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Abstract

The Douglas–Rachford method is a splitting method frequently employed for finding zeros of sums of
maximally monotone operators. When the operators in question are normal cone operators, the iterated
process may be used to solve feasibility problems of the following form: Find x ∈

⋂N
k=1 S k. The success

of the method in the context of closed, convex, nonempty sets S 1, . . . , S N is well known and understood
from a theoretical standpoint. However, its performance in the nonconvex context is less well understood,
yet it is surprisingly impressive. This was particularly compelling to Jonathan M. Borwein who, intrigued
by Elser, Rankenburg and Thibault’s success in applying the method to solving sudoku puzzles, began an
investigation of his own. We survey the current body of literature on the subject, and we summarize its
history. We especially commemorate Professor Borwein’s celebrated contributions to the area.
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1. Introduction

In 1996 Heinz Bauschke and Jonathan Borwein broadly classified the commonly
applied projection algorithms for solving convex feasibility problems as falling
into four categories. These were: best approximation theory, discrete models for
image reconstruction, continuous models for image reconstruction and subgradient
algorithms [17]. One such celebrated iterative process has been known by many names
in many contexts and is possibly best known as the Douglas–Rachford method (DR).

DR is frequently used for the more general problem of finding a zero of the sum
of maximally monotone operators, which itself is a generalization of the problem
of minimizing a sum of convex functions. Many volumes could be written on
monotone operator theory, convex optimization and splitting algorithms specifically,
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the definitive work being that of Bauschke and Combettes [20]; the story of DR is
inextricably entwined with each of these.

More recently, the method has become famous for its surprising success in solving
nonconvex feasibility problems, notwithstanding the lack of theoretical justification.
The recent investigation of these methods in the nonconvex setting has been both
motivated by and advanced through experimental application of the algorithms to
nonconvex problems in a variety of different settings. In many cases, impressive
performance has been observed despite having previously been thought of as ill-
adapted to projection algorithms.

The task of choosing what to include in a condensed survey of DR is thus
necessarily difficult. We therefore choose to adopt an approach which balances
reasonable brevity with the goal that a reader unfamiliar with DR should be able to
at least glean the following: the basic history of the method, an understanding of the
various motivating contexts in which it has been ‘discovered’, an appreciation for the
diversity of problems to which it is applied, and a sense of which research topics are
currently being explored.

1.1. Outline. This paper is divided into four sections.

Section 1: In 1.2, we provide preliminaries on DR and feasibility. In 1.3, we briefly
motivate its history and explain how feasibility problems are a special case of finding
a zero for a sum of maximal monotone operators, and in 1.4 we explore its use for
finding zeros of maximal monotone operator sums, including its connection with the
alternating direction method of multipliers (ADMM) in 1.4.1. In 1.5, we analyze
the ways in which it has been extended from two-set feasibility problems to N-set
feasibility problems.

Section 2: We consider the role of DR in solving convex feasibility problems. In 2.1,
we catalogue some of the convergence results, and in 2.2 we mention some of its better
known applications.

Section 3: We consider the context of nonconvex feasibility. We first consider discrete
problems in 3.1 and go on to discuss hypersurface problems in 3.2. In 3.3, we
explore some of the possibly nonconvex convergence results which employ notions of
regularity and transversality. In 3.3.3, we describe some of the recent work applying
DR to nonconvex minimization problems.

Section 4: Finally, we mention two open problems and summarize the current state of
research in the field.

Appendix A: This appendix provides a more detailed summary of Gabay’s exposition
on the connection between DR and ADMM.

1.2. Preliminaries. The method of alternating projections (AP) and the DR are
frequently used to find a feasible point (point in the intersection) of two closed
constraint sets A and B in a Hilbert space H. The feasibility problem is the following.

Find x ∈ A ∩ B. (1-1)
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The projection onto a subset C of H is defined for all x ∈ H by

PC(x) :=
{
z ∈ C : ‖x − z‖ = inf

z′∈C
‖x − z′‖

}
.

Note that PC is, generically, a set-valued map where values may be empty or contain
more than one point. In the cases of interest to us, PC has nonempty values (indeed,
throughout, PC is nonempty and so C is said to be proximal) and, in order to simplify
both notation and implementation, we will work with a selector for PC , that is, a map
PC : H → C : x 7→ PC(x) ∈ PC(x), so P2

C = PC .
When C is nonempty, closed and convex, the projection operator PC is uniquely

determined by the variational inequality

(x − PC(x), c − PC(x)) ≤ 0 for all c ∈ C,

and it is a firmly nonexpansive mapping; that is, for all x, y ∈ H,

‖PC x − PCy‖2 + ‖(I − PC)x − (I − PC)y‖ ≤ ‖x − y‖2.

See, for example, [20, Ch. 4]. When C is a closed subspace it is also a self-adjoint
linear operator [20, Corollary 3.22].

The reflection mapping through the set C is defined by

RC := 2PC − I,

where I is the identity map.

Definition 1.1 (Method of AP). For two closed sets A and B and an initial point x0 ∈ H,
the method of AP generates a sequence (xn)∞n=1 as follows.

xn+1 := PBPAxn. (1-2)

Definition 1.2 (DR method). For two closed sets A and B and an initial point x0 ∈ H,
the DR generates a sequence (xn)∞n=1 as follows.

xn+1 ∈ TA,B(xn) where TA,B := 1
2 (I + RBRA). (1-3)

DR is often referred to as reflect-reflect-average. Both DR and AP are special cases
of averaged relaxed projection methods. We denote a relaxed projection by

Rγ
C(x) := (2 − γ)(PC − Id) + Id, (1-4)

for a fixed reflection parameter γ ∈ [0, 2). Observe that, when γ = 0, the operator
Rγ=0

C = 2PC − Id is the standard reflection employed by DR, and, for γ = 1, we obtain
the projection Rγ

C = R1
C = PC . For γ ∈ (1, 2), the operator Rγ

C can be called an under-
relaxed projection following [71]. Here we are using the terminology in (1-4).
However, the reader is cautioned that in some articles Rγ

C is written as Pγ
C , while in

others the role of γ is reversed so that γ = 2 corresponds to a reflection and γ = 0 is the
identity: γ(PC − Id) + Id.

https://doi.org/10.1017/S1446788719000570 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000570


S. B. Lindstrom and B. Sims [4]

Figure 1. The operator TA,B.

In addition to using relaxed projections as in (1-4), the averaging step of the DR
iteration can also be relaxed by choosing an arbitrary point on the interval between the
second reflection and the initial iterate. This can be parametrized by some λ ∈ (0, 1].
Accordingly we define a λ-averaged relaxed sequence {xn} by

xn :=
(
T λ

Aγ ,Bµ
)n

x0 :=
(
λ(Rµ

B ◦ Rγ
A) + (1 − λ)Id

)n
x0. (1-5)

When λ = γ = µ = 1, this is the sequence generated by AP (1-2), and for λ = 1/2 and
γ = µ = 0, this is the standard DR sequence (1-3). For γ = µ = 0 and λ = 1, this is the
Peaceman–Rachford sequence [125] (see also Lions and Mercier [117, Algorithm 1]).

We note that the framework introduced here does not cover all possible projection
methods. For example, one may want to vary the parameters γ, µ and λ on every step
or to consider other variations of DR operators (see [9], for example). Single steps of
the AP and DR methods are illustrated in Figure 1, which originally appeared in [73].

Definition 1.3. The fixed point set for a mapping T : H → H is Fix T = {x ∈ H |
T x = x} (in the case when T is set-valued, Fix T = {x ∈ H | x ∈ T x}.

1.3. History. Projection methods date at least as far back as 1933 when J. von
Neumann considered the method of AP when A and B are affine subsets of H
establishing its norm convergence to PA∩B(x0) [138]. In 1965, Bregman showed that,
in the more general setting where A and B are closed convex sets, AP converges weakly
to a point in A ∩ B [55] (see also [17]). In 2002, Hundal [110] provided an example
in infinite dimensions of a hyperplane and closed cone for which AP fails to converge
in norm. However, the cone constructed by Hundal is somewhat unnatural. In [50],
Borwein et al. explored the possibility of norm convergence for sets occurring more
naturally in applications.

Sixty years ago, the DR method was introduced, somewhat indirectly, in connection
with nonlinear heat flow problems [74]; see [120] for a thorough treatment of the
connection with the form we recognize today. The definitive statement of the weak
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convergence result was given by Lions and Mercier in the more general setting of
maximal monotone operators [117]. We will first state the problem and result, and
then we explain the connection. The problem is

Find x such that 0 ∈ (A + B)x. (1-6)

Let the resolvent for a set-valued mapping F be defined by JλF := (Id + λF)−1 with
λ > 0. The classical result is as follows.

Theorem 1.4 (Lions and Mercier [117]). Assume that A,B are maximal monotone
operators with A + B also maximal monotone. Then, for

TA,B : X → X : x 7→ JλB(2JλA − I)x + (I − JλA)x, (1-7)

the sequence given by xn+1 = TA,Bxn converges weakly to some v ∈ H as n→∞ such
that Jλ

A
v is a zero of A + B.

The normal cone to a set C at x ∈ C is NC(x) = {y ∈ H : (y, c − x) ≤ 0 for all c ∈ C}.
The normal cone operator associated to C is

NC : H → H : x 7→
{

NC(x) when x ∈ C,
∅ when x < C. (1-8)

See, for example, [20, Definition 6.37]. One may think of the feasibility problem (1-1)
as a special case of the optimization problem

Find x ∈ argmin {ιA + ιB} , (1-9)

where the indicator function ιC for a set C is defined by

ιC : H → R∞ by ιC : x 7→

0 if x ∈ C,
∞ otherwise.

