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The non-dimensional dissipation rate Cε = εL/u′3, where ε, L and u′ are the viscous
energy dissipation rate, integral length scale of turbulence and root-mean-square
of the velocity fluctuations, respectively, is computed and analysed within the
turbulent/non-turbulent interfacial (TNTI) layer using direct numerical simulations
of a planar jet, mixing layer and shear free turbulence. The TNTI layer that separates
the turbulent and non-turbulent regions exists at the edge of free shear turbulent
flows and turbulent boundary layers, and comprises both the viscous superlayer
and turbulent sublayer regions. The computation of Cε is made possible by the
introduction of an original procedure, based on local volume averages within spheres
of radius r, combined with conditional sampling as a function of the location with
respect to the TNTI layer. The new procedure allows for a detailed investigation
of the scale dependence of several turbulent quantities near the TNTI layer. An
important achievement of this procedure consists in permitting the computation of the
turbulent integral scale within the TNTI layer, which is shown to be approximately
constant. Both the non-dimensional dissipation rate and turbulent Reynolds number
Reλ vary in space within the TNTI layer, where two relations are observed: Cε∼Re−1

λ

and Cε ∼ Re−2
λ . Specifically, whereas the viscous superlayer and part of the turbulent

sublayer display Cε∼Re−2
λ , the remaining of the turbulent sublayer exhibits Cε∼Re−1

λ ,
which is consistent with non-equilibrium turbulence (Vassilicos, Annu. Rev. Fluid
Mech. vol. 47, 2015, pp. 95–114).

Key words: jets

1. Introduction
Turbulence is present in the motion of fluids and plasmas, and governs many

mechanisms existing in astrophysics, geophysics, biology and engineering (Davidson
2004). Because of its ability to predict many important statistical quantities
characterizing turbulence, the theory of hydrodynamic turbulence formulated by
Kolmogorov occupies a unique position in the study of turbulence. Indeed, in one
way or another, virtually all known results can be related to well-known results
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from the theory of Kolmogorov. The theory is based on the Richardson–Kolmogorov
energy cascade picture, whereby the turbulent kinetic energy of the flow per unit mass
u′iu
′

i/2 (u′i is the fluctuating velocity vector), primarily associated with the large-scale
eddies, is continuously transferred into smaller and smaller eddies, through a nonlinear
inviscid process, until the kinematic viscosity ν becomes important (for small-scale
eddies) and the energy is dissipated into heat (Richardson 1922). One of the key
assumptions of this theory is the scale separation (Kolmogorov 1941), which is used to
explain one of the most interesting features of turbulent flows: the dissipation anomaly.
Indeed, it has been observed that the mean viscous dissipation rate of kinetic energy
per unit mass 〈ε〉= 〈νSijSij〉 (ν: kinematic viscosity; Sij= (∂ui/∂xj+ ∂uj/∂xi)/2: rate of
strain tensor; 〈·〉: an averaged value) is independent of viscosity in various turbulent
flows at high Reynolds number. This dissipation law is mathematically expressed as
the constancy of the non-dimensional dissipation rate Cε =〈ε〉L/u3

rms (Davidson 2004),
where L is the integral scale of turbulence and urms is the root-mean-squared (r.m.s.)
velocity fluctuation.

However, several experimental and numerical works (Seoud & Vassilicos 2007;
Valente & Vassilicos 2012; Valente, Onishi & da Silva 2014) have shown that in
many flows there are important regions where the dissipation law is not observed
(Vassilicos 2015). Indeed, a power law of Cε ∼ Re−1

λ has been observed to hold in
the flow behind a grid (Valente & Vassilicos 2012), which prompted researchers to
revisit many classical results for canonical flows such as the axisymmetric wake and
planar jet (Nedić, Vassilicos & Ganapathisubramani 2013; Layek & Sunita 2018).

The non-dimensional dissipation rate and the scaling of the kinetic energy
dissipation rate have been also studied in canonical free shear flows, such as
turbulent jets and mixing layers (Antonia, Satyaprakash & Hussain 1980; Deo,
Mi & Nathan 2008; Deo, Nathan & Mi 2013; Takamure et al. 2019). Most of these
studies discussed the streamwise evolution of these quantities on the centreline of
the flow. However, one of the most important features of free shear flows is the
outer intermittency, and one can find both turbulent and non-turbulent fluids at a
given location in the intermittent region. The turbulent and non-turbulent fluids are
separated by a thin interfacial layer: the so-called turbulent/non-turbulent interfacial
(TNTI) layer. Turbulent and non-turbulent fluid regions can be distinguished by using
the vorticity (Corrsin & Kistler 1955). It has been shown that the non-turbulent
fluid gains vorticity by viscous diffusion near the TNTI layer (Holzner et al. 2008),
and that vorticity diffusion causes the outward propagation of the outer edge of the
turbulent region.

The kinetic energy dissipation rate near the TNTI layer is in many ways a key
quantity for turbulence, since it relates to the smallest scale of motion in the flow,
i.e. the Kolmogorov scale. Indeed, various quantities characterizing the TNTI layer
were shown to scale with the Kolmogorov scale. The propagation velocity of the
outer edge of the turbulent region was found to scale with the Kolmogorov velocity
scale vη = (ν〈ε〉)

1/4 (Holzner & Lüthi 2011; Wolf et al. 2012, 2013; Jahanbakhshi
& Madnia 2016). The thickness of the TNTI layer was also shown to be 10–15
times the Kolmogorov length scale η = (ν3/〈ε〉)1/4 (Watanabe et al. 2015; Silva,
Zecchetto & da Silva 2018). The entrained fluid motion across the entire TNTI
layer is also related to the kinetic energy dissipation rate (Watanabe et al. 2016b,
2017a). In turbulent boundary layers, the kinetic energy dissipation rate in turbulent
regions varies significantly in the wall-normal direction. Thus, in that case, it is
the kinetic energy dissipation rate near the TNTI layer, which is very different
from the value near the wall, that characterizes the statistics of the TNTI layer
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(Borrell & Jiménez 2008; Watanabe, Zhang & Nagata 2018b; Zhang, Watanabe &
Nagata 2018). da Silva (2009) showed the existence of a strong imbalance between
interscale energy transfer and viscous dissipation near the TNTI layer. Another
example where the kinetic energy dissipation rate near the TNTI layer becomes
important is when modelling the scalar dissipation rate or related quantities in
numerical simulations of turbulent reacting flows (Fox 2003; Mitarai, Riley & Kosaly
2005; Cleary & Klimenko 2009), because the reaction zone often appears near the
outer edge of the turbulent region in non-premixed jet flames (Gampert et al. 2014b).
Therefore, a better understanding of the behaviour of the kinetic energy dissipation
rate near the TNTI layer is expected to contribute to improvements in numerical
simulations of turbulent reacting flows.

