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The mean electromotive force (EMF) associated with exponentially growing
perturbations of an Euler flow with elliptic streamlines in a rotating frame of
reference is studied. We are motivated by the possibility of dynamo action triggered
by tidal deformation of astrophysical objects such as accretion discs, stars or planets.
Ellipticity of the flow models such tidal deformations in the simplest way. Using
analytical techniques developed by Lebovitz & Zweibel (Astrophys. J., vol. 609, 2004,
pp. 301–312) in the limit of small elliptic (tidal) deformations, we find the EMF
associated with each resonant instability described by Mizerski & Bajer (J. Fluid
Mech., vol. 632, 2009, pp. 401–430), and for arbitrary ellipticity the EMF associated
with unstable horizontal modes. Mixed resonance between unstable hydrodynamic and
magnetic modes and resonance between unstable and oscillatory horizontal modes both
lead to a non-vanishing mean EMF which grows exponentially in time. The essential
conclusion is that interactions between unstable eigenmodes with the same wave-vector
k can lead to a non-vanishing mean EMF, without any need for viscous or magnetic
dissipation. This applies generally (and not only to the elliptic instabilities considered
here).
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1. Introduction
In this paper we continue the earlier study of Mizerski & Bajer (2009) (hereafter

MB09) of the so-called elliptic instability, i.e. the instability of an unbounded, two-
dimensional, linear flow with elliptic streamlines, influenced by two physical effects:
uniform axial magnetic field and uniform steady rotation of the frame of reference.
The basic flow, steady in the rotating frame of reference, is characterized by three
parameters: ζ (a measure of eccentricity of the streamlines), ω (the average angular
velocity of recirculation), and Ω (the constant background rotation).

In MB09 (see also Bajer & Mizerski 2012) we have mapped out the regimes of
the (ζ, ω,Ω) space where this configuration is prone to what we propose to call
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‘MER instability’ (i.e. Magneto-Elliptic-Rotational instability). Here we calculate the
mean electromotive force (EMF) associated with the unstable modes in this type of
flow, in similar manner to Moffatt’s (1970, 1978) calculation of the EMF associated
with inertial waves in a rotating fluid. We are motivated by the astrophysical problem
of dynamo action in tidally distorted objects, with the ellipticity modelling the tidal
deformation (Suess 1970; Kerswell & Malkus 1998), or by elliptical vortex patches in
accretion discs. Simple global models of tidally distorted stars and planets based on
the so-called Riemann ellipsoids (Chandrasekhar 1969; Aldridge, Lumb & Henderson
1989) are based on the linear elliptic flow considered here, which from the point
of view of perturbations strongly localized on streamlines is effectively unbounded
(see Lebovitz & Lifschitz 1996; Mizerski & Bajer 2011). Such linear basic flow can
similarly model localized patches of elliptic streamlines which often appear in real
systems as a result of Kelvin–Helmholtz instability. In the accretion-disc context, the
flow models the cores of vortices induced by differential rotation; this idea has been
extensively exploited using the local ‘shearing-box’ approximation of Hawley, Gammie
& Balbus (1995) and Lesur & Papaloizou (2009).

The MER instability depends on the presence of the magnetic field. The question
we address here is whether the same instability may contribute to the generation
of a mean electromotive force (a step on the way to dynamo action). In MB09,
the MER instability growth rates derived from Floquet theory were also computed
numerically. By contrast, the results in the present paper are purely analytical, derived
from the asymptotic theory for small ellipticity (up to O(ζ )). This is not a serious
limitation, because slightly non-axisymmetric vortices are abundant while strongly
deformed vortices are unlikely to persist.

One type of resonance, called ‘mixed’ or ‘HM’ (i.e. hydro-magnetic), is particularly
promising. This resonance produces a pair of helical modes propagating in opposite
directions, and they generate non-zero electromotive forces. The unstable MER wave
grows exponentially and with it grows the EMF; however, oscillations are also present
(see equations (3.26a–c)). When ζ → 0 the electromotive force does not vanish (the ζ 0

term is given by (3.26a–c)), but is purely oscillatory in this limit. The two unstable
MER waves produced by the HM resonance, propagating up and down the background
field, generate mean electromotive forces with opposite signs. A net EMF generation
occurs only if one of these two modes is ‘preferred’ by the system. This could be the
result of either preferential excitation, or preferential suppression when, for example,
one of the modes passes through a region of enhanced dissipation or is reflected or
quenched by a stratified layer.

The unstable MER wave of HM type is particularly interesting because it generates
a finite EMF even in the ideal fluid limit. Both in mean-field dynamo theory and
in Braginsky’s theory of weakly asymmetric dynamos, calculations have shown that
the kinematic α-effect is diffusive in origin: see Moffatt (1974, 1976), chapters 7
and 8 of Moffatt (1978) and references therein, Moffatt (1983), Soward (1972) and
Braginsky (1964a,b, 1975, 1976, 1978). More importantly, for a single helical wave,
more akin to the MER waves considered here than turbulence with assumed scale
separation, a simple calculation of the α-effect also shows that it vanishes in the
limit η→ 0 (Moffatt 1978, chapter 7.7). Arguments have been advanced that in some
circumstances a turbulent α-effect may still persist in the limit η→ 0 (Seehafer 1995;
see also the discussion of the high-conductivity limit in chapter 4.2.2 of Rüdiger &
Hollerbach 2004) but the issue is far from being settled.

An important feature of the analysis is that it reveals how interactions between
eigenmodes can create a non-zero EMF; this mechanism is effective whether
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The mean electromotive force generated by elliptic instability 113

dissipation is present or not. The analysis of the unstable horizontal modes in § 3
further confirms this mechanism.

