010) and find that we have very
good agreement with both.

Furthermore, plotting profiles of various statistics at matched Reynolds numbers
against data for spatially developing turbulent boundary layers reveals that our
temporal model is a very good model for the spatially developing case. Previously,
we had seen that the average streamwise velocity profiles of figure 8 suggested
that we had a turbulent boundary layer forming, in the sense that we were clearly
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FIGURE 14. Premultiplied one-dimensional spectra of (a,b) streamwise–wall-normal
velocities, (c,d) streamwise velocity–scalar and (e,f ) wall-normal velocity–scalar for ReD≈
500 at Reτ = 590 as a function of z+. For (a,c,e) plotted against streamwise wavelengths
and for (b,d,f ) against spanwise wavelengths: ——, series A (small domain); – - – -, series
B (large domain). A Gaussian filter with σ = 1.5 was used on the time-window averaged
(see appendix A, α= 0.5) data to smooth contour lines. Contour levels for each subfigure:
(a) kxΦwu/u2

τ = 0.04, 0.11, 0.18, 0.25; (b) kyΦwu/u2
τ = 0.1, 0.2, 0.3, 0.4; (c) kxΦuc/uτcτ =

0.6, 1.0, 1.4, 1.8; (d) kyΦuc/uτcτ = 0.8, 1.6, 2.4, 3.2; (e) kxΦwc/uτcτ = 0.04, 0.11, 0.18,
0.25; ( f ) kyΦwc/uτcτ = 0.1, 0.2, 0.3, 0.4.

able to identify a linear viscous sublayer region as well as a limited logarithmic
region. However, figure 16(a) now convincingly demonstrates that the temporal set-up
yields the same mean streamwise velocity profile as the spatially developing case.
We find excellent agreement in figure 16 at matched Reθ with the data of Jiménez
et al. (2010), a DNS of a spatially developing turbulent boundary layer. Yet, the
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FIGURE 15. Variation of skin friction coefficient versus Reθ : thick solid line, ReD ≈ 500,
series B; – – –, turbulent resistance law (1.11); thin solid line, Coles–Fernholz 2, relation
from Nagib et al. (2007) (their constants); ×, experimental data from Erm & Joubert
(1991) tripped by wire at the nearest ReD to our ReD ≈ 500 case (U∞ = 8.0 m s−1);
E, spatially developing DNS by Jiménez et al. (2010).

agreement is not limited to first-order statistics, and we find excellent agreement
for the second-order streamwise variance shown in figure 16(b), the third-order
streamwise skewness in 16(c) and finally for the fourth-order streamwise flatness in
16(d), when the Reynolds number is correctly matched. Similar agreement is found
for the remaining second-order statistics shown in figure 9. Interestingly, we find
good agreement in the outer layer for all statistics shown, except for the streamwise
skewness and flatness, which is to be expected given division by near-zero urms in
the free stream.

We can therefore conclude that the temporal model for the turbulent boundary
layer has the potential to be a very useful tool for the study of turbulent boundary
layers, given that we are able to convincingly reproduce profiles from spatially
developing simulations up to fourth-order statistics. At present we are only able to
assert this agreement for one-point statistics, and a separate study in the spirit of
Sillero, Jiménez & Moser (2014) would be required to make any conclusions about
two-point statistics. It is likely that large velocity structures approaching the scale of
the boundary layer thickness differ somewhat to that of the spatial boundary layer,
both due to the boundary conditions imposed and the box dimensions. If the goal of
a study is to obtain such one-point statistics, and one is satisfied with only humble
convergence, the reduction in grid points translates into greatly reduced computational
effort, as well as much smaller data files.

