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Summary

Species distribution models (SDMs) are statistical tools used to develop continuous predictions of
species occurrence. ‘Integrated SDMs’ (ISDMs) are an elaboration of this approach with potential
advantages that allow for the dual use of opportunistically collected presence-only data and site-
occupancy data from planned surveys. These models also account for survey bias and imperfect
detection through the use of a hierarchical modelling framework that separately estimates the
species–environment response and detection process. This is particularly helpful for conservation
applications and predictions for rare species, where data are often limited and prediction errorsmay
have significant management consequences. Despite this potential importance, ISDMs remain
largely untested under a variety of scenarios. We performed an exploration of key modelling deci-
sions and assumptions on an ISDM using the endangered Baird’s tapir (Tapirus bairdii) as a test
species. We found that site area had the strongest effect on the magnitude of population estimates
and underlying intensity surface and was driven by estimates of model intercepts. Selecting a site
area that accounted for the individual movements of the species within an average home range led
to population estimates that coincided with expert estimates. ISDMs that do not account for the
individual movements of species will likely lead to less accurate estimates of species intensity
(number of individuals per unit area) and thus overall population estimates. This bias could be severe
and highly detrimental to conservation actions if uninformed ISDMs are used to estimate global
populations of threatened and data-deficient species, particularly those that lack natural history
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and movement information. However, the ISDMwas consistently the most accurate model compared to other approaches, which demonstrates
the importance of this newmodelling framework and the ability to combine opportunistic data with systematic survey data. Thus, we recommend
researchers use ISDMs with conservative movement information when estimating population sizes of rare and data-deficient species. ISDMs
could be improved by using a similar parameterization to spatial capture–recapture models that explicitly incorporate animal movement as
a model parameter, which would further remove the need for spatial subsampling prior to implementation.

Introduction

Species distribution models (SDMs) are a widely applied and rapidly
developing statistical tool used in the study of wildlife, with newmeth-
ods regularly proposed as solutions to various challenges encountered
during modelling (Elith & Leathwick 2009, Franklin 2010). A
deficiency of most SDMs is the failure to account for imperfect
detection – the possibility that a species may go undetected even when
it is present (Lahoz-Monfort et al. 2014). Occupancy models, a similar
but distinct field of research from SDMs, account for this scenario by
separating the species–environment response from that of the detec-
tion process through the use of a hierarchical modelling framework
(MacKenzie et al. 2003). Another challenge for most SDMs is how
to appropriately use presence-only (PO) data, which are often themost
common type of data used in SDMsdue to their ease of collection. This
type of data is sometimes also referred to as presence-background (PB)
for the class of models that combine PO data with the background
environment in order to estimate species–environment responses.
Recently, the challenge of using PO data in SDMs has been addressed
through the use of point process models (Warton & Shepherd 2010,
Renner et al. 2015). Integrated SDMs (ISDMs) represent a new
development that uses both of these approaches, combining opportun-
istic (e.g., PO) and higher-quality site-occupancy (SO) data in the same
model (Dorazio 2014, Fithian et al. 2015, Koshkina et al. 2017). ISDMs
have potential as useful tools, but they require further investigation
(i.e., sensitivity analyses), as there are few applied examples to follow.

