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THE ADDITIVE GROUPS OF Z AND Q WITH PREDICATES FOR
BEING SQUARE-FREE

NEER BHARDWAJ AND CHIEU-MINH TRAN

Abstract. We consider the structures (Z; SFZ), (Z;<, SFZ), (Q; SFQ), and (Q;<, SFQ) where Z is
the additive group of integers, SFZ is the set of a ∈ Z such that vp(a) < 2 for every prime p and
corresponding p-adic valuation vp , Q and SFQ are defined likewise for rational numbers, and < denotes
the natural ordering on each of these domains. We prove that the second structure is model-theoretically
wild while the other three structures are model-theoretically tame. Moreover, all these results can be seen
as examples where number-theoretic randomness yields model-theoretic consequences.

§1. Introduction. In [9], Kaplan and Shelah showed under the assumption of
Dickson’s conjecture that if Z is the additive group of integers implicitly assumed to
contain 1 as a distinguished constant and a �→ – a as a distinguished function, and
if Pr is the set of a ∈ Z such that either a or – a is prime, then the theory of (Z; Pr) is
model complete, decidable, and super-simple of U-rank 1. From our current point
of view, the above result can be seen as an example of a more general phenomenon
where we can often capture aspects of randomness inside a structure using first-
order logic and deduce in consequence several model-theoretic properties of that
structure. In (Z; Pr), the conjectural randomness is that of the set of primes with
respect to addition. Dickson’s conjecture is useful here as it reflects this randomness
in a fashion which can be made first-order. The second author’s work in [14] provides
another example with similar themes.

Our viewpoint in particular predicts that there are analogues of Kaplan and
Shelah’s results with Pr replaced by other random subsets of Z. We confirm the
above prediction in this paper without the assumption of any conjecture when Pr is
replaced with the set

SFZ = {a ∈ Z : for all p primes, vp(a) < 2},
where vp is the p-adic valuation associated with the prime p. We have that Z is a
structure in the language L of additive groups augmented by a constant symbol for
1 and a function symbol for a �→ – a. Then (Z; SFZ) is a structure in the language
Lu extending L by a unary predicate symbol for SFZ (as indicated by the additional
subscript “u”). We will introduce a first-order notion of genericity which captures
the partial randomness in the interaction between SFZ and the additive structure
on Z. Using a similar idea as in [9], we obtain:
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THE ADDITIVE GROUPS OF Z AND Q WITH PREDICATES FOR BEING SQUARE-FREE 1325

Theorem 1.1. The theory of (Z; SFZ) is model complete, decidable, supersimple of
U-rank 1, and is k-independent for all k ∈ N≥1.

The above theorem gives us without assuming any conjecture the first natural
example of a simple unstable expansion of Z. From the same notion of genericity, we
deduce entirely different consequences for the structure (Z;<, SFZ) in the language
Lou extending Lu by a binary predicate symbol for the natural ordering < (as
indicated by the additional subscript “o”):

Theorem 1.2. The theory of (Z;<, SFZ) interprets arithmetic.

The proof here is an adaption of the strategy used in [2] to show that the theory of
(N; +, <,Pr) with Pr the set of primes interprets arithmetic. The above two theorems
are in stark contrast with one another in view of the fact that (Z;<) is a minimal
proper expansion of Z; indeed, it is proven in [6] that adding any new definable set
from (Z;<) to Z results in defining <. On the other hand, it is shown in [7] that
there is no strong expansion of the theory of Presburger arithmetic, so Theorem 1.2
is perhaps not entirely unexpected.

It is also natural to consider the structures (Q; SFQ) and (Q;<, SFQ) where Q is
the additive group of rational numbers, also implicitly assumed to contain 1 as a
distinguished constant and a �→ – a as a distinguished function,

SFQ = {a ∈ Q : vp(a) < 2 for all primes p},
and the relation < on Q is the natural ordering. The reader might wonder
why chose SFQ instead of SFZ or ASFQ = {a ∈ Q : |vp(a)| < 2 for all primes p}.
From Lemma 2.2 in the next section, we get SFQ + SFQ = Q, SFZ + SFZ = Z,
and ASFQ + ASFQ = {a : vp(a) > – 2 for all primes p}. Hence, equipping Q and
(Q;<) with either SFZ or ASFQ will result in structures expanding an infinite-index
pair of infinite abelian groups with a unary predicate on the smaller group, and
therefore, having rather different flavors from (Z; SFZ) and (Z;<, SFZ).

Viewing (Q; SFQ) and (Q;<, SFQ) in the obvious way as an Lu-structure and an
Lou-structure, the main new technical aspect is in showing that these two structures
satisfy suitable notions of genericity and leveraging on them to prove:

Theorem 1.3. The theory of (Q; SFQ) is model complete, decidable, simple but not
supersimple, and is k-independent for all k ∈ N≥1.

From above, (Q; SFQ) is “less tame” than (Z; SFZ). The reader might therefore
expect that (Q;<, SFQ) is wild. However, this is not the case:

Theorem 1.4. The theory (Q;<, SFQ) is model complete, decidable, is NTP2 but
is not strong, and is k-independent for all k ∈ N≥1.

The paper is arranged as follows. In Section 2, we define the appropriate notions
of genericity for the structures under consideration. The model completeness and
decidability results are proven in Section 3 and the combinatorial tameness results
are proven in Section 4.

1.1. Notation and conventions. Let h, k, and l range over the set of integers and
let m, n, and n′ range over the set of natural numbers (which include zero). We let p
range over the set of prime numbers, and denote by vp the p-adic valuation on Q.
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1326 NEER BHARDWAJ AND CHIEU-MINH TRAN

Let x be a single variable, y a tuple of variables of unspecified length, z the tuple
(z1, ... , zn) of variables, and z ′ the tuple (z ′1, ... , z

′
n′) of variables. For an n-tuple a of

elements from a certain set, we letai denote the i-th component of a for i ∈ {1, ... , n}.
Suppose G is an additive abelian group. We equip Gm with a group structure by
structure by setting + onGm to be the coordinate-wise addition. Viewing G andGm

as Z-module, we define ka with a ∈ G and kb with b ∈ Gm accordingly. Suppose,
G is moreover an L-structure with 1G the distinguished constant. We write k for
k1G . For A ⊆ G , we let L(A) denote the language extending L by adding constant
symbols for elements of A and view G as an L(A) structure in the obvious way.

§2. Genericity of the examples. We study the structure (Z; SFZ) indirectly by
looking at its definable expansion to a richer language. For given p and l, set

UZ
p,l = {a ∈ Z : vp(a) ≥ l}.

Let UZ = (UZ
p,l ). The definition for l ≤ 0 is not too useful as UZ

p,l = Z in this case.

However, we still keep this for the sake of uniformity as we treat (Q; SFQ) later. For
m > 0, set

PZ
m = {a ∈ Z : vp(a) < 2 + vp(m) for all p}.

In particular,PZ
1 = SFZ. Let P Z = (PZ

m)m>0. We have that (Z,UZ,P Z) is a structure
in the language L∗

u extending Lu by families of unary predicate symbols for UZ and
(PZ
m)m>1. Note that

UZ
p,l = Z for l ≤ 0, UZ

p,l = plZ for l > 0, and PZ
m =

⋃
d |m
dSFZ for m > 0.

Hence, UZ
p,l and PZ

m are definable in (Z, SFZ), and so a subset of Z is definable in

(Z; UZ,P Z) if and only if it is definable in (Z, SFZ).
Let (G ; PG,UG ) be an L∗

u-structure. Then UG is a family indexed by pairs (p, l),
and PG is a family indexed by m. For p, l, and m, defineUGp,l ⊆ G to be the member
of UG with index (p, l) and PGm ⊆ G to be the member of the family PG with index
m. In particular, we have UG = (UGp,l ) and PG = (PGm )m>0. Clearly, this generalizes
the previous definition for Z.

We isolate the basic first-order properties of (Z; UZ,P Z). Let Sf∗Z be a recursive
set of L∗

u-sentences such that an L∗
u-structure (G ; UG,PG) is a model of Sf∗Z if and

only if (G ; UG,PG) satisfies the following properties:

(Z1) (G ; +, –, 0, 1) is elementarily equivalent to (Z; +, –, 0, 1);
(Z2) UGp,l = G for l ≤ 0, and UGp,l = plG for l > 0;
(Z3) 1 is in PG1 ;
(Z4) for any given p, we have that pa ∈ PG1 if and only if a ∈ PG1 and a /∈ UGp,1;
(Z5) PGm =

⋃
d |m dP

G
1 for all m > 0.

The fact that we could choose Sf∗Z to be recursive follows from the well-known
decidability of Z. Clearly, (Z; UZ,P Z) is a model of Sf∗Z. Several properties which
hold in (Z; UZ,P Z) also hold in an arbitrary model of Sf∗Z:
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Lemma 2.1. Let (G ; UG,PG) be a model of Sf∗Z. Then we have the following:
(i) (G ; UG ) is elementarily equivalent to (Z; UZ);

(ii) for all k, p, l, and m > 0, we have that

k ∈ UGp,l if and only if k ∈ UZ
p,l and k ∈ PGm if and only if k ∈ PZ

m;

(iii) for all h �= 0, p, and l, we have that ha ∈ UGp,l if and only if a ∈ UG
p,l–vp(h);

(iv) if a ∈ G is in UG
p,2+vp(m) for some p, then a /∈ PGm ;

(v) for all h �= 0 and m > 0, ha ∈ PGm if and only if we have

a ∈ PGm and a /∈ UGp,2+vp(m)–vp(h) for all p which divides h;

(vi) for all h > 0 and m > 0, a ∈ PGm if and only if ha ∈ PGmh .

Proof. Fix a model (G ; UG,PG) of Sf∗Z. It follows from (Z2) that the same
first-order formula defines bothUGp,l in G andUZ

p,l in Z. Then using (Z1), we get (i).
The first assertion of (ii) is immediate from (i). Using this, (Z3), and (Z4), we get the
second assertion of (ii) for the case m = 1. For m �= 1, we reduce to the case m = 1
using property (Z5). Statement (iii) is an immediate consequence of (i). We only
prove below the cases m = 1 of (iv–vi) as the remaining cases of the corresponding
statements can be reduced to these using (Z5). Statement (iv) is immediate for the
case m = 1 using (Z2) and (Z4). The case m = 1 of (v) is precisely the statement of
(Z4) when h is prime, and then the proof proceeds by induction. For the casem = 1
of (vi), (→) follows from (Z5), and (←) follows through a combination of Z5, (v),
and induction on the number of prime divisors of h. 