Even though the kinetic energy dissipation rate near the TNTI layer is known to be
an important quantity, the non-dimensional dissipation rate has never been studied near
the TNTI layer before. The characteristics of this layer have been studied mainly using
averages conditioned on a distance from the isosurface of vorticity magnitude that
marks the TNTI layer (Bisset, Hunt & Rogers 2002). This method has been proved to
be useful for investigating turbulent characteristics in the intermittent region, because
the statistics are obtained separately for turbulent and non-turbulent fluid regions.
However, the conditional averages used in the existing literature only give one-point
statistics, and cannot be used for computing the integral length scale of the flow. It
seems that the lack of a method to compute the integral length scale of turbulence
near the TNTI layer is the main reason why the non-dimensional dissipation rate has
not been studied in the vicinity of the TNTI layer. A conventional approach based
on the auto-correlation function is not able to compute the integral length scale in
the intermittent region, since this computation would involve information from both
the turbulent and non-turbulent fluid regions, even though this length scale strictly
concerns turbulent flow motions.

In this study, we present a new procedure which allows, for the first time, the
computation of the integral scale of turbulence near the TNTI layer, which permits
the first detailed investigation of the non-dimensional dissipation rate Cε within the
layer. The procedure is based on volume averaging of turbulent fluids, as a function
of the distance from the outer edge of the TNTI layer. The volume average is used for
calculating the kinetic energy distribution, in the space of scales, near the TNTI layer,
which allows the computation of the integral length scale as an energy-containing
length scale. This approach is applied to a direct numerical simulation (DNS) database
of a planar jet, a mixing layer and a localized turbulent spot that evolves without mean
shear (shear free turbulence), and we analyse the non-dimensional dissipation rate near
the TNTI layer in these flows.

2. DNS of jet, mixing layer and shear free turbulence
DNSs of forced homogeneous isotropic turbulence, a temporally evolving planar jet,

a mixing layer and shear free turbulence were carried out to study the TNTI layer. The
details of the DNS of these flows are described in da Silva & Pereira (2008), Taveira
& da Silva (2014), Watanabe, da Silva & Nagata (2016a), Watanabe et al. (2018a)
and references therein. The governing equations of these flows are the incompressible
Navier–Stokes equations written as

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+
∂uiuj

∂xj
=−

∂p
∂xi
+ ν

∂2ui

∂xj∂xj
, (2.2)
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Case Flow Re0 Nx Ny Nz ∆x/η Reλ δν/η δω/η

HIT1 Homogeneous isotropic turbulence 943 512 512 512 1.5 172 — —
HIT2 Homogeneous isotropic turbulence 2358 1024 1024 1024 1.4 312 — —
SFT Shear free turbulence 815 1024 1024 1024 1.3 180 4.3 13.2
PJET Planar jet 10 000 1200 1600 800 1.3 125 3.8 9.6
ML Mixing layer 1000 1200 1400 800 1.1 133 3.6 10.9

TABLE 1. DNSs of forced homogeneous isotropic turbulence, shear free turbulence,
planar jet and mixing layer. (Nx ×Ny ×Nz) is the number of grid points.

where ui is the ith component of the velocity vector, p is the pressure divided by
a constant fluid density. Table 1 summarizes the main physical and computational
parameters of the simulations. The size of the computational domain along the
streamwise (x), cross-streamwise (y) and spanwise (z) directions (Lx, Ly, Lz) is
(6H, 10H, 4H) in the planar jet and (42h0, 54h0, 28h0) in the mixing layer, where H
is the initial width of the planar jet and h0 is the initial thickness of the mixing layer.
The DNS of the planar jet and mixing layer was initialized by the mean velocity
profiles given with a hyperbolic tangent function as used in previous studies (da Silva
& Pereira 2008; Gampert et al. 2014a) and the velocity perturbation produced by
a method based on a diffusion process (Kempf, Klein & Janicka 2005). The DNS
of the planar jet and mixing layer used a code based on finite difference methods
(Watanabe et al. 2015, 2018a). The DNS of shear free turbulence was started from
an initial field of homogeneous isotropic turbulence and consists of a localized
turbulence region displaying a turbulent front that spreads in the y direction in the
absence of mean shear. Details of the shear free turbulence simulations are given
in Silva et al. (2018). The initial isotropic turbulence field, which is subsequently
used in the shear free turbulence simulation, is statistically stationary thanks to the
addition of an artificial forcing described in Alvelius (1999), which is delta correlated
in time and uncorrelated with the velocity field. The power input is prescribed by
a Gaussian function that affects only the smallest wavenumbers k = 2, 3 and 4,
and which is concentrated in wavenumber k = 3. Homogeneous isotropic turbulence
and shear free turbulence were simulated in a periodic box with size (2π)3 with a
code based on classical pseudo-spectral methods (da Silva & Pereira 2008; Taveira
& da Silva 2014). The shear free turbulence, temporal planar jet and temporal
mixing layer are statistically homogeneous in an x–z plane, and the average is taken
on a homogeneous plane as a function of y at each time step. The statistics in
the homogeneous isotropic turbulence are computed by taking an average in the
computational domain. The global Reynolds number Re0 is defined as urmsL/ν in
homogeneous isotropic turbulence and shear free turbulence with r.m.s. velocity
fluctuation in the x direction, urms, and integral length scale L computed with the
longitudinal auto-correlation function in the x direction. For the planar jet and mixing
layer, Re0 = UJH/ν and U0h0/ν are shown in the table, respectively, where UJ is
the initial centreline velocity in the jet and U0 is the velocity difference across the
mixing layer. The resolution of each simulation is assessed through ∆x/η in table 1,
where ∆x is the grid spacing and η is the Kolmogorov length scale; Reλ= urmsλ/ν is
the Reynolds number based on the Taylor microscale λ computed with the velocity
component in the x direction. These statistics in the shear free turbulence, planar jet
and mixing layer are computed on the centreline of the flows in the fully developed
turbulent state.
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FIGURE 1. (Colour online) A colour contour of enstrophy in the intermittent region with
the irrotational boundary shown with an isoline of |ω| =ωth in an x–y plane in the planar
jet simulation. The broken line on the local coordinate is excluded from the conditional
analysis.

3. Statistics conditioned on the distance from the outer edge of the TNTI layer

In the shear free turbulence, planar jet and mixing layer, turbulent and non-turbulent
fluid regions are bounded by a TNTI layer, which is best detected by using the
vorticity (Corrsin & Kistler 1955). Following several previous works, the outer
boundary separating the turbulent from the non-turbulent fluid regions is detected as
the isosurface of vorticity magnitude |ω| = ωth, where ωth is determined by assessing
how the volume of the turbulent region depends on the threshold (Taveira et al. 2013;
Watanabe et al. 2014; Jahanbakhshi, Vaghefi & Madnia 2015). Since the vorticity
magnitude increases from the isosurface of |ω|=ωth towards the inside of the turbulent
region, and the isosurface is bounded by the irrotational fluid region, this isosurface
of |ω| =ωth is called the irrotational boundary (Watanabe et al. 2015). It is important
to recall that the position of the irrotational boundary obtained with the procedure
described above and in Taveira et al. (2013) guarantees that the irrotational boundary
position is unambiguously determined as are the statistics obtained in relation to this
position. This is because ωth used to determine the irrotational boundary is taken
from a particular wide range of values, where varying the value of ωth changes the
position of the irrotational boundary by a distance smaller than the Kolmogorov scale
(see Silva et al. (2018)).