Whenever A and B are closed and convex, ιA and ιB are lower semicontinuous
and convex, and their subdifferential operators ∂ιA = NA and ∂ιB = NB are maximal
monotone. In this case, under satisfactory constraint qualifications on A,B to guarantee
the sum rule for subdifferentials ∂(ιA + ιB) = ∂ιA + ∂ιB (see [20, Corollary 16.38]), the
problem (1-9) reduces to

Find x such that 0 ∈ (∂ιA + ∂ιB) (x) = (NA + NB) (x),

which we recognize as (1-6). Seen through this lens, two-set convex feasibility is
a special case of an extremely common problem in convex optimization: that of
minimizing a sum of two convex functions f + g, where A = ∂ f and B = ∂g. This
illuminates its close relationship to many other proximal iteration methods, including
the various augmented Lagrangian techniques with which it is often studied in tandem
(see § 1.4.1).

Where A = NA and B = NB are the normal cone operators for closed convex sets
A and B, the resolvents Jλ

A
, JλB are the projection operators PA, PB, respectively,
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TA,B = 1
2 RBRA + 1

2 Id is what we recognize as the operator of the usual DR method,
and Jλ

A
v = PAv ∈ A ∩ B is a solution for the feasibility problem (1-1). For details, see,

for example, [20, Example 23.4]. An operator T : D→ H with D , ∅ satisfies T = JA,
where A := T−1 − Id. Moreover, T is firmly nonexpansive if and only if A is monotone,
and T is firmly nonexpansive with full domain if and only if A is maximally monotone.
See [20, Proposition 23.7] for details. Rockafellar [128] and Brezis [56] (as cited in
[14]) showed that the condition domA ∩ intdomB , ∅ is sufficient to ensure that A and
B maximal monotone implies that A + B is also maximal monotone. In 1979, Hedy
Attouch showed that the weaker condition 0 ∈ int(domA − domB) is sufficient [14].

However, Attouch’s condition may not be satisfied if A = NA and B = NB, where
A and B meet at a single point, since domNA = A and domNB = B. In the following
theorem, Bauschke, Combettes and Luke [21] showed that, in the case of the feasibility
problem (1-1), the requirement that A + B be maximal monotone may be relaxed.

Theorem 1.5 [21, Fact 5.9]. Suppose A, B ⊆ H are closed and convex with nonempty
intersection. Given x0 ∈ H, the sequence of iterates defined by xn+1 := TA,Bxn converges
weakly to an x ∈ FixTA,B with PAx ∈ A ∩ B.

It should be noted that Zarantonello gave an example showing that, when C is not
closed and affine, PC need not be weakly continuous [140] (see also [20, ex. 4.12]).
Despite the potential discontinuity of the resolvent JλA, Svaiter later demonstrated that
JλAxn converges weakly to some v ∈ zer(A + B) [134].

Theorem 1.5 relies on the firm nonexpansivity of TA,B. This is an immediate
consequence of the fact that it is a 1/2-average of RBRA with the identity and that
PA, PB are themselves firmly nonexpansive so that RA, RB and hence RBRA are
nonexpansive. The proof of Theorem 1.4 similarly relies on the firm nonexpansivity
of Jλ

A
and JλB; its requirement that A + B be maximal monotone was later relaxed by

Svaiter [134].

1.4. Through the lens of monotone operator sums. While our principal interest
lies in the less general setting of projection operators, much of the investigation of
the DR algorithm has centered on analysis of the problem (1-6). We provide a brief
summary.

In 1989 [77], Eckstein and Bertsekas motivated the advantage of TB,A among
resolvent methods as a splitting method: a method which employs separate
computation of resolvents forA and B in lieu of attempting to compute the resolvent of
A + B directly. They showed that, in the case where zer(A + B) = ∅, the sequence (1-3)
is unbounded, which is a useful diagnostic observation. They also demonstrated that,
with exact evaluation of resolvents, the DR method is a special case of the proximal
point algorithm [77, Theorem 6] in the sense of iterating a resolvent operator [129]:
that is,

xn+1 := JδnA where δn > 0,
∑
n∈N

δn = +∞, (1-10)

and A : H → 2H is maximally monotone with zerA , ∅.
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For more information on this characterization, see [20, Theorem 23.41]. In his PhD
dissertation [76], Eckstein went on to show that the DR operator may, however, fail to
be a proximal mapping [20, Theorem 27.1] in the sense of satisfying

xn+1 := proxδn f xn where δn > 0,
∑
n∈N

δn = +∞ and f ∈ Γ0(H) (1-11)

and proxδn f x := argmin
y∈X

(
δn f (y) +

1
2
‖x − y‖2

)
.

Since proxδn f = J∂(δn f ) (see, for example, [20]), clearly (1-11) implies (1-10). This
is also why, in the literature, DR splitting is frequently described in terms of prox
operators as follows.

Step 0. Set initial point x0 and parameter η > 0. (1-12)

Step 1. Set


yn+1 ∈ argmin

y

{
f (y) +

1
2η
‖y − xn‖

2
}

= proxη f (xn),

zn+1 ∈ argmin
z

{
g(z) +

1
2η
‖2yn+1 − xn − z‖2

}
= proxηg(2yn+1 − xn),

xn+1 = xn + (zn+1 − yn+1),

which simplifies to (1-3) when f := ιA and g := ιB are indicator functions for convex
sets (see, for example, [115, 124]).

In 2018, Bauschke et al. [40] investigated DR operators which fail to satisfy (1-11),
demonstrating that, for linear relations which are maximally monotone, TA,B
generically does not satisfy (1-11).

In 2004, Combettes provided an excellent illumination of the connections between
the DR method, the Peaceman–Rachford method, the backward-backward method
and the forward-backward method [63]. He also established the following result on
a perturbed, relaxed extension of DR, which we quote with minor notation changes.

Theorem 1.6 (Combettes, 2004). Let γ ∈]0,+∞[, let (νn)n∈N be a sequence in ]0,2[ and
let (an)n∈N and (bn)n∈N be sequences in H. Suppose that 0 ∈ ran(A + B),

∑
n∈N νn(2 −

νn) = +∞ and
∑

n∈N(‖an‖ + ‖bn‖) < +∞. Take x0 ∈ H and set

(∀n ∈ N) xn+1 = xn + νn(JγA(2(JγBxn + bn) − xn) + an − (JγBxn + bn)).

Then (xn)n ∈ N converges weakly to some point x ∈ H and JγBx ∈ (A + B)−1(0).

At the same time, Eckstein and Svaiter conducted a similar investigation through
the lens of Fejér monotonicity, allowing the proximal parameter to vary from operator
to operator and iteration to iteration [78].

In 2011, He and Yuan provided a simple proof of the worst case O(1/k) convergence
rate in the case where the maximally monotone operators A and B are continuous on
Rn [107].

In 2011 [18], Bauschke et al. analyzed the Attouch–Théra duality of the problem
(1-6), providing a new characterization of Fix TB,A. In their 2013 article [31],
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Bauschke et al. introduced a ‘normal problem’ associated with (1-6), which introduces
a perturbation based on an infimal displacement vector (see equation (2-1)). In 2014,
they went on to rigorously investigate the range of TA,B [32].

In 2015, Combettes and Pesquet introduced a random sweeping block coordinate
variant, along with an analogous variant for the forward-backward method [66]. In so
doing, they furnished a thorough investigation of quasi-Fejér monotonicity.

In 2017, Bauschke et al. [34] provided a detailed unpacking of the connections
between the original context of Douglas and Rachford [74] and the classical statement
of the weak convergence provided by Lions and Mercier [117]. In addition, they
provided numerous extensions of the original theory in the case where A and B are
maximally monotone and affine, including results in the infinite-dimensional setting.

In the same year, Pontus Giselsson and Stephen Boyd established bounds for the
rates of global linear convergence under assumptions of strong convexity of g (where
B = ∂g) and smoothness, with a relaxed averaging parameter [98]. Giselsson also
provided tight global linear convergence rate bounds in the more general setting of
monotone inclusions [96]: namely, when one of A or B is strongly monotone and the
other cocoercive, when one of A or B is both strongly monotone and cocoercive, and
when one of A or B is strongly monotone and Lipschitz continuous. In the case where
one operator is strongly monotone and Lipschitz continuous, Giselsson demonstrated
that the linear convergence rate bounds provided by Lions and Mercier are not tight.
In his analysis, he introduced and made use of negatively averaged operators—T such
that −T is averaged—proving and exploiting the fact that averaged maps of negatively
averaged operators are contractive, in order to obtain the linear convergence results.

In 2018, Moursi and Vandenberghe [121] supplemented Giselsson’s work by
providing linear convergence results in the case where A is Lipschitz continuous and
B is strongly monotone, a result that is not symmetric in A and B except when B is a
linear mapping.

The DR operator has also been employed as a step in the construction of a more
complicated iterated method. For example, in 2015, Luis Briceño-Arias considered
the problem of finding a zero for a sum of a normal cone to a closed vector subspace
of H, a maximally monotone operator and a cocoercive operator. They provided weak
convergence results for a method which employs a DR step applied to the normal cone
operator and the maximal monotone operator [58].

Recently, Dao and Phan [68] have introduced what they call an adaptive DR
splitting algorithm in the context where one operator is strongly monotone and the
other weakly monotone.

Svaiter has also analyzed the semiinexact and fully inexact cases where one or both
proximal subproblems are solved only approximately, within a relative error tolerance
[135].