We next consider the structures (Q; SFQ) and (Q;<, SFQ). For given p, l, and
m > 0, in the same fashion as above, we set

UQ

p,l = {a ∈ Q : vp(a) ≥ l} and PQ
m = {a ∈ Q : vp(a) < 2 + vp(m) for all p},

and let

UQ = (UQ

p,l ) and PQ = (PQ
m)m>0.

Then (Q; UQ,PQ) is a structure in the language L∗
u. Clearly, every subset of Qn

definable in (Q; SFQ) is also definable in (Q; UQ,PQ). A similar statement holds
for (Q;<, SFQ) and (Q;<,UQ,PQ). We will show that the reverse implications are
also true.

The next lemma backs up the discussion on SFQ and ASFQ preceding Theorem
1.3 in the introduction.

Lemma 2.2. SFZ + SFZ = Z, SFQ + SFQ = Q, and ASFQ + ASFQ = {a :
vp(a) > –2 for all p}.

Proof. We first prove that any integer k is a sum of two elements from SFZ.
As SFZ = –SFZ and the cases where k = 0 or k = 1 are immediate, we assume
that k > 1. It follows from [13] that the number of square-free positive integers less
than k is at least 53k

88 . Since 53
88 >

1
2 , this implies k can be written as a sum of two

positive square-free integers which gives us SFZ + SFZ = Z. Using this, the other
two equalities follow immediately. 
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Lemma 2.3. For all p and l, UQ

p,l is existentially 0-definable in (Q; SFQ).

Proof. As UQ

p,l+n = pnUQ

p,l for all l and n, it suffices to show the statement for

l = 0. Fix a prime p. We have for all a ∈ SFQ that

vp(a) ≥ 0 if and only if p2a /∈ SFQ.

Using Lemma 2.2, for all a ∈ Q, we have that vp(a) ≥ 0 if and only if there are
a1, a2 ∈ Q such that(

a1 ∈ SFQ ∧ vp(a1) ≥ 0
)
∧

(
a2 ∈ SFQ ∧ vp(a2) ≥ 0

)
and a = a1 + a2.

Hence, the setUQ

p,0 = {a ∈ Q : vp(a) ≥ 0} is existentially definable in (Q; SFQ). The
desired conclusion follows. 


It is also easy to see that for all m, PQ
m = mSFQ for all m > 0, and so PQ

m is
existentially 0-definable in (Q; SFQ). Combining with Lemma 2.3, we get:

Proposition 2.4. Every subset of Qn definable in (Q; UQ,PQ) is also definable
in (Q; SFQ). The corresponding statement for the structures (Q;<,UQ,PQ) and
(Q;<, SFQ) holds.

In view of the first part of Proposition 2.4, we can analyze (Q; SFQ) via
(Q; UQ,PQ) in the same way we analyze (Z; SFZ) via (Z; UZ,P Z). Let Sf∗Q be
a recursive set of L∗

u-sentences such that an L∗
u-structure (G ; UG,PG) is a model of

Sf∗Q if and only if (G ; UG,PG) satisfies the following properties:

(Q1) (G ; +, –, 0, 1) is elementarily equivalent to (Q; +, –, 0, 1);
(Q2) for any given p, UGp,0 is an n-divisible subgroup of G for all n coprime

with p;
(Q3) 1 ∈ UGp,0 and 1 /∈ UGp,1;
(Q4) for any given p, p–lUGp,l = UGp,0 if l < 0 and Up,l = plUp,0 if l > 0;
(Q5) UGp,0/U

G
p,1 is isomorphic as a group to Z/pZ;

(Q6) 1 ∈ PG1 ;
(Q7) for any given p, we have that pa ∈ PG1 if and only if a ∈ PG1 and

a /∈ UGp,1;
(Q8) PGm = mPG1 for m > 0;

The fact that we could choose Sf∗Q to be recursive follows from the well-known
decidability of Q. Obviously, (Q; UQ,PQ) is a model of Sf∗Q. Several properties
which hold in (Q; UQ,PQ) also hold in an arbitrary model of Sf∗Q:

Lemma 2.5. Let (G ; UG,PG) be a model of Sf∗Q. Then we have the following:

(i) For all p and all l, l ′ ∈ Z with l ≤ l ′, we have UGp,l is a subgroup of G, UG
p,l ′ ⊆

UGp,l . Further, we can interpret UGp,l /U
G
p,l ′ as an L-structure with 1 being pl +

UG
p,l ′ , and

UGp,l /U
G
p,l ′

∼=L Z/(pl
′–lZ);
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(ii) for all h, k �= 0, p, l, and m > 0, we have that

h

k
∈ UGp,l if and only if

h

k
∈ UQ

p,l and
h

k
∈ PGm if and only if

h

k
∈ PQ

m,

where hk–1 is the obvious element in Q and in G ;
(iii) the replica of (iii–vi) of Lemma 2.1 holds.

Proof. Fix a model (G ; UG,PG) of Sf∗Q. From (Q2) we have that UGp,0 is a
subgroup of G for all p. It follows from (Q4) that UG

p,l ′ ⊆ UGp,l are subgroups of
G for all p and l ≤ l ′. With UGp,l /U

G
p,l ′ being interpreted as an L-structure with 1

being pl +UG
p,l ′ , we get an L-embedding of Z/(pl

′–lZ) into UGp,l /U
G
p,l ′ using (Q3)

and (Q4). Further, we see that |UGp,l /UGp,l ′ | = p(l ′–l) using (Q2)–(Q5) and induction
on l ′ – l together with the third isomorphism theorem; and so the aforementioned
embedding must be an isomorphism, finishing the proof for (i). The first assertion of
(ii) follows easily from (Q2)–Q(4). The second assertion for the case m = 1 follows
from the first assertion, (Q6), and (Q7). Finally, the case with m �= 1 follows from
the case m = 1 using (Q8). The proof for the replica of (iii) from Lemma 2.1 is a
consequence of (i) and (Q4). The proofs for replicas of (iv–vi) from Lemma 2.1 are
similar to the proofs for (iv–vi) of Lemma 2.1. 


As the reader may expect by now, we will study (Q;<, SFQ) via (Q;<,UQ,PQ).
Let L∗

ou be Lou ∪ L∗
u. Then (Q;<,UQ,PQ) can be construed as an L∗

ou-structure
in the obvious way. Let OSf∗Q be a recursive set of L∗

ou-sentences such that an L∗
ou-

structure (G ; UG,PG) is a model of OSf∗Q if and only if (G ; UG,PG) satisfies the
following properties:

(1) (G ;<) is elementarily equivalent to (Q;<);
(2) (G ; UG,PG) is a model of Sf∗Q.

As Th(Q;<) is decidable, we could choose OSf∗Q to be recursive.
Returning to the theory Sf∗Z, we see that it does not fully capture all the first-order

properties of (Z,UZ,P Z). For instance, we will show later in Corollary 2.12 that for
all c ∈ Z, there is a ∈ Z such that

a + c ∈ SFZ and a + c + 1 ∈ SFZ,

while the interested reader can construct models of Sf∗Z where the corresponding
statement is not true. Likewise, the theories Sf∗Q and OSf∗Q do not fully capture all
the first-order properties of (Q; UQ,PQ) and (Q;<,UQ,PQ).

To give a precise formulation of the missing first-order properties of (Z,UZ,P Z),
(Q; UQ,PQ), and (Q;< UQ,PQ), we need more terminologies. Let t(z) be an
L∗

u-term (or equivalently an L∗
ou-term) with variables in z. An L∗

u-formula (or an
L∗

ou-formula) which is a Boolean combination of formulas having the form t(z) = 0
where we allow t to vary is called an equational condition. Similarly, an L∗

ou-formula
which is a Boolean combination of formulas having the form t(z) < 0 where t is
allowed to vary is called an order-condition. For any given p, l define t(z) ∈ Up,l
to be the obvious formula in L∗

u(z) which defines in an arbitrary L∗
u-structure

(G ; UG,PG) the set

{c ∈ Gn : tG(c) ∈ UGp,l}.
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Define the quantifier-free formulas t(z) /∈ Up,l , t(z) ∈ Pm, and t(z) /∈ Pm in L∗
u(z)

for p, l, and form > 0 likewise. For each prime p, anL∗
u-formula (or anL∗

ou-formula)
which is a Boolean combination of formulas of the form t(z) /∈ Up,l where t and l
are allowed to vary is called a p-condition. We call a p-condition as in the previous
statement trivial if the Boolean combination is the empty conjunction.

A parameter choice of variable type (x, z, z ′) is a triple (k,m,Θ) such that k is in
Z \ {0}, m is in N≥1, and Θ =

(
�p(x, z, z ′)

)
where �p(x, z, z ′) is a p-condition for

each prime p and is trivial for all but finitely many p. We say that an L∗
u-formula

�(x, z, z ′) is special if it has the form

∧
p

�p(x, z, z ′) ∧
n∧
i=1

(kx + zi ∈ Pm) ∧
n′∧
i′=1

(kx + z ′i /∈ Pm),

where k,m, and �p(x, z, z ′) are taken from a parameter choice of variable type
(x, z, z ′). Every special formula corresponds to a unique parameter choice and
vice versa. Special formulas are special enough that we have a “local to global”
phenomenon in the structures of interest but general enough to represent quantifier
free formulas. We will explain the former point in the remaining part of the section
and make the latter point precise with Theorem 3.1.

Let�(x, z, z ′) be a special formula with parameter choice (k,m,Θ) and �p(x, z, z ′)
is the p-condition in Θ for each p. We define the associated equational condition of
ϕ(x, z, z ′) to be the formula

n∧
i=1

n′∧
i′=1

(zi �= z ′i′)

and the associated p-condition of ϕ(x, z, z ′) to be the formula

�p(x, z, z ′) ∧
n∧
i=1

(kx + zi /∈ Up,2+vp(m)).

It is easy to see that modulo Sf∗Z or Sf∗Q, an arbitrary special formula implies its
associated equational condition and its associated p-condition for any prime p.