A colour contour of log10(ω
2/2) in an x–y plane in the intermittent region is shown

for PJET with the isoline of |ω| = ωth in figure 1. A local coordinate ζI with the
origin at the irrotational boundary is taken in the normal direction of the isosurface
n=−∇ω2/|∇ω2

| as shown in the figure. Note that ζI is shown on a two-dimensional
plane for the sake of explanation even though ζI is taken in the direction of the three-
dimensional vector n. The turbulent and non-turbulent regions correspond to ζI < 0
and ζI > 0, respectively (ζI = 0 at the irrotational boundary). The statistics conditioned
on ζI are computed with the same method as in Watanabe et al. (2018b). The local
coordinate ζI is set up for each location of |ω| =ωth, and the quantities computed on

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

46
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.462


326 T. Watanabe, C. B. da Silva and K. Nagata

5

4

3

2

1

0
-40 -30 -20 -10 0 10 20

ΩI/˙
-40 -30 -20 -10 0 10 20

ΩI/˙

-40 -30 -20 -10 0 10 20
ΩI/˙

0.8

0.6

0.4

0.2

0

¯|ø
|˘ I

/(
U

J/
H

)
¯|ø

|˘ I
/¯

|ø
|˘ C

¯|ø
|˘ I

/(
U

0/
h 0

)

1.0

0.8

0.6

0.4

0.2

0

3.7 ÷ 106 4.3 ÷ 106 2.3 ÷ 106

9.3 ÷ 105 1.1 ÷ 106 5.6 ÷ 105

2.4 ÷ 105 2.8 ÷ 105 1.4 ÷ 105

6.5 ÷ 104 7.5 ÷ 104 3.5 ÷ 104

1.8 ÷ 104 2.2 ÷ 104 9.0 ÷ 103

4.6 ÷ 103 5.5 ÷ 103 2.2 ÷ 103

1.2 ÷ 103 1.5 ÷ 103 5.4 ÷ 102

6.1 ÷ 102 7.6 ÷ 102 1.4 ÷ 102

PJET ML SFTNc (a) (b) (c)

(a) (b)

(c)

FIGURE 2. (Colour online) Influence of the number of samples on the conditional mean
vorticity magnitude 〈|ω|〉I in cases (a) PJET, (b) ML and (c) SFT. In (c), 〈|ω|〉I is
normalized by the mean vorticity magnitude on the centreline 〈|ω|〉C.

the DNS grid are interpolated onto the local coordinate with a tri-linear interpolation.
With this, the conditional average on ζI denoted by 〈·〉I is computed. The conditional
statistics should be computed separately for turbulent and non-turbulent fluid even
though sometimes, as shown in the figure, the local coordinate system crosses more
than two irrotational boundary points. Here, following Watanabe et al. (2018b), some
parts of the local coordinate system are excluded so that averages of turbulent and
non-turbulent fluid are obtained for ζI < 0 and ζI > 0, respectively. When the local
coordinate crosses more than two irrotational boundary points, the distance from ζI=0
to another irrotational boundary, ∆ζ , is computed. In the case that ∆ζ is smaller
than 15η (example A in figure 1), this local coordinate is not used in the conditional
average. For ∆ζ > 15η, samples for conditional statistics are not taken from the region
within a distance of 15η from another irrotational boundary (example B in figure 1).
Here, η is taken on the centreline of the flow, and 15η is chosen based on the mean
thickness of the TNTI layer (Silva et al. 2018). The particular choice of 15η does
not affect the resulting conditional statistics, and it was confirmed that the conditional
statistics do not change in the range of 5η–25η (Watanabe et al. 2018b).

The number of samples used in the conditional profiles increases with the number
of points, Nc, on the isosurface of |ω| = ωth used for setting the local coordinate,
from which the samples are taken. Figure 2 compares the conditional mean vorticity
magnitude 〈|ω|〉I obtained for a wide range of Nc, where ζI is normalized by the
Kolmogorov scale η on the centreline; 〈|ω|〉I decreases across the TNTI layer from the
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turbulent toward the non-turbulent region. As Nc increases, the curve tends to collapse
onto a single curve. The scatter due to a small number of samples is prominent for
Nc < 104, while 〈|ω|〉I becomes independent of Nc for Nc > 104. In the present study,
the conditional statistics are computed with Nc = 3.5× 104, 6.5× 104 and 7.5× 104

in the cases SFT, PJET and ML.

4. Scale decomposition near the turbulent/non-turbulent interface
4.1. Local spherical volume averages

In order to compute the turbulent characteristics near the TNTI layer, we use local
volume averages in a sphere, denoted by an overbar, where for each sphere of radius
r centred at point x, a spherical volume average of a variable φ(x) is defined by
(Watanabe & Nagata 2016),

φ(x, r)=

∫∫∫
G(x, x′, r)φ(x′) dx′

VR
=

1
Np

Np∑
n=1

φ[x(n)], (4.1)

where VR(r) is the volume of the sphere and G(x) is a kernel function which is equal
to 1 and 0 inside and outside of the sphere, respectively. This average corresponds to
a low-pass filter operation with a cutoff length proportional to r (Pumir, Shraiman &
Chertkov 2001), whereby φ(x) can be decomposed into large-scale (φ) and small-scale
components (φ′′), i.e. φ(x)= φ(x, r)+ φ′′(x, r). Here, a single length scale r is used
without distinguishing orientations.

In practice, the computation is carried out by taking Np fluid points randomly placed
within the sphere, and by interpolating the value of the fluid variable φ(x) on each
point x(n) using a tri-linear interpolation, as indicated in the last term of the equation
above. The number of points Np, used for each sphere of radius r, is set as Np =

min[(r/20η)3,Nlim], where the parameter Nlim is chosen to limit the computational cost
while (r/20η)3 ensures that the computational method used here is equivalent to the
definition of the local volume average. When (r/20η)3 is smaller than 20, Np= 20 is
used instead of (r/20η)3. Additionally, an ensemble average of spheres, 〈φ〉(r), can
be taken by using a large number of equally sized spheres located at different points
x within the computational domain.