There are several caveats to keep in mind with regards to the temporal set-up.
The profiles shown in this work for the temporal boundary layer are from a single
realisation. For fully converged statistics, we would need to resimulate the case
many times using a different random noise for each realisation, which would clearly
negate some of the cost saving that was made in shortening the domain. This can be
somewhat mitigated by window averaging, provided the window size T is carefully
chosen such that Reτ does not vary significantly over the window. We emphasise here
that the temporal set-up, using data from only one realisation, does not provide highly
converged statistics. Rather, we believe that it could prove more useful in the study
of the dynamics of turbulence (e.g. tracking the evolution of structures in time), since
the temporal set-up provides an efficient means by which to access time-resolved
data for the turbulent boundary layer. In the same way that flow structures have been
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FIGURE 16. Comparisons with the spatially developing turbulent boundary layer for
various statistics. First order: (a) mean streamwise velocity profile. Second order: root-
mean-squared velocity fluctuations, (b) streamwise, (c) wall normal; (d) root-mean-squared
pressure fluctuations. Third order: (e) streamwise skewness. Fourth order: ( f ) streamwise
flatness. Temporal simulation: thick solid line, ReD ≈ 500, series B; data from spatial
simulations: E, DNS of Jiménez et al. (2010) at matched Reθ ; u, DNS of Schlatter
& Örlü (2010) at matched Reθ . Note sign reversal for u′3/u3

rms due to present temporal
configuration with moving wall.

studied in domains using a periodic streamwise boundary condition for pipes (Eggels
et al. 1994) and channels (Abe, Kawamura & Choi 2004), the temporal approach
might be useful to study structures within the turbulent boundary layer.

5.1. Evolution of root-mean-squared velocity peaks
One of the strengths of the temporal approach is the opportunity to study the evolution
of quantities with time, or equivalently, increasing Reynolds number. An example is
shown in figure 17 where the peak of the variance is plotted for (a) streamwise,
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FIGURE 17. (Colour online) Evolution of the square of the peak of the variance versus
Reτ for (thick solid line) ReD≈ 500, series B: (a) streamwise velocity; – – –, relation (3.1)
from Hutchins et al. (2009) which for l+= 0 takes the form (u2

rms,p)
+= 1.0747 log10 Reτ +

4.8371; (b) spanwise velocity; (c) wall-normal velocity (d) scalar; q (black), Bernardini
et al. (2014);q (blue), Pirozzoli, Bernardini & Orlandi (2016).

(b) spanwise and (c) wall-normal velocity for the ReD≈ 500 (series B) case. Channel
DNS data from Bernardini, Pirozzoli & Orlandi (2014) is also plotted for comparison,
which is sourced from four separate simulations at specified Reynolds numbers
(Reτ = 550, 999, 2022, 4079). Our data here has not been time-window averaged
and the lines appear jagged, however as suggested by the relation given by Hutchins
et al. (2009) for the streamwise variance peak, it is nonetheless possible to discern a
logarithmic development in the value of the velocity variance peaks above Reτ ≈ 200.
We find reasonable agreement with the data shown by Bernardini et al. (2014) for
the lower Reτ which we achieve, and consider this example to be a particularly
compelling argument for the utility of the temporal approach. The increasing
near-wall root-mean-squared peak is linked with the footprint of large-scale structures
therefore it is here apparent that the temporal simulation can capture large-scale
structures.

5.2. Similarity solutions
To what extent is the similarity between the spatially and temporally developing
turbulent boundary layers to be expected? We find that expressions for the skin
friction coefficient such as (1.4) differ, but how does this difference manifest itself for
large Reynolds numbers? Townsend (1956) (§10.4) details a similarity solution using
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classical scaling for the spatially developing turbulent boundary layer, as does Jones,
Nickels & Marusic (2008), whereby similarity solutions to the Reynolds-averaged
Navier–Stokes equations (1.3) are sought. Where they neglect the viscous term in
the limit of infinite Reynolds number, we will also drop the difference in normal
Reynolds stresses ∂(u′2 − w′2)/∂x to simplify the ensuing analysis. For a free-stream
velocity of U∞, the proposed solution therefore takes the form (where notation has
been adjusted to match the present case):

U∞ − u
uτ (x)

= f (η), (5.1)