In this paper we aim to study the generation of the mean EMF in the spirit
of Moffatt’s (1970) calculation for inertial waves in circular flows. We consider a
restricted case in which the mean magnetic field is vertical. We shall focus on the limit
of small departures from axial symmetry of the basic flow, i.e. ζ � 1, and we will
build on the results of MB09, where the MER instability problem was formulated and
the growth rates were obtained.

2. Mean electromotive force in an ideal fluid

It was shown by Moffatt (1978, p. 163 and pp. 248–255 for inertial waves in
particular) that in the linear regime the mean electromotive force

E = 〈u′ × B′〉 (2.1)

(where 〈.〉 denotes a spatial average) generated by perturbation fields u′ and B′

corresponding to a single eigenmode can be non-zero only if dissipative effects are
present in the system. This holds true as long as both fields u′ and B′ have the same
wave-vector k and correspond to the same eigenvalue. However, in the linear regime
one can also consider linear combinations of eigenmodes corresponding to the same
k but different eigenvalues. The necessary phase shift between velocity and magnetic
field, which for a single mode can only be created by the presence of dissipation, is no
longer necessary when we consider the interactions between eigenmodes in the general
form u′j = vjei($jt+k·x) and B′j = bjei($jt+k·x), i.e.

E = Re[(vjei$jt + Cvkei$k t)eik·x
× (b∗j e−i$jt + C∗b∗ke−i$k t)e−ik·x

]

= Re[C∗vj × b∗kei1$ t
+ Cvk × b∗j e−i1$ t

], (2.2)

where C is a complex constant and 1$ = $j − $k. The expression (2.2) is in
general non-zero. However, such an EMF typically oscillates in time, since we have
considered two different eigenmodes which means that 1$ is in general non-zero
(except for the case of multiple eigenvalues, on which we comment in the concluding
section). Such oscillations are superimposed on exponential growth if the interacting
modes considered are unstable.

This behaviour will be exemplified below for two cases of elliptical mode instability
in the absence of dissipative effects: first when the instability is via the parametric
instability mechanism; and second when the wave-vector of both modes is parallel to
the mean field (the ‘horizontal mode’ situation). A non-zero EMF is generated in both
cases.

Such a rapidly oscillating EMF, i.e. oscillating on a time scale much faster then
the typical time scale of the mean magnetic field, when interacting with mean shear,
was found by Proctor (2007), Bushby & Proctor (2010) and Richardson & Proctor
(2010) to act as an efficient dynamo mechanism even in the absence of the mean
α-effect. This provides a motivation for the study of generation of rapidly oscillating
electromotive forces.
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3. The resonant unstable MER modes
3.1. The stability problem

The basic flow of the elliptic vortex can be expressed in the form

u0 = ω[−Ey,E−1x, 0] = Gx with ω > 0, E > 1, (3.1)

where ω(E + E−1) ≡ 2γ and (E − E−1)/(E + E−1) ≡ ε are its vorticity and strain
respectively and G is the velocity gradient tensor. The system is rotating with
angular velocity (0, 0,Ω) and is permeated by a uniform magnetic field (0, 0,B0).
The fluid is assumed incompressible (of density ρ), inviscid and perfectly conducting.
Perturbations

u= u0 + u′, B= B0 + B′ (3.2)

are considered, and the governing magnetohydrodynamic (MHD) equations are
linearized; these linearized equations admit solutions of the form

(u′,B′)= (v(t), b(t)) exp[ik(t) · x], (3.3)

where

k(t)= (kx, ky, kz)= k0(sinϑ cosωt,E sinϑ sinωt, cosϑ), (3.4)

a wave-vector varying periodically in time (θ is the minimal angle between the wave-
vector and the z axis). With τ = ωt, the following time-periodic change of variables,

c1 = E
kx

ω
vy − E−1 ky

ω
vx, c2 =

kx

ω
vx +

ky

ω
vy, (3.5a)

c3 = E
kx

ω
by − E−1 ky

ω
bx, c4 =

kx

ω
bx +

ky

ω
by, (3.5b)

leads to a Floquet problem for the vector c,

dc
dτ
= C (τ )c, (3.6)

where C (τ, ζ, cosϑ,H,R) is a complex 4× 4 matrix, 2π-periodic in τ , and depending
on the dimensionless parameters E,R =Ω/ω and H = k0B0/

√
µ0ρ ω, a dimensionless

measure of the field strength. It possesses the property that for ζ = 0(E = 1) it is
independent of time, thus its eigenvalues, denoted by i$j with j= 1, . . . , 4, correspond
to the leading-order frequencies of oscillations of perturbations. The general solution
of (3.6) is a linear superposition of Floquet modes (Bender & Orszag 1978)

c(τ )= eστ f (τ ), c(0)= f (0), (3.7)

where f (τ ) is 2π-periodic and σ is the (generally complex) growth rate. Writing this
solution in matrix form,

c(τ )=M (τ )c(0), (3.8)

we have

c(2π)= exp(2πσ)c(0)=M (2π)c(0), (3.9)

so that exp 2πσ is an eigenvalue Λ(E, θ,R,H) of M (2π), i.e.