The definitive modern treatment of the above history—including the most detailed
version of the exposition from [34] on the connections between the contexts of Douglas
and Rachford [74] and Lions and Mercier [117]—was given by Moursi in her PhD
dissertation [120].
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1.4.1. Connection with method of multipliers (ADMM). We provide here an
abbreviated discussion of the connection between the DR method and the so-called
method of multipliers or the ADMM. For a more detailed exposition, see Appendix A.
In 1983 [94], Gabay showed that, under appropriate constraint qualifications, the
Lagrangian method of Uzawa applied to finding

p := inf
v∈V
{F(Bv) + G(v)},

where B is a linear operator with adjoint B∗ and F,G are convex, is equivalent to DR
in the Lions and Mercier sense of iterating resolvents (1-7) applied to the problem of
finding

d := inf
µ∈H
{G∗(−B∗µ) + F∗(µ)},

where the former is the primal value and the latter is the dual value associated through
Fenchel duality (see, for example, [46, Theorem 3.3.5]). We have presented here a
more specific case of his result, namely, where Bt = B∗; the more general version is in
Appendix A.

Gabay gave this method what is now the commonly accepted name method of
multipliers. It is also frequently referred to as the alternating direction method of
multipliers (ADMM). Gabay went on to also consider an analysis of the Peaceman–
Rachford algorithm [125] (see also Lions and Mercier [117, Algorithm 1]). Because of
this connection, DR, PR and ADMM are frequently studied together. Indeed, another
name by which ADMM is known is the DR ADM.

Remark (On a point of apparently common confusion). In the literature, we have
found it indicated that the close relationship between the ADMM and the iterative
schemes in Douglas and Rachford’s article [74] and in Lions and Mercier’s article
[117] was explained by Chan and Glowinski in 1978 [61]. However, both Glowinski
and Marroco’s 1975 paper [100] and Chan and Glowinski’s 1978 paper [61] pre-date
Lions and Mercier’s 1979 paper [117], and neither of them contains any reference to
Douglas’ and Rachford’s article [74].

Lions and Mercier made a note that DR (which they called simply Algorithm II) is
equivalent to one of the penalty-duality methods studied in 1975 by Gabay and Mercier
[95] and by Glowinski and Marocco [100]. In both of these articles, the method under
consideration is simply identified as Uzawa’s algorithm. The source of the confusion
remains unclear, but the explicit explanation of the connection that we have followed
is that of Gabay in 1983 [94]. In fact, clearly explaining the connection appears to
have been one of his main intentions in writing his 1983 book chapter.

Reasonable brevity precludes an in-depth discussion of Lagrangian duality beyond
establishing the connection of ADMM with DR. Instead, we refer the interested reader
to a recent survey of Moursi and Zinchenko [122], who drew Gabay’s work to the
attention of the present authors. We refer the reader also to the sources mentioned
in Remark 1, to the recent book by Glowinski et al. on splitting methods [101,
Ch. 2] and to the following selected resources, which are by no means comprehensive:
[44, 80, 83, 89, 99, 105, 106].
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Figure 2. The algorithm xn := ( 1
2 RCRBRA + 1

2 Id)n x0 may cycle.

1.5. Extensions to N sets. The method of AP, and the associated convergence
results, readily extend to the feasibility problem for N sets

Find x ∈
N⋂

k=1

S k, (1-13)

to yield the method of cyclic projections that involves iterating TS 1S 2···S N =

PS N PS N−1 · · · PS 1 .
However, even for three sets, the matching extension of DR,

xn+1 = 1
2 (I + RS 3 RS 2 RS 1 )(xn),

may cycle and so fail to solve the feasibility problem (see Figure 2, an example due to
Sims that has previously appeared in [136]).

The most commonly used extension of DR from two sets to N sets is Pierra’s
product space method [127]. More recently, Borwein and Tam have introduced a cyclic
variant [52].

1.5.1. Pierra’s product space reformulation: ‘divide and concur’ method. To
apply DR for finding x ∈

⋂N
k=1 S k , ∅, we may work in the Hilbert product space

H = HN as follows.

Let S := S 1 × · · · × S N

and D := {(x1, . . . , xN) ∈ H : x1 = x2 = · · · = xN} (1-14)

and apply the DR method to the two sets S and D. The product space projections for
x = (x1, . . . , xN) ∈ H are

PS (x1, . . . , xN) = (PS 1 (x1), . . . , PS N (xN)),

and PD(x1, . . . , xN) =

( 1
N

N∑
k=1

xk, . . . ,
1
N

N∑
k=1

xk

)
.
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The method was first nicknamed divide and concur by Gravel and Elser [103]—the
latter of whom credits the former for the name [81]—and the diagonal set D in this
context is referred to as the agreement set. It is clear that any point x ∈ S ∩ D has the
property that x1 = x2 = · · · = xN ∈

⋂N
k=1 S k. It is also clear that D is a closed subspace

of H (so, PD is weakly continuous) and that, when S 1, . . . , S N are convex, so too is S .
The form of PD and its consequent linearity allows us to readily unpack the product

space formulation to yield the iteration

(xk(n + 1))N
k=1 =

(
xk(n) − a(n) + 2A(n) − PS k (xk(n))

)N
k=1 ,

where a(n) = 1/N
∑N

k=1 xk(n) and A(n) = 1/N
∑N

k=1 PS k (xk(n)), under which, in the
convex case, the sequence of successive iterates weakly converges (by Theorem 1.5)
to a limit (x1(∞), x2(∞), . . . , xN(∞)) for which PS k (xk(∞)) is, for any k = 1, 2, . . . ,N,
a solution to the N-set feasibility problem.

A product space schema can also be applied with AP instead of DR, to yield the
method of averaged projections

xn+1 =
1
N

N∑
i=1

Pi(xi).

1.5.2. Cyclic variant: Borwein–Tam method. The cyclic version of DR, also called
the Borwein–Tam method, is defined by

T[S 1S 2...S N ] := TS N ,S 1 TS N−1S N . . . TS 2,S 3 TS 1,S 2 ,

where each TS i,S j is as defined in (1-3). The key convergence result is as follows.

Theorem 1.7 (Borwein and Tam, 2014). Let S 1, . . . ,S N ⊂ H be closed and convex with
nonempty intersection. Let x0 ∈ H and set

xn+1 := T[S 1S 2...S N ]xn.

Then xn converges weakly to x, which satisfies PS 1 x = PS 2 x = · · · = PS N x ∈
⋂N

k=1 S k.

For a proof, see [52, Theorem 3.1] or [136, Theorem 2.4.5], the latter of which—
Matthew Tam’s dissertation—is the definitive treatise on the cyclic variant.

1.5.3. Cyclically anchored variant (CADRA). Bauschke, Noll and Phan provided
linear convergence results for the Borwein–Tam method in the finite-dimensional case
in the presence of transversality [39]. At the same time, they introduced the cyclically
anchored DR algorithm (CADRA) and defined closed, convex sets A (the anchor set)
and (Bi)i∈{1,...,m}, where

A ∩
⋂

i∈{1,...,m}

Bi , ∅

and (∀i ∈ {1, . . . ,m})Ti = PBi RA + Id − PA, Zi = Fix Ti, Z =
⋂

i∈{1,...,m}

Zi,

where (∀n ∈ N) xn+1 := T xn where T := Tm . . . T2T1. (1-15)

When m = 1, CADRA becomes regular DR, which is not the case for the Borwein–
Tam method. The convergence result is as follows.
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Theorem 1.8 CADRA (Bauschke, Noll and Phan, 2015 [39, Theorem 8.5]). The
sequence (xn)n∈N from (1-15) converges weakly to x ∈ Z with PAx ∈ A ∩

⋂
i∈{1,...,m} Bi.

Convergence is linear if one of the following hold.

(1) X is finite-dimensional and riA ∩
⋂

i∈{1,...,m} riBi , ∅.
(2) A and each Bi is a subspace with A + Bi closed and (Zi)i∈{1,...,m} is boundedly

linearly regular.

1.5.4. String-averaging and block-iterative variants. In 2016, Censor and
Mansour introduced the string-averaging DR (SA-DR) and block-iterative DR (BI-
DR) variants [60]. SA-DR involves separating the index set I := {1, . . . , N} (where
N is as in (1-13)) into strings along which the two-set DR operator is applied and
taking a convex combination of the strings’ endpoints to be the next iterate. Formally,
letting It := (it1, i

t
2, . . . , i

t
γ(t)) be an ordered, nonempty subset of I with length γ(t) for

t = 1, . . . ,M and x0 ∈ H, set

xk+1 :=
M∑

t=1

wtVt(xk) with wt > 0 (∀t = 1, . . . ,M) and
M∑

t=1

wt = 1,

where Vt(xk) :=Tit
γ(t),i

t
1
Tit

γ(t)−1,it
γ(t)
. . . Tit2,i

t
3
Tit1,i

t
2
(xk),

where TA,B is the two-set DR operator. The principal result is as follows.

Theorem 1.9 SA-DR (Censor and Mansour, 2016 [60, Theorem 18]). Let S 1, . . . , S N
⊂ H be closed and convex with int

⋂
i∈I S i , ∅. Then, for any x0 ∈ H, any sequence

(xk)∞k=1 generated by the SA-DR algorithm with strings satisfying I = I1 ∪ I2 ∪ · · · ∪ IM
converges strongly to a point x∗ ∈

⋂
i∈I S i.