Data simulation is a powerful tool used to answer questions
about how models react to various user decisions (Zurell et al.
2010, Miller 2014). However, the design of simulated studies
sometimes assumes data conditions that are unrealistic for many
rare or cryptic species. The assumptions of the simulations used
in the two studies that introduced ISDMs (Dorazio 2014,
Koshkina et al. 2017) include a larger and more even sample than
is typically available for most species. Simulation studies that do
not mirror reality are especially problematic for a species like
the endangered Baird’s tapir (Tapirus bairdii), which is wide
ranging and relatively rare, leading to wide gaps in spatial coverage
of high-quality presence data. Schank et al. (2017) applied an
ISDM to c. 800 PO observations and 1600 camera trap detection
histories (created from SO data) for Baird’s tapir. This research
estimated a total population size of c. 200,000 individuals for the
species, more than an order of magnitude higher than expert
estimates, which range from 3000 mature adults to 16,500 total
individuals (Medici et al. 2005, García et al. 2016). There are a
variety of reasons that could explain this discrepancy, including
violations of model assumptions and the sensitivity of the model
to various modelling decisions. We focus on two assumptions:
independence between sites and population closure. As with most
statistical models, occupancymodels require independent observa-
tions (MacKenzie et al. 2006). In this case, observations would not
be independent if the same individual was detected at more than
one site during the same observation period. In order to avoid
this possibility, Schank et al. (2017) used a spatial subsampling
procedure to enforce a minimum distance between sites, as many

of the sites were so close together that independence would be
violated. Occupancy models also assume population closure, which
states that no immigration or emigration of individuals from the
site occurs during the sampling period (MacKenzie et al. 2006).
Violation of the closure assumption can originate from a sampling
period that is too long (Rota et al. 2009).

Our research here investigated the effect of user decisions on
model outputs and population estimates when using ISDMs,
focusing on how issues of spatial and temporal scale relate to
the model assumptions above. Specifically, we investigated the
effect of different settings for site area, subsampling radius and sea-
son length using data from our prior Baird’s tapir analysis (Schank
et al. 2017). ISDMs have great potential as useful tools for conser-
vation; however, researchers using these tools need clear recom-
mendations for how to apply them, particularly when making
conservation and management decisions for threatened and
data-deficient species. The results of this research shed light on
how these models can be applied appropriately to such species
of conservation concern.

Methods

The complete sensitivity analysis covered three model formula-
tions (PB, SO and integrated), four site area sizes and three season
lengths, with 100 spatially subsampled iterations – a total of 3600
models. Custom R code was adapted from Dorazio (2014) and
Royle and Dorazio (2008) to run the models.

Model Descriptions

With ISDMs, two separate models are formulated to accommodate
the two types of data used (PB and SO), both based on a Poisson
point process model. In these models, λ(s) is the expected intensity
(number of individuals per unit area) at location s. In the context of
the SDM, λ(s) is formulated as a log-linear function of unknown
parameters and location-specific regressors x(s):

logðλðsÞÞ ¼ β0 þ β0xðsÞ
The general class of models used here are hierarchical models,
which have separate levels for abundance (the process of interest)
and detection (the nuisance process). Though they share the same
SDM based on a point process model, the two types of data use
different model formulations to account for imperfect detection,
including that which results from spatially biased survey effort.
With opportunistic data, spatial bias and imperfect detection are
incorporated through an independent thinning of the point
process. This thinned point process is the product of the original
point process and ppb (s), the probability that the site is surveyed
and the species is detected. ppb (s) is formulated as a logistic function
of unknown parameters and location-specific regressors wpb (s):

log itðppbðsÞÞ þ �0:pb þ �pb
0wpbðsÞ
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With data from planned surveys (SO), imperfect detection is mod-
elled following a zero-inflated binomial distribution (Koshkina et al.
2017). Under this model, the presence or absence of the species at a
site i follows a Bernoulli distribution. In this case, the detection
histories at each site, yi, have non-detections (i.e., zeros) due to both
species absence and imperfect detectability – the fact that an individ-
ual may go undetected even when present (MacKenzie et al. 2003).
This relationship is modelled as a Binomial distribution with J trials
and the probability of success (i.e., species detection) equal to the
product of zi (the occupancy state, zi= I(Ni > 0)) and pso, the prob-
ability of detection at the site. As with detectability in the PB model,
pso(s) is formulated as a logistic function of unknown parameters and
location-specific regressors wso(s):

log itðpsoðsÞÞ ¼ �0:so þ �so
0wsoðsÞ

In ISDMs, the PB and SOmodels are estimated simultaneously, such
that one set of parameters for the SDM is created (i.e., the β values),
while separate detectability parameters are estimated (i.e., the α
values) for the two models.