− w′u′

u2
τ (x)
= frs(η), (5.2)

where η= z/δ(x). After substitution into (1.3), this yields

δU∞
u2
τ

duτ
dx︸ ︷︷ ︸

a1

f − U∞
uτ

dδ
dx︸ ︷︷ ︸

a2

ηf ′ − δ

uτ

duτ
dx︸ ︷︷ ︸

a3

( f 2 − I1f ′)+ dδ
dx︸︷︷︸
a4

I1f ′ + 1︸︷︷︸
a5

f ′rs = 0, (5.3)

where I1 ≡
∫ η

0 f (η′) dη′. As per the usual assumption in the classical method, the
Reynolds stress velocity scale has been set to uτ in writing the above, which results in
a5= 1, and the length scale has been set to δ. Jones et al. (2008) develop expressions
for a1 − a4 which are functions of U+∞ only, and they consequently find that as
U+∞ → ∞, the only coefficient that balances the term with coefficient a5 is
a2→ 1/C1 = 1/

∫∞
0 f (η) dη, the other terms decaying to zero.

Akin to that shown above for the spatial boundary layer, we summarise below
the similarity solution for the temporal boundary layer, and examine how solution
coefficients behave for large Reynolds numbers compared to that of the spatially
developing case. This follows the analysis of the Rayleigh problem given by Crow
(1968).

Starting with the Reynolds-averaged Navier–Stokes equations for the temporal set-
up (1.2) shown earlier, we now drop the viscous term as did Jones et al. (2008), and
use a similarity solution of the form:

u
uτ (X)

= g(η), (5.4)

w′u′

u2
τ (X)
= grs(η), (5.5)

where η= z/δ(X) and X =Uwt. We may rewrite (1.2) as

δu′τ
u2
τ

(−g)+ δ′

uτ
(g′η)= g′rs. (5.6)

Putting U+w =Uw/uτ , we may recast the problem as

−δ dU+w
dX︸ ︷︷ ︸

b1

g−U+w
dδ
dX︸ ︷︷ ︸

b2

ηg′ + 1︸︷︷︸
b3

g′rs = 0. (5.7)
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We now seek to rewrite the coefficients on the left-hand side in terms of U+w
exclusively. Using (1.4) and (1.6) we arrive at:

− δ dU+w
dX
+U+w

dδ
dX
= 1

C1
, (5.8)

the constant C1 having been defined by (1.7) for the present set-up. Furthermore,
making use of the composite law of the wall/wake (1.5) at z = δ (where u = 0 in
our case) we can write:

κ
dU+w
dX
= 1
δ

dδ
dX
− 1

U+w

dU+w
dX

. (5.9)

Having now two equations (5.8) and (5.9), we can solve for dU+w /dX and dδ/dX,
giving expressions that are only functions of U+w :

dU+w
dX
= 1

C1κδU+w
, (5.10)

dδ
dX
= 1+ κU+w

C1κ(U+w )2
. (5.11)

For large U+w , the only coefficient that is not asymptotically zero is

b2 =U+w
dδ
dX
−→ 1

C1
, (5.12)

which is the same result as in Jones et al. (2008) for the spatially developing case.
Plotting these coefficients as a function of U+w or U+∞, as shown in figure 18(a),

along with those given by Jones et al. (2008), should allow us to discern at which U+w
or U+∞ the similarity solution of the temporal turbulent boundary layer approaches that
of the spatially developing turbulent boundary layer, that is, at which point those terms
that are different decay sufficiently. The constants κ , C1 and C2 from table 2 (Present)
are used to plot the coefficients for both the spatial and temporal formulations. Along
with these curves issuing from the respective models, we also plot the value of these
coefficients calculated using DNS data for both the spatially developing simulations of
Skote (2001) and Sillero, Jiménez & Moser (2013), along with the current temporal
case. A zoomed-in view is presented in figure 18(b). Gradients are calculated over
intervals of 1Reτ ≈ 100 for each dataset.