Suppose (G ; UG,PG) and (H ; UH ,PH ) are L∗
u-structures such that the former

is an L∗
u-substructure of the latter. Let �(x, z, z ′) be a special formula, �=(z, z ′) the

associated equational condition, and �p(x, z, z ′) the associated p-condition for any
given prime p. For c ∈ Gn and c′ ∈ Gn′ , we call the quantifier-free L∗

u(G)-formula
�(x, c, c′) a G-system. An element a ∈ H such that �(a, c, c′) holds is called a
solution of �(x, c, c′) in H. We say that �(x, c, c′) is satisfiable in H if it has a
solution in H and infinitely satisfiable in H if it has infinitely many solutions in H.
We say that �(x, c, c′) is nontrivial if �=(c, c′) holds or more explicitly if c and c′

have no common components. For a given p, we say that �(x, c, c′) is p-satisfiable
in H if there is ap ∈ H such that �p(ap, c, c′) holds. A G-system is locally satisfiable
in H if it is p-satisfiable in H for all p.

Suppose (G ;<,UG,PG) and (H ;<,UH ,PH ) are L∗
ou-structures such that the

former is an L∗
ou-substructure of the latter. All the definitions in the previous

paragraph have obvious adaptations to this new setting as (G ; UG,PG) and
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(H ; UH ,PH ) are L∗
u-structures. For b and b′ in H such that b < b′, define

(b, b′)H = {a ∈ H : b < a < b′}.

A G-system �(x, c, c′) is satisfiable in every H-interval if it has a solution in the
interval (b, b′)H for all b and b′ in H such that b < b′. The following observation is
immediate:

Lemma 2.6. Suppose (G ; UG,PG) is a model of either Sf∗Z or Sf∗Q. Then every
G-system which is satisfiable in G is nontrivial and locally satisfiable in G.

It turns out that the converse and more are also true for the structures of
interest. We say that a model (G ; UG,PG) of either Sf∗Z or Sf∗Q is generic if
every nontrivial locally satisfiable G-system is infinitely satisfiable in G. An OSf∗Q
model (G ;<,UG,PG) is generic if every nontrivial locally satisfiable G-system is
satisfiable in every G-interval. We will later show that (Z; UZ,P Z), (Q; UQ,PQ),
and (Q;<,UQ,PQ) are generic.

Before that we will show that the above notions of genericity are first-order. Let
�(x, z, z ′) be the special formula corresponding to a parameter choice (k,m,Θ)
with Θ =

(
�p(x, z, z ′)

)
. A boundary of �(x, z, z ′) is a number B ∈ N>0 such that

B > max{|k|, n} and �p(x, z, z ′) is trivial for all p > B .

Lemma 2.7. Let �(x, z, z ′) be a special formula, B a boundary of �(x, z, z ′),
and (G ; UG,PG) a model of either Sf∗Z or Sf∗Q. Then every G-system �(x, c, c′) is
p-satisfiable for p > B .

Proof. Let �(x, z, z ′) be the special formula corresponding to a parameter
choice (k,m,Θ), and B, (G ; UG,PG) as in the statement of the lemma. Suppose
�(x, c, c′) is a G-system, p > B , and �p(x, z, z ′) is the associated p-condition of
�(x, z, z ′). Then �p(x, c, c′) is equivalent to

n∧
i=1

(kx + ci /∈ Up,2+vp(m)) in (G ; UG,PG).

We will show a stronger statement that there is a ap ∈ Z satisfying the latter. Note
that for all d /∈ UGp,0, we have that (ka + d /∈ Up,0) for all a ∈ Z. From Lemma
2.5, we have that UGp,l ⊆ UGp,k whenever k < l , so we can assume that ci ∈ UGp,0 for
i ∈ {1, ... , n}. In light of Lemmas 2.1(i) and 2.5(i), we have that

UGp,0/U
G
p,2+vp(m)

∼=L Z/(p2+vp(m)Z).

It is easy to see that k is invertible mod p2+vp(m) and that p2+vp(m) > n. Choose ap in
{0, ... , p2+vp(m) – 1} such that the images of kap + c1, ... , kap + cn in Z/(p2+vp(m)Z)
are not 0. We check that ap is as desired. 


Corollary 2.8. There is an L∗
u-theory SF∗

Z such that the models of SF∗
Z are the

generic models of Sf∗Z. Similarly, there is an L∗
u-theory SF∗

Q and an L∗
ou-theory OSF∗

Q

satisfying the corresponding condition for Sf∗Q and OSf∗Q.

In the rest of the paper, we fix SF∗
Z, SF∗

Q, and OSF∗
Q to be as in the previous

lemma. We can moreover arrange them to be recursive. In the remaining part of
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this section, we will show that (Z; UZ,P Z), (Q; UQ,PQ), and (Q;<,UQ,P Z) are
models of SF∗

Z, SF∗
Q, and OSF∗

Q respectively. The proof that the latter are in fact the
full axiomatizations of the theories of the former needs to wait until next section.
Further we fix SFZ and SFQ to be the theories whose models are precisely the Lu-
reducts of models of SF∗

Z and SF∗
Q respectively, and OSFQ to be the theory whose

models are precisely Lou reducts of models of OSF∗
Q. For the reader’s reference,

the following table lists all the languages, the corresponding theories, and primary
structures under consideration:

Languages Theories Primary structures

L Th(Z), Th(Q) Z,Q

Lu SFZ, SFQ (Z; SFZ), (Q; SFQ)
Lou OSFQ (Z;<,SFZ), (Q;<,SFQ)
L∗u Sf∗Z, SF∗

Z, Sf∗Q, SF∗
Q (Z; UZ,PZ), (Q; UQ,PQ)

L∗ou OSf∗Q, OSF∗
Q (Q;<,UQ,PQ)

Suppose h �= 0. For a term t(z) = k1z1 + ··· + knzn + e, let th(z) be the term
k1z1 + ··· + knzn + he. If ϕ(z) is a Boolean combination of atomic formulas of
the form t(z) ∈ Up,l or t(z) ∈ Pm where t(z) is an L∗

u-term, define ϕh(z) to be
the formula obtained by replacing t(z) ∈ Up,l and t(z) ∈ Pm in ϕ(z) with th(z) ∈
Up,l+vp(h) and th(z) ∈ Pmh for every choice of p, l, m, and L∗

u-term t. It follows from
Lemmas 2.1 (iii, vi) and 2.5 (iii) that across models of Sf∗Z and Sf∗Q,

ϕh(hz) is equivalent to ϕ(z).

Moreover, if �(z) is a p-condition, then �h(z) is also p-condition. If �(x, z, z ′)
is the special formula corresponding to a parameter choice (k,m,Θ) with Θ =(
�p(x, z, z ′)

)
, then�h(x, z, z ′) is the special formula corresponding to the parameter

choice (k, hm,Θh) with Θh =
(
�hp(x, z, z ′)

)
. It is easy to see from here that:

Lemma 2.9. For h �= 0, any boundary of a special formula �(x, z, z ′) is also a
boundary of �h(x, z, z ′) and vice versa.

Let �(x, z, z ′) be a special formula, (G ; UG,PG) a model of either Sf∗Z or Sf∗Q,
and �(x, c, c′) a G-system. Then �h(x, hc, hc′) is also a G-system which we refer
to as the h-conjugate of �(x, c, c′). This has the property that �h(ha, hc, hc′) if and
only if �(a, c, c′) for all a ∈ G .

For a and b in Z, we write a ≡n b if a and b have the same remainder when divided
by n. We need the following version of Chinese remainder theorem:

Lemma 2.10. Suppose B is in N>0, Θ is a family
(
�p(x, z)

)
p≤B of L∗

u-formulas
with �p(x, z) being a p-condition for each p ≤ B , and c ∈ Zn is such that �p(x, c)
defines a nonempty set in (Z; UZ,P Z) for all p ≤ B . Then we can find D ∈ N>0 and
r ∈ {0, ... , D – 1} such that for all h �= 0 with gcd(h, B ! ) = 1, we have

a ≡D hr implies
∧
p≤B
�hp(a, hc) for all a ∈ Z.
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Proof. Let B, Θ, and c be as stated. Fix h �= 0 such that gcd(h, B ! ) = 1. Hence,
vp(h) = 0 for p ≤ B , and so the p-condition �hp(x, z) is obtained from the p-
condition �p(x, z) by replacing any atomic formula kx + t(z) ∈ Up,l appearing
in �p(x, z) with kx + th(z) ∈ Up,l . Now for p ≤ B , let lp be the largest value of l
occurring in an atomic formula in �p(x, z). Set

D =
∏
p≤B
plp .

Obtain ap ∈ Z such that �p(ap, c) holds in (Z; UZ,P Z). Equivalently, we have
�hp(hap, hc) holds in (Z; UZ,P Z). By the Chinese remainder theorem, we get r
in {0, ... , D – 1} such that

r ≡
plp
ap for all p ≤ B.

We check that r is as desired. Suppose a ∈ Z is such that a ≡D hr. By construction,
if p ≤ B , l ≤ lp, and kx + t(z) ∈ Up,l is any atomic formula, then ka + th(hc) ∈
UZ
p,l if and only if k(hap) + th(hc) ∈ UZ

p,l . It follows that �hp(a, hc) is equivalent to
�hp(hap, hc) in (Z; UZ,P Z). Thus �hp(a, hc) holds for all p ≤ B . 


Towards showing that the structures of interest are generic, the key number-
theoretic ingredient we need is the following result:

Lemma 2.11. Let �(x, z, z ′) be a special formula and �(x, c, c′) a nontrivial Z-
system which is locally satisfiable in Z. For h > 0, and s, t ∈ Q with s < t, set

Ψh(hs, ht) = {a ∈ Z : �h(a, hc, hc′) holds and hs < a < ht}.

Then there exist N ∈ N>0, ε ∈ (0, 1), and C ∈ R such that for all h > 0 with
gcd(h,N ! ) = 1 and s, t ∈ Q with s < t, we have that

|Ψh(hs, ht)| ≥ εh(t – s) –

(
n∑
i=1

√
|hks + hci | +

√
|hkt + hci |

)
+ C.