Model Convergence and Parameter Identifiability

We determined two levels of model convergence. First, the optim
function in R was used to estimate model parameters from the
model likelihood. Occasionally, this function failed to return an
optimized set of parameters. Next, if estimates were returned from
this function, we determined whether or not they were correctly
identified using the reciprocal of the condition number. This
number is the ratio of the smallest to the largest eigenvalues in
the Fisher information matrix and can be used to determine
whether the parameters of the SDM are identifiable (Dorazio
2014). The reciprocal of the condition number falls between 0
and 1, with values near zero indicating ill conditioning (Golub
& Van Loan 2012). If this number fell below a certain threshold
(in this case 1 × 10–6), the results for that model were not used
in the subsequent analysis.

Presence Data

The species presence data used here consisted of 784 PO observa-
tions compiled from 11 data sources and 1595 camera trap detection
histories from 19 sources. These data came from a multinational
collaboration examining Baird’s tapir occurrence and distribution
(for more details about the compilation and processing of the data,
see Schank et al. 2017).

Spatial Subsampling

We processed the presence data prior to model fitting using a ran-
dom spatial subsampling procedure to help preserve independence
among sites. The algorithm began by randomly choosing one
observation point and removing any other observation points
within a given radius. We added the chosen observation to the
subset and repeated the steps until no observations were left in
the original data. A similar type of subsampling is sometimes used
to remove survey bias in observation data (Beck et al. 2014).
However, this grid-based approach can lead to samples that remain
close in space if they fall just across a boundary in an adjacent
grid cell.

The effect of this procedure was to enforce a minimum distance
between sampling points. This minimum distance was matched to
the site area to ensure that no site contained more than one data

point. For example, we used a subsampling radius of 5657 m for a
site area of 16 km2 (the diagonal length of a square that size). This
process was repeated 100 times for each radius to capture the vari-
ability introduced by the randomness of the sampling. Model
parameters were then averaged across iterations. A set of models
also were fit on the complete (non-subsampled) presence data
to investigate the effect of violating the independence assumption.

Predictor Variables

Environmental variables were grouped into five classes: climate,
land cover, anthropogenic, topographic and sampling variables
(i.e., the variables used in the detection process). Climate variables
at 1-km resolution were downloaded from CHELSA (Karger et al.
2017) and included annual precipitation, maximum temperature
of the warmest month, temperature seasonality and precipitation
seasonality. Land cover variables consisted of percentage tree cover
for the year 2000 at 30-m resolution (Hansen et al. 2013), distance
to/within protected areas (IUCN&UNEP-WCMC 2014) andmean
enhanced vegetation index (EVI) fromMODIS for years 2000–2015
downloaded using Google Earth Engine. Anthropogenic variables
included forest loss between 2000 and 2014 (Hansen et al. 2013),
road density (Eugster & Schlesinger 2010) and density of fires
between 2001 and 2014 (NASA 2017). Anthropogenic variableswere
then converted to focal averages using amoving circular windowand
a 10-km radius (centred on each 1-km pixel in the study area) to
account for the fact that humans aremobile and presence in one area
means access is likely within a reasonable distance (Barber et al.
2014). Slope was calculated from 90-m resolution elevation data
downloaded from the ‘raster’ package in R (Hijmans et al. 2016).