The BI-DR algorithm involves separating I into subsets and applying the two-set
DR to each of them by choosing a block index according to the rule tk = k mod M + 1
and setting

xk+1 :=
γ(tk)∑
j=1

wtk
j z j with wtk > 0 (∀ j = 1, . . . , γ(tk)) and

γ(tk)∑
j=1

wtk
j = 1,

where z j :=Titkj ,i
tk
j+1

(xk) (∀ j = 1, . . . , γ(tk) − 1) and zγ(tk) := Titk
γ(tk ),i

tk
1

(xk).

The principal result is as follows.

Theorem 1.10 BI-DR (Censor and Mansour, 2016 [60, Theorem 19]). Let S 1, . . . , S N
⊂ H be closed and convex with

⋂
i∈I S i , ∅. For any x0 ∈ H, the sequence (xk)∞k=1 of

iterates generated by the BI-DR algorithm with I = I1 ∪ · · · ∪ IM , after full sweeps
through all blocks, converges:

(1) weakly to a point x∗ such that PS itj
(x∗) ∈

⋂γ(t)
j=1 S itj for j = 1, . . . , γ(t) and t =

1, . . . ,M; and
(2) strongly to a point x∗ such that x∗ ∈

⋂N
i=1 S i if the additional assumption

int
⋂

i∈I S i , ∅ holds.
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1.5.5. Cyclic r-sets DR: Aragón Artacho–Censor–Gibali method. Motivated by
the intuition of the Borwein–Tam method and the example in Figure 2, Artacho,
Censor and Gibali have recently introduced another method which simplifies to the
classical DR method in the two-set case [11, Theorem 3.7].

For the feasibility problem of N sets S 0, . . . , S N−1, we denote by S N,r(d) the finite
sequence of sets: that is,

S N,r(d) := S ((r−1)d−(r−1))mod N , S ((r−1)d−(r−2))mod N , . . . , S ((r−1)d)mod N .

The method is then given by

xn+1 := VNVN−1 . . .V1(xn),

where Vd := 1
2 (Id + VCm,r(d))

and VC0,C1,...,Cr−1 := RCr−1 RCr−2 RC0 .

Provided int(
⋂N−1

i=0 S i) , ∅, the sequence (xn)∞n=1 converges weakly to a solution of the
feasibility problem. They also provided a more general result, [11, Theorem 3.4],
whose sufficiency criteria are, generically, more difficult to verify.

1.5.6. Sums of N operators: Spingarn’s method. One popular method for finding
a point in the zero set of a sum of N monotone operators T1, . . . ,TN is the reduction to
a two-operator problem given by

A := T1 ⊗ T2 ⊗ · · · ⊗ TN ,

B := NB,

where NB is the normal cone operator (1-8) for B and B is the agreement set defined
in (1-14). As A and B are maximal monotone, the weak convergence result is given
by Svaiter’s relaxation [134] of Theorem 1.4. The application of DR to this problem
is analogous to the product space method discussed in 1.5.1. In 2007, Eckstein and
Svaiter [79] described this as Spingarn’s method, referencing Spingarn’s 1983 article
[132]. They also established a general projective framework for such problems which
does not require reducing the problem to the case N = 2.

2. Convex setting

Throughout the rest of the exposition, we will take the DR operator and sequence
to be as in (1-5). Where no mention is made of the parameters λ, µ, γ, it is understood
that they are as in Definition 1.2. While Theorems 1.5 and 1.4 guarantee weak
convergence for DR in the convex setting, only in finite dimensions is this sufficient to
guarantee strong convergence. An important result of Hundal shows that AP may not
converge in norm for the convex case when H is infinite-dimensional [110] (see also
[19, 119]). Although no analogue of Hundal’s example seems known to date, for DR
in the infinite-dimensional case, norm convergence has been verified under additional
assumptions on the nature of A and B.
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2.1. Convergence. Borwein et al. [47] attribute the first convergence rate results for
DR to Hesse, Luke and Neumann who, in 2014, showed local linear convergence in
the possibly nonconvex context of sparse affine feasibility problems [109]. Bauschke,
Cruz, Nghia, Phan and Wang extended this work by showing that the rate of linear
convergence of DR for subspaces is the cosine of the Friedrichs angle [16].

In 2014, Bauschke et al. [24] used the convergence rates of matrices to find optimal
convergence rates of DR for subspaces with more general averaging parameters as
in (1-5). In 2017, Fält and Giselsson characterized the parameters that optimize the
convergence rate in this setting [87].

In 2014, Giselsson and Boyd demonstrated methods for preconditioning a particular
class of problems with linear convergence rate in order to optimize a bound on the rate
[97].

Motivated by the recent local linear convergence results in the possibly nonconvex
setting [108, 109, 115, 126], Borwein et al. asked whether a global convergence rate
for DR in finite dimensions might be found for a reasonable class of convex sets even
when the regularity condition riA ∩ riB , ∅ is potentially not satisfied. They provided
some partial answers in the context of Hölder regularity with special attention given to
convex semialgebraic sets [47].

Borwein, Sims and Tam established sufficient conditions to guarantee norm
convergence in the setting where one set is the positive Hilbert cone and the other
set is a closed affine subspace which has finite codimension [50].

In 2015, Bauschke et al. studied the setting of R2 where one set is the epigraph of
a convex function and the other is the real axis, obtaining various convergence rate
results [30]. In their follow-up article in 2016, they demonstrated finite convergence
when Slater’s condition holds in both the case where one set is an affine subspace
and the other is a polyhedron and in the case where one set is a hyperplane and the
other is an epigraph [29]. They included an analysis of the relevance of their results in
the product space setting of Spingarn [132] and numerical experiments comparing the
performance of DR and other methods for solving linear equations with a positivity
constraint. In the same year, Bauschke et al. provided a characterization of the
behavior of the sequence (T nx − T ny)n∈N [27].

In 2015, Davis and Yin showed that DR might converge arbitrarily slowly in the
infinite-dimensional setting [70].

2.1.1. Order of operators. In 2016, Bauschke and Moursi investigated the order
of operators: TA,B versus TB,A. In so doing, they demonstrated that RA : Fix TA,B →

Fix TB,A and RB : Fix TB,A → Fix TA,B are bijections [36].

2.1.2. Best approximations and the possibly infeasible case. The behavior of DR
in the inconsistent setting is most often studied using the minimal displacement vector

v := Pran(Id−TA,B)0. (2-1)

The set of best approximation solutions relative to A is A ∩ (v + B); when it is
nonempty, the following have also been shown.
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In 2004, Bauschke et al. considered the algorithm under the name averaged
alternating reflections (AAR). They demonstrated that, in the possibly inconsistent
case, the shadow sequence PAxn remains bounded with its weak sequential cluster
points being in A ∩ (v + B) [23].

In 2015, Bauschke and Moursi [35] analyzed the more specific setting of two affine
subspaces, showing that PAxn will converge to a best approximation solution. In 2016,
Bauschke et al. [28] furthered this work by considering the affine-convex setting,
showing that, when one of A and B is a closed affine subspace, PAxn will converge
to a best approximation solution. They then applied their results to solving the least
squares problem of minimizing

∑M
k=1 dCk (x)2 with Spingarn’s splitting method [132].

In 2016, Bauschke and Moursi provided a more general sufficient condition for the
weak convergence [37], and in 2017 they characterized the magnitudes of minimal
displacement vectors for more general compositions and convex combinations of
operators.

2.1.3. Nearest feasible points (Aragón Artacho–Campoy method). In 2017,
Artacho and Campoy introduced what they called the averaged alternating modified
reflections (AAMR) method for finding the nearest feasible point for a given starting
point [9]. The operator and method are defined with parameters α, β ∈]0, 1[ by

TA,B,α,β := (1 − α)Id + α(2βPB − Id)(2βPA − Id)
xn := TA−q,B−q,α,βxn, n = 0, 1, . . . , (2-2)

which we recognize as DR in the case α = 1/2, β = 1, q = 0. The convergence result is
as follows.

Theorem 2.1 Aragón Artacho and Campoy 2017, [9, Theorem 4.1]. Given A, B closed
and convex, α, β ∈]0,1[ and q ∈ H, choose any x0 ∈ H. Let (xn)n∈N be as in (2-2). Then,
if A ∩ B , ∅ and q − PA∩B(q) ∈ (NA + NB)(PA∩B(q)), the following hold.

(1) (xn)n∈N is weakly convergent to a point x ∈ Fix TA−q,B−q,α,β such that PA(q + x) =

PA∩B(q).
(2) (xn+1 − xn)n∈N is strongly convergent to 0.
(3) (PA(q + xn))n∈N is strongly convergent to PA∩B(q).

Otherwise, ‖xn‖ →∞. Moreover, if A,B are closed affine subspaces, A ∩ B , ∅ and q −
PA∩B(q) ∈ (A − A)⊥ + (B − B)⊥, then (xn)n∈N is strongly convergent to PFix TA−q,B−q,α,β(x0).

The algorithm may be thought of as another approach to the convex optimization
problem of minimizing the convex function y 7→ ‖q − y‖2 subject to constraints on the
solution.

It is quite natural to consider the theory of the algorithm in the case where projection
operators PA = JNA ,PB = JNB are replaced with more general resolvents for maximally
monotone operators [8], an extension Artacho and Campoy gave in 2018. This work
has already been extended by Alwadani, Bauschke, Moursi and Wang, who analyzed
the asymptotic behavior and gave the algorithm the more specific name of the Aragón
Artacho–Campoy algorithm (AACA) [1].
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Figure 3. Cutter methods.