Proof. Throughout this proof, let �(x, z, z ′), �(x, c, c′), and Ψh(hs, ht) be as
stated. We first make a number of observations. Suppose �(x, z, z ′) corresponds
to the parameter choice (k,m,Θ) and has a boundary B, and �p(x, z, z ′) is the
associated p-condition of�(x, z, z ′). Then�h(x, z, z ′) corresponds to the parameter
choice (k, hm,Θh), and B is also a boundary of�h(x, z, z ′) by Lemma 2.9. Moreover
�hp(x, z, z ′) is the associated p-condition of �h(x, z, z ′). Since �(x, c, c′) is locally
satisfiable in Z, we can use Lemma 2.10 to fix D ∈ N>0 and r ∈ {0, ... , D – 1} such
that for each h > 0 with gcd(h, B ! ) = 1, we have

a ≡D hr implies
∧
p≤B
�hp(a, hc, hc′) for all a ∈ Z.

We note that D here is independent of the choice of h for all h with gcd(h, B ! ) = 1.
We introduce a variant of Ψh(hs, ht) which is needed in our estimation of

|Ψh(hs, ht)|. Until the end of the proof, set lp = 2 + vp(m). Fix primes p1, ... , pn′
such that p1 > ci for all i ∈ {1, ... , n}, p1 > c

′
i′ for all i ′ ∈ {1, ... , n′}, and

B < p1 < ··· < pn′ .
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For M > pn′ , h > 0 with gcd(h, B ! ) = 1, define ΨhM (hs, ht) to be the set of a ∈ Z

such that hs < a < ht and

(a ≡D hr) ∧
∧

B<p≤M

(
n∧
i=1

(ka + hci �≡plp+vp(h) 0)

)
∧
n′∧
i′=1

(ka + hc′i′ /∈ PZ
hm).

It is not hard to see that Ψh(hs, ht) ∩ {a ∈ Z : a ≡D hr} ⊆ ΨhM (hs, ht), and the
latter is intended to be an upper approximation of the former. The desired lower
bound for |Ψh(hs, ht)| will be obtained via a lower bound for |ΨhM (hs, ht)| and an
upper bound for |ΨhM (hs, ht) \ Ψh(hs, ht)|.

Now we work towards establishing a lower bound on |ΨhM (hs, ht))| in the
case where M > pn′ , h > 0, and gcd(h,M ! ) = 1. The latter assumption implies
in particular that plp+vp(h) = plp for all p ≤M . For p > B , we have that p > |k|
and so k is invertible mod plp . Set

Δ = {p : B < p ≤M} \ {pi′ : 1 ≤ i ′ ≤ n′}.

For p ∈ Δ, as k is invertible mod plp , there are at least plp – n (note we have
p > B > n) choices of rp in {0, ... , plp – 1} such that if a ≡

plp
rp, then

n∧
i=1

(ka + hci �≡plp 0).

Suppose p = pi′ for some i ′ ∈ {1, ... , n′}. By the assumption that �(x, c, c′) is
nontrivial, c has no common components with c′. Since gcd(h,M ! ) = 1, h and p are
coprime, and so the components of hc and hc′ are pairwise distinct mod plp . As k
is invertible mod plp , there is exactly one rp in {0, ... , plp – 1} such that if a ≡

plp
rp,

then
n∧
i=1

(ka + hci �≡plp 0) ∧ (ka + hc′i′ ≡plp 0) and consequently ka + hc′i′ /∈ PZ
hm.

Now it follows by the Chinese remainder theorem that,

|ΨhM (hs, ht)| ≥
⌊

ht – hs
D

∏
B<p≤M p

lp

⌋ ∏
p∈Δ

(
plp – n

)
.

Then it follows that,

|ΨhM (hs, ht)| ≥ ht – hs
D

∏
p≤pn′

1
plp

≤M∏
p>pn′

(
1 –

n

plp

)
–

∏
p≤M

plp .

Set

ε =
1

2D

∏
p≤pn′

1
plp

∏
p>pn′

(
1 –

n

plp

)
.

https://doi.org/10.1017/jsl.2020.30 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.30


THE ADDITIVE GROUPS OF Z AND Q WITH PREDICATES FOR BEING SQUARE-FREE 1335

Now as lp ≥ 2, for U ∈ N>0 with U > max{p′n, n2} we have that

∏
p>U

(
1 –

n

plp

)
>

∏
p>U

(
1 –

1

p
3
2

)
.

Hence, it follows from Euler’s product formula that ε > 0. We now have

|ΨhM (hs, ht)| ≥ 2ε(ht – hs) –
∏
p≤M

plp .

We note that ε is independent of the choice of M and h, and will serve as the
promised ε in the statement of the lemma.

Next we obtain an upper bound on |ΨhM (s, t) \ Ψh(s, t)| for M > pn′ , h > 0,
and gcd(h,M ! ) = 1. We arrange that k > 0 by replacing c by – c and c′ by – c′ if
necessary. Note that an element a ∈ ΨhM (s, t) \ Ψh(s, t) must be such that

hks + hci < ka + hci < hkt + hci for all i ∈ {1, ... , n}

and ka + hci is a multiple of plp for some p > M and i ∈ {1, ... , n}. For each p and
i ∈ {1, ... , n}, the number of non-zero multiples of plp in (hks + hci , hkt + hci) is

�hk(t –s)p–lp�–2, or �hk(t –s)p–lp�–1, or �hk(t – s)p–lp�, or �hk(t – s)p–lp�+1.

In the last case, as lp ≥ 2 we moreover have

p2 ≤ |hks + hci | or p2 ≤ |hkt + hci |,

and so

p ≤
√
|hks + hci | +

√
|hkt + hci |.

As lp ≥ 2, we have �hk(t – s)p–lp� ≤ hk(t – s)p–2. Therefore we have that

|ΨhM (s, t) \ Ψh(s, t)| ≤ h(t – s)
∑
p>M

nk

p2 +

(
n∑
i=1

√
|hks + hci | +

√
|hkt + hci |

)
+ 1.

We now obtain N and C as in the statement of the lemma. Note that∑
p>T

p–2 ≤
∑
n>T

n–2 = O(T –1).

Using this, we obtain N ∈ N>0 such that N > pn′ and
∑
p>N knp

–2 < ε where ε is
from the preceding paragraph. Set C =–

∏
p≤N p

lp – 1. Combining the estimations
from the preceding two paragraphs forM = N it is easy to see that ε,N,C are as
desired. 


Remark 2.12. The above weak lower bound is all we need for our purpose. We
expect that a stronger estimate can be obtained using modifications of available
techniques in the literature; see for example [12].

Corollary 2.13. For all c ∈ Z, there is a ∈ Z such that

a + c ∈ SFZ and a + c + 1 ∈ SFZ.
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Proof. We have that for all c ∈ Z,�(x, c) = (x + c ∈ SFZ) ∧ (x + c + 1 ∈ SFZ)
is a locally satisfiable Z-system. Applying Lemma 2.11 for h = 1, s = 0, and t
sufficiently large we see there is a solution a ∈ Z for �(x, c). 


We next prove the main theorem of the section:

Theorem 2.14. The Sf∗Z-model (Z; UZ,P Z), the Sf∗Q-model (Q; UQ,PQ), and the
OSf∗Q-model (Q;<,UQ,PQ) are generic.

Proof. We get the first part of the theorem by applying Lemma 2.11 for h = 1,
s = 0, and t sufficiently large. As the second part of the theorem follows easily from
the third part, it will be enough to show that the OSf∗Q-model (Q;<,UQ,PQ) is
generic. Throughout this proof, suppose�(x, z, z) is a special formula and�(x, c, c′)
is a Q-system which is nontrivial and locally satisfiable in Q. Our job is to show that
the Q-system �(x, c, c′) has a solution in the Q-interval (b, b′)Q for an arbitrary
choice of b, b′ ∈ Q such that b < b′.

We first reduce to the special case where �(x, c, c′) is also a Z-system which is
nontrivial and locally satisfiable in Z. Let B be the boundary of �(x, z, z ′) and
for each p, let �p(x, z, z ′) be the associated p-condition of �(x, z, z ′). Using the
assumption that �(x, c, c′) is locally satisfiable Q-system, for each p < B we obtain
ap ∈ Q such that �p(ap, c, c′) holds. Let h > 0 be such that

hc ∈ Zn, hc′ ∈ Zn
′
, and hap ∈ Z for all p < B.

Then by the choice of h, and Lemmas 2.7 and 2.9, the h-conjugate �h(x, hc, hc′) of
�(x, c, c′) is a Z-system which is nontrivial and locally satisfiable in Z. On the other
hand, �(x, c, c′) has a solution in an interval (b, b′)Q if and only if

�h(x, hc, hc′) has a solution in (hb, hb′)Q.

Hence, by replacing �(x, z, z ′) with �h(x, z, z ′), �(x, c, c′) with �h(x, hc, hc′), and
(b, b′)Q with (hb, hb′)Q if necessary we get the desired reduction.

We show �(x, c, c′) has a solution in the Q-interval (b, b′)Q for the special case
in the preceding paragraph. By an argument similar to the preceding paragraph, it
suffices to show that for some h �= 0, �h(x, hc, hc′) has a solution in (hb, hb′)Q.
Applying Lemma 2.11 for s = b, t = b′, and h sufficiently large satisfying the
condition of the lemma, we get the desired conclusion. 


§3. Logical tameness. We will next prove that SF∗
Z, SF∗

Q, and OSF∗
Q admit

quantifier elimination. We first need a technical lemma saying that modulo Sf∗Z
or Sf∗Q, an arbitrary quantifier free formula φ(x, y) is not much more complicated
than a special formula; recall that x always denotes a single variable.

Lemma 3.1. Suppose ϕ(x, y) is a quantifier-free L∗
u-formula. Then ϕ(x, y) is

equivalent modulo Sf∗Z to a disjunction of quantifier-free formulas of the form

�(y) ∧ ε(x, y) ∧ �(x, t(y), t′(y)),

where

(i) t(y) and t′(y) are tuples of L∗
u-terms with length n and n′respectively;
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(ii) �(y) is a quantifier-free L∗
u-formula, ε(x, y) an equational condition, and

�(x, z, z ′) a special formula.

The corresponding statement with Sf∗Z replaced by Sf∗Q also holds.