Sampling variables (i.e., those used in the detectability process)
for the PB data included binary indicators for forest (Arino et al.
2012) and protected status (IUCN & UNEP-WCMC 2014) and
distance to roads (Eugster & Schlesinger 2010), while sampling
variables for SO data were the same tree cover and distance
to/within protected areas used in the land cover group, as well as
distance to roads andmaximum slope.With the PB data, these var-
iables were meant to capture sampling bias in the PO data, which
we believe heavily favours forested and protected areas that are
reasonably accessible by road. We included a quadratic term for
distance to roads, as there could be optimal locations that are
far enough from roads to minimize anthropogenic factors, but
close enough to facilitate sampling. With SO data, the sampling
variables were chosen as variables that might influence the detect-
ability of the species. For example, tapir detectability might
decrease as distance from protected areas increases due to likely
increased levels of hunting outside of protected areas and thus
increased response by the species to avoid humans (de la Torre
et al. 2017, Ferreguetti et al. 2017).

All variables were scaled to have a mean of zero and a standard
deviation of one, except distance to/within protected areas (zero
represents the border of the protected area). Themodels also incor-
porated quadratic terms for all climate variables, EVI and distance
to road to account for their suspected non-monotonic relation-
ships with tapir occurrence (aided by single-variable response
curves created in the early stages of the modelling process).

We resampled all environmental variables to four spatial reso-
lutions: 1, 2, 4 and 8 km. These resolutions correspond to site areas
of 1, 4, 16 and 64 km2. Estimates of home range size for Baird’s
tapir vary from 1.25 km2 reported in Costa Rica (Foerster &
Vaughan 2002) to 8–10 km2 in Nicaragua (Jordan et al. 2019),
while estimates of maximum distance travelled range up to
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10.5 km in Mexico from camera trap data on a marked individual
over 4 years (Reyna-Hurtado et al. 2016). From this information, it
is possible that an individual could be detected at more than one
site, but the likelihood of this is probably small, especially for the
larger site areas used in this analysis.

Season Length

When creating camera trap detection histories, researchers can
adjust their data structure by defining the length of each sampling
occasion and the number of sampling occasions to use in a discre-
tized season. Since camera traps operate continuously, there is
some flexibility in determining the sampling occasion and season
length. These decisions can be made (and adjusted) after the data
are collected and will determine the balance of detections and non-
detections. It is also important to consider the behaviour of the
target species. For sampling occasion length, one suggestion is
to select a length of time during which an individual will visit all
or most of its home range, and GPS telemetry data suggest
Baird’s tapirs cycle through their home ranges about once every
10–12 days (Jordan 2015). For this reason, we used a sampling
occasion length of 10 days.

With season length (i.e., number of sampling occasions), it is
important to consider the assumption of closure and to choose
a length of time during which immigration/emigration at a site
is unlikely. As the season length increases, it becomes more likely
that the assumption of closure will be violated. On the other hand,
it is crucial to include enough sampling occasions to estimate
detectability reliably. Some recommendations suggest three as
the minimum number of occasions to use, though this number
should be higher for species with low detectability (MacKenzie
& Royle 2005). Baird’s tapir is unsurprisingly a species with a
low detection probability (range of 0.2–0.3) (Cove et al. 2014,
Jordan 2015). Considering a detectability in this range, there is
an approximately 4–13% chance a present individual will go unde-
tected after nine sampling occasions. With the SO data, we tested
season lengths of 30, 60 and 90 days (three, six and nine samples).
The PB data contain only one sample, as there are not repeat obser-
vations at each site for this dataset.

Accuracy Assessment

We used two PO accuracy measures to assess the spatial predic-
tions of each model: the Boyce Index (Boyce et al. 2002) and the
minimum predicted area (MPA) (Engler et al. 2004). We did
not use detection/non-detection data with accuracy measures that
require presence–absence data given the difficulty of properly
defining absences (Lobo et al. 2010) and given the bias of these
measures when test data are missing from large portions of the
study area (Bean et al. 2012). After the spatial subsampling step,
the retained PO data were randomly split following a 75/25 train-
ing/testing ratio (Fielding & Bell 1997). For both accuracy mea-
sures, intensity was converted to occupancy, ψ, which ranges
from 0 to 1, using the formula from Dorazio (2014), where N is
the number of individuals in the spatial unit, C:

PrðNðCÞ> 0Þ ¼  ¼ 1� expð��ðCÞÞ

�ðCÞ ¼
Z
C
λðsÞds

To calculate the Boyce Index, we partitioned the occupancy surface
into bins (i.e., 0.0 < ψ < 0.1, : : : , 0.9 < ψ < 1.0) and calculated the

percentage of test data occurring in each bin (Pi). We then
compared the proportion of the area covered by the bin with
respect to the study area (Ei). Finally, we converted these two
measures to a ratio: Fi = Pi/Ei. If the model correctly predicts low-
suitability areas, the low-suitability classes should contain fewer
test points than expected by chance (i.e., Fi < 1) and the graph
of Fi versus average suitability of each bin should be monotonically
increasing. The Boyce Index is the correlation between the average
suitability of each bin and its respective Fi, with values greater than
zero indicating a model whose predictions are consistent with
the test data and negative values indicating an incorrect model.
The continuous version of this measure uses overlapping bins
(Hirzel et al. 2006).

The MPA is the smallest possible area covered by a thresholded
predictionmap that contains at least 90% of the test PO points. The
smaller the MPA, the more parsimonious the model and the less
likely there are to be errors of commission in the predictions
(Rupprecht et al. 2011).

Results

The ISDM converged (with estimated standard errors) in more than
97% of model iterations, while the PB model had low convergence
rates across site areas and the SOmodel exhibited a sharp drop-off in
convergence at 16 km2 and above (See Supplementary Material,
available online). Both measures of model accuracy showed that
the ISDM was the most accurate framework, a relationship that
was consistent across site area and number of samples (Fig. 1).
Focusing on the ISDM, estimates of total population decreased expo-
nentially as site area increased (Fig. 2). The number of samples used
andwhether the data had been subsampled hadmuch smaller effects
on population estimates.

The decrease in population estimates across site areas was
driven by estimates of model intercepts, primarily β0, while the
coefficients representing species–environment relationships
remained relatively stable (Table 1). Annual precipitation (þ), tree
cover (þ) and road density (–) were the threemost important envi-
ronmental variables in the model. Temperature seasonality (–),
precipitation seasonality (þ), maximum temperature of the warm-
est month (þ), EVI (–), forest loss (–) and maximum slope (–) also
appeared as significant environmental predictors. Annual precipi-
tation was the only environmental variable with a clearly signifi-
cant quadratic term. In the PB detectability process, presence in
a protected area (þ) was the most important variable. Distance
to roads (–) was significant in both detectability components
(PB and SO). Maximum slope (þ) was also a significant variable
in the SO detectability process.

Discussion

In the SO model, convergence decreased for larger site areas, pos-
sibly due to reduced sample sizes following the subsampling step
(mean sample sizes: 1 km2, 663; 4 km2, 370; 16 km2, 182; 64 km2,
93). The ISDM was able to maintain convergence at these larger
site areas possibly because of the added information from the
PB data. However, there was a detectable decline in convergence
with shorter season lengths at these larger site areas. Clearly, sam-
ple size is affected by both number of sites and number of repeated
observations at those sites (MacKenzie & Royle 2005). In addition
to higher rates of convergence, the ISDMwas consistently the most
accurate model. Taken together, these results demonstrate the
importance of this new modelling framework. The ability to
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combine two types of presence data in the samemodel leads to bet-
ter results.

In the ISDM, many of the species–environment relationships
exhibited the expected outcome for this species (e.g., a preference
for forest and avoidance of humans; Cove et al. 2014, Jordan et al.
2016). However, there are two results that contradicted expecta-
tions. First, EVI had a negative relationship with tapir intensity,
as also seen in Schank et al. (2017). Tapir intensity should be pos-
itively associated with increasing vegetation (higher EVI) because
vegetation is both a food source and it provides cover (Brooks et al.
1997, Pettorelli et al. 2011). This outcome could be explained if
secondary forest is associated with higher EVI values, as there is
evidence that tapir prefer these areas (Foerster & Vaughan
2002). In fact, subsequent modelling efforts that included an inter-
action term between forest cover and EVI provide evidence of this
relationship (see chapter 4 in Schank 2018).