2.1.4. Cutter methods. Another computational approach is to replace true
projections with approximate projections or cutter projections onto separating
hyperplanes, as in Figure 3(a). Prototypical of this category are subgradient projection
methods which may be used to find x ∈

⋂m
i=1 lev≤0 fi for m convex functions f1, . . . , fm;

see Figure 3(b). Such methods are not generally nonexpansive (as shown in
Figure 3(b)) but may be easier to compute. When true reflection parameters are
allowed, the method is no longer immune from ‘bad’ fixed points, as illustrated
in Figure 3(c). However, with a suitable restriction on reflection parameters and
under other modest assumptions, convergence may be guaranteed through Fejér
monotonicity methods (see, for example, the works of Cegielski and Fukushima
[59, 92]). More recently, Dı́az et al. have provided a standalone analysis of DR with
cutter projections [73].

2.2. Notable applications. While the DR operator is firmly nonexpansive in the
convex setting, the volume of literature about it is indeed expansive. While reasonable
brevity precludes us from furnishing an exhaustive catalogue, we provide a sample of
the relevant literature.

As early as 1961, working in the original context of Douglas and Rachford, P.L.T.
Brian introduced a modified version of DR for high-order accuracy solutions of heat
flow problems [57].

In 1995, Fukushima applied DR to the traffic equilibrium problem, comparing
its performance (and the complexity and applicability of the induced algorithms) to
ADMM [93].

In 2007, Combettes and Pesquet applied a DR splitting to nonsmooth convex
variational signal recovery, demonstrating their approach on image denoising
problems [64].

In 2009, Setzer showed that the alternating split Bregman algorithm from [102]
could be interpreted as a special case of DR in order to interpret its convergence
properties, applying the former to an image denoising problem [131]. In the same year,
Steidl and Teuber applied DR for removing multiplicative noise, analyzing its linear
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convergence in their context and providing computational examples by denoising
images and signals [133].

In 2011, Combettes and Pesquet contrasted and compared various proximal point
algorithms for signal processing [65].

In 2012, Demanet and Zhang applied DR to l1 minimization problems with linear
constraints, analyzing its convergence and bounding the convergence rate in the
context of compressed sensing [72].

In 2012, Boţ and Hendrich proposed two algorithms based on DR splitting, which
they used to solve a generalized Heron problem and to deblur images [54]. In 2014,
they analyzed with Csetnek an inertial DR algorithm and used it to solve clustering
problems [53].

In 2015, Bauschke et al. applied DR for a road design optimization problem in
the context of minimizing a sum of proper convex lower semicontinuous functions,
demonstrating its effectiveness on real-world data [33].

In 2017, Wang et al. applied DR with facial reduction for a set of matrices of a
given rank and a linear constraint set in order to find maximum rank moment matrices
[139].

3. Nonconvex setting

Investigation in the nonconvex setting has been two-pronged, with the theoretical
inquiry chasing the experimental discovery. The investigation has also taken place in,
broadly, two contexts: that of curves and/or hypersurfaces and that of discrete sets.

While Jonathan Borwein’s exploration spanned both of the aforementioned
contexts, his interest in DR appears to have been initially sparked by its surprising
performance in the latter [81], specifically, the application of the method by Elser,
Rankenburg and Thibault to solving a wide variety of combinatorial optimization
problems, including sudoku puzzles [86]. Where the product space reformulation is
applied to feasibility problems with discrete constraint sets, DR often succeeds while
AP does not. Early wisdom suggested that one reason for its superior performance is
that DR, unlike AP, is immune from false fixed points regardless of the presence or
absence of convexity, as shown in the following proposition (see, for example, [136,
Proposition 1.5.1] or [86]).

Proposition 3.1 (Fixed points of DR). Let A, B ⊂ H be proximal. Then x ∈ Fix TA,B

implies that PA(x) ∈ A ∩ B.

Proof. Let x ∈ Fix TA,B. Then x = x + PB(2PA(x) − x) − PA(x) and so PB(2PA(x) −
x) − PA(x) = 0, so PA(x) ∈ B. �

A typical example where A := {a1, a2} is a doubleton and B a subspace (analogous
to the agreement set) is illustrated in Figure 4, where DR is seen to solve the problem
while AP becomes trapped by a fixed point.

If the germinal work on DR in the nonconvex setting is that of Elser et al. [86]
(caution: the role of A and B are reversed from those here), then the seminal work is
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Figure 4. DR and AP for a doubleton and a line in R2.

Figure 5. Behavior of DR where A is a circle and B is a line; (c) is discussed in § 3.2.

that of J.R. Fienup who applied the method to solve the phase retrieval problem [88].
In [86], Elser et al. referred to DR as Fienup’s iterated map and the difference map,
while Fienup himself called it the hybrid input–output algorithm (HIO) [88]. Elser
explains that, originally, neither Fienup nor Elser et al. were aware of the work of
Lions and Mercier [117], and so the seminal work on DR in the nonconvex setting
is, surprisingly, an independent discovery of the method [81]. Fienup constructed the
method by combining aspects of two other methods he considered—the basic input–
output algorithm and the output–output algorithm—with the intention of obviating
stagnation. Here, again, one may think of the behavior illustrated in Figure 4.

Figure 5 shows behavior of DR in the case where A is a circle and B is a line,
a situation prototypical of the phase retrieval problem. For most arrangements, DR
converges to a feasible point, as in Figure 5(a). However, when the line and circle meet
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tangentially, as in Figure 5(b), DR converges to a fixed point which is not feasible, and
the sequence PAxn converges to the true solution.

Elser notes that it is unclear whether or not Fienup understood that a fixed point
of the algorithm is not necessarily feasible, as his approach was largely empirical.
Elser sought to clarify this point in his follow-up article in which he augmented the
study of DR for phase retrieval by replacing support constraints with object histogram
and atomicity constraints for crystallographic phase retrieval [82, Section 5]. In
2001, when [82] was submitted, Elser was not yet aware of Lions’ and Mercier’s
characterization of DR as the DR method; it may be recognized in [82] as a special
instance of the difference map (which we define in (3-1)), a generalization of Fienup’s
input–output map.

In 2002, Bauschke et al. finally demonstrated that Fienup’s basic input–output
algorithm is an instance of Dykstra’s algorithm and that HIO (hybrid input–output)
with the support constraint alone corresponds to DR [21] (see also their 2003 follow-
up article [22]). In another follow-up article [23], they showed that, with support and
nonnegativity constraints, HIO corresponds to the HPR (hybrid projection reflection)
algorithm, a point that Luke sought to clarify in his succinct 2017 summary of the
investigation of DR in the context of phase retrieval [118].

More recently, in 2017, Elser et al. published a set of benchmark problems for
phase retrieval [85]. They considered DR with true reflections and a relaxed averaging
parameter—µ = γ = 0, λ ∈]0, 1], as in (1-5)—under the name relaxed–reflect–reflect
(RRR). In particular, they provided experimental evidence for the exponential growth
of DR’s mean iteration count as a function of the autocorrelation sparsity parameter,
which seems well suited for revealing behavioral trends. They also provided an
important clarification of the different algorithms which have been labelled ‘Fienup’
algorithms in the literature, some of which are not DR.

3.1. Discrete sets. The landmark experimental work on discrete sets is that of Elser,
Rankenburg and Thibault [86]. They considered the performance of what they called
the difference map for various values of the parameter β: that is,

T : x 7→ x + β (PA ◦ fB(x) − PB ◦ fA(x)) , (3-1)
where fA : x 7→ PA(x) − (PA(x) − x) /β,

and fB : x 7→ PB(x) + (PB(x) − x) /β.

When β = −1, we recover the DR operator TA,B, and when β = 1, we obtain TB,A.

3.1.1. Stochastic problems. Much of the surprising success of DR has been in the
setting where some of the sets of interest have had the form {0, 1}p. Elser et al. adopted
the approach of using stochastic feasibility problems to study the performance of DR
[86]. They began with the problem of solving the linear Diophantine equation Cx = b,
where C, a stochastic p × q matrix, and b ∈ Np are ‘known.’ Requiring the solution
x ∈ {0, 1}q that is used to generate the problem to also be stochastic ensures uniqueness
of the solution for the feasibility problem: find x ∈ A ∩ B, where

A := {0, 1}q and B := {x ∈ Rq such that Cx = b}.
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They continued by solving Latin squares of n symbols. Where xi jk = 1 indicates that
the cell in the ith row of the jth column of the square is k, the problem is stochastic and
the constraint that xî ĵk̂ = 1 if and only if (∀i , î) xi ĵk̂ = 0, (∀ j , ĵ)xî jk̂ = 0 determines
the set of allowable solutions. The most familiar form of a Latin square is the sudoku
puzzle where n = 9 and we require the additional constraint that the complete square
consists of a grid of nine smaller Latin squares. For more on the history of the
application of projection algorithms to solving sudoku puzzles, see Schaad’s master’s
thesis [130] in which he also applies the method to the eight queens problem.

This work of Elser et al. piqued the interest of Borwein who, in 2013, together with
Artacho and Tam, continued the investigation of sudoku puzzles [3, 5], exploring the
effect of formulation (integer feasibility versus stochastic) on performance. They also
extended the approach by solving nonogram problems.