We start by showing that using the new spherical volume average metric,
one recovers the classical results observed in homogeneous isotropic turbulence.
Specifically, we consider the kinetic energy averaged in a sphere, k(x, r) =
ui(x)ui(x)/2, split into two contributions resulting from the spherical average:
k(x, r) = km(x, r) + kr(x, r), where km(x, r) = uiui/2 involves the contribution from
the sphere’s centre-of-mass (mean) motion, whereas kr(x, r) = u′′i u′′i /2 represents
the contribution from (relative) motion in relation to the sphere’s centre of mass.
From these definitions, one can interpret the ensemble average of kr(x, r) as the
cumulative kinetic energy held in scales smaller than r, such that 〈kr〉 for large r
is equal to the turbulent kinetic energy kT = 〈u′iu

′

i〉/2. The brackets 〈 〉 represent a
spatial average. For computing 〈kr〉 in homogeneous isotropic turbulence, the spatial
average is taken with a large number of spheres (centred at different locations in
the computational domain). Furthermore, a kinetic energy density at scale r can be
defined by Er= ∂〈kr〉/∂r, whose integral gives the total kinetic energy as kT =

∫
∞

0 Er dr
(Townsend 1976).

Figure 3(a) shows 〈kr〉 in homogeneous isotropic turbulence (cases HIT1 and HIT2)
for three different values of Nlim; 〈kr〉 increases with the radius of the sphere r as
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FIGURE 3. (Colour online) (a) Cumulative kinetic energy 〈kr〉 normalized by the turbulent
kinetic energy kT in cases HIT1 and HIT2 for several values of Nlim. The theoretical curves
β〈ε〉2/3r2/3 (with β = 2) are also shown. (b) Contribution to the kinetic energy from scale
r, rEr, normalized by the turbulent kinetic energy kT .

expected from the definition, and for an intermediate range of r, it closely follows
the inertial range law 〈kr〉 = β〈ε〉

2/3r2/3 (with β = 2) predicted by Kolmogorov for the
second-order velocity structure function (Davidson 2004), which is also a measure of
the cumulative kinetic energy (Townsend 1976). Here, the broken line that represents
〈kr〉=β〈ε〉

2/3r2/3 is obtained with 〈ε〉 computed from the DNS results. The scale range
with 〈kr〉 = β〈ε〉

2/3r2/3 is wider for HIT2, which has a higher Reynolds number than
HIT1. It is clear that 〈kr〉 is quite insensitive to the value of Nlim provided that this
number is sufficiently high, and a value of Nlim = 6000 is therefore used for the rest
of the paper.

Figure 3(b) shows rEr in semi-log coordinates, which represents the contribution
to the turbulent kinetic energy from scale r. It is expected that rEr peaks at the scale
r= L (Davidson 2004), where L is the integral scale defined as L=

∫
∞

0 f (r) dr, where
f (r) = 〈u′(x)u′(x + r)〉/〈u′2(x)〉 is the longitudinal auto-correlation function. In the
present simulations, rEr attain their maxima at r= 140η and r= 270η, for cases HIT1
and HIT2, respectively, which compare well with L= 140η and L= 265η (represented
by the vertical lines in figure 3b) directly obtained by integrating f (r) for cases HIT1
and HIT2, respectively. Thus, we confirm using the present DNS that the integral
scale can be obtained as the scale r= L where rEr attains its maximum.

4.2. Conditional spherical volume averages
The local spherical volume averages are computed near the TNTI layer in relation to
the position of the irrotational boundary. A volume average of ‘turbulent fluids’ on
the local coordinate system is defined by extending the spherical volume average as

φ(ζI, r)=

∫∫∫
I(x′)G(ζI, x′, r)φ(x′) dx′∫∫∫

I(x′)G(ζI, x′, r) dx′
, (4.2)
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FIGURE 4. (Colour online) Conditional mean vorticity magnitude 〈|ω|〉I and its derivative
with respective to ζI , ω′I= d〈|ω|〉I/dζI in PJET. The thickness of the TNTI layer is denoted
by δI .

where I(x) is equal to 1 and 0 when the coordinate x is taken from the turbulent and
non-turbulent regions, respectively. Introducing ζI and I(x) allows us to investigate
the statistical properties of turbulence removing the contribution from non-turbulent
fluid regions. An ensemble average is calculated with a large number of spheres
(with radius r) whose centres are located at a fixed distance ζI from the irrotational
boundary positions, where this average is denoted by 〈 〉RI . The cumulative kinetic
energy held below scale r at a distance of ζI from the irrotational boundary is
denoted by 〈kr〉RI(ζI, r). The advantage of the present metric is that it allows us to
simultaneously assess the turbulent statistics as a function of the scale r and of the
position ζI in relation to the TNTI. A classic low-pass filtering operation could also
be used to perform a scale separation, however the filtering procedure would include
flow points from both the turbulent and non-turbulent regions. Here we are interested
in analysing the turbulent fluid near or within the TNTI layer while a sphere of
radius r at some location x may intersect the irrotational boundary at several points.
Therefore, here the non-turbulent fluid is removed from these spherical averages.
Thus, we can focus on the turbulent characteristics of the turbulent fluid near the
irrotational boundary.

5. Results and discussion
5.1. Conditional statistics near the TNTI layer

Figure 4 shows the conditional average of vorticity magnitude 〈|ω|〉I and its derivative
ω′I = d〈|ω|〉I/dζI with a negative sign in PJET; 〈|ω|〉I rapidly increases from the non-
turbulent region (ζI > 0) toward the turbulent region (ζI < 0), and a peak of −ω′I
appears at ζI =−0.016H. The TNTI layer can be defined as the region across which
the vorticity magnitude rapidly increases from the non-turbulent region toward the
turbulent region. Following a previous study (Nagata, Watanabe & Nagata 2018), the
mean extent of the TNTI layer on the local coordinate can be quantified based on ω′I .
Here, the outer edge of the TNTI layer is located at ζI=0 for the present choice of the
threshold. The inner edge of the TNTI layer can be identified as the location at which
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FIGURE 5. (Colour online) Conditional averages of enstrophy production term 〈Pω〉I and
diffusion term 〈Dω〉I in PJET. The thicknesses of the turbulent sublayer and viscous
superlayer are denoted by δω and δν , respectively.

−ω′I is equal to 10 % of the maximum value of −ω′I , [−ω
′

I]max. The length between
the outer and inner edges of the TNTI layer yields the thickness of the TNTI layer,
δI , as shown in figure 4, where δI = 0.055H is obtained. This method for estimating
the TNTI layer thickness δI was compared with another method based on fitting an
error function to conditional statistics in Watanabe et al. (2018a), where both methods
were shown to give a similar value of δI .

The inner structures of the TNTI layer, called the viscous superlayer and turbulent
sublayer, are often discussed with respect to vorticity dynamics (van Reeuwijk &
Holzner 2014; da Silva et al. 2014; Jahanbakhshi & Madnia 2018; Silva et al. 2018).
These inner layers can be detected by analysing the enstrophy transport equation