Also surprising was the positive relationship with maximum
slope in the detectability of the SO data. This variable was included
in this part of themodel as it was suspected to either have a negative
effect on sampling effort, because steep terrain is harder to sample,
or on actual detectability of tapirs due to the same constraints, as
difficult terrain is an impediment to wildlife movement as well
(Bailey et al. 1996, Mair & Ruete 2016).

Clearly, the most important factor driving estimated popula-
tion (and underlying magnitude of intensity) was the assumption
about the size of our sampling unit, which we refer to as ‘site area’.
The number of sampling occasions and whether or not the

Fig. 1. Model accuracy using Boyce Index (BI) andminimum predicted area (MPA). The difference is calculated from the maximum (i.e., most accurate) BI and from the minimum
(i.e., most accurate) MPA within each combination of model settings. The greater the difference (from zero), the less accurate the result. MPA differences have been rescaled to
positive numbers and are represented in units of 100,000 km2. ISDM = integrated species distribution model; PB= presence-background; SO= site occupancy.

Fig. 2. Population estimates from the integrated species distribution model frame-
work. Horizontal lines are placed at expert population estimates for the species of 3000
(current Red List assessment: Garcia et al. 2017) and 16,500 (Population Viability
Assessment Report: Medici et al. 2005). Black triangles are the estimates for models
run on the complete (not subsampled) set of presence data.
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presence data had been subsampled to preserve site independence
had much smaller effects, with no discernible patterns. The mod-
els developed in Dorazio (2014) and Koshkina et al. (2017) explic-
itly incorporate site area in a way that is different from in
traditional occupancy models. This likely explains the behaviour
of total population changing proportional to the area of a grid cell
used in the analysis. In the traditional formulation of an occu-
pancy model (see panel 3.8 in Royle & Dorazio 2008), site area
is not included anywhere in the model likelihood. The important
question that remains is: what exactly constitutes a site? For sessile
species or species that have small home ranges relative to the sur-
vey method, the site is easily defined as the area covered during
the survey (i.e., a quadrat). However, when the species is relatively
mobile, with a home range that is much bigger than the area
covered in the survey, the concept of the site is less straightfor-
ward (Efford & Dawson 2012).

For example, when using camera traps, the cone of detection
(i.e., the area in which a species can trigger the camera) is often
very small in relation to the movements of the target species, which
are typically large and mobile. The effective sampling area (ESA) is
the area that contains the activity centres of any individuals that
could come into contact with this cone of detection (Fig. 3)
(White, 1982). This area should be approximately equal to the
average home range of the species. Original estimates of the home
range for Baird’s tapirs were c. 1 km2 (Foerster & Vaughan 2002),
which is surprisingly small for a species of its size. More recent
estimates put the home range size closer to 10 km2 (Jordan et al.
2019). The differences in reported estimates of home range size could
be due to differences in the methodology used and differences in
topography and the availability of resources, specifically regarding
the availability of water. In mountainous sites with complex

topography and permanent availability of quality water throughout
the year, the home range could bemuch smaller than in flat siteswith
very marked seasonality (Botello et al. 2017). Interestingly, using a
site area of 16 km2 provides a total population estimate that is within
the range of expert estimates for the species (Fig. 2).

In Schank et al. (2017), the model was implemented using a site
area of 1 km2. To contextualize the population estimates from that
model, the results were compared to multiple independent studies
that focused on the estimated abundance of Baird’s tapir (Naranjo-

Table 1. Coefficient estimates and standard errors for the integrated species distribution model (samples = 6) averaged across 100
model iterations fit on randomly subsampled presence data.