2πσ = lnΛ. (3.10)

The matrix M (2π) has the property (first noted in the special case Ω = 0 by Lebovitz
& Zweibel 2004) that if Λ is an eigenvalue, then so are Λ−1 and the complex
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conjugate Λ∗. The system becomes unstable when Reσ > 0, i.e. when an eigenvalue
Λ of M (2π) and simultaneously (Λ∗)−1 leave the unit circle in the complex Λ-plane,
and hence the destabilization occurs via resonance between two eigenvalues. For the
sake of brevity the matrix M (2π) will be denoted by M. The eigenvalues of the
matrix M0 = M(ζ = 0), will be denoted by λj = exp i$j with j= 1, . . . , 4.

3.2. The unstable modes
In this subsection we shall find the unstable eigenmodes for the case of mixed hydro-
magnetic resonance described in MB09, which is in fact the only resonant case leading
to non-vanishing electromotive force. (In appendix B we demonstrate that the other
cases of hydro–hydro and magnetic–magnetic resonances do not generate an EMF.)
Following MB09, we assume from here on that the ellipticity of the basic flow is
small:

ζ = 1
2(E − E−1)� 1. (3.11)

Let Γ be defined so that to first order, each eigenvalue of the matrix M takes the form

Λ= e2πσ
= ei2π$ (1+ ζΓ ), (3.12)

so that the growth rate is given by

σ = ζ
ReΓ
2π
+ i
(
$ + ζ

ImΓ
2π

)
+ O(ζ 2). (3.13)

The following results will be needed throughout the calculations:

cosϑ = [(1+R)2+H2
]
−1/2

, (3.14)

$1 = (1+R) cosϑ + 1, $3 = (1+R) cosϑ − 1, (3.15a)
$2 =−(1+R) cosϑ − 1, $4 =−(1+R) cosϑ + 1, (3.15b)

$1 −$3 =$4 −$2 = 2. (3.15c)

The four eigenvalues of M are listed in (A 2) in appendix A (note the dependence of M
on ζ ). The parameter Γ takes different values for each of these four eigenvalues, and
for ζ 6= 0 depends on the angle ϑ . For the most unstable mode we have

Γ± =±
π

2
(1− cos2ϑ)(1− (1+R)2 cos2ϑ)

− iπ(1− cos2ϑ)(1+R) cosϑ(1− (1+R)2 cos2ϑ) (3.16)

(a corresponding calculation for any unstable mode leads to the same qualitative
conclusions). The eigenvalues associated with instability are Λ1 and Λ4, since the real
parts of the growth rates in (3.13),

Reσ1 = Reσ4 = ζ ReΓ+/2π+ O(ζ 2), (3.17)

are positive only for these eigenvalues.
The eigenproblem is solved in appendix A, and the eigenmodes at τ = 2π are

obtained. For finite ζ � 1 we present the results only for τ = 2π, since it is enough
to demonstrate the generation of exponentially growing EMFs, and calculations for
arbitrary time τ are far more involved. Hence, now using (A 4) and the transformation
(A 1) together with the solenoidal conditions k ·v= 0 and k ·b= 0 taken at τ = 2π, we
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obtain the following form of the eigenmode associated with Λ1:

v1 = e2πσ1
ω

k0 sinϑ

 cosϑ($1 + i$3)

−$3 + i$1

− sinϑ($1 + i$3)

 ,
b1 = e2πσ1

ωH cosϑ
k0 sinϑ

 cosϑ(1+ i)
−1+ i

− sinϑ(1+ i)

 .


(3.18)

The exponential growth in time is apparent through the term e2πReσ1 ; however, at
leading order (ζ = 0), we have 2πσ1 = i2π(1 + R) cosϑ , and the modes are stable.
The relations

−ik× v∗1 = k0v∗1 and ik× b1 = k0b1 (3.19)

are satisfied, and for the mode associated with Λ4 =Λ
∗

1 we find that

v4 = iv∗1, b4 =−ib∗1 and ik× v∗4 = k0v∗4, ik× b4 =−k0b4. (3.20)

Equation (3.19) ensures that these modes are helical and of maximal helicity (see
appendix C for further details concerning the helicity and group velocity of the
unstable modes).

It is worth mentioning that, for all three cases considered, only the leading-order
expressions in ζ � 1 for the eigenmodes can be obtained without calculation of
higher-order corrections to the eigenvalues and the matrix M. This is because for ζ = 0
in the resonant cases there are always two-dimensional eigenspaces associated with the
resonant eigenvalue, and the first-order correction in ζ only specifies one vector from
such an eigenspace. To obtain full expressions, in all three cases, for the first-order
corrections to the eigenmodes, one would have to go to order ζ 2 in the calculation
of the eigenvalues and M. Therefore the eigenmodes (3.18) and (3.20) do not depend
on the ellipticity; however, for finite ζ � 1 they grow exponentially in time with the
growth rate ζ ReΓ+/2π.

In the following section, we use our leading-order results to calculate the mean
electromotive force E for rotating elliptical flow, which turns out to be non-zero only
in the mixed-resonance case.

3.3. The EMF generated by the resonant unstable modes
For the space average, we may simply average over a wavelength 2π/kz in the z-
direction:

E =√µ0ρ 〈Re u′ × ReB′〉2π/kz =
1
2

√
µ0ρ Re (v× b∗), (3.21)

where the factor
√
µ0ρ appears because the perturbation field was scaled with

1/
√
µ0ρ. We stress here that, since we are dealing with unstable modes (v ∼ eReσ1τ

and b ∼ eReσ1τ ), the EMF grows exponentially in time with the growth rate 2Reσ1. In
the mixed-resonance case, E can be evaluated at τ = 2π for both modes propagating
upwards and downwards, associated with eigenvalues Λ1, Λ4, respectively:

E (1)
(τ = 2π)=

ωB0

k0

[
−

2 cosϑ
sinϑ

, 0,−
2cos2ϑ

sin2ϑ

]
e4πReσ1 + O(ζ ), (3.22)