Proof. Let ϕ(x, y) be a quantifier-free L∗
u-formula. We will use the following

disjunction observation several times in our proof: If ϕ(x, y) is a finite disjunction
of quantifier-free L∗

u-formulas and we have proven the desired statement for each of
those, then the desired statement for ϕ(x, y) follows. In particular, it allows us to
assume that ϕ(x, y) is the conjunction

�(y) ∧ ε(x, y) ∧
∧
p

�p(x, y) ∧
n∧
i=1

(kix + ti(y) ∈ Pmi ) ∧
n′∧
i=1

(k′i x + t′i (y) /∈ Pm′
i
),

where �(y) is a quantifier-free L∗
u-formula, ε(x, y) is an equational condition,

k1, ... , kn and k′1, ... , k
′
n′ are in Z \ {0}, m1, ... , mn and m′

1, ... , m
′
n′ are in N≥1,

t1(y), ... , tn(y) and t′1(y), ... , t′n(y) are L∗
u-terms with variables in y, �p(x, y) is a

p-condition for each p, and �p(x, y) is trivial for all but finitely many p.
We make further reductions to the form of ϕ(x, y). Set t(y) = (t1(y), ... , tn(y))

and t′(y) = (t′1(y), ... , t′
n′(y)). Using the disjunction observation and the fact that

(x + yj ∈ P1) ∨ (x + yj /∈ P1)

is a tautology for every component yj of y, we can assume that either x + yj ∈ P1 or
x + yj /∈ P1 are among the conjuncts ofϕ(x, y), and so yj is among the components
of t(y) or t′(y). Then we obtain for each prime p a p-condition �p(x, z, z ′) such that
�p(x, t(y), t′(y)) is logically equivalent to �p(x, y). Let 	(x, z, z ′) be the formula

∧
p

�p(x, z, z ′) ∧
n∧
i=1

(kix + zi ∈ Pmi ) ∧
n′∧
i=1

(k′i x + z ′i /∈ Pm′
i
).

Clearly, ϕ(x, y) is equivalent to the formula �(y) ∧ ε(x, y) ∧ 	(x, t(y), t′(y)), so we
can assume that ϕ(x, y) is the latter.

We need a small observation. For a p-condition �p(z) and h �= 0, we will show
that there is another p-condition �p(z) such that modulo Sf∗Z and Sf∗Q,

�p(z1, ... , zi–1, hzi , zi+1, ... , zn) is equivalent to �p(z).

For the special case where �p(z) is t(z) ∈ Up,l , the conclusion follows from
Lemmas 2.1(iii) and 2.5(iii) and the fact that there is an L∗

u-term t′(z) such that
t′(z, ... , zi–1, hzi , zi+1, ... , zn) = ht(z). The statement of the paragraph follows easily
from this special case.

With ϕ(x, y) as in the end of the second paragraph, we further reduce the main
statement to the special case where there is k �= 0 such that ki = k′

i′ = k for all i ∈
{1, ... , n} and i ′ ∈ {1, ... , n′}. Choose k �= 0 to be a common multiple of k1, ... , kn
and k′1, ... k

′
n′ . Then by Lemmas 2.1(vi) and 2.5(iii), we have for each i ∈ {1, ... , n}

that

kix + zi ∈ Pmi is equivalent to (kx + kk–1
i zi ∈ Pkk–1

i mi
) modulo either Sf∗Z or Sf∗Q.
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We have a similar observation for k and k′
i′ with i ′ ∈ {1, ... , n′}. The desired

reduction easily follows from these observations and the preceding paragraph.
Continuing with the reduction in the preceding paragraph, we next arrange that

there ism > 0 such thatmi = m′
i′ = m for all i ∈ {1, ... , n} and i ′ ∈ {1, ... , n′}. Let

m be a common multiple of m1, ... , mn and m′
1, ... m

′
n′ . By Lemmas 2.1(v,vi) and

2.5(iii), we have for i ∈ {1, ... , n} that modulo either Sf∗Z or Sf∗Z or Sf∗Q

kx + zi ∈ Pmi is equivalent to kx + zi ∈ Pm ∧
∧
p| mmi

kx + zi /∈ Up,2+vp(mi )

and for i ′ ∈ {1, ... , n′} that modulo either Sf∗Z or Sf∗Q

kx + z ′i′ /∈ Pm′
i′

is equivalent to kx + z ′i′ /∈ Pm ∨
∨
p| m
m′
i′

kx + z ′i′ ∈ Up,2+vp(m′
i′ ).

It follows that ϕ(x, y) is equivalent to a disjunction of formulas of the form we
are aiming for. The desired conclusion of the lemma follows from the disjunction
observation. 


Corollary 3.2. Suppose ϕ(x, y) is a quantifier-free L∗
ou formula. Then ϕ(x, y) is

equivalent modulo OSf∗Q to a disjunction of quantifier-free formulas of the form

�(y) ∧ 
(x, y) ∧ �(x, t(y), t′(y)),

where

(i) t(y) and t′(y) are tuples of L∗
ou-terms with length n and n′respectively;

(ii) �(y) is a quantifier-freeL∗
ou-formula, 
(x, y) an order condition, and�(x, z, z ′)

a special formula.

In the next lemma, we show a “local quantifier elimination” result.

Lemma 3.3. If ϕ(x, z) is a p-condition, then modulo either Sf∗Z or Sf∗Q, the formula
∃xϕ(x, z) is equivalent to a p-condition �(z).

Proof. If ϕ(x, z) is a p-condition, then by Lemma 2.1(i), modulo Sf∗Z, it is a
Boolean combination of atomic formulas of the form kx + t(z) ∈ Up,l where t(z)
is an L∗

u-term, and l > 0. Let lp be the largest value of l occurring in such atomic
formulas, and set

S = {(m1, ... , mn) : 0 ≤ mi < plp for each i, and (Z; UZ) |= ∃xϕ(x,m1, ... , mn)}.
Then by Lemma 2.1(i), modulo Sf∗Z, ∃xϕ(x, z) is equivalent to the p-condition∨

(m1,...,mn)∈S(
∧n
i=1(zi ≡plp mi)) .

Now, we proceed to prove the statement for models of Sf∗Q. Throughout the rest
of the proof, suppose ϕ(x, z) is a p-condition, k, k′, l, l ′ are in Z, and t(z), t′(z)
are L∗

u-terms. First, we consider the case where ϕ(x, z) is a p-condition of the form
kx + t(z) ∈ Up,l . The case k = 0 is trivial. If k �= 0, then ∃x(kx + t(z) ∈ Up,l ) is
tautological modulo Sf∗Q following from (Q1) in the definition of Sf∗Q and Lemma
2.5(i).

We next consider the case where ϕ(x, z) is a finite conjunction of p-conditions in
L∗

u(x, z) such that one of the conjuncts is kx + t(z) ∈ Up,l with k �= 0 and the other
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conjuncts are either of the formk′x + t′(z) ∈ Up,l ′ or of the formk′x + t′(z) /∈ Up,l ′
where we do allow l ′ to vary. It follows from Lemma 2.5(i) that if k = k′, l ≥ l ′,
then

k′x + t′(z) ∈ Up,l ′ if and only if t(z) – t′(z) ∈ Up,l ′ .
So we have means to replace conjuncts of ϕ(x, z) by terms independent of the
variable x. However, the above will not work if k �= k′ or l < l ′. By Lemma 2.5(iii),
across models of Sf∗Q, we have that

kx + t(z) ∈ Up,l if and only if hkx + ht(z) ∈ Up,l+vp(h) for all h �= 0.

From this observation, it is easy to see that we can resolve the issue of having
k �= k′, and moreover arrange that l ≥ 0 which will be used in the next observation.
By Lemma 2.5(i,ii), across models of Sf∗Q, we have that

kx + t(z) ∈ Up,l if and only if
pm∨
i=1

kz + t(z) + ipl ∈ Up,l+m for all l ≥ 0 and all m.

Using the preceding two observations we resolve the issue of having l < l ′. The
statement of the lemma for this case then follows from the second paragraph.

We now prove the full lemma. It suffices to consider the case where ϕ(x, z) is
a conjunction of atomic formulas. In view of the preceding paragraph, we reduce
further to the case where ϕ(x, z) is of the form

m∧
i=1

kx + ti(z) /∈ Up,li .

We now show that ∃xϕ(x, z) is a tautology over Sf∗Q and thus complete the proof.
Suppose (G ; UG,PG) |= Sf∗Q and c ∈ Gn. It suffices to find a ∈ G such that the p-
condition ka + ti(c) /∈ UGp,li holds for all i ∈ {1, ... , m}. Without loss of generality,
we assume that t1(c), ... , tm′(c) are not in UGp,l for all l and that tm′+1(c), ... , tm(c)
are in UGp,l0 for some l0 such that l0 < li for all i ∈ {1, ... , m}. Using Lemma 2.5(ii),

choose a such that ka ∈ UGp,l0–1 \UGp,l0 . It follows from Lemma 2.5(i) that a is as
desired. 


Theorem 3.4. The theories SF∗
Z, SF∗

Q, and OSF∗
Q admit quantifier elimination.

Proof. As the three situations are very similar, we will only present here the proof
that OSF∗

Q admits quantifier elimination. The proof for SF∗
Z and SF∗

Q are simpler as
there is no ordering involved. Along the way we point out the necessary modifications
needed to get the proof for SF∗

Z and SF∗
Q. Fix OSF∗

Q-models (G ;<,UG,PG) and
(H ;<,UH ,PH ) such that the latter is |G |+-saturated. Suppose

f is a partial L∗
ou-embedding from (G ;<,UG,PG) to (H ;<,UH ,PH ),

in other words, f is anL∗
ou-embedding of anL∗

ou-substructure of (G ;<,UG,PG) into
(H ;<,UH ,PH ). By a standard test, it suffices to show that if Domain(f) �= G , then
there is a partial L∗

ou-embedding from (G ;<,UG,PG) to (H ;<,UH ,PH ) which
properly extends f. For the corresponding statements with SF∗

Z or SF∗
Q, we need to

consider instead (G ; UG,PG) and (H ; UH ,PH ) depending on the situation.
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We remind the reader that our choice of language includes a symbol for additive
inverse, and so Domain(f) is automatically a subgroup of G. Suppose Domain(f)
is not a pure subgroup of G, that is, there is an element Domain(f) which is n-
divisible in G but not n-divisible in Domain(f) for some n > 0. Then there is prime
p and a in G \ Domain(f) such that pa ∈ Domain(f). Using divisibility of H, we
get b ∈ H such that pb = f(pa). Let g be the extension of f given by

ka + a′ �→ kb + f(a′) for k ∈ {1, ... , p – 1} and a′ ∈ Domain(f).