The analysis for the temporal case is well supported by the present data. The
temporal simulations clearly approach the asymptote quicker (at a smaller U+w ) than
the spatial simulations. For ‘surviving’ coefficient a2 in the spatial case, both spatial
datasets yield values closer to the asymptote, and therefore closer to the temporal
case, than that given by the analytical curve. Our temporal data matches the analytical
curve well for both coefficients b1 and b2 since periodic boundary conditions in
the temporal simulation from the beginning force the parallel flow assumed in
the similarity solution formulation. In contrast, the parallel-flow condition is only
asymptotic in the formulation of Jones et al. (2008) for the spatially developing
turbulent boundary layer. Yet the numerical values for the spatial simulations point
to their being closer to the asymptotic state for a given U+∞ than that expected by
the analysis. The difference between the spatial and temporal cases is therefore not
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FIGURE 18. (Colour online) Coefficients of the similarity solutions for both the temporal
and spatial turbulent boundary layers as a function of U+w (or U+∞ for the spatial case):
(a) coefficients as labelled in (5.3) and (5.7); (b) zoomed-in view; – – –, 1/C1; data from
spatially developing simulations:q, zero-pressure-gradient case of Skote (2001);u (black),
BL6600 case of Sillero et al. (2013); u (blue), current temporal simulation, ReD ≈ 500,
series B case.

as significant as suggested by the analytical expressions for the coefficients of the
similarity solution over the range of U+w covered by the present simulations. This
illustrates why the outer-layer wake of the two cases matches convincingly as is
shown in figure 16.

Therefore we find that both the analysis and the data show that at large Reynolds
numbers, the dominant balances in the outer layer for the spatial and temporal cases
are equal:

−U+∞
dδ
dx︸ ︷︷ ︸

a2

ηf ′ + f ′rs = 0, −U+w
dδ
dX︸ ︷︷ ︸

b2

ηg′ + g′rs = 0 (5.13a,b)

and we have here shown that the remaining coefficients a2 and b2 both tend to an
asymptotic value of 1/C1. In this sense, the asymptotic spatial boundary layer is in
fact the temporal boundary layer.

6. Passive scalar
6.1. Stanton number

In addition to the incompressible Navier–Stokes equations, the passive scalar equation
was solved:

∂c
∂t
+ uj

∂c
∂xj
=D

∂2c
∂x2

j
, (6.1)

where D is the diffusivity of the scalar (not to be confused with trip height D) for
a Schmidt number Sc = ν/D = 1.0. The Stanton number St, representing the mass
transfer coefficient, is a quantity of interest, being the scalar counterpart to the skin
friction coefficient Cf . It is given by

St= jw

(Uw −U∞)(Cw −C∞)
= cτuτ

UwCw
= 1

U+w C+w
, (6.2)
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where jw=− D ∂c/∂z|w is the wall scalar flux, and U∞=C∞= 0 as previously stated,
with cτ given by:

cτ =
−D

∂c
∂z

∣∣∣∣
w

uτ
. (6.3)

Similar to that applied to the streamwise velocity, a composite average profile is
assumed for the scalar:

Cw − c
cτ
= 1
κc

log
(zuτ
ν

)
+ Ac(Sc)+ Πc

κc
wc

(
z
δc

)
, (6.4)

with counterpart constants to that for the streamwise velocity. Here δc is the scalar
counterpart to the 99 % boundary layer thickness. Writing (6.4) at z= δc where c= 0,
using (6.2), and expressing U+w = (2/Cf )

1/2 we can write:

St= (Cf /2)1/2

1
κc

log[Reδ(Cf )1/2] + (log(δc/δ)− 1
2

log(2))/κc + φc(1, Sc)
, (6.5)

where φc(1, Sc) = Ac(Sc) + (Πc/κc)wc(1). This is a very similar approach to that of
Yaglom (1979), whose expression for St took the form:

St= (Cf /2)1/2

α log[Reδ(Cf )1/2] + β2(Pr)
, (6.6)

where α is a universal constant and β2 depends on Pr. Reδ is also given as function
of Cf in Kader & Yaglom (1972). The principal difference between our present
formulation and that of Yaglom (1979) is the use and selection of constants.