E (4)
(τ = 2π)=

ωB0

k0

[
2 cosϑ
sinϑ

, 0,
2cos2ϑ

sin2ϑ

]
e4πReσ1 + O(ζ )=−E (1)

. (3.23)
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For this mixed-resonance case, cosϑ is given by (4.9) in MB09, so that explicitly

E (4)
x (τ = 2π)=−E (1)

x (τ = 2π)

=
ωB0

k0

2[
(1+R)2−1+ 4B2

0

/
B2

0

]1/2 e4πReσ1 + O(ζ ), (3.24)

E (4)
z (τ = 2π)=−E (1)

z (τ = 2π)

=
ωB0

k0

2

(1+R)2−1+ 4B2
0

/
B2

0

e4πReσ1 + O(ζ ), (3.25)

where B0 = 2
√
µ0ρω/k0 is a constant with the dimension of magnetic field. As in

Moffatt (1978), it is also the case here that if there exists a mechanism of preferential
excitation of upward or downward propagating waves, the total EMF may be expected
to be non-zero.

The term e4πReσ1 indicates exponential growth of E (1) and E (4). Moreover, since k is
2π-time-periodic, Floquet theory implies that v and b share this property, and so the
components of the EMFs also have additional oscillatory time-dependence of general
type (C1 cos 2τ + C2 sin 2τ)(C3 cos τ + C4 sin τ + C5)+O(ζ ), where the Cj (j= 1 . . . 5)
are constants.

Since the growth rate of the modes is proportional to the ellipticity ζ � 1, it
follows that at any finite τ , and in particular at τ = 2π, the exponential growth can
be expanded in powers of ζ τ and at leading order (ζ = 0) we get e4πReσ1 = 1 + O(ζ ).
The exact form of the oscillatory time-dependence of the EMFs at leading order
can therefore be easily obtained by considering the limit ζ = 0. In this limit, in
which the basic flow has circular streamlines, these EMFs are non-zero even though
magnetic diffusivity and viscosity have been neglected. This is a consequence of the
general feature of ideal MHD problems described in § 2, namely that in any linear
problem we may always take a linear combination of eigenmodes with the same k
to calculate E . Such modes, in the case of circular flow, are eigenvectors of the
matrix S (ζ = 0) defined in MB09, which is the analogue of the matrix C (ζ = 0),
but before the transformation (3.5), rather than M (ζ = 0, τ = 2π). In the analysed
case of the mixed-type resonance, for j = 1, k = 3 in (2.2), the expression Re(v × b∗)
is non-zero only if 1$ 6= 0, because otherwise the matrix S (ζ = 0) is degenerate
and there is only one eigenvector associated with its double eigenvalue $1 =$3. The
case at hand is defined by 1$ = 2, and from the asymptotic analysis for ζ � 1
in § 3.2 and appendix A we get C = i, which picks up a certain eigenvector from
the two-dimensional eigenspace at ζ = 0. Therefore, taking the eigenvectors from the
first and third columns of the matrix (A 1) in appendix A, and remembering that the
wave-vector k in the transformation (3.5) depends on time, for the case ζ = 0, i.e. the
basic flow with circular streamlines, we obtain the following form of the electromotive
force:

E (1)
x =−

ωB0

k0

2[
(1+R)2−1+ 4B2

0

/
B2

0

]1/2 cos 2τ cos τ, (3.26a)

E (1)
y =−

ωB0

k0

2[
(1+R)2−1+ 4B2

0

/
B2

0

]1/2 cos 2τ sin τ, (3.26b)

E (1)
z =−

ωB0

k0

2

(1+R)2−1+ 4B2
0

/
B2

0

cos 2τ. (3.26c)
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As explained above, for finite ellipticity ζ � 1 the components of the EMF grow
exponentially in time with the growth rate 2Reσ1, and Reσ1 is the growth rate
for mixed-resonance modes given in (3.17). It is worth pointing out that since the
growth rate is proportional to ζ , the time scale associated with the growth of the
components of E is much larger than the period of oscillations determined by the
basic frequency ω. When ζ is finite, the oscillatory time-dependence of the EMF is
also modified, and the departure from axial symmetry introduces additional terms
of type ζ f (B0) cos nτ cos τ (or, in general, with any of the cosines replaced by
sine) where n is an integer, but the function f (B0) is not yet known. In general
the dependence of the EMF on B0 is quite complex, since E depends on B0 also
through the growth rate σ1. However, it is important to realize that in the limit
of weak magnetic field, typically taken in dynamo considerations for the period of
initial growth, the growth rate of the mixed mode depends on the magnetic field
as Reσ1 ∼ H2. This implies very weak amplification of the only unstable resonant
modes which produce non-zero EMF. Note that the weak growth does not apply
to unstable horizontal modes considered in the following section, which may also
produce non-zero EMF.

From (3.26a–c) we can also observe that the effect of background rotation is
quite significant, since finite R substantially modifies the form of the B0-dependence.
Moreover, the precise structure of the EMF depends also on the amplitude of the
perturbations, which cannot be established within the framework of linear analysis
and could only be obtained through nonlinear analysis. Nevertheless, for some initial
period of time during which nonlinear terms can be neglected, the small amplitude is
determined by the initial conditions and hence is arbitrary.

