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The theoretical investigation here of a three-dimensional array of jets of fluid (air guns)

and their interference is motivated by applications to the food sorting industry especially.

Three-dimensional motion without symmetry is addressed for arbitrary jet cross-sections and

incident velocity profiles. Asymptotic analysis based on the comparatively long axial length

scale of the configuration leads to a reduced longitudinal vortex system providing a slender

flow model for the complete array response. Analytical and numerical studies, along with

comparisons and asymptotic limits or checks, are presented for various cross-sectional shapes

of nozzle and velocity inputs. The influences of swirl and of unsteady jets are examined.

Substantial cross-flows are found to occur due to the interference. The flow solution is non-

periodic in the cross-plane even if the nozzle array itself is periodic. The analysis shows

that in general the bulk of the three-dimensional motion can be described simply in a

cross-plane problem but the induced flow in the cross-plane is sensitively controlled by edge

effects and incident conditions, a feature which applies to any of the array configurations

examined. Interference readily alters the cross-flow direction and misdirects the jets. Design

considerations centre on target positioning and jet swirling.
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1 Introduction

The motivation for the current study which involves modelling, asymptotic analysis and

allied numerical work arose from the food-sorting industry, and there are applications also

to inkjet printing, sprinklers and air guns for example. It is our great pleasure to dedicate

this article to John Ockendon, a tower of strength in the area of industrial mathematics.

In the relevant food-sorting configuration huge numbers of grains (rice, peas, seeds,

etc.) or similar small bodies are let fall rapidly down an inclined chute as discussed

in [1, 2] and then drop off the end of the chute under gravity. At that stage the multiple

grains then form a free-falling sheet in effect but they are viewed individually by means

of an inspection laser, any faulty grain is identified and almost immediately an air jet

is fired from a multiple high-pressure ejector machine which is intended to knock that

faulty grain out of the free-falling sheet. There are many jets in order to cover the space

mapped out by the sheet and they fire over remarkably short time scales of 3–10 msecs.

Typically a single row of ejectors comprises many narrow ducts (nozzles) of a few mms

in cross-section each of which is separated from its immediate neighbour by a gap of a

fraction of a mm, which is governed by the thickness of the ejector walls. The firing from
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the ejector nozzles is performed independently in response to faulty items entering the

target areas, the air jet speed may be 20–40 m/sec and the transient phases of start-up

and shut-down persist for a small fraction of the firing time for each nozzle. Some of

the values quoted here and below may be approximate. Collateral damage in the sense

of nearby non-faulty grains being hit accidentally is a considerable problem here, hinging

on the overall performance of the jets as they emerge from the array of nozzles and

interact not only with the targeted grain and its neighbours but also with the other jets

in the array. The focus is thus on an array of air jets issuing into otherwise quiescent

or non-quiescent air. Among other aspects of concern are the misdirection of the issued

jets occurring in practical cases (leading to a lessened impact on the target grain), the

relatively high-flow rates, and the effects of varying the nozzle shapes and positions within

an array. The shapes of most direct interest to industry are usually rectangular or circular

due among other things to their relative ease of manufacture.

Three features therefore stand out. The first is that interference between multiple jets is

a potentially vital factor here. In addition, the axial flow profile emerging from a typical

nozzle is usually far from being of a fully developed form and indeed exhibits, near the

nozzle walls, edge layers which are relatively thin although not extremely thin as noted

in [3,4]. See also [5–10]. This aspect generates an interest in allowing for plug-type inputs

but with significant edge layers being present, i.e. a smoothed plug flow input in effect at

the beginning of the representative jet. The model adopted in this paper in fact allows

for arbitrary inputs of positive axial motion