It is routine to check that g is an ordered group isomorphism from 〈Domain(f), a〉
to 〈Image(f), b〉. It is also easy to check using Lemma 2.5(iii) that ka + a′ ∈ UG

p′,l
if and only if kb + f(a′) ∈ UG

p′,l and ka + a′ ∈ PGm if and only if kb + f(a′) ∈ UGm
for all k, l, m, primes p′, and a′ ∈ Domain(f). Hence,

g is a partial L∗
ou-embedding from (G ;<,UG,PG) to (H ;<,UH ,PH ).

Clearly, g properly extends f, so the desired conclusion follows. The proof for SF∗
Q

is the same but without the verification that the ordering is preserved. The situation
for SF∗

Z is slightly different as H is not divisible. However, for all primes p′, p′a is in
p′G = UG

p′,1, and so f(p′a) is in UH
p′,1 = p′H . The proof proceeds similarly using

Lemma 2.1(iv–vi).
The remaining case is when Domain(f) �= G is a pure subgroup of G. Let a be in

G \ Domain(f). We need to find b in H \ Image(f) such that

qftpL∗ou
(a/Domain(f)) = qftpL∗ou

(b/Image(f)).

By the fact that Domain(f) is pure in G, and Corollary 3.2, qftpL∗ou
(a | Domain(f))

is isolated by formulas of the form

�(b) ∧ 
(x, b) ∧ �(x, t(b), t′(b)),

where �(y) is a quantifier-freeL∗
ou-formula, 
(x, y) is an order condition,�(x, z, z ′)

is a special formula, t(y) and t′(y) are tuples of L∗
ou-terms of suitable length, b

is a tuple of elements of Domain(f) of suitable length, and �(x, t(b), t′(b)) is a
nontrivial Domain(f)-system. As Domain(f) is a pure subgroup of G, we can
moreover arrange that 
(x, b) is simply the formula b1 < x < b2. Since f is an
L∗

ou-embedding, �(f(b)) holds, f(b1) < f(b2), and �
(
x, t(f(b)), t′(f(b))

)
is a

nontrivial Image(f)-system. Using the fact that (H ;<,UH ,PH ) is |G |+-saturated,
the problem reduces to showing that

�
(
x,f

(
t(b)

)
, f

(
t′(b)

))
has a solution in the interval (f(b1), f(b2))H .

As �(x, t(b), t′(b)) is satisfiable in G, it is locally satisfiable in G by Lemma 2.6. For
each p, let �p(x, z, z ′) be the associated p-condition of �(x, z, z ′). By Lemma 3.3,
for all p, the formula ∃x�p(x, z, z ′) is equivalent modulo Sf∗Q to a quantifier free

formula in L∗
u(z, z ′). Hence, ∃x�p

(
x,f

(
t(b)

)
, f

(
t′(b)

))
holds in (H ;<,UH ,PH )

for all p. Thus,

the Image(f)-system �
(
x,f

(
t(b)

)
, f

(
t′(b)

))
is locally satisfiable in H.
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The desired conclusion follows from the genericity of (H ;<,UH ,PH ). The proofs
for SF∗

Z and SF∗
Q are similar. However, we have there the formula

∧k
i=1 x �= bi with

k ≤ |b| instead of the formula b1 < x < b2, Lemma 3.1 instead of Corollary 3.2,
and the corresponding notion of genericity instead of the current one. 


Corollary 3.5. The theory SF∗
Z is a recursive axiomatization of Th(Z; UZ,P Z),

and is therefore decidable. Similar statements hold for SF∗
Q in relation to

Th(Q; UQ,PQ) and OSF∗
Q in relation to Th(Q;< UQ,PQ).

Proof. By Lemma 2.1(ii), the subgroup generated by 1 in an arbitrary model
(G ; UG,PG) of SF∗

Z is an isomorphic copy of (Z; UZ,P Z). Hence by Theorem 3.4,
SF∗

Z is complete, and on the other hand (Z; UZ,P Z) |= SF∗
Z by Theorem 2.14. The

first statement of the corollary follows. The justification of the second statement is
obtained in a similar fashion. 


Proof of Theorem 1.1, part 1. We show that theLu-theory of (Z; SFZ) is model
complete and decidable. For all p, l ≥ 0,m > 0, and all a ∈ Z, we have the following:

(1) a ∈ UZ
p,l if and only there is b ∈ Z such that plb = a;

(2) a /∈ UZ
p,l if and only if for some i ∈ {1, ... , pl – 1}, there is b ∈ Z such that

plb = a + i ;
(3) a ∈ PZ

m if and only if for some d | m, there is b ∈ Z such that a = bd and
b ∈ SFZ;

(4) a /∈ PZ
m if and only if for all d | m, either for some i ∈ {1, ... , d – 1}, there is

b ∈ Z such that db = a + i or there is b ∈ Z such that a = bd and b /∈ SFZ.

As (Z; UZ,P Z) |= SF∗
Z, it then follows from Theorem 3.4 and the above observation

that every 0-definable set in (Z, SFZ) is existentially 0-definable. Hence, the theory
of (Z; SFZ) is model complete. The decidability of Th(Z; SFZ) is immediate from
the preceding corollary. 


Lemma 3.6. Suppose a ∈ Q has vp(a) < 0. Then there is ε ∈ Q such that vp(ε) ≥ 0
and a + ε ∈ SFQ.

Proof. Suppose a is as stated. If a ∈ SFQ we can choose ε = 0, so suppose a is
in Q \ SFQ. We can also arrange that a > 0. Then there are m, n, k ∈ N≥1 such that

a =
m

npk
, (m, n) = 1, (m,p) = 1, and (n, p) = 1.

It suffices to show there is b ∈ Z such that m + pkb is a square-free integer as then

a +
b

n
=
m + pkb
npk

∈ SFQ.

For all prime l, pkbl +m /∈ UQ

l,2 for bl = 0 or 1. The conclusion then follows from
the genericity of (Z; UZ,P Z) as established in Theorem 2.14. 


Corollary 3.7. For all p and l, UQ

p,l is universally 0-definable in (Q, SFQ).

Proof. We will instead show that Q \UQ

p,l = {a : vp(a) < l} is existentially 0-

definable for all p and l. As Q \UQ

p,l+n = pn(Q \UQ

p,l ) for all p, l, and n, it suffices to
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show the statement for l = 0. Fix a prime p. By the preceding lemma we have that
for all a, vp(a) < 0 if and only if

there is ε such that vp(ε) ≥ 0, a + ε ∈ SFQ and vp(a + ε) < 0.

We recall that {ε : vp(ε) ≥ 0} is existentially 0-definable by Lemma 2.3. Also, for
all a′ ∈ SFQ, we have that vp(a′) < 0 is equivalent to p2a′ ∈ SFQ. The conclusion
hence follows. 


Proof of Theorems 1.3 and 1.4, part 1. We show that theLu-theory of (Q; SFQ)
and the Lou-theory of (Q;<, SFQ) are model complete and decidable. The proof is
almost exactly the same as that of part 1 of Theorem 1.1. It follows from Lemma 2.3
and Corollary 3.7 that for all p and l, the setsUQ

p,l are existentially and universally 0-

definable in (Q; SFQ). For all m, PQ
m = mSFQ and Q \ PQ

m = m(Q \ SFQ) are clearly
existentially 0-definable. The conclusion follows. 


Next, we will show that the Lou-theory of (Z;<, SFZ) is bi-interpretable with
arithmetic. The proof follows closely the arguments from [2]. In fact, we can slightly
modify Corollary 3.9 to use essentially the same proof at the cost of replacing n2

with n2 + n.

Lemma 3.8. Let c1, ... , cn be an increasing sequence of natural numbers, and assume
that for all primes p, there is a solution to the system of congruence inequations

x + ci /∈ UZ
p,2 for all i ∈ {1, ... , n}.

Then there is a ∈ N such that a + c1, ... , a + cn are consecutive square-free integers.

Proof. Suppose c1, ... , cn are as given. Let c′1, ... , c
′
n′ be the listing in increasing

order of elements in the set of c ∈ N such that c1 ≤ c ≤ cn and c �= ci for i ∈
{1, ... , n}. The conclusion that there are infinitely many a such that

n∧
i=1

(a + ci ∈ SFZ) ∧
n′∧
i=1

(a + c′i /∈ SFZ)

follows from the assumptions about c1, ... , cn and the genericity of (Z; UZ,P Z) as
established in Theorem 2.14. 


Corollary 3.9. For all n ∈ N>0, there is a ∈ N such that a + 1, a + 4, ... , a + n2

are consecutive square-free integers.

Proof. For each p, we can obtain a ∈ {1, 2, ... , p2 – 1} such that

a �≡p2– m2 for all m.

Hence, for any given n > 0 and p, the p-condition
∧n
i=1(x + i2 /∈ UZ

p,2) has a
solution. The result now follows immediately from the preceding lemma. 


Proof of Theorem 1.2. It suffices to show that (Z;<, SFZ) interprets multipli-
cation on N. Let T be the set of (a, b) ∈ N2 such that for some n ∈ N≥1,

b = a + n2 and a + 1, a + 4, ... , a + n2 are consecutive square-free integers.
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The set T is definable in (Z;<, SFZ) as (a, b) ∈ T and b �= a + 1 if and only if
a + 4 ≤ b,a + 1, anda + 4 are consecutive square-free integers, b is square-free, and
whenever c, d, and e are consecutive square-free integers with a < c < d < e ≤ b,
we have that

(e – d ) – (d – c) = 2.

Let S be the set {n2 : n ∈ N}. If c = 0 or there are a, b such that (a, b) ∈ T and
b – a = c, then c = n2 for some n. Conversely, if c = n2, then either c = 0 or by
Corollary 3.9,

there is (a, b) ∈ T with b – a = c.