4. The EMF generated by unstable horizontal modes
We now turn to calculation of the electromotive force generated by purely horizontal

modes, i.e. those having only horizontal components and for which kx = ky = 0. In this
case, the MHD evolution equations reduce to a system of four linear ODEs, which can
be written in the vector form analogous to (3.6),

ds/dτ =S s and s= [vx, vy, bx, by], (4.1)

where the matrix

S =


0 ε +w ih 0

ε −w 0 0 ih
ih 0 0 −(1+ ε)
0 ih 1− ε 0

 (4.2)

is independent of time. Here h= kzB0/
√
µ0ργ , w= 1 + 2Ro−1 is the so-called ‘tilting

vorticity’ (Cambon et al. 1994; Leblanc 1997; Leblanc & Cambon 1997), Ro−1
=

Ω/γ =R
√

1− ε2 is the inverse of the Rossby number, and ε = (E − E−1)/(E + E−1),
as previously defined, is the strain in the basic flow. Time is scaled with the basic
vorticity, thus t = τ

/
γ . It is straightforward to calculate the eigenvalues of the

matrix S :

σ1 =

√
ε2 − χ 2

+
, σ2 =−

√
ε2 − χ 2

+
, (4.3a)

σ3 =

√
ε2 − χ 2

−
, σ4 =−

√
ε2 − χ 2

−
, (4.3b)
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The mean electromotive force generated by elliptic instability 119

where

χ± =

√
1
4 (w+ 1)2+h2 ±

1
2(w− 1). (4.4)

Since for all values h and w, χ− > 1 > ε, the only unstable mode is associated with
the eigenvalue σ1, which is real and positive if χ 2

+
< 1, i.e. w < (2 − h2)/2, and

ε > |χ+|, i.e. if the absolute vorticity w+ 1 satisfies

(1− ε)2−h2

1− ε
<w+ 1<

(1+ ε)2−h2

1+ ε
. (4.5)

The eigenvalues σ3,4 are always purely imaginary, whereas σ1,2 are either real (and
opposite in sign with σ1 = −σ2 > 0) if (4.5) is satisfied, or purely imaginary (or zero)
if (4.5) is not satisfied.

In the following we assume that the condition (4.5) is satisfied and hence the
eigenmode 1 is unstable. We now calculate the general form of the eigenmodes of the
matrix S associated with eigenvalue σj (j= 1, 2, 3, 4):

vx =
ω

kz
hσj(1−w), (4.6a)

vy =
ω

kz
h[(ε + 1)(ε −w)− h2

− σ 2
j ], (4.6b)

bx =−i
ω

kz
[σ 2

j (1+ ε)+ h2(ε +w)− (ε + 1)(ε2
−w2)], (4.6c)

by =−i
ω

kz
σj(ε

2
−w2

− h2
− σ 2

j ). (4.6d)

The electromotive force defined in (2.1) can be calculated via

Ez =
1
2

√
µ0ρ Re (v× b∗)z, (4.7)

and since v× b∗ has only a z-component, the only non-zero component of E is indeed
Ez, which for simplicity will be denoted by E . However, although we consider only
the purely horizontal modes here, the actual band of directions around the ‘z’ axis of
wave-vectors of perturbations destabilized via the ‘horizontal instability’ mechanism is
rather large (MB09 and Bajer & Mizerski 2012). In reality, therefore, the structure of
the problem is more complex, and components other than Ez are also non-zero. The
vector quantities v and b in (4.7) may represent only one of the four eigenvectors of
the matrix S (associated with only one of the four eigenvalues), or may be a linear
combination of these eigenmodes.

4.1. Electromotive force for a single eigenmode
For a single eigenmode, either stable or unstable, associated with eigenvalue σj, the
z-component of v× b∗ can be easily calculated:

(v× b∗)z = i
ω2

k2
z

h{|σj |
2(1−w)(ε2

−w2
− h2
− σ 2

j )− [(ε + 1)(ε −w)− h2
− σ 2

j ]

× [(σ 2
j +w2

− ε2)(1+ ε)+ h2(ε +w)]}. (4.8)

This quantity is always purely imaginary and we conclude that a single horizontal
eigenmode, like a single inertial wave in the circular non-dissipative vortex case
(Moffatt 1978), cannot generate a non-zero electromotive force as in (4.7). However,
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120 K. A. Mizerski, K. Bajer and H. K. Moffatt

as we will now demonstrate, an exponentially growing electromotive force can be
generated by interaction between eigenmodes.

4.2. Electromotive force generated by the interaction of eigenmodes
For a linear combination of eigenmodes 1 and 3, the electromotive force takes the
form

Re(v× b∗)= Re[(v(1)eσ1t
+ Cv(3)eiω3t)eikzz

× (b(1)∗eσ1t
+ C∗b(3)∗e−iω3t)e−ikzz

]

= eσ1tRe[C∗(v(1)x b(3)∗y − v(1)y b(3)∗x )e−iω3t

+C(v(3)x b(1)∗y − v(3)y b(1)∗x )eiω3t
]êz, (4.9)

where C is a complex constant, σ3 = iω3 = i (χ 2
−
− ε2)

1/2 and ω3 ∈ R. This linear
combination of modes because if condition (4.5) is satisfied, then mode 1 is unstable
and mode 3 is purely oscillatory. This guarantees that the real part of the final term in
(2.2) is generally non-zero, and that E is therefore also non-zero. Furthermore we note
that such an E generated by an unstable mode interacting with an oscillatory mode
grows exponentially in time, but with superposed oscillations.