3.1.2. Matrix completion and decomposition. Another application for which DR
has shown promising results is finding the remaining entries of a partially specified
matrix in order to obtain a matrix of a given type. Borwein, Artacho and Tam
considered the behavior of DR for such matrix completion problems [4]. They
provided a discussion of the convex setting, including positive semidefinite matrices,
correlation matrices and doubly stochastic matrices. They went on to provide
experimental results for a number of nonconvex problems, including for rank
minimization, protein reconstruction and finding Hadamard and skew-Hadamard
matrices. In 2017, Artacho, Campoy, Kotsireas and Tam applied DR to constructing
various classes of circulant combinatorial designs [10], reformulating them as three-
set feasibility problems. Designs they studied included Hadamard matrices with two
circulant cores, as well as circulant weighing matrices and D-optimal matrices.

Even more recently, Franklin used DR to find compactly supported, nonseparable
wavelets with orthonormal shifts, subject to the additional constraint of regularity
[90, 91]. Reformulating the search as a three-set feasibility problem in {C2×2}M

for M = {4, 6, 8, . . . }, they compared the performance of cyclic DR, product space
DR, cyclic projections and the proximal alternating linear minimization (or PALM)
algorithm. Impressively, product space DR solved every problem it was presented
with.

In 2017, Elser applied DR—under the name RRR (short for relaxed reflect-
reflect)—for matrix decomposition problems, making several novel observations about
DR’s tendency to wander, by searching in an apparently chaotic manner, until it
happens upon the basin for a fixed point [83]. These observations have motivated
the open question we pose in 4.1.2.

3.1.3. The study of proteins. In 2014, Borwein and Tam went on to consider protein
conformation determination, reformulating such problems as matrix completion
problems [51]. An excellent resource for understanding the early class problems
studied by Borwein, Tam and Artacho—as well as the cyclic DR algorithm described
in § 1.5—is Tam’s PhD dissertation [136].

Elser et al. applied DR to study protein folding problems, discovering much faster
performance than that of the landscape sampling methods commonly used [86].
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3.1.4. Where A is a subspace and B a restriction of allowable solutions. Elser et al.
applied DR to the study of 3-SAT problems, comparing its performance to that of
another solver, Walksat [86] (see also [103]). They found that DR solved all instances
without requiring random restarts. They also applied the method to the spin glass
ground state problem, an integer quadratic optimization program with nonpositive
objective function.

3.1.5. Graph coloring. Elser et al. applied DR to find colorings of the edges
of complete graphs with the constraint that no triangle may have all its edges of
the same color [86]. They compared its performance to CPLEX, and included an
illustration showing the change of edge colors over time. DR solved all instances, and
outperformed CPLEX in harder instances.

In 2016, Artacho and Campoy applied DR to solving graph coloring problems in
the usual context of coloring nodes [7]. They constructed the feasibility problem by
attaching one of two kinds of gadget to the graphs, and they compared performance
with the two different gadget types both with and without the inclusion of maximal
clique information. They also explored the performance for several other problems
reformulated as graph coloring problems; these included: 3-SAT, sudoku puzzles, the
eight queens problem and generalizations thereof, and Hamiltonian path problems.

More recently, Artacho, Campoy and Elser [13] have considered a reformulation
of the graph coloring problem based on semidefinite programming, demonstrating its
superiority through numerical experimentation.

3.1.6. Other implementations. Elser et al. went on to consider the case of bit
retrieval, where A is a Fourier magnitude/autocorrelation constraint and B is the binary
constraint set {±1/2}n [86]. They found its performance to be superior to that of
CPLEX.

Bansal used DR to solve Tetravex problems [15].
More recently, in 2018, Elser expounded further upon the performance of DR under

varying degrees of complexity by studying its behavior on bit retrieval problems [84].
Of his findings of its performance he observes the following.

These statistics are consistent with an algorithm that blindly and repeatedly
reaches into an urn of M solution candidates, terminating when it has
retrieved one of the 4 × 43 solutions. Two questions immediately come
to mind. The easier of these is: How can an algorithm that is deterministic
over most of its run-time behave randomly? The much harder question is:
How did the M = 243 solution candidates get reduced, apparently, to only
about 1.7 × 105 × (4 × 43) ≈ 224?

The behavior of DR under varying complexity remains a fascinating open topic,
and we provide it as one of our two open problems in 4.1.2.
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3.1.7. Theoretical analysis. One of the first global convergence results in the
nonconvex setting was given by Artacho, Borwein and Tam in the setting where one set
is a half space and the second set finite [6]. Bauschke, Dao and Lindstrom have since
fully categorized the global behavior for the case of a hyperplane and a doubleton
(a set of two points) [26]. Both problems are prototypical of discrete combinatorial
feasibility problems, the latter especially, insofar as the hyperplane is analogous to the
agreement set in the product space version of the method discussed in § 1.5.1, which
is the most commonly employed method for problems of more than two sets.

3.2. Hypersurfaces. In 2011, Borwein and Sims made the first attempt at
deconstructing the behavior of DR in the nonconvex setting of hypersurfaces [49].
In particular, they considered in detail the case of a circle A and a line B, a problem
prototypical of phase retrieval. Here the dynamical geometry software Cinderella [62]
first played an important role in the analysis: the authors paired Cinderella’s graphical
interface with accurate computational output from Maple in order to visualize the
behavior of the dynamical system. Borwein and Sims went on to show local
convergence in the feasible case where the line is not tangential to the two-sphere by
using a theorem of Perron. They concluded by suggesting analysis for a generalization
of the two-sphere: p-spheres.

In 2013 Artacho and Borwein revisited the case of a two-sphere and line intersecting
nontangentially [2]. When x0 lies in the subspace perpendicular to B, the sequence
(xn)∞n=0 is contained in the subspace and exhibits chaotic behavior. For x0 not
in the aforementioned subspace—which we call the singular set—they provided a
conditional proof of global convergence of iterates to the nearer of the two feasible
points. The proof relied upon constructing and analyzing the movement of iterates
through different regions. Borwein humorously remarked of the result, ‘This was
definitely not a proof from the book. It was a proof from the anti-book’. Benoist
later provided an elegant proof of global convergence by constructing the Lyapunov
function seen in Figure 5(c) [43].

In one of his later posthumous publications on the subject [45], Borwein, together
with Giladi, demonstrated that the DR operator for a sphere and a convex set may be
approximated by another operator satisfying a weak ergodic theorem.

In 2016, Borwein et al. undertook Borwein’s suggested follow-up work in R2,
analyzing not only the case of p-spheres more generally but also of ellipses [48].
They discovered incredible sensitivity of the global behavior to small perturbations
of the sets, with some arrangements eliciting a complex and beautiful geometry
characterized by periodic points with corresponding basins of attraction. A point x
satisfying T nx = x is said to be periodic with period the smallest n for which this
holds; Figure 6 from [48] shows 13 different DR sequences for an ellipse and line from
which subsequences converge to periodic points. Borwein et al. combined data from
Cinderella with parallelization techniques in order to visualize the global behavior.
An artistic rendering of the basins with colors chosen based on Aboriginal Australian
artwork may be seen in Figure 7; this image appears on the poster for Mathematics of
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Figure 6. Basins of attraction for periodic points with an ellipse and line.

Figure 7. Basins of attraction for an ellipse and line with colors based on Aboriginal Australian artwork.
This image appears on the poster for MoCaO.

Computation and Optimization (MoCaO), an Australian Mathematical Society special
interest group founded by Borwein and Jérôme Droniou.

Borwein et al. went on to show local convergence to feasible points in the
case where the ellipse and line intersect nontangentially, and they extended a best
approximation result of Moursi and Bauschke [37] in the setting of boundaries of
convex sets.

In order to check the potential influence of sensitivity to compounding numerical
error on their discoveries, Borwein et al. used Schwarzian reflection to compute
approximate projections as an alternative to the numerical solution of a Lagrangian
problem (see, for example, [123]). This work inspired a 2017 follow-up article by
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Lindstrom et al. [116] that analyzed the performance of DR for finding intersections
of smooth curves in R2 more generally, and it showed that local convergence extends
to the more general case of smooth plane curves intersecting nontangentially with
reasonable limits on their curvature (in Definition 3.3, we will introduce the notion of
superregularity). Dao and Tam [69] have since adapted Benoist’s Lyapunov approach
to beautifully illuminate the behavior for more general curves, including showing
global behavior for many curve pairs.

Lamichhane, Lindstrom and Sims used AP and DR to find numerical solutions
for boundary-value ordinary differential equations on closed intervals in R by
reformulating the problem of N node approximation as a feasibility problem of
satisfying N equations which define possibly discontinuous hypersurfaces [116]. The
approach is mostly experimental, and they compared the observed convergence with
that explicitly visible in the two-set ellipse/line setting. They also compared the
behavior of DR and AP on each test problem and found that AP generally performs
faster.

The above studies on hypersurfaces have uncovered a general trend which
distinguishes AP from DR: namely, AP is more prone to becoming trapped by
extraneous fixed points but demonstrates monotonicity in convergence with an
asymptotic direction of approach, while DR tends to escape from false solutions
and its basins of convergence persistently feature spiralling trajectories which induce
observed oscillations in plots of change and error. Some of this behavior may be seen
in Figure 8 from [113] which shows the behavior, as measured for the agreement set
shadow sequence PBxn, when seeking the solution to an N set feasibility problem
corresponding to the numerical solution of a boundary-value problem. In Figures 8(b)
and 8(c), relative error (change from iterate to iterate), error from numerical solution
(obtained by applying Newton’s method to the discretized problem) and error from the
true solution (analytically obtained) are monotonic for AP but oscillate for DR. This
monotonicity may be further observed in Figure 8(a), where approximate solutions to
a boundary value problem—corresponding to various step intervals for DR and AP—
may be seen along with the true solution; AP approaches the true solution from one
side, while DR exhibits more exotic behavior. The authors of [113] hypothesize that
the observed left-right-left wandering of PBxn visible in Figure 5(a), which results
from the spiralling of xn, is prototypical of the numerically observed oscillation in
more complicated settings like Franklin’s work on wavelets.