In order to plot the Stanton number against Reynolds numbers for which we
developed expressions that were functions of U+w only, we seek to develop an
expression for St that is also only a function of U+w . We therefore make the
approximation here that δc ≈ δ although it appears to be increasingly inaccurate
with increasing Reynolds number ((δ − δc)/δc ≈ 0.3 at Reτ = 1000 for the ReD ≈ 500,
series B, case). Nevertheless, using (1.9):

Reδ ≡Uwδ/ν =U+w exp(κ[U+w − φ(1)]), (6.7)

we are able to write

St= 1

U+w

(
1
κc
(κ[U+w − φ(1)])+ φc(1)

) . (6.8)

It is necessary to establish values of the constants in (6.8) so that it may be
plotted as a function of U+w . Using the definition of the scalar displacement thickness
combined with (6.4) we arrive at:

δ∗c
δc
=C1,c

cτ
Cw
= C1,c

C+w
, (6.9)
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where the scalar displacement thickness is defined as δ∗c ≡
∫∞

0 (c/Cw) dz, and C1,c is a
constant. A fit of κc = 0.42 and Ac = 5.2 is found for the logarithmic region of the
mean scalar profile, compared to κ = 0.384 and A= 4.173 for the streamwise velocity.
As for the streamwise velocity, plotting C+w δ

∗
c/δc with time shows that C1,c stabilises

to a value of C1,c ≈ 3.4 (cf. C1 = 4.05) for the ReD ≈ 500 (series B) case.
The current data reveals that the wake of the scalar is not a simple rescaling of

that of the streamwise velocity, with normalising conditions wc(0)= 0 and wc(1)= 2
imposed. The shape of the scalar wake function wc(z/δc) may be generalised by
allowing the normalising condition

∫ 2
0 (z/δc)(wc) dwc = γ , where γ is a constant,

noting γ = 1 for the wake of the streamwise velocity w(z/δ). The constant analogous
to C1 = (1+Π)/κ for the velocity then becomes C1,c = (1+ γΠc)/κc for the scalar
given this new normalising condition. Fitting a curve (−1/κc) log(z/δc)+wc(1)Πc/κc
to the data c/cτ (defect form) allows us to estimate Πc ≈ 0.30. The expression for
C1,c then gives γ ≈ 1.4. Since the normalising condition on the wake profile is
in fact the compliment integral, this suggests the normalised area of the wake is
2 − γ ≈ 0.6, which has been verified by integrating the wake from the mean scalar
profile. Therefore we are able to estimate φc(1, Sc) = Ac(Sc) + 2Πc/κc ≈ 6.6. It is
now possible to compare the constants in our (6.5) to that of (6.6). In the present
case, 1/κc≈ 2.4, whereas Yaglom (1979) gives α≈ 2.12. Assuming that δc/δ≈ 1, we
can evaluate (log(δc/δ)− log(2)/2)/κc+ φc(1, Sc)≈ 5.8. The analogous constant from
Yaglom (1979) is β2 = β(Pr) + β1 − α(log 2)/2. For Pr = 1, β ≈ 6.8 according to
relation (17) in the work. Since Yaglom (1979) does not cite a conclusive value for
the constant β1, we will here take it to be wc(1)Πc/κc ≈ 1.4 to which it corresponds
in the present case. We can then calculate β2 ≈ 7.5. The constants thus settled, we
find the denominators of (6.5) and (6.6) differ by around 1 % at Reτ ≈ 1000 for the
ReD ≈ 500 (series B) case.

6.2. Scalar results

In a manner parallel to figure 5(b) where Cf = 2/(U+w )
2 was plotted, figure 19(a)

shows the development of the mass transfer coefficient or Stanton number St for the
ReD≈500 (series B) case, given by (6.2). We also plot the relation (6.8) against (1.14).
For a given Reθ , U+w can be obtained from (1.14). St can then be calculated by (6.8).
In figure 19(a) it is plotted for a range of U+w as was done in figure 5. We find a
reasonably good fit with the data, although the curve deviates increasingly at high
Reθ , the difference approaching 6 % for Reθ ≈ 3000. One possible explanation is the
approximation δc ≈ δ, which, as was noted above, gets worse with growing Reynolds
number. However we emphasise the appeal of this curve given that it is a simple
expression allowing St to be plotted as a function of U+w only. In addition, the relation
of Kays & Crawford (1993) is plotted using the data series for Reθ :

St= 0.0125 Pr−2/5Re−1/4
θ , Pr> 0.5, (6.10)

where Pr= Sc here, and again we find reasonable agreement with our data. However
such a power-law formulation is not expected to fit the data over the whole range
of Reynolds numbers, and indeed we find it deviates from the present simulation at
higher Reθ .

The mean profile for the scalar c is plotted for this same case in figure 19(b) at
two different Reθ , with data from the spatially developing boundary layer DNS of Wu
& Moin (2010) shown for reference. With this spatial data we again find excellent
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FIGURE 19. (a) Development of Stanton number with Reθ : thick solid line, ReD ≈ 500,
series B; thin solid line, St(U+w ) (6.8) versus Reθ (U+w ) (1.14); · · · · · ·, correlation of Kays
& Crawford (1993); (b) Mean scalar profile for two different Reθ : – – –, C+w − c+= Sc z+
and C+w − c+ = (1/κc) log z+ + Ac(Sc);u, spatially developing simulation of Wu & Moin
(2010).

agreement. Note the similarity between these scalar mean profiles and those for the
streamwise velocity in figure 8. We are again able to identify a viscous sublayer
and a nascent logarithmic region as we were able to for the streamwise velocity. As
observed by Pirozzoli et al. (2016), the wake strength is here greater in the velocity
field than in the scalar field.

Second-order statistics for the scalar are plotted in figure 20(a–c) for this same
case, again at two different Reθ . We find very good agreement for our scalar statistics
with those of Wu & Moin (2010), although our peak in scalar fluctuations is slightly
less, as Pirozzoli et al. (2016) also observe at Pr = 1. Comparing the profiles
for c+rms in 20(a) and u+rms in figure 9(a), we find the profiles to be very similar,
and note that the peak for both quantities occurs at z+ ≈ 13. We also note the
striking similarity between profiles for w′u′+ in figure 9(c) and those of w′c′/uτcτ
in figure 20(c), suggesting that scalar c is transported in much the same way as
streamwise momentum i.e. Reynolds analogy.

The turbulent Schmidt number is a parameter of interest for scalar transfer and is
plotted in figure 20(d). It is defined as:

Sct = νt

Dt
, (6.11)

where νt = u′w′/∂u/∂z is the turbulent eddy viscosity, and Dt = w′c′/∂c/∂z is the
eddy diffusivity. We find good agreement for our ReD ≈ 500 (series B) case with
the data of Kim & Moin (1987) and Li et al. (2009), even though in their case
Pr = 0.71 (cf. our Schmidt number Sc= 1.0). The reader may note the use of three
different datasets. For figures 20(a–c), we have compared against the data of Wu &
Moin (2010) since data is available for two Reθ within the span of our simulation
such that we may replicate the two-panel format of figures 9 and 11, among others,
allowing us to demonstrate how our simulation compares against that of a spatial
simulation throughout. This dataset was also chosen since Wu & Moin (2010) use
Pr = 1 (compared to the present Sc= 1). The data for Li et al. (2009) only reaches
Reθ ≈ 800 with the closest Prandtl number to ours being Pr= 0.71. However, for the
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FIGURE 20. Scalar second-order statistics at two different Reθ : ——, ReD ≈ 500, series
B;u, spatially developing simulation of Wu & Moin (2010). Note that in (b) and (c) the
data from Wu & Moin (2010) is actually −u′c′+ and −w′c′+ respectively – the sign is
reversed here for the present temporal configuration. (d) Turbulent Schmidt number as a
function of z+ at Reθ = 800 (Reτ ≈ 320). Data from spatially developing simulations: u,
Li et al. (2009), Reθ = 800, Pr= 0.71;E, Kim & Moin (1987), Reτ = 180, Pr= 0.71.

turbulent Prandtl number of figure 20(d), comparison is against the results of Kong,
Choi & Lee (2000) and Li et al. (2009), since Wu & Moin (2010) report a turbulent
Prandtl number well in excess of other studies.

We have also shown in figure 17(d) how the peak scalar variance evolves with time
and find good agreement with the data of Pirozzoli et al. (2016) for our more limited
range of Reτ .

7. Conclusions
We have investigated the incompressible temporally developing turbulent boundary

layer and compared it to its spatially developing counterpart. The two flows are
similar in many respects, including turbulent skin friction development and mean
profiles (figures 5 and 8) and turbulent profiles (figure 9). As expected, the effect
of initial conditions cannot be neglected. Presently, this aspect of the simulation is
investigated using an inflectional tanh profile that models the shear-layer wake of a
wall-mounted trip, characterising it with one length dimension only, trip height D. For
the small trip of ReD≈ 250, the boundary layer remains laminar, but for ReD≈ 500 the
boundary layer transitions and quickly assumes a natural or undisturbed development
at the smallest Reθ . Alternatively, an initial trip of ReD ≈ 1000 results in natural
evolution at the earliest possible time, equivalently at the smallest ReX=Uwt.
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Flow statistics such as mean streamwise velocity, variance as well as higher-order
streamwise skewness and flatness, reveal the extent to which the trip Reynolds number
affects the flow. At Reθ = 1100, the cases with the two smaller trips ReD ≈ 500 and
ReD≈ 1000 already collapse, however profiles of the two larger trip cases ReD≈ 1500
and ReD ≈ 2000 differ. Yet, at the later Reθ = 1968, all cases have largely collapsed,
with some exceptions regarding ReD≈ 2000 (i.e. w+rms and p+rms). A contour map of u+rms
allows us to quantify the Reθ for which we achieve collapse at the different ReD for
inner and outer scales, and we find the required Reynolds number increases linearly
with ReD. These contours also allow us to conclude that a value of θ/D≈1 is required
to ensure a flow that is unencumbered by its starting ReD.

One-dimensional energy spectra of the case ReD≈500 at Reτ =590 for two different
computational box sizes (Lx/δ≈ 6.7 and Lx/δ≈ 11.2) allow us to ascertain the impact
of domain size. It appears that our smaller simulation may be restricting some of the
larger scales in the streamwise direction whereas the spanwise scales appear rather
less impacted by our choice of box size. However, the spectra do not differ greatly
therefore we are able to conclude that our smaller domain adequately reproduces the
main dynamical features of the flow up to the Reτ = 590 for which it was planned.

Both the velocity and scalar statistics are found to agree very well with spatial
data from both experimental and numerical studies in the literature. Additionally, it
is shown analytically that the spatial and temporal turbulent boundary layers evolve
similarly by comparing their respective similarity solutions. The present results
suggest that the temporally developing boundary layer is a good model for the
spatially developing boundary layer. The temporal boundary layer is a viable tool if
the goal is to obtain moderately converged one-point statistics; the extent to which
two-point statistics agree will have to await comparison between spatial boundary
layer and temporal boundary layer spectra.

Aside from representing an interesting flow worthy of study for its own sake,
we believe that the temporal set-up is an under-exploited tool that may prove
useful for understanding turbulent boundary layers in general. Important differences
between the spatial and temporal boundary layers may aid in clarifying the origins of
certain phenomena. For example, the present study suggests that non-parallel effects
are perhaps not that important after all, at least for the quantities that have been
considered. Our results also demonstrate that statistics including the mean streamwise
velocity, various variances, streamwise skewness and flatness are not contingent on
spatial growth. The increasing near-wall root-mean-squared velocity peaks thought
to be linked to the footprint of large-scale structures are also reproduced by the
idealised temporal set-up. That is, the temporal boundary layer appears to possess
similar statistical signatures of large-scale motions to that of the spatial boundary layer.
Its relative ease of set-up and potential cost saving with respect to the long-domain
studies of spatially developing turbulent boundary layers make it an attractive method
by which to study various manipulations of the turbulent boundary layer, beyond the
simplified tripping mechanism studied here.
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FIGURE 21. (Colour online) Ensemble versus time-window averaging on statistics for
ReD ≈ 500, series A (small domain) for second-order streamwise root-mean-squared
velocity: (a) profiles from three different realisations at a single time at Reθ = 1968;
(b) ensemble-averaged result; (c) skin friction profile as a function of ReX showing upper
and lower bounds of Cf for α = 0.5; (d) effect of window averaging at Reθ = 1968 for
α = 0.5; o, DNS of Jiménez et al. (2010) at Reθ = 1968.