Let us now calculate the explicit form of E in (4.7) from (4.9) and (4.6a–d)
choosing C real, and h� 1 (weak magnetic field):

E =
ω2

2k2
z

Ch (1−w)2(1+w)
√

1+ ε
√
ε −weσ1τ (

√
ε +w

√
1− ε cosω3τ

+
√
ε −w

√
1+ ε sinω3τ). (4.10)

In this case |w| < ε, χ+ = w and χ− = 1, so that σ1 =
√
ε2 −w2, and ω3 =

√
1− ε2

is equal to the frequency of circulation in the basic elliptic flow. Note that the growth
rate, and thus the instability, is strong even in the limit of a weak magnetic field,
h� 1. In fact, as explained by Bajer & Mizerski (2012), even an arbitrarily weak
magnetic field typically leads to a powerful horizontal instability. When the tilting
vorticity vanishes w = 0 (or Ro = −2), the growth rate is maximal, σ1 = ε, and the
EMF takes the form

E =
ω2

2k2
z

Chε
√

1+ εeσ1τ (
√

1− ε cosω3τ +
√

1+ ε sinω3τ). (4.11)

This shows that if w = 0, ellipticity of the vortex (ε 6= 0) is necessary for the EMF to
be non-zero. On the other hand (4.10) shows the importance of background rotation,
since in non-rotating systems, when w= 1 (Ro−1

= 0), the EMF again vanishes.
The intuition developed from mean-field dynamo theory for inertial waves in

rotating systems (see Moffatt 1978) suggests that dissipative effects should play a
role in the process of generation of the mean electromotive force. However, this is not
the case for horizontal elliptical modes. Dissipative effects are briefly considered in
appendix D.

5. Conclusions
We have shown on the example of elliptical instability that the mean electromotive

force in MHD systems can be generated by interactions between linear eigenmodes
with the same wave-vector k, and this mechanism of generation of the EMF does not
require diffusivity to work. When at least one of the interacting modes is unstable, the
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The mean electromotive force generated by elliptic instability 121

generated EMF grows exponentially in time. Moreover, since interactions between two
different eigenmodes are required, the electromotive force generated oscillates in time
if the modes correspond to two different eigenvalues. The amplitude of the oscillating
mean electromotive force then grows exponentially. (However, we note that, if two
linearly stable modes correspond to the same (double) eigenvalue, then their mutual
interaction as in (2.2) may introduce linear growth in time of the mean electromotive
force (without oscillations).)

We have limited our attention to the case in which the mean magnetic field is
vertical. This means that we have in effect been able to calculate only the components
αxz, αyz, αzz of an α-effect tensor, and this is not sufficient to demonstrate dynamo
action. If the mean field has horizontal components, then these are necessarily
time-dependent, being convected by the elliptical flow. The eigenvalue problem then
becomes much more complex, although still amenable to numerical investigation. This
is the subject of future work.

In the limit of small elliptic deformation, we calculated the EMFs for unstable
modes in all three resonant cases: hydrodynamic, magnetic and mixed hydro-magnetic.
Only the mixed-resonance case leads to a non-zero EMF; in this case, as the modes
are unstable, the EMF grows exponentially in time and depends strongly on the
magnetic field B0. Interestingly, the calculation shows that in an ideal fluid E can be
non-zero even in the case of circular flow, i.e. when the ellipticity ζ is zero. However,
the modes generating this E are stable and oscillatory, and therefore E does not grow
exponentially in time, but is purely time-periodic.

We have further shown that a non-zero EMF can be generated by horizontal mode
interactions, specifically interactions between an unstable and an oscillatory eigenmode.
The z-component of the E then grows exponentially in time. Background rotation and
ellipticity of the basic flow are crucial to this behaviour.

Weak dissipation (viscous and/or magnetic) has a weak influence (as shown in
appendix D), but does not change the qualitative behaviour.

The main conclusion is that for the elliptic flow considered, interaction of
eigenmodes, at least one of which is unstable, can lead to sustained growth of a
mean EMF even in a perfectly conducting inviscid fluid.
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Appendix A

Since all the calculations in the asymptotic regime are performed with the use of
variables cj, j = 1, 2, 3, 4 (see (3.5)) and in the base of eigenvectors of the matrix
C0 = C (ζ = 0), we start by introducing a transformation matrix that allows us to get
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back to original variables v and b:

Π=
ω

Ek0 sinϑ


−iσ1E cosϑ iσ2E cosϑ −iσ3E cosϑ iσ4E cosϑ

σ1 σ2 σ3 σ4

HEcos2ϑ −HEcos2ϑ HEcos2ϑ −HEcos2ϑ

iH cosϑ iH cosϑ iH cosϑ iH cosϑ

 . (A 1)

Generally the transformation matrix Π =Π(τ ) depends on time τ but here we only
need its form at τ = 2π.

The eigenvalues of the matrix M in the case of the mixed hydro-magnetic resonance
are

Λ1 =Λ
∗

4 = λ(1+ ζΓ+), Λ2 =Λ
∗

3 = λ
∗(1+ ζΓ ∗

−
), (A 2)

where λ = exp[i2π(1 +R) cosϑ] and λ∗ are the two double eigenvalues of the matrix
M0 = M(ζ = 0) (in this case there is a double resonance between the first and third
eigenvalues and another between the second and fourth eigenvalues, whereas in the
hydro–hydro and magnetic–magnetic resonances there is only one double eigenvalue).