3.3. Results on regularity, transversality and rates of convergence. Much of the
convergence analysis in the nonconvex setting has focused on regularity assumptions.
Throughout this section, A and B continue to be closed subsets of a finite-dimensional
Euclidean space X.

Definition 3.2 (Regularity and transversality). The closed sets {Ci}i∈I , I = {1, . . . ,m}
are said to be:
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Figure 8. Comparison of DR and AP convergence behavior.

(1) κ-subtransversal or κ-linearly regular with regularity modulus κ ∈]0,∞[ on
U ⊂ X if

(∀x ∈ U) dC(x) ≤ κ max
i∈I

dCi (x) where C :=
⋂
i∈I

Ci;

(2) subtransversal around x ∈ X or linearly regular at x ∈ X if there exist δ and κ
greater than zero such that {Ci}i∈I is κ-linearly regular on B(x, δ);

(3) boundedly linearly regular if, for every bounded set U ⊂ X, there exists κU > 0
such that {Ci}i∈I is κ-linearly regular on U;

(4) U-regular at x ∈ X if U is an affine subspace of X with x ∈ U and∑
i∈I

ui = 0 and ui ∈ NCi (x) ∩ (U − x) =⇒ (∀i ∈ I) ui = 0;

(5) transversal or strongly regular at x ∈ X if {Ci}i∈I is U-regular with U = X; and
(6) affine-hull regular at x in the two-set case m = 2 when L = aff(C1 ∪ C2) if

NL
A(x) ∩ (−NL

B(x)) = {0}.

See, for example, [67, 108, 111, 126].

More recently, the notion of intrinsic transversality has been introduced which
fills a theoretical gap between the regularity conditions of transversality and
subtransversality [75] (see also [112]).

It may be readily seen that an ellipse and line which intersect nontangentially
are transversal at the point of intersection. Indeed, the regularity framework locally
describes many hypersurface feasibility problems. The notion of superregularity for a
single set C may be thought of as a smoothness condition.

Definition 3.3 (Superregularity). A closed subset A ⊂ X is (ε, δ)-regular at x if ε ≥ 0,
δ > 0 and y, z ∈ A ∩ Bδ(x)

u ∈ Nprox
A (x) = cone(P−1

A x − x)

}
=⇒ 〈u, z − y〉 ≤ ε‖u‖ · ‖z − y‖.
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Figure 9. DR convergence for a 1/2-sphere and a line.

C is said to be superregular at x if, for every ε > 0, there exists δ > 0 such that C is
(ε, δ)-regular at x (see, for example, [126]).

It may be seen that in the case X = R2 and A = graph f = {(x1, x2)| f (x1) = x2}, where
f : R→ R, superregularity of A at (x, f (x)) implies smoothness of f at x.

Figure 5(a) shows how DR may behave when regularity conditions are not satisfied
at the feasible point, while the rightmost sequence in Figure 9 illustrates what may
happen when two sets meet subtransversally but superregularity fails for one of them
(the p-sphere). The other two sequences illustrate how the angle at which the sets meet
at the feasible point determines the linear rate of convergence.

As early as 2013, Lewis, Luke and Malick analyzed the local convergence for
alternating and averaged nonconvex projection methods in the presence of regularity
conditions [114]. In the same year, Hesse and Luke undertook a theoretical study of
DR in the presence of local regularity conditions in finite dimensions [108]. They
showed that, when the sets involved are affine, strong regularity is necessary for linear
convergence, in contradistinction with AP for which such conditions are sufficient but
not necessary. They also established a number of linear convergence results for DR,
the first of which is as follows.

Theorem 3.4 Linear convergence of DR (Luke and Hess, 2013 [108, Theorem 3.16]).
Let the pair of closed sets {A, B} be linearly regular at x ∈ A ∩ B on Bδ(x) with
regularity modulus κ > 0 for some δ > 0. Suppose, further, that B is a subspace and
that A is (ε, δ)-regular at x with respect to A ∩ B. Assume that, for some c ∈]0, 1[,z ∈ A ∩ Bδ(x), u ∈ NA(z) ∩ B1(0)

y ∈ B ∩ Bδ(x), v ∈ NB(y) ∩ B1(0)

}
=⇒ 〈u, v〉 ≥ −c.
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If xn ∈ Bδ/2(x) and xn+1 ∈ TA,Bxn, then

d(xn+1, A ∩ B) ≤

√
1 + 2ε(1 + ε) −

1 − c
κ2 d(xn, A ∩ B).

Another of their results, [108, Theorem 3.18], has since been strengthened by Phan
[126, Theorem 4.3] to the following.

Theorem 3.5 Linear convergence of DR (Phan, 2016 [126, Theorem 4.3]). Let the
closed sets A, B be superregular at x ∈ A ∩ B and let {A, B} be strongly regular at x.
Then if x0 is sufficiently close to x, the sequence xn+1 := TA,Bxn converges to a point
x ∈ A ∩ B with R-linear rate.

Phan provided additional information about the rate R in [126, Remark 4.5] and
gave the following second main result on affine-hull regularity.

Theorem 3.6 Linear convergence of DR (Phan, 2016 [126, Theorem 4.7]). Let A, B
be closed and let L := aff(A ∪ B). Further, suppose that A, B are superregular at
x ∈ A ∩ B and {A, B} is affine-hull regular at x. Then, if the the shadow sequence
PLx0 is sufficiently close to x, the DR sequence xn+1 := TA,Bxn converges to a point
x ∈ Fix TA,B with R-linear rate. Moreover,

PAx ≡ PBx = x − (x0 − PLx0) ∈ A ∩ B,

and so PAx ≡ PBx solves the feasibility problem.

Phan also provided a more detailed description of the region of convergence, and
extended the analysis into the convex setting.

In 2016 [67], Dao and Phan went on to consider the more general framework
of cyclic relaxed projection methods for the feasibility problem of m sets {Ci}i∈I ,
I = {1, . . . ,m}, where the sequence is defined in terms of l operators

Tnl+ j := T j and xn := Tnxn−1 with J := {1, . . . , l}. (3-2)

Where we have modified the notation to be consistent with (1-4), Dao and Phan
considered the following cyclic generalized DR algorithm defined by (3-2) and the
following. For every j ∈ J, let µ j, γ j ∈ [0, 2[, λ j ∈]0, 1[ and s j, t j ∈ I such that s j , t j
and

I ={s j| j ∈ J} ∪ {t j| j ∈ J},

T j :=(1 − λ j)Id + λ jR
µ j

Ct j
Rγ j

Cs j
,

where Rµ j

C j
is defined as in (1-4). The convergence results are as follows.

Theorem 3.7 Linear convergence of cyclic generalized DR (Dao and Phan, 2016
[67, Theorem 5.21]). Let I := {1, . . . ,m} and x ∈

⋂
i∈I Ci. Suppose that {Ci}i∈I is

superregular at x and is linearly regular around x and that {Cs j ,Ct j} is strongly regular
at x for every j ∈ J. Then, when started at a point x0 sufficiently close to x, the
cyclic generalized DR sequence generated by (T j) j∈J converges R-linearly to a point
x ∈

⋂
i∈I Ci.
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Theorem 3.8 Affine reduction for generalized DR sequences (Dao and Phan, 2016
[67, Theorem 5.25]). Let A, B be closed, let x ∈ A ∩ B and let L := aff(A ∪ B). Suppose
that {A, B} is superregular and is affine-hull regular at x. Let (xn)n∈N be defined by
xn+1 := ((1 − λ)Id + Rµ

BPγ
A)xn, where µ, γ ∈ [0, 2[ and λ ∈]0, 1[. Then the following

hold.

(1) If γ = µ = 0, then, whenever PLx0 is sufficiently close to x, (xn)n∈N converges
R-linearly to a point x ∈ Fix T with PAx = PBx ∈ A ∩ B.

(2) If either λ > 0 or µ > 0, then, whenever PLx0 is sufficiently close to x, (xn)n∈N

converges R-linearly to a point x ∈ A ∩ B.

3.3.1. Other convergence results. Numerous other investigations of convergence
for DR have also been undertaken. In 2014 Bauschke and Noll proved local
convergence to a fixed point in the case where A and B are finite unions of convex
sets [38]. In 2016, Bauschke and Dao provided various sufficient conditions for finite
convergence of the DR sequence [25].

3.3.2. Further variants. If one considers the spiralling behavior characteristic of
local convergence of DR, it is very natural to seek faster convergence by taking a step
towards the center of the spiral. This intuition has given birth to the notion of the
method of circumcentering [41, 42].

3.3.3. Nonconvex minimization. In 2014, Patrinos et al. introduced the so-called
DR envelope whose stationary points correspond to solutions for the problem of
minimizing a sum of two convex functions f + g subject to linear constraints [124].

In 2015, motivated by properties of the DR envelope, Li and Pong introduced the
DR merit function [115]

Dη(y, z, x) := f (y) + g(z) −
1
2η
‖y − z‖2 +

1
η
〈x − y, z − y〉.