Dω2/2
Dt
=ωiSijωj + ν∇

2(ω2/2)− ν∇ωi · ∇ωi = Pω +Dω + εω, (5.1)

where Pω = ωiSijωj is the production term, Dω = ν∇
2(ω2/2) is the viscous diffusion

term and εω =−ν∇ωi · ∇ωi is the viscous dissipation term. When non-turbulent fluid
is entrained into the TNTI layer, ω2/2 increases on the entrained fluid path through
Pω and Dω. The conditional averages of Pω and Dω are shown for PJET in figure 5.
Note that the conditional averages of |ω|, Pω and Dω in a mixing layer and shear
free turbulence are also similar to those in a planar jet (Watanabe et al. 2015, 2017c).
Near the irrotational boundary (ζI ≈ 0), there is a region with 〈Pω〉I 6 〈Dω〉I , where
the enstrophy growth is dominated by the viscous diffusion. This region is called
the viscous superlayer (Taveira & da Silva 2014). On the other hand, 〈Pω〉I exceeds
〈Dω〉I in the inner part of the TNTI layer, which is called turbulent sublayer (Silva
et al. 2018). The mean thickness of the viscous superlayer δν can be obtained as
the distance from ζI = 0 to the location of 〈Pω〉I = 〈Dω〉I . Then, the mean thickness
of the turbulent sublayer, δω, can be obtained as δω = δI − δν . Values of δω and δν
divided by Kolmogorov scale η on the centreline (y= 0) are shown in table 1. Similar
values of δω/η and δν/η were also reported in various flows (Silva et al. 2018; Zhang
et al. 2018; Nagata et al. 2018), and agree with the scaling of the TNTI layer at high
Reynolds numbers and of its sublayers, recently analysed in Silva et al. (2018).
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FIGURE 6. (Colour online) Conditional average of relative kinetic energy 〈kr〉RI as a
function of the distance ζI from the irrotational boundary and the size of the sphere r
for shear free turbulence: (a) dependence on r for several distances from the irrotational
boundary, −20 6 ζI/η 6 −0.5 (the conditional energy density rErI is also shown);
(b) contours of 〈kr〉RI on (ζI, r) for −20 6 ζI/η 6 −0.5, and 100 6 r/η 6 103. 〈kr〉RI is
normalized by the turbulent kinetic energy on the centreline of turbulence, kT0.

Based on δI , δω and δν obtained in this way, the TNTI layer, viscous superlayer
and turbulent sublayer, can be identified in the plots of conditional statistics as shown
in figures 4 and 5. Furthermore, the turbulent region for ζI 6−δI is called a turbulent
core region in figure 5. Then, the local coordinate ζI is divided into four regions:
non-turbulent region, viscous superlayer, turbulent sublayer and turbulent core region.
Identifying these regions is useful to interpret various statistics obtained near the
TNTI layer. For example, the boundary between the viscous superlayer and turbulent
sublayer was shown to have a large scalar dissipation rate and a high production rate
of the scalar dissipation rate (Watanabe et al. 2015). The movement of entrained fluid
particles with respective to the irrotational boundary location was also shown to have
different scalings between the turbulent sublayer and viscous superlayer (Watanabe
et al. 2016b). The turbulent sublayer also exhibits different statistical properties from
the turbulent core region (e.g. alignment between the vorticity vector and eigenvectors
of the strain tensor (Watanabe et al. 2014)). For this reason, the conditional statistics
are presented with marks that represent the boundaries between these four regions. It
should be noted that the viscous terms are not dominant in the kinetic energy budget
within the viscous superlayer. Pressure diffusion of kinetic energy also makes an
important contribution to the kinetic energy budget within the TNTI layer (Taveira &
da Silva 2013; Terashima et al. 2016; Watanabe et al. 2016a).

5.2. Conditional statistics with volume average near the TNTI layer
The conditional statistics are computed with the volume average (4.2) in the shear free
turbulence, planar jet and mixing layer cases. Figure 6(a) plots the cumulative kinetic
energy 〈kr〉RI against r/η obtained at different locations on ζI in shear free turbulence
while figure 6(b) shows a colour contour of 〈kr〉RI as a function of (r/η, ζI/η). For
ζI/η >−10, 〈kr〉RI for small r notably decreases with ζI , which indicates a depletion
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FIGURE 7. (Colour online) Conditional average of relative kinetic energy 〈kr〉RI and
conditional energy density rErI in cases (a) PJET and (b) ML.

of kinetic energy at small scales within the TNTI layer. da Silva & Pereira (2008)
showed that the irrotational motions outside the irrotational boundary are dominated
by the large scales. However, the cumulative kinetic energy further shows that the
energy distribution across scales begins to change within the TNTI layer. As in
homogeneous isotropic turbulence, the integral scale of turbulence near the TNTI
layer is estimated using the kinetic energy density ErI = ∂〈kr〉RI/∂r premultiplied by r
as shown in figure 6(a). The peak location of rEr that yields the integral length scale
near the TNTI layer, LI , is insensitive to ζI , in agreement with the rapid distortion
theory applied for the TNTI layer (Teixeira & da Silva 2012).

Figure 7 shows the cumulative kinetic energy 〈kr〉RI and kinetic energy density rEr
near the TNTI layer for cases PJET and ML. Here, the range of r is chosen to present
the results for the length scales from the Kolmogorov scale r/η= 1 to the length scale
of the peak in rEr. The dependence of 〈kr〉RI and rEr on r and ζI is similar for all
flows. The cumulative kinetic energy 〈kr〉RI in small scales decreases as ζI becomes
close to 0, and small-scale motions are less active as the irrotational boundary ζI = 0
is approached from the turbulent region. The scale at which rEr peaks hardly depends
on ζI in the planar jet and mixing layer. The integral length scale LI at each ζI can be
obtained as the length r at which rEr peaks, where rEr is computed for a wide range
of r and ζI . However, LI does not change with ζI as confirmed from the peak in rEr
in figures 6(a) and 7. The values of LI in the shear free turbulence, planar jet and
mixing layer are LI = 1.9L0, LI = 1.0H = 2.0L0 and LI = 9.9h0 = 2.3L0, respectively,
where L0 is the integral length scale at y= 0, obtained by integrating the longitudinal
auto-correlation function of the velocity fluctuation in the x direction.

5.3. Non-dimensional dissipation rate near the TNTI layer
The non-dimensional dissipation rate in free shear flows has been studied on the
centreline of the flow, where it is calculated with the averaged energy dissipation rate
and turbulent kinetic energy (or root-mean-squared streamwise velocity fluctuation)
defined as one-point statistics and with the integral length scale computed with an
auto-correlation function (Antonia et al. 1980; Deo et al. 2008, 2013; Takamure
et al. 2019). Similarly, the non-dimensional dissipation rate near the TNTI layer is
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FIGURE 8. (Colour online) Conditional statistics in relation to the irrotational boundary:
(a) averaged viscous dissipation rate ε; (b) turbulent kinetic energy kTI; (c) turbulent
Reynolds number Reλ; (d) non-dimensional dissipation rate Cε. Different lines highlight
the two sublayers that exist within the TNTI layer between the turbulent core (TC) and
the non-turbulent region (NT): the viscous superlayer (VSL) and turbulent sublayer (TSL).
Subscript 0 denotes the value taken at the centre of turbulence (y= 0).

calculated with the averaged kinetic energy dissipation rate 〈ε〉I , turbulent kinetic
energy kTI = (〈ujuj〉I −〈uj〉I〈uj〉I)/2 and the integral length scale LI , where 〈ε〉I and kTI
are obtained as one-point statistics on the local coordinate. Figure 8(a–c) shows 〈ε〉I ,
kTI and the turbulent Reynolds number Reλ = (2kTI/3)1/2λI/ν near the TNTI layer in
the shear free turbulence, mixing layer and planar jet, where λI = (10νkTI/〈ε〉I)

1/2

is the Taylor microscale. Note that the volume average (4.2) is not used for these
quantities, and the conditional averages are simply taken on the local coordinate. Both
〈ε〉I and kTI decrease when approaching the irrotational boundary from the turbulent
region. However, Reλ sharply increases in the viscous superlayer region and in the
non-turbulent region, in agreement with Teixeira & da Silva (2012).