Coefficient

Site area

1 4 16 64

beta0 −1.403 (0.214) −2.660 (0.258) −3.800 (0.416) −4.654 (0.812)
temp_seasonality −0.527 (0.092) −0.458 (0.109) −0.438 (0.131) −0.338 (0.163)
precip_seasonality 0.448 (0.134) 0.382 (0.160) 0.394 (0.195) 0.302 (0.240)
max_temp_warmest_month 0.291 (0.129) 0.236 (0.156) 0.204 (0.191) 0.115 (0.244)
annual_precip 1.448 (0.252) 1.398 (0.298) 1.428 (0.356) 1.410 (0.430)
temp_seasonality_sq −0.651 (0.090) −0.557 (0.105) −0.410 (0.123) −0.285 (0.148)
precip_seasonality_sq −0.180 (0.089) −0.164 (0.108) −0.147 (0.130) −0.129 (0.160)
max_temp_warmest_month_sq 0.066 (0.026) 0.050 (0.032) 0.023 (0.041) −0.006 (0.055)
annual_precip_sq −1.045 (0.202) −1.100 (0.247) −1.213 (0.312) −1.225 (0.379)
treecover2000 1.692 (0.166) 1.568 (0.193) 1.496 (0.223) 1.309 (0.270)
distancePA −0.005 (0.103) −0.041 (0.119) −0.099 (0.141) −0.095 (0.172)
EVI −0.554 (0.111) −0.567 (0.140) −0.649 (0.168) −0.600 (0.229)
EVI_sq −0.025 (0.051) −0.090 (0.071) −0.090 (0.078) −0.176 (0.119)
forestloss_focal −0.217 (0.056) −0.179 (0.066) −0.104 (0.078) −0.040 (0.095)
road_length_focal −1.147 (0.201) −1.185 (0.244) −1.314 (0.322) −1.426 (0.411)
fire_density_focal 0.061 (0.091) 0.035 (0.112) −0.032 (0.142) −0.031 (0.163)
max_slope −0.395 (0.080) −0.357 (0.095) −0.312 (0.117) −0.215 (0.146)
alpha0.pb −7.353 (0.243) −6.310 (0.297) −5.405 (0.465) −5.050 (0.884)
alpha0.so −1.326 (0.335) −1.839 (0.526) −2.316 (0.751) −1.913 (0.858)
pb.forest 0.043 (0.183) 0.164 (0.224) 0.177 (0.271) 0.440 (0.350)
pb.protected 1.614 (0.180) 1.462 (0.203) 1.280 (0.235) 1.186 (0.281)
pb.road_distance −0.792 (0.107) −0.751 (0.127) −0.721 (0.157) −0.744 (0.207)
pb.road_distance_sq 0.146 (0.024) 0.137 (0.030) 0.125 (0.042) 0.116 (0.056)
so.treecover2000 0.301 (0.298) 0.751 (0.469) 0.954 (0.652) 0.348 (0.726)
so.distancePA −0.043 (0.178) −0.010 (0.232) −0.162 (0.354) −0.193 (0.468)
so.road_distance −0.565 (0.222) −0.811 (0.298) −1.309 (0.469) −1.590 (0.798)
so.road_distance_sq 0.103 (0.082) 0.166 (0.108) 0.211 (0.201) −0.080 (0.607)
so.max_slope 0.316 (0.087) 0.307 (0.110) 0.344 (0.168) 0.412 (0.224)

Fig. 3. Effective sampling area. A simplified diagram of two individuals with overlap-
ping home ranges and a camera trap in the area of their intersection. The effective
sampling area is equal to the area that incorporates the activity centres of all individ-
uals detected at the camera.
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Piñera 1995, Gonzalez-Maya et al. 2012, Carbajal-Borges et al.
2014, Mejía-Correa et al. 2014, Botello et al. 2017). The estimates
from those studies were similar to the estimates using the ISDM,
which provided a conflicting story, as the total population esti-
mates were thought to be overestimates by at least an order of mag-
nitude. Most of these independent studies used capture–recapture
methods and did control for the ESA; however, they used the old
estimate of home range size from Foerster and Vaughan (2002).
Clearly, accounting for the size of a species’ home range and the
variability in those estimates has a huge effect on abundance
and population estimates using the ISDM (Fig. 2).