The eigenproblem is defined by the matrix M ′ −Λ1I , where I is the identity operator,
which has the form

M ′ −Λ1I =


−ζλReΓ+ ζλJ ′

12 −ζ iλReΓ+ ζλJ ′

14

ζλ∗J ′

21 λ∗ − λ+ O(ζ ) ζλ∗J ′

23 ζ iλ∗ ReΓ+

ζ iλReΓ+ ζλJ ′

32 −ζλReΓ+ ζλJ ′

34

ζλ∗J ′

41 −ζ iλ∗ ReΓ+ ζλ∗J ′

43 λ∗ − λ+ O(ζ )

 , (A 3)

and so the leading-order form of the eigenvector associated with Λ1 is

c′1(τ = 0)= [1, 0, i, 0]T⇒ c′1(τ = 2π)=Λ1 [1, 0, i, 0]T, (A 4)

where we use the notation introduced in MB09 and the primed variables are expressed
in the base of eigenvectors of the matrix C0. Of course, in an unbounded domain
each Floquet mode is also a solution of the full nonlinear Navier–Stokes and induction
equations (because the divergence-free conditions imply vanishing of the nonlinear
terms), and hence the amplitude of the eigenvector in (A 4) is arbitrary.

Appendix B
Here we calculate the eigenmodes associated with the other two unstable cases,

namely the hydro–hydro (case 1) and magnetic–magnetic (case 3) destabilizing
resonances.

Case 1: Resonance between two hydrodynamic modes
For this case we have

cosϑ =
[
(1+R)+

√
(1+R)2+H2

]−1

, (B 1)

$1 =−$2 = 1, $3 =−$4 =
(1+R)−

√
(1+R)2+H2

(1+R)+
√
(1+R)2+H2

, λ= 1, (B 2)
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and so the eigenvalue associated with the unstable mode is

Λ1 = 1+ ζΓ where Γ 2
=
π2

4
(1+ cosϑ)4

−π
2

(
2a

cosϑ
−
(1+R) cosϑ(1− cos2ϑ)

1− (1+R) cosϑ

)2

. (B 3)

The matrix M ′ − Λ1I in this case takes the form (with primed variables expressed in
the base of eigenvectors of the matrix C0):

M ′ −Λ1I =


ζ (iκ − Γ ) −iζΓm ζJ ′

13 ζJ ′

14

iζΓm ζ (−iκ − Γ ) ζJ ′

23 ζJ ′

24

ζei2π$3J ′

31 ζei2π$3J ′

32 ei2π$3 − 1+ O(ζ ) ζei2π$3J ′

34

ζe−i2π$3J ′

41 ζe−i2π$3J ′

42 ζe−i2π$3J ′

43 e−i2π$3 − 1+ O(ζ )

 ,
(B 4)

where κ =J ′

11 + i2πa/ cosϑ , Γm = π(1+ cosϑ)2/2 is the maximal value of Γ

achieved for the value of a given below (4.7) in MB09 and Γ 2
= Γ 2

m − κ
2. This

results in the following leading-order expression for the components [c′1, c′2, c′3, c′4]
T of

the eigenvector c′ (τ = 0) of the propagator matrix M ′:
(iκ − Γ ) c′1 − iΓmc′2 = 0+ O(ζ ),

iΓmc′1 − (iκ + Γ ) c′2 = 0+ O(ζ ),

c′3 = O(ζ ), c′4 = O(ζ ).

(B 5)

Since c′(τ = 2π)=Λ1c′(τ = 0) at leading order, we obtain

c′ (τ = 2π)=
[

1,
κ + iΓ
Γm

, 0, 0
]T

. (B 6)

Using the transformation (A 1) together with the solenoidal conditions k · v = 0 and
k · b= 0 taken at τ = 2π, we may write

v=
ω

k0 sinϑ


cosϑ

(
1+

κ + iΓ
Γm

)
i+

Γ − iκ
Γm

− sinϑ
(

1+
κ + iΓ
Γm

)

 ,

b=
ωH cosϑ
k0 sinϑ


cosϑ

(
1−

κ + iΓ
Γm

)
i−

Γ − iκ
Γm

− sinϑ
(

1−
κ + iΓ
Γm

)

 .



(B 7)
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Case 3: Resonance between two magnetic modes
Now the parameters take new values as follows:

cosϑ =
[√

(1+R)2+H2 − (1+R)

]−1

, (B 8)

$4 =−$3 = 1, $2 =−$1 =
(1+R)+

√
(1+R)2 + H2

(1+R)−
√
(1+R)2 + H2

, λ= 1, (B 9)

and so for this case the eigenvalue associated with the unstable mode is

Λ1 = 1+ ζΓ where Γ 2
=
π2

4
(1− cosϑ)4

−π
2

(
2a

cosϑ
+
(1+R) cosϑ

(
1− cos2ϑ

)
1+ (1+R) cosϑ

)2

. (B 10)

Now the matrix M ′ −Λ1I has the form

M ′ −Λ1I =


ei2π$1 − 1+ O(ζ ) ζei2π$1J ′

12 ζei2π$1J ′
13 ζei2π$1J ′

14
ζe−i2π$1J ′

21 e−i2π$1 − 1+ O(ζ ) ζe−i2π$1J ′
23 ζe−i2π$1J ′

24
ζJ ′

31 ζJ ′
32 ζ (−iκ − Γ ) −iζΓm

ζJ ′
41 ζJ ′

42 iζΓm ζ (iκ − Γ )

 , (B 11)

where κ = −iJ ′

44 + 2πa/ cosϑ , Γm = π(1− cosϑ)2/2 is the maximal value of Γ
achieved for the value of a given below (4.18) in MB09 and Γ 2

= Γ 2
m − κ

2, and the
leading-order expression for the eigenvector c′ (τ = 0) of the propagator matrix M ′ is

c′1 = O(ζ ), c′2 = O(ζ ),
− (iκ + Γ ) c′3 − iΓmc′4 = 0+ O(ζ ),
iΓmc′3 + (iκ − Γ ) c′4 = 0+ O(ζ ),

(B 12)

and so at leading order (because c′(τ = 2π)=Λ1c′(τ = 0)),

c′(τ = 2π)=
[

0, 0,−
κ + iΓ
Γm

, 1
]T

. (B 13)

As for case 1, we obtain

v=
ω

k0 sinϑ


cosϑ

(
κ + iΓ
Γm

− 1
)

i−
Γ − iκ
Γm

− sinϑ
(
κ + iΓ
Γm

− 1
)

 ,

b=
ωH cosϑ
k0 sinϑ


− cosϑ

(
κ + iΓ
Γm

+ 1
)

Γ − iκ
Γm

+ i

sinϑ
(
κ + iΓ
Γm

+ 1
)
 .