Li and Pong analyzed the limiting characteristics of Dη(yn, zn, xn), where yn, zn, xn are
either as in (1-12) or are obtained from a modified variant, where x0 ∈ X and

yn+1 =
1

1 + η
(xn + ηPA(xn)),

zn+1 ∈ argmin
z∈B

{‖2yn+1 − xn − zn‖},

xn+1 = xn + (zn+1 − yn+1),

, (3-3)

which arises from applying (1-12) to the problem of minimizing 1
2 d2

A(x) subject to
x ∈ B, where A is convex but B may not be. They showed the following theorem.

Theorem 3.9 Global subsequential convergence (Li and Pong, 2015 [115, Theorem 1]).
Let g be proper and closed and let f have Lipschitz continuous gradient whose
Lipschitz continuity modulus is bounded by L. Choose ν ∈ R so that f + (ν/2)‖ · ‖2

is convex. Suppose that η is chosen so that (1 + ηL)2 + 5ην/2 − (3/2) < 0. Let yn, zn, xn
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be as in 1-12. Then {Dη (yn, zn, xn)}n≥1 is nonincreasing. Moreover, if a cluster point of
(yn, zn, xn) exists, then

lim
n→∞
‖xn+1 − xn‖ = lim

n→∞
‖zn+1 − yn‖ = 0, (3-4)

and, for any cluster point (y, z, x), we have z = y and 0 ∈ ∇ f (z) + ∂g(z).

Theorem 3.10 Global convergence of the whole sequence (Li and Pong, 2015 [115,
Theorem 2]). Let f , g, l, L, xn, yn, zn, η be as in Theorem 3.9. Additionally, suppose that
f , g are algebraic and that {(yn, zn, xn)} has a cluster point (y, z, x). Then the sequence
{(yn, zn, xn)} is convergent.

Theorem 3.11 Convergence of DR splitting method for nonconvex feasibility problems
involving two sets (Li and Pong, 2015 [115, Theorem 5]). Let A be a nonempty, closed,
convex set, and let B be a nonempty closed set with either A or B compact. Suppose, in
addition, that 0 < η <

√
3/2 − 1. Then the sequence {(yn, zn, xn)}, where yn, zn, xn are

as in (3-3), is bounded. Moreover, any cluster point (y, z, x) of the sequence satisfies
z = y and z is a stationary point of (3-3). Additionally, (3-4) holds.

Li and Pong also provided detailed results on the convergence rates. Andreas
Themelis and Panos Patrinos have since published a follow-up article [137] in which
they relax some of the restrictions on the step size η, as well as providing a discussion
of the connections with ADMM.

In 2017, Grussler and Giselsson [104] analyzed the specific case of minimizing
f + g with both forward-backward splitting and the DR operator T∂ f ,∂g, where g is
convex and

f : M 7→ k(‖M‖) + ιrank(M)≤r(M)

is nonconvex, where k(·) is increasing and convex, ‖ · ‖ is a unitarily invariant norm
and ιrank(M)≤r is the indicator function for matrices that have at most rank r. They
provided conditions under which prox f and prox f ∗∗ coincide, constructing a framework
under which they showed local convergence when solutions to the convex problem of
minimizing f ∗∗ + g coincide with solutions to the nonconvex problem of minimizing
f + g.

4. Summary

The goal of this survey has been to illuminate the history, motivations and
robustness of DR in each of the broad settings wherein it has been considered. Much
more could be said, and certainly much more will be. As noted by Glowinski et al. in
the preface of their new book on the subject, new applications of splitting methods are
being introduced almost daily [101].
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Figure 10. The flowfield (4.1.1) with a circle/line (left) and ellipse/line (right). Images courtesy of Veit
Elser.

4.1. Future avenues of inquiry. These directions include the continued analysis
of the Artacho–Campoy method in the convex setting, wavelet discovery in the
nonconvex setting, nonconvex minimization through the framework of Li and Pong
and the analysis of convergence rates under general parameters in all of these. We
choose to state here two problems in the nonconvex setting—both suggested by Veit
Elser—which have received little attention despite their particularly intriguing nature.

4.1.1. Continuous time variant. For the case of a circle and line, Borwein and Sims
[49] considered the ‘continuous time’ version of the algorithm whose flow field is at
left in Figure 10 and corresponds to the solution of the differential equation

dx
dt

= T (x) when λ→ 0+.

Elser has suggested analyzing the continuous time variant in the more general setting
of ellipses and plane curves. Elser provided flow field images for a curve and integer
lattice in [83], and he has generously furnished the images in Figure 10.

4.1.2. Complexity theory. Elser hypothesizes that, for Latin square problems,
higher dimensionality is associated with greater robustness for the algorithm. The idea
is that, as the complexity of the problem grows, the singular regions—of chaotic or
periodic behavior—account for a smaller share of the total space. For most starting
points, then, the iterates tend to explore the space without becoming stuck, as in
Figure 4(a), until eventually they fall into the basin of attraction for a feasibility point.
Evidence abounds, as in [83–85]. Can the behavior of DR and similar methods under
complexity be rigorously catalogued through experimental analysis?

4.2. Conclusion. The role of DR in the convex setting is both well known and
celebrated. More novel and striking is its success in the nonconvex setting. Borwein
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Figure 11. Function diagram for Gabay’s exposition.

described DR as an ‘out-of-the-box solver,’ whose robustness for a given nonconvex
problem cannot be simply explained by its having been originally designed with that
specific problem in mind. While the exact formulation for an embedding of a problem
in Rn—for example, the stochastic representation of a sudoku puzzle or the number of
gadgets used in [7]—may affect performance, DR fundamentally requires very little:
if one can compute the projections, one can use the solver. Perhaps this is why its
performance consistently surprises those who study or use it. One thing is certain:
the complexity of the behavior is astounding, and much of the space remains to be
explored.
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Appendix A. ADMM and DR
Throughout this section, the function diagram in Figure 11 is a useful reference.

In particular, it should be noted that Gabay defined the conjugates F∗ : H → R and
G∗ : V → R on the primal spaces.

In 1983 [94], Gabay considered the application of (1-7) with B := ∂F∗ = (∂F)−1 for
F : H→]0,∞] a proper convex lower semicontinuous function and A := At

B : H→ 2H

by
At

B(µ) = {q ∈ H|∃v ∈ V such that q = −Bv, −Btµ ∈ A(v)},

for a maximally monotone operator A, and where B : V → H is a continuous linear
operator with adjoint B∗ : H∗ → V∗

where

〈ΛVu, v〉V∗×V = 〈u, v〉V ∀ u, v ∈ V with ΛVu ∈ V∗,
〈ΛH p, q〉H∗×H = 〈p, q〉H ∀ p, q ∈ H with ΛH p ∈ H∗

and Bt : H → V by Bt := Λ−1
V ◦ B∗ ◦ ΛH .
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The motivating variational inequality problem is to find u ∈ V such that
∃w ∈ A(u) where (∀v ∈ V) 〈w, v − u〉V + F(Bv) − F(Bu) ≥ 0. (A-1)

When A = ∂G for G : V →] −∞,∞] a convex, proper, lower semicontinuous function,
the variational inequality (A-1) is just

p := inf
v∈V
{F(Bv) + G(v)}. (A-2)

When A is coercive or BtB is an isomorphism of V , then
JλAt

B
(y) = y + λB(A + λBtB)−1(−Bty).

Gabay showed that (1-7) then becomes the following.
Step 0 Choose ω0 to be an approximate solution of the problem:

Find ω such that 0 ∈ (At
B + ∂F∗)(ω).

Step 1 Choose x0, p0 such that p0 ∈ ∂F∗(ω0), t0 = ω0 + λp0.

(This ensures that ω0 = Jr
∂F∗(x0).)

Step 2


un+1 := (A + λBtB)−1(λBt pn − Btωn),
pn+1 := (∂F + λId)−1(ωn + λBun+1),
ωn+1 := ωn + λ(Bun+1 − pn+1),
xn+1 := ωn + λBun+1.

(A-3)

In this case, (ωn)n∈N is the sequence of multipliers, and ωn := Jλ
∂F∗(xn) is the shadow

sequence iterate corresponding to the nth iterate of the DR sequence (xn)n∈N. In terms
of Figure 1(b), if we take λ = 1, B = Id, F∗ = NA and At

B = NB, then, in (A-3), xn = xn,
ωn = PAxn, pn = (xn − PAxn) and un+1 = (PBRAxn − RAxn).

Gabay rewrites (A-3) as in terms of the sequences un, pn, ωn as follows.
Step 0 Find un+1 ∈ V satisfying the variational inequality: ∃wn+1 ∈ A(un+1)

such that (∀v ∈ V)〈wn+1, v〉V + 〈ωn − λpn + λBun+1, Bv〉H = 0.
Step 1 Find pn+1 which solves the minimization problem:

F(pn+1) − F(q) − 〈ωn, pn+1 − q〉H +
λ

2
‖Bun+1 − pn+1‖

2
H −

λ

2
‖Bun+1 − q‖2H ≤ 0.

Step 2 Update multiplier by ωn+1 ← ωn + λ(Bun+1 − pn+1).
Gabay highlights that this is a variant of Uzawa’s algorithm [12] for the augmented
Lagrangian

Lr(v, q, u) = F(q) + G(v) + 〈µ, Bv − q〉H +
λ

2
‖Bv − q‖2H

for solving the optimization problem (A-2). When A = ∂G, under qualification
conditions, At

B = ∂(G∗ ◦ (−Bt)) and so
d := inf

µ∈H
{G∗(−Btµ) + F∗(µ)} (A-4)

is the dual value associated with the primal value (A-2) (see, for example, [46,
Theorem 3.3.5]). Thus the Lagrangian method of Uzawa applied to finding p (A-2) is
equivalent to DR applied to finding d (A-4).
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