Therefore, S is definable in (Z;<, SFZ). The map n �→ n2 in N is definable in (Z;<
, SFZ) as b = a2 if and only if b ∈ S and whenever c ∈ S is such that c > b and
b, c are consecutive in S, we have that c – b = 2a + 1. Finally, c = ba if and only if
2c = (b + a)2 – b2 – a2. Thus, multiplication on N is definable in (Z;<, SFZ). 


§4. Combinatorial tameness. As the theories SF∗
Z, SF∗

Q, and OSF∗
Q are complete,

it is convenient to work in the so-called monster models, that is, models which are
very saturated and homogeneous. Until the end of the paper, let (G; UG,PG) be a
monster model of either SF∗

Z or SF∗
Q depending on the situation. In the latter case,

we suppose (G;<,UG,PG) is a monster model of OSF∗
Q. We assume that κ,A, and

I have small cardinalities compared to G.
Our general strategy to prove the tameness of SF∗

Z, SF∗
Q, and OSF∗

Q is to link
them to the corresponding “local” facts. The next lemma says that SF∗

Z is “locally”
supersimple of U-rank 1.

Lemma 4.1. Suppose (G; UG,PG) |= SF∗
Z, �p(x, y) is a consistent p-condition,

and b is in G|y|. Then �p(x, b) does not divide over any base set A ⊆ G.

Proof. Recall that every p-condition is equivalent modulo SF∗
Z to a formula in

the language L of groups, and the reduct of SF∗
Z to L is simply Th(Z). Hence, the

desired conclusion is an immediate consequence of the well-known fact that Th(Z)
is superstable of U-rank 1; see for example [3]. 


Proof of Theorem 1.1, part 2. We first show that Th(Z; SFZ) is supersimple of
U-rank 1; see [10, p. 36] for a definition of U-rank or SU-rank. By the fact that
(Z; SFZ) has the same definable sets as (Z; UZ,P Z) and Corollary 3.5, we can replace
Th(Z; SFZ) with SF∗

Z. Suppose (G; UG,PG) |= SF∗
Z. Our job is to show that every

L∗
u(G)-formulaϕ(x, b) which forks over a small subset A ofGmust define a finite set

in G. We can easily reduce to the case that ϕ(x, b) divides over A. Moreover, we can
assume that ϕ(x, b) is quantifier free by Theorem 3.4 which states that (G; UG,PG)
admits quantifier elimination. Using Lemma 3.1, we can also arrange that ϕ(x, b)
has the form

�(b) ∧ ε(x, b) ∧ �(x, t(b), t′(b)),

where �(y) is a quantifier-free formula, ε(x, y) is an equational condition, t(y) and
t′(y) are tuples of L∗

u-terms with length n and n′ respectively, and �(x, z, z ′) is a
special formula.
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Suppose to the contrary that ϕ(x, b) divides over A but ϕ(x, b) defines an infinite
set in G. From the first assumption, we get an infinite ordering I and a family (�i)i∈I
of L∗

u-automorphisms of (G; UG,PG) such that (�i(b))i∈I is indiscernible over A
and

∧
i∈I ϕ(x, �i(b)) is inconsistent. As ϕ(x, b) defines an infinite set in G, we get

from the second assumption that �(b) holds in G, ε(x, b) defines a cofinite set in G,
and �(x, t(b), t′(b)) defines an infinite hence non-empty set in G. As (�i(b))i∈I is
indiscernible, we have that �(�i(b)) holds in G and ε(x, �i(b)) defines a cofinite set
in G for all i ∈ I . Using the saturation of G, we get a finite set Δ ⊆ I such that

�Δ(x) :=
∧
i∈Δ

�
(
x, t(�i(b)), t′(�i(b))

)
defines a finite set in G.

As �Δ(x) is a conjunction of G-systems given by the same special formula, it is easy
to see that �Δ(x) is also a G-system.

We will show that �Δ(x) defines an infinite set and thus obtain the desired
contradiction. As (G; UG,PG) is a model of SF∗

Z and hence generic, it suffices
to show that �Δ(x) is non-trivial and locally satisfiable. As ϕ(x, b) is consistent,
t(b) has no common components with t′(b). The assumption that (�i(b))i∈I is
indiscernible gives us that t(�i(b)) has no common components with t′(�j(b)) for
all i and j in I. It follows that �Δ(x) is non-trivial. For each p, let �p(x, z, z ′) be
the associated p-condition of �(x, z, z ′). For all p, we have that �p(x, t(b), t(b′))
defines a nonempty set and consequently by Lemma 4.1,∧

i∈Δ

�p
(
x, t(�i(b)), t′(�i(b))

)
defines a nonempty set in G.

We easily check that the above means �Δ(x) is p-satisfiable for all p. Thus �Δ(x) is
locally satisfiable which completes our proof that Th(Z, SFZ) has U-rank 1.

We will next prove that Th(Z, SFZ) is k-independent for all k > 0; see [5] for a
definition of k-independence. The proof is almost the exact replica of the proof in [9]
except the necessary modifications taken in the current paragraph. Suppose l > 0,
and S is an arbitrary subset of {0, ... , l – 1}. Our first step is to show that there are
a, d ∈ N such that for t ∈ {0, ... , l – 1},

a + td is square-free if and only if t is in S.

Let n = |S| and n′ = l – n, and let c ∈ Zn be the increasing listing of elements in S
and c′ ∈ Zn

′
the increasing listing of elements in {0, ... , l – 1} \ S. Choose d = (l ! )2.

We need to find a such that

n∧
i=1

(a + cid ∈ SFZ) ∧
n′∧
i=1

(a + c′i d /∈ SFZ).

For p ≤ l , if ap /∈ p2Z = UZ
p,2, then ap + cid /∈ p2Z for all i ∈ {1, ... , n}. For p > l ,

it is easy to see that 0 + cid /∈ p2Z for all i ∈ {1, ... , n}. The desired conclusion
follows from the genericity of (Z; UZ,P Z).

Fix k > 0. We construct an explicit Lu-formula which witnesses the k-
independence of Th(Z, SFZ). Let y = (y0, ... , yk–1) and let ϕ(x, y) be a
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quantifier-free L∗
u-formula such that for all a ∈ Z and b ∈ Zk ,

ϕ(a, b) if and only if a + b0 + ··· + bk–1 ∈ SFZ where b = (b0, ... , bk–1).

We will show that for any given n > 0, there are families (aΔ)Δ⊆{0,...,n–1}k and
(bij)0≤i<k,0≤j<n of integers such that

ϕ(aΔ, b0,j0 , ... , bk–1,jk–1
) if and only if (j0, ... , jk–1) ∈ Δ.

Let f : P ({0, ... , n – 1}k) → {0, ... , 2(nk ) – 1} be an arbitrary bijection. Let g be
the bijection from {0, ... , n – 1}k to {0, ... , nk – 1} such that if b and b′ are in
{0, ... , n – 1}k and b <lex b

′, then g(b) < g(b′). More explicitly, we have

g(j0, ... , jk–1) = j0n
k–1 + j1n

k–2 + ··· + jk–1 for (j0, ... , jk–1) ∈ {0, ... , n – 1}k.

It follows from the preceding paragraph that we can find an arithmetic progression
(ci)i∈{0,...,nk2(nk )–1} such that for all Δ ⊆ {0, ... , n – 1}k and (j0, ... , jk–1) in {0, ... , n –

1}k , we have that

cf(Δ)nk+g(j0,...,jk–1) ∈ SFZ if and only if (j0, ... , jk–1) ∈ Δ.

Suppose d = c1 – c0. Set bij = djnk–i–1 for i ∈ {0, ... , k – 1} and j ∈ {0, ... , n – 1},
and set aΔ = cf(Δ)nk for Δ ⊆ {0, ... , n – 1}k . We have

cf(Δ)nk+g(j0,...,jk–1) = cf(Δ)nk + dg(j0, ... , jk–1) = aΔ + b0,j0 + ··· + bk–1,jk–1
.

The conclusion thus follows. 


Lemma 4.2. Every p-condition �p(x, y) is stable in SF∗
Q.

Proof. Suppose �p(x, y) is as in the statement of the lemma. It is clear that if
�p(x, y) does not contain the variable x, then it is stable. As stability is preserved
under taking Boolean combinations, we can reduce to the case where �p(x, y) is
kx + t(y) ∈ Up,l with k �= 0. We note that for any b and b′ in G|y|, the sets defined
by �p(x, b) and �p(x, b′) are either the same or disjoint. It follows easily that �p(x, y)
does not have the order property; in other words, �p(x, y) is stable. Alternatively,
the desired conclusion also follows from the fact that (Q; UQ) is an abelian structure
and hence stable; see [15, p. 49] for the relevant definition and result. 


Proof of Theorem 1.3, part 2. We first show that Th(Q; SFQ) is simple. By the
fact that (Q; SFQ) has the same definable sets as (Q; UQ,PQ) and Corollary 3.5,
we can replace Th(Q; SFQ) with SF∗

Q. Towards a contradiction, suppose that the
latter is not simple. We obtain a formula ϕ(x, y) witnessing the tree property of
SF∗

Q; see [10, pp. 24–25] for the definition and proof that this is one of the equivalent
characterizations of simplicity. We can arrange that ϕ(x, y) is quantifier-free by
Theorem 3.4. Recall that disjunction preserves simplicity of formulas; this can be
shown directly as an exercise or can be seen immediately from the equivalence
between (1) and (3) in [10, Lemma 2.4.1]. Hence using Lemma 3.1, we can arrange
that ϕ(x, y) is of the form

�(y) ∧ ε(x, y) ∧ �(x, t(y), t′(y)),
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where �(y) is a quantifier-free L∗
u-formula, ε(x, y) is an equational condition, t(y)

and t′(y) are tuples of L∗
u-terms with lengths n and n′ respectively, and �(x, z, z ′) is

a special formula. Let (G; UG,PG) |= SF∗
Q. Then there is b ∈ Gk with k = |y|, an

uncountable cardinal κ, and a tree (�s)s∈
<κ of L∗
u-automorphisms of (G; UG,PG)

with the following properties:
(1) for all s ∈ 
<κ, {ϕ(x, �s�(i)(b)) : i ∈ 
} is inconsistent;
(2) for all ŝ ∈ 
κ, {ϕ(x, �ŝ�α(b)) : α < κ} is consistent;
(3) for every α < κ and s, s ′ ∈ 
α , tp

(
(�s�(i)(b))i

)
= tp

(
(�s′�(i)(b))i

)
.