The results from figures 8(a–c), 6(a) and 7 allow us to observe for the first time
the non-dimensional energy dissipation rate Cε near the TNTI layer. Figure 8(d) shows
the profile of Cε, which is computed directly from its definition as 〈ε〉ILI/(2kTI/3)3/2.
Here, Cε is shown for the turbulent region since the integral length scale is obtained
as a length scale of turbulence. In the turbulent core region, Cε is roughly constant in
the three flows with 1.0. 〈Cε〉I . 1.5, which is close to the value of Cε≈ 1.0 observed
for decaying isotropic turbulence (Sreenivasan 1984). However, Cε exhibits a peculiar
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FIGURE 9. (Colour online) Normalized energy dissipation rate Cε as a function of the
turbulent Reynolds number Reλ in the viscous superlayer and turbulent sublayer: (a) a
logarithmic plot of (Cε, Reλ); (b) a linear plot of (CεRe2

λ, Reλ). Different lines are used
for the turbulent sublayer (TSL) and viscous superlayer (VSL).

evolution near the TNTI in all the flows studied here, rising into a peak roughly at
the middle of the turbulent sublayer at ζI/η ≈−10, before sharply decreasing inside
the viscous superlayer.

The spatial variation of Cε is investigated in relation to the turbulent Reynolds
number within the TNTI layer. Figure 9(a) plots Cε against Reλ in the turbulent
sublayer and viscous superlayer. As Reλ decreases from the viscous superlayer toward
the turbulent sublayer, Cε increases, where a power law Cε ∼ Re−2

λ is clearly found
for all flows. Figure 9(b) plots Cε premultiplied by Re2

λ against Reλ to confirm the
relation Cε ∼ Re−2

λ , which appears as a horizontal line, and shows that the relation
Cε ∼ Re−2

λ holds from the viscous superlayer to the middle of the turbulent sublayer.
Clearly the relation Cε ∼ Re−2

λ arises mainly from the viscous superlayer, where
viscous effects dominate enstrophy. The fact that the same relation is observed in
a part of the turbulent sublayer is not easy to explain. The concepts of the viscous
superlayer and turbulent sublayer are defined in relation to the enstrophy, which is
a small-scale quantity, unlike the velocity, which impacts in the definition of Cε.
Clearly, from its definition, the viscous superlayer is dominated by enstrophy viscous
diffusion. On the other hand, enstrophy production is dominant in the enstrophy
growth in the turbulent sublayer. However, in practice there is of course a small
overlap between the two effects – viscous diffusion and production – at the boundary
between the viscous superlayer and turbulent sublayer, i.e. viscous effects do not end
abruptly when we move from the viscous superlayer into the turbulent sublayer. To
complicate matters, Cε depends not only on the small scales but also on the velocity
fluctuations associated with the large scales of motion with no direct link to the
definition of the two sublayers, which is related to the small scales. The origin of
Cε ∼ Re−2

λ is discussed further below and in the Appendix.
Figure 10(a) plots Cε against Reλ in the turbulent sublayer and turbulent core

region. At the local minimum of Reλ found in the turbulent sublayer (in figure 8c),
the relation between Cε and Reλ is changed, and Cε ∼Re−1

λ follows in the rest of the
turbulent sublayer. Figure 10(b) plots CεReλ against Reλ for confirming the relation
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FIGURE 10. (Colour online) Normalized energy dissipation rate Cε as a function of the
turbulent Reynolds number Reλ in the turbulent sublayer and turbulent core region: (a) a
logarithmic plot of (Cε, Reλ); (b) a linear plot of (CεReλ, Reλ). Different lines are used
for the turbulent core (TC) and turbulent sublayer (TSL).

Cε∼Re−1
λ , and thus CεReλ tends to be constant in the turbulent sublayer and turbulent

core region. The relation Cε ∼ Re−1
λ was also observed in non-equilibrium turbulence

(Vassilicos 2015).
In previous studies of non-equilibrium turbulence, the scaling Cε ∼ Re−1

λ has been
explained via the influence of the large-scale coherent structures (Goto & Vassilicos
2016) or as a non-equilibrium perturbation correction to the Kolmogorov equilibrium
spectrum (Bos & Rubinstein 2017). In the analysis of the TNTI layer, the relation
Cε ∼ Re−1

λ is observed here for three very different flows, which have different
large-scale structures and it is unclear how spectral spikes described in Goto &
Vassilicos (2016) could explain this scaling. Recall that in the shear free turbulence
case, the typical large-scale eddies are somehow different from the ones observed
in other flows, such as free shear flows. It is noteworthy that the energy spectra of
streamwise velocity fluctuations in the temporally evolving mixing layer and planar
jet, observed in previous studies, did not show any clear spikes at the large scales
(Watanabe, Nagata & da Silva 2017b; Watanabe & Nagata 2017a), but we cannot
completely rule out the possible influence of these spikes that might exist in the
early times of the simulations. On the other hand, the analysis considered in Bos
& Rubinstein (2017) is for relatively small perturbations, whereas the perturbations
found within the turbulent sublayer are not likely small, since there are many possible
reasons for perturbations being induced in the vicinity of the TNTI layer. For example,
it was shown that the kinetic energy near the TNTI layer is transferred in physical
space by pressure diffusion, whose contribution depends on the associated length
scales (Taveira & da Silva 2013; Terashima et al. 2016; Watanabe et al. 2016a). As
suggested by an anonymous referee it is also possible that none of these explanations
can be used to describe the observed relation Cε ∼Re−1

λ . What is clear at the moment
is that this scaling law is robust and is consistently observed in the turbulent sublayer
of very different flow configurations.

Figure 6 shows that the integral length scale LI is almost constant near the TNTI
layer. In figures 8(a) and 8(b), although both averaged energy dissipation rate 〈ε〉I
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FIGURE 11. (Colour online) Influences of the threshold ωth used for detecting the
irrotational boundary in PJET. Cε plotted against (a) ζI/η and (b) Reλ for ωth = 0.9ωth0,
ωth0 and 1.1ωth0, where ωth0 = 0.18(UJ/H) is used in the present analysis.

and turbulent kinetic energy kTI decrease in the turbulent region toward ζI = 0,
kTI only weakly depends on ζI within the viscous superlayer. The assumption of
constant LI and kTI yields Cε ∼ Re−2

λ from the definitions of Cε and Reλ, where
Cε = 〈ε〉ILI/(2kTI/3)3/2 and Reλ = (20/3ν)1/2kTI〈ε〉

−1/2
I can be combined to give

CεRe2
λ = CLI

√
kTI/ν with constant C. Therefore, the power law Cε ∼ Re−2

λ observed
in the viscous superlayer and turbulent sublayer is related to the faster decay of 〈ε〉I
with ζI , than those of LI and kTI , as discussed in the Appendix.