(B 14)
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We can easily infer from the general considerations of appendix C below and (3.21)
that the mean electromotive force is zero for all times in both cases of resonances
between modes of the same type, 1 and 3.

Appendix C. Properties of the resonant modes
Here we comment on some particular properties of the analysed system. With the

unstable modes calculated in § 3.2 and appendix B ((B 7) for case 1, (B 14) for case 3,
and (3.18) and (3.20) for case 2) we can calculate the helicity densities at τ = 2π for
the kinetic helicity Hk = Re(u′) · Re(w′), the magnetic helicity Hm = Re(A′) ·Re(B′)
and the cross-helicity Hc = Re(u′) · Re(B′), where w′ = ∇ × u′ is the vorticity of
the perturbation velocity field and A = A0 + A′ is a vector potential of the magnetic
field B = B0 + B′ = ∇ × A = ∇ × A0 + ∇ × A′ with A0 = [−(1/2)B0y, (1/2)B0x, 0].
A straightforward calculation shows that all the helicity densities at τ = 0 are zero in
cases 1 and 3, and only case 2 of the mixed resonance between the hydrodynamic and
magnetic modes leads to helical unstable perturbations (with all three helicity densities
non-zero). It is easily demonstrated that for all three cases, the helicity density at time
τ is proportional to its initial value; hence, these helicity densities vanish in cases 1
and 3 and are non-zero in case 2 for all times. Helicity provides the simplest indicator
of lack of reflectional symmetry in the system, although it is known that this is no
guarantee of dynamo action.

We may also show that the unstable modes belonging to the class of mixed
resonance are the only ones that propagate energy. The group velocity of the
unstable modes is defined as cg = ω∇k(Im σ), where ∇k is the gradient operator
with respect to k and, as we know from MB09, Imσ depends on cosϑ and k0. Again,
a straightforward calculation shows that in cases 1 and 3 the group velocity vanishes,

cg = 0+ O(ζ ) (cases 1 and 3), (C 1)

so to leading order in ζ these modes do not propagate energy. However, in case 2
the group velocity at leading order is not zero; averaged over time, it has only a
z-component given by

〈cg〉 =

[
−vA

H (1+R)[
(1+R)2 + H2

]2 +
ω

k0
(1+R)

(1+R)2 + H2
− 1

(1+R)2 + H2

]
êz, (C 2)

where vA = B0/
√
µρ, so that energy is transported in the z-direction with this velocity.

Because the resonant case 2 is the case of double resonance, there also exists an
unstable mode associated with the eigenvalue Λ∗, for which the energy propagates
in the opposite direction and the group velocity c′g = −cg. The helicities are also of
opposite sign for the two unstable modes (one associated with Λ and the other with
Λ∗). Nevertheless, as pointed out by Moffatt (1978), in a system in which preferential
excitation of upward or downward propagating waves is present, the net helicity will
be negative or positive respectively.

Appendix D
In the presence of magnetic (η) and viscous (ν) dissipation, the matrix S

(equations (4.1) and (4.2)) becomes

S0 =


−Re−1 1+ ε + 2Ro−1 ih 0

− (1− ε)− 2Ro−1
−Re−1 0 ih

ih 0 −Rm−1
− (1+ ε)

0 ih 1− ε −Rm−1

 , (D 1)
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where Re = γ /(νk2
0) and Rm = γ /(ηk2

0) are the Reynolds and magnetic Reynolds
numbers respectively. By defining

D± = Rm−1
± Re−1, Λ=− 1

2D+ + λ, (D 2)

where Λ is an eigenvalue of the matrix S , the eigenproblem for the matrix S
becomes independent of D+ and depends only on D−. This shows first that if the
diffusivities are equal, η = ν, i.e. D− = 0, then the only effect of dissipation is
reduction of the growth rate to σ1 − D+. Second, if we assume D− � 1, then a
straightforward perturbative analysis shows that, just as for an ideal fluid, a single
unstable horizontal mode cannot generate the electromotive force, and interactions
with oscillatory modes are necessary. Moreover, the effect of dissipation is mostly
apparent through decrease of the growth rate. As in the ideal-fluid situation, the EMF
cannot be generated in a non-rotating system, i.e. for w = 1 we get E = 0, and the
ellipticity is also crucial for generation of a strong electromotive force.
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RÄDLER, K. H. & BRANDENBURG, A. 2009 Mean-field effects in the Galloway–Proctor flow. Mon.
Not. R. Astron. Soc. 393 (1), 113–125.

RICHARDSON, K. J. & PROCTOR, M. R. E. 2010 Effects of α-effect fluctuations on simple
nonlinear dynamo models. Geophys. Astrophys. Fluid Dyn. 104 (5), 601–618.

ROBERTS, G. O. 1972 Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans.
R. Soc. A 271 (1216), 411–454.
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