More precisely, we can get b, κ, and (�t)t∈
<κ satisfying (1) and (2) from the fact
that ϕ(x, y) witnesses the tree property of SF∗

Q, a standard Ramsey arguments, and
the monstrosity of (G; UG,PG). We can then arrange that (3) also holds using the
results in [11]; a direct argument is also straightforward.

We deduce the desired contradiction by showing that there is s ∈ 
<κ such that
{ϕ(x, �s�(i)(b)) : i ∈ 
} is consistent. From (1–3), we get for all s ∈ 
<κ that
�(�s(b)) holds and ε(x, �s(b)) defines a cofinite set. By monstrosity of G, it suffices
to find s ∈ 
<κ such that any finite conjunction of {�

(
x, t(�s�(i)(b)), t′(�s�(i)(b))

)
:

i ∈ 
} defines an infinite set in G. For s ∈ 
<κ and a finite Δ ⊆ 
, set

�s,Δ(x) :=
∧
i∈Δ

�
(
x, t(�s�(i)(b)), t′(�s�(i)(b))

)
.

As κ is uncountable, to ensure the desired s ∈ 
<κ exists, it suffices to show for fixed
Δ that for all but countably many α < κ and all s ∈ 
α , the formula �s,Δ(x) defines
an infinite set in G.

Note that �s,Δ(x) is a conjunction of G-systems given by the same special formula,
so �s,Δ(x) is also a G-system. By the genericity of SF∗

Q established in Theorem 2.14,
we need to check that for all but countably manyα < κ and all s ∈ 
α , theG-system
�s,Δ(x) is nontrivial and locally satisfiable. Indeed, this implies that by (2), ϕ(x, b) is
consistent, and so is �(x, t(b), t′(b)). This implies in particular that t(b) and t′(b)
have no common components. It then follows from (3) that for s ∈ 
<κ and i, j ∈ 
,

t(�s�(i)(b)) and t′(�s�(j)(b)) have no common elements .

Hence, �s,Δ(x) is nontrivial for all s ∈ 
<κ. Let �p(x, z, z ′) be the associated p-
condition of �(x, z, z ′). We then get from (2) that {�p(x, t(�ŝ�α(b)), t′(�ŝ�α(b))) :
α < κ} is consistent for all ŝ ∈ 
κ. By Lemma 4.2, the formula �p(x, t(y), t′(y)) is
stable and hence does not witness the tree property. It follows that for all but finitely
many α < κ and all s ∈ 
α , the set

{�p
(
x, t(�s�(i)(b)), t′(�s�(i)(b))

)
: i ∈ 
} is consistent.

For such s, we have that �s,Δ(x) is p-satisfiable. So for all but countably many
α < κ and all s ∈ 
α , �s,Δ(x) is locally satisfiable which completes the proof that
Th(Q; SFQ) is simple.

We next prove that Th(Q; SFQ) is not strong which implies that it is not
supersimple; for the definition of strength and the relation to supersimplicity
see [1]. Again, we can replace Th(Q; SFQ) by SF∗

Q using Proposition 2.4 and
Corollary 3.5. For each p, let ϕp(x, y) with |y| = 1 be the formula x – y ∈ Up,0.
For all p and i, set bp,i = p–i . We will show that

(
ϕp(x, y), (bp,i)i∈N)

)
forms an
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inp-pattern of infinite depth in (Q; UQ,PQ). For distinct i and j in N, we have that
p–i – p–j /∈ UQ

p,0 which implies that ϕp(x, bp,i) ∧ ϕp(x, bp,j) is inconsistent. On the
other hand, if S is a finite set of primes, andf : S → N is an arbitrary function, then
for a = Σp∈Sbp,f(p) we have that (Q; UQ,PQ) |=

∧
p∈S ϕp(a, bp,f(p)). The desired

conclusion follows.
Finally, we note that (Z; UZ,P Z) is a substructure of (Q; UQ,PQ), and the

former theory admits quantifier elimination and has IPk for all k > 0. Therefore,
the latter also has IPk for all k > 0. In fact, the construction in part 2 of the proof of
Theorem 1.1 carries through. 


Lemma 4.3. Any order-condition has NIP in OSF∗
Q.

Proof. The statement immediately follows from the fact that every order
condition is a formula in the language of ordered groups and the fact that the
reduct of any model of OSF∗

Q to this language is an ordered abelian group, which
has NIP; see for example [8]. 


Proof of Theorem 1.4, part 2. In the proof of part 2 of Theorem 1.3, we
have shown that Th(Q; SFQ) is not strong and is k-independent for all k > 0, so
the corresponding conclusions for Th(Q;<, SFQ) also follow. It remains to show
that Th(Q;<, SFQ) has NTP2. The proof is essentially the same as the proof that
Th(Q; SFQ) is simple, but with extra complications coming from the ordering.
By Proposition 2.4 and Corollary 3.5, we can replace Th(Q;<, SFQ) with OSF∗

Q.
Towards a contradiction, assume that there is a formula ϕ(x, y) witnessing TP2 (see
[4, pp. 700–701]). We can arrange that ϕ(x, y) is quantifier-free by Theorem 3.4.
Disjunctions of formulas with NTP2 again have NTP2 [4, p. 701], so using Lemma
3.2 we can arrange that ϕ(x, y) is of the form

�(y) ∧ 
(x, y) ∧ �(x, t(y), t′(y)),

where �(y) is a quantifier-freeL∗
ou-formula , 
(x, y) is an order condition,�(x, z, z ′)

is a special formula, and t(y) and t′(y) are tuples of L∗
ou-terms with lengths n and

n′ respectively. Then there is b ∈ Gk with k = |y| and an array (�ij)i∈
,j∈
 of L∗
ou-

automorphisms of (G;<,UG,PG) with the following properties:
(1) for all i ∈ 
, {ϕ(x, �ij(b)) : j ∈ 
} is inconsistent;
(2) for all f : 
 → 
, {ϕ(x, �if(i)(b)) : i ∈ 
} is consistent;
(3) for all i ∈ 
, (�ij(b))j∈
 is indiscernible over {�i′j(b) : i ′ ∈ 
, i ′ �= i, j ∈ 
};
(4) the sequence of “rows” ((�ij(b))j∈
)i∈
 is indiscernible.

We could get b, 
, and (�ij)i∈
,j∈
 as above from the definition of NTP2, Ramsey
arguments, and the monstrosity of (G; UG,PG); see also [4, p. 697] for the type of
argument we need to get (3).

We deduce that the set {ϕ(x, �ijb) : j ∈ 
} is consistent for all i ∈ 
, which is the
desired contradiction. We get from (2) that �(�ijb) holds for all i ∈ 
 and j ∈ 
.
Hence, it suffices to show for all i ∈ 
 that

{
(x, �ijb) ∧ �(x, t(�ijb), t′(�ijb)) : j ∈ 
} is consistent.

The order condition 
(x, y) has NIP by Lemma 4.3, and so it has NTP2. Using
conditions (2–4), we get that

{
(x, �ij(b)) : j ∈ 
} is consistent for all i ∈ 
.
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Hence, any finite conjunction from {
(x, �ij(b)) : j ∈ 
} contains an open interval
for all i ∈ 
. For i ∈ 
 and a finite Δ ⊆ 
, set

�i,Δ(x) :=
∧
j∈Δ

�
(
x, t(�ij(b)), t′(�ij(b))

)
.

It suffices to show that �i,Δ(x) defines a non-empty set in every non-emptyG-interval.
We have that �i,Δ(x) is a conjunction of G-system given by the same special

formula, and so is again a G-system. By the genericity of OSF∗
Q, the problem reduces

to showing �i,Δ(x) is nontrivial and locally satisfiable. By (2), ϕ(x, b) is consistent,
and so is �(x, t(b), t′(b)). This implies in particular that t(b) and t′(b) have no
common components. It then follows from (3) that for i ∈ 
 and distinct j, j′ ∈ 
,

t(�ij(b)) and t′(�ij′(b)) have no common elements.

Hence, �i,Δ(x) is nontrivial for all i ∈ 
. Let �p(x, z, z ′) be the associated p-
condition of �(x, z, z ′). We then get from (2) that {�p(x, �if(i)(b)) : i ∈ 
} is
consistent for all f : 
 → 
. By Lemma 4.2, the formula �p(x, t(y), t′(y)) is stable
and hence has NTP2. It follows that for all but finitely many i ∈ 
 the set

{�p
(
x, t(�ij(b)), t′(�ij(b))

)
: j ∈ 
} is consistent.

Combining with (4), we get that �i,Δ(x) is p-satisfiable for all p which completes the
proof. 


Corollary 4.4. The set Z is not definable in (Q;<, SFQ).

Proof. Towards a contradiction, suppose Z is definable in (Q;<, SFQ). Then by
Theorem 1.2, (N; +,×, <, 0, 1) is interpretable in (Q;<, SFQ). It then follows from
Theorem 1.4 that (N; +,×, <, 0, 1) has NTP2, but this is well-known to be false. 


§5. Further questions. There are several further questions we can ask about
(Z; SFZ), (Q; SFQ), and (Q;<, SFQ). We would like to better understand dividing
and forking inside these structures. Ideally, they coincide and have appropriate “local
to global” behaviors. It would also be nice to understand imaginaries and definable
groups in these structures.

One would like to have similar results for “sufficiently random” subsets of Z

other than Pr and SFZ. Another interesting candidate of such a subset is {±pq :
p, q are primes}. Most likely, it is not possible to prove the analogous results without
assuming any number-theoretic conjecture. In a rather different direction, is there
any sense in which we can say that most subsets of Z are “sufficiently random” and
yield results similar to ours?

In [2], it is shown under the assumption of Dickson’s Conjecture that the monadic
second order theory of (N;S,Pr) is decidable where S is the successor function. We
hope the analogous result for (N;S, SFZ) can be shown without assuming any
conjecture. On another note, suppose the field Q̄ is an algebraic closure of the field
Q, v range over the non-archimedean valuations of Q̄, and

SqfQ̄ = {a ∈ Q̄ : v(a) < 2 for all v}.
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Does (Q̄; SqfQ̄) have NTP2? Finally, if Z× is the multiplicative monoid of integers,
can anything be said about (Z×; SFZ)?
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