Finally, figure 11 shows Cε plotted with ζI/η and Reλ obtained for different
thresholds ωth for PJET. Here, the results are compared for ωth = 0.9ωth0, ωth0
and 1.1ωth0, where ωth0 = 0.18(UJ/H) is used in the other figures. The threshold
dependence is very small and we observe the same tendency in all these plots.

6. Conclusions
Direct numerical simulations of planar jet, mixing layer and shear free turbulence

were used to study the non-dimensional dissipation rate Cε, near the TNTI layer,
where the turbulent Reynolds number Reλ ranges between 120 and 180 at the
centreline of the turbulent region of these flows. The analysis was made possible
through the development of a new procedure based on a volume average within a
sphere with radius r, which allows a detailed investigation of the scale dependence
of kinetic energy near the TNTI layer. For instance, the kinetic energy density at the
scale r can be computed by taking the derivative of the cumulative kinetic energy
with respective to r.

To validate this method based on the volume average, several well-known turbulent
statistics were first recovered in homogeneous isotropic turbulence. The cumulative
kinetic energy computed with the volume averaging procedure in homogeneous
isotropic turbulence was shown to increase with r2/3 for an intermediate range of
scales r, as expected from the scaling of the second-order velocity structure function.
It was shown that the scale dependence of the kinetic energy density yields an
integral length scale close to that obtained from the auto-correlation function of the
velocity fluctuation.

The tools based on the volume average were combined with the conditional
averages, as a function of the position within the TNTI layer ζI . Here, the statistics
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were computed only for turbulent fluid regions, by eliminating non-turbulent fluids
from the volume average. For all of the flows studied in the present work the kinetic
energy at small scales becomes smaller as the irrotational boundary is approached
(from the turbulent region). An important result was the realization that the turbulent
integral length scale LI , estimated from the scale dependence of kinetic energy density,
was shown to be almost independent of the position ζI near the TNTI layer. The
present method uses a single length scale r without distinguishing orientations, and
anisotropy of the integral length scale cannot be studied with this method.

The non-dimensional energy dissipation rate near the TNTI layer was computed
as Cε = 〈ε〉ILI/(2kTI/3)3/2 with the averaged viscous dissipation rate 〈ε〉I and the
turbulent kinetic energy kTI defined with the averages conditioned on ζI . The results
show that for all of the flows considered in this work, as the irrotational boundary is
approached from the turbulent region, Cε slightly increases and reaches its peak within
the turbulent sublayer, and later decreases within the viscous superlayer. The value
of Cε plotted against the turbulent Reynolds number Reλ showed that Cε within the
TNTI layer exhibits two relations: Cε ∼Re−1

λ and Cε ∼Re−2
λ . Specifically, whereas the

viscous superlayer and part of the turbulent sublayer display Cε∼Re−2
λ , the remainder

of the turbulent sublayer exhibits Cε∼Re−1
λ . The relation Cε∼Re−1

λ is consistent with
the dissipation scaling observed in non-equilibrium turbulence (Vassilicos 2015).
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Appendix
In this Appendix we compare how several flow variables evolve in HIT and

within a TNTI layer by using results from the HIT1 and PJET simulations. The idea
behind this comparison can be understood by recalling that when one moves from the
irrotational into the turbulent region across the TNTI layer the local vorticity increases.
Therefore, a conditional mean, made in relation to a distance from a fixed position
within the TNTI layer, can be compared to a conditional mean made in relation
to the local value of the enstrophy ω2/2. This allows us to compare the evolution
of several flow variables across the TNTI (from the irrotational to the turbulent
region) to how they evolve in homogeneous isotropic turbulence, from regions of
weak local enstrophy to regions of intense local enstrophy. Here the conditional
averages (as functions of ω2/2) used in HIT1 are denoted by 〈·〉ω, where the average
is performed over space. The evolution of the variables within the TNTI layer in
PJET is assessed with averages 〈·〉I , where the local coordinate ζI corresponds to a
given mean enstrophy 〈ω2/2〉I , which of course increases across the TNTI layer. Thus,
the average 〈·〉I plotted against 〈ω2/2〉I for the same ζI (in PJET) can be compared
with the average 〈·〉ω plotted against ω2/2 for homogeneous isotropic turbulence
(in HIT1). Notice that in PJET the viscous superlayer is formed at the outer edge
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FIGURE 12. (Colour online) (a) Conditional averages on enstrophy for enstrophy diffusion
and production terms, 〈Dω〉ω and 〈Pω〉ω, for HIT1. 〈Dω〉ω and 〈Pω〉ω are normalized by
〈SijSij〉

3/2 while ω2/2 is divided by mean enstrophy 〈ω2/2〉. (b) 〈Dω〉I and 〈Pω〉I plotted
against 〈ω2/2〉I at the same location of ζI within the TNTI layer in PJET. Different
lines are used for the non-turbulent region (NT), viscous superlayer (VSL) and turbulent
sublayer (TSL) in (b).

of the turbulent region, where the enstrophy level is only slightly higher than in
the non-turbulent region. In other words, in these conditional statistics the viscous
superlayer and a part of the turbulent sublayer (for PJET) can be compared with the
weak vorticity (small enstrophy) region of HIT1.

Figure 12(a) shows the averages, conditioned on enstrophy, of enstrophy diffusion
and production, 〈Dω〉ω and 〈Pω〉ω, plotted against ω2/2 (divided by its mean value
〈ω2/2〉) for HIT1. The diffusion term 〈Dω〉ω exhibits negative and positive values for
large and small values of ω2/2, respectively, which indicates that the enstrophy is
transferred from regions of large ω2/2 to regions with small ω2/2, as expected. On
the other hand, the production term 〈Pω〉ω is close to 0 for small ω2/2, but rapidly
increases with the enstrophy for large ω2/2, naturally expressing the dependence
of the enstrophy production Pω = ωiSijωj on the enstrophy magnitude. Figure 12(b)
shows 〈Dω〉I and 〈Pω〉I against 〈ω2/2〉I for PJET, where the associated ζI is in the
range transitioning from the non-turbulent region to the turbulent sublayer of the
TNTI layer. In the viscous superlayer, 〈Dω〉I is positive and increases with 〈ω2/2〉I ,
before becoming negative within the turbulent sublayer. The production term 〈Pω〉I
on the other hand is close to zero for small 〈ω2/2〉I (within the viscous superlayer),
but it rapidly increases with 〈ω2/2〉I moving from the viscous superlayer to the
turbulent sublayer, where the crossing between 〈Dω〉I and 〈Pω〉I takes place at the
end of the viscous superlayer. This evolution of 〈Dω〉I and 〈Pω〉I in the TNTI
layer is well documented in previous works, e.g. Taveira & da Silva (2014), but
the similarities with homogeneous isotropic turbulence are new and interesting to
observe (compare figures 12a and 12b). Regions of strong enstrophy in homogeneous
isotropic turbulence are connected with the presence of intense vortices, which
also somehow define the TNTI layer and can explain these similarities (Watanabe
et al. 2017a). Naturally, the similarities between the TNTI layer and homogeneous
isotropic turbulence end when one considers regions of very low enstrophy. This
is because the non-turbulent region with ω2