Appendix. Time-window averaging
This temporal computational set-up yields data resolved in time. Where spatially

developing data is generally ensemble-averaged as is done for experimental data,
such a temporal simulation does not present that opportunity, unless of course the
simulations are repeated many times at commensurate cost. ‘Progress’ quantities, such
as those shown in figures 5 and 6, are plots of the instantaneous values to reflect
this. However, profiles of statistics at specific points in time (i.e. specific Reynolds
numbers) appear unconverged and jagged. In an effort to smooth statistics, windows
of αδ/uτ , where α is a constant, were used to limit the effect of a single eddy on
profiles of various quantities presented. Thus setting α fixes the width (in time) of the
window centred at the time where we want to plot statistics. This ‘smoothing’ effect
is most exaggerated for the smaller domain at high-order statistics, since a larger
domain is less impacted by an individual structure for a given Reynolds number.

Figure 21 shows the impact of ensemble averaging with multiple realisations versus
time-window averaging for the second-order streamwise root-mean-squared velocity
for the ReD≈ 500, series A (small domain) case. Figure 21(a) shows three realisations,
each initiated with a different random noise, of this case at a single time. The three
profiles are then averaged to produce 21(b). The time-window averaging method used
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in the present work is presented directly below that subfigure. A maximum of α= 0.5
was used for statistics presented herein, and for this time window, figure 21(c) shows
that the effect on Cf is of the order of a few percent. The ‘upper’ and ‘lower’ bounds
of Cf at any point in time when using such averaging are in fact not always above
and below the original curve – this is only the case if the curve is monotonically
increasing or decreasing. For example, at the peak of Cf , stepping both forward and
backward in time about the central time yields a set of values for averaging which
are all actually smaller than the value at the time when the peak occurred, since
there is no value greater than it. Figure 21(d) demonstrates that the main effect of the
window averaging is to smooth jagged curves, without compromising the validity of
the statistics, suggested by the agreement with the DNS of Jiménez et al. (2010) for a
matched Reθ = 1968. We therefore find that for the modest convergence goals of this
study, there appears to be little difference between ensemble and window averaging.

As we use time-window averaging for the temporal problem, Jiménez et al. (2010)
make use of spatial window averaging for the spatial problem in addition to time
averaging. Statistics at a nominal Reθ = 1968, in addition to being averaged over time,
are averaged in the spanwise direction over the interval (Reθ0,Reθ1)= (1938.2, 1996.5)
(range from their online database) in order to reduce statistical noise. In our case, data
presented at Reθ = 1968 for the ReD ≈ 500, big box case, which is compared with
spatial DNS in § 5, is averaged over a time window αδ/uτ with α= 0.5, representing
averaging over the interval (Reθ0, Reθ1) = (1831.7, 2105.3). A smaller window with
α= 0.1 would result in a smaller range (Reθ0,Reθ1)= (1941.1, 1996.4), very similar to
that of Jiménez et al. (2010). However, the impact upon statistics of changing window
size is small. The largest difference is found for higher-order statistics. For example,
for fourth-order streamwise flatness, α = 0.5 gives a mean absolute difference from
the data of Schlatter & Örlü (2010) of 2.7 % up to z+ = 605. For the same range
of z+, a smaller α = 0.1 gives a mean absolute difference of 3.7 %. We feel that the
smoother statistics, that are closer to spatial DNS data, warrant the use of the larger
time window, however we also point out here that the difference would be small had
we used a smaller α.
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