In fact, some authors have called into question the ability to use
capture–recapture on a species like Baird’s tapir, which does not
have obvious and distinct markings by which individuals can be
identified (Foster & Harmsen 2012). In the case of Baird’s tapirs,
sexually immature sub-adults lose their juvenile pelage before
1 year of age and develop very quickly (CA Jordan, pers. comm.
2018). In addition to making individual adults difficult to identify,
this makes older juveniles effectively indistinguishable from mature
adults in camera traps. This means that sexually immature individ-
uals have likely been included in prior population estimates using
capture–recapture methods, and this puts into doubt whether those
studies accurately estimate the effective population size.

In addition to problems with misidentification of individuals,
capture–recapture can overestimate species abundance due to
the ad hoc correction of ESA (Noss et al. 2012), which can also lead
to large errors in population estimates due to extrapolation (Foster
& Harmsen 2012). These critiques recommend the use of the
newer spatial capture–recapture (Royle et al. 2013), which explic-
itly accounts for species movement using an additional scaling
parameter in the model.

Conclusion

Our research has demonstrated the potential connection between
ISDMs and the ESA. Yet, the methods used in this research include
ad hoc procedures that should be replaced by formal incorporation
into the statistical model. In our models, accounting for the ESA is
done in a way that matches site area with the best information
about average movements for the species. Spatial capture–
recapture provides an example for properly scaling the model to
incorporate animal movement (Royle et al. 2013). Rather than
approximating this effect through the selection of an appropriate
site area, it would be better to combine concepts from spatial
capture–recapture with the ISDMs used here.

Second, sometimes additional ad hoc steps must be taken in
order to ‘fix’ the data. In this case, we used the spatial subsampling
approach to avoid duplicate observations of the same individual at
more than one site. Here, spatial capture–recapture can provide
some guidance as well. These models require that sites are close
enough to ensure that individuals are observed at more than
one site, and they use this information to help estimate the spatial
scalar of movement for the species. Thus, combining concepts
from spatial capture–recapture with ISDMs may allow for the
use of all data possible, although some alterations may be necessary
for sites that have data covering more than one season (as the tapir
data used here do).

A significant contribution of this research is the linkage
between ESA and estimating abundance using ISDMs (or any
other SDM/occupancy model). It is unclear why the discussion
of ESA is almost entirely tied to capture–recapture models that
use marked individuals. However, there is at least one study that

addresses this issue as it relates to occupancy models (Efford &
Dawson 2012). The issue created by incorrectly accounting for
ESA only becomes apparent in a small number of situations: when
studying mobile species, estimating their abundance and extrapo-
lating these estimates to produce population estimates. With
Baird’s tapir, these steps made it clear that something could be
incorrect in our model. While it is possible to hypothesize multiple
reasons for this disparity (see the conclusion section in Schank
et al. 2017), the most straightforward answer is that ESA was
not properly accounted for.

The incorporation of ESA into SDMs and occupancy models
could use additional research. Failure to account for this properly
could lead to inaccurate estimation of occupancy or abundance.
However, as is seen in this research, species–environment relation-
ships might remain the same. In order to improve our understand-
ing, a future study using a detailed simulation (incorporating the
movement of individuals) is needed. Future modelling efforts for
this species should also explore unexpected species–environment
relationships in more detail (e.g., negative associations between
species presence and EVI and positive associations between species
detectability and slope). It is possible that there is some interaction
with other variables that caused these unexpected results. Finally,
the reciprocal of the condition number used to determine param-
eter identifiability is new to species distribution modelling and
should be investigated further.
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