≈ 0 is bounded by the outer edge of
the viscous superlayer in the planar jet while low-ω2 regions in the homogeneous
isotropic turbulence can be surrounded by fluid with much higher ω2, from which
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FIGURE 13. (Colour online) (a) Averages conditioned on enstrophy taken for second and
third invariants of velocity gradient tensor (Q and R). (b) 〈Q〉I and 〈R〉I plotted against
〈ω2/2〉I within the TNTI layer in PJET. Different lines are used for the non-turbulent
region (NT), viscous superlayer (VSL) and turbulent sublayer (TSL) in (b).

enstrophy can be transferred towards the low-ω2 regions by the viscous diffusion.
Also, differences arise for large values of enstrophy, e.g. when 〈Dω〉I is close to 0
at 〈ω2/2〉I/(UJ/H)2 ≈ 10 in figure 12(b), while 〈Dω〉ω in figure 12(a) decreases with
ω2/2. The explanation is again simple. The average in the turbulent sublayer can
contain fluid with a wide range of ω2/2, because the enstrophy is highly intermittent
in the turbulent region as shown in figure 1, and averaging turbulent fluids with
various values of ω2/2 results in cancellation of both positive and negative Dω in the
averaged value 〈Dω〉I for large 〈ω2/2〉I (Jahanbakhshi & Madnia 2016; Zhang et al.
2018). Nevertheless, it is clear that the transition from the viscous superlayer to the
turbulent sublayer as observed in figure 12(b) for 〈Dω〉I and 〈Pω〉I is similar to that
observed in the homogeneous isotropic turbulence.

Small-scale features of turbulent flows have been studied with the second and
third invariants of velocity gradient tensor defined as Q = (ωiωi − 2SijSij)/4 and
R = −(SijSjkSki/3 + ωiSijωj/4), respectively (Ooi et al. 1999). Statistics of Q and R
near the TNTI layer were presented in previous studies (da Silva & Pereira 2008;
Watanabe et al. 2014; Vaghefi & Madnia 2015; Mathew, Ghosh & Friedrich 2016;
Watanabe et al. 2017a). These studies showed that 〈Q〉I < 0 and 〈R〉I > 0 within
the viscous superlayer, changing to 〈Q〉I > 0 and 〈R〉I < 0 in the turbulent sublayer.
Figure 13(a) plots 〈Q〉ω and 〈R〉ω against ω2/2 for HIT1 while figure 13(b) plots
〈Q〉I and 〈R〉I against 〈ω2/2〉I near the TNTI layer for PJET. Figure 13(b) confirms
these trends here for the planar jet while figure 13(a) displays similar features for
the homogeneous isotropic turbulence. This has been explained by the presence of
the vortices in the homogeneous isotropic turbulence and within the TNTI layers
(Watanabe et al. 2017a). In short Q > 0 at the vortex cores and Q < 0 surrounding
these eddies (Davidson 2004).

Figure 14(a) shows the turbulent kinetic energy kTω = 〈ujuj〉ω/2 and kinetic energy
dissipation rate 〈ε〉ω, as a function of ω2/2 for HIT1 while figure 14(b) shows
the results for PJET. In the two flow cases, both quantities increase with ω2/2
although the turbulent kinetic energy increases only slightly. Using the previous
data for HIT1, the turbulent Reynolds number Reλω = (2kTω/3)1/2λω/ν and the
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FIGURE 14. (Colour online) (a) Turbulent kinetic energy kTω = 〈ujuj〉ω/2 and averaged
kinetic energy dissipation rate 〈ε〉ω computed with averages conditioned on enstrophy in
HIT1. (b) Turbulent kinetic energy kTI and averaged kinetic energy dissipation rate 〈ε〉I
plotted against 〈ω2/2〉I within the TNTI layer in PJET. Different lines are used for the
non-turbulent region (NT), viscous superlayer (VSL) and turbulent sublayer (TSL) in (b).
(c) Reλ= (2kTω/3)1/2λω/ν and Cεω=〈ε〉ωL/(2kTω/3)3/2 computed with conditional averages
on enstrophy for HIT1, where λω = (10νkTω/〈ε〉ω)

1/2.

non-dimensional dissipation rate Cεω = 〈ε〉ωL/(2kTω/3)3/2 have been computed and
shown in figure 14(c), where λω = (10νkTω/〈ε〉ω)

1/2. Notice that the integral length
scale L is assumed to be independent of a local value ω2/2 since L is computed
from the auto-correlation function defined with two-point statistics. Similarly as in
figure 8(c,d), Reλω decreases while Cε increases with ω2/2.

Figure 15(a,b) shows the dependency of Cεω on Reλω for HIT1. It is clear that
Cεω ∼ Re−2

λω when the statistics are computed conditioned on enstrophy. This is
particularly more so at higher Reλω i.e. Reλω & 200 since CεωRe2

λω is relatively
insensitive to Reλω (see figure 15b). Because higher values of Reλω are associated
with smaller values of ω2/2 (figure 14c) we conclude that the relation Cεω ∼ Re−2

λω

arises in regions of relatively small local ω2/2 in HIT1. This reminds us of the
same relation observed previously in the viscous superlayer and the beginning of
the turbulent sublayer, where the mean enstrophy is also much smaller than in the
turbulent core region (see figure 9). However, as remarked by an anonymous referee,
it is not certain that Cε ∼ Re−2

λ can be explained in the same manner in the two
situations.
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FIGURE 15. (a) Cεω and (b) CεωRe2
λω plotted against Reλω for HIT1.

Indeed, combining the definitions of Cε, Reλ and λ, one can write Cε =

15(L/λ)/Reλ = 15(ReL/Re2
λ), where ReL = u′L/ν. It follows that in HIT1, regions

of roughly constant u′ will display a trivial relation Cε ∼ Re−2
λ , since the integral

scale L is constant. It is clear that the local variations of Reλ at these locations must
come from local variations of ε (and ω2/2). Also, from the previous figures and
discussion it is clear that in these regions both ε and ω2/2 is very small, but Reλ is
high. Thus, one concludes that Cε ∼ Re−2

λ is observed in the homogeneous isotropic
turbulence in regions of high Reλ, where u′ is roughly constant and where ω2/2
(and ε) are very small. This suggests that this relation is connected to the somehow
‘void’ regions between the eddies, or between the large clusters of eddies existing in
the homogeneous isotropic turbulence. The relation Cε∼Re−2

λ observed in the viscous
superlayer and a part of the turbulent sublayer certainly arises in a region where the
level of ε and ω2/2 is very small (see figure 8a), and furthermore, no vortices are to
be found inside these regions (which are bounded by the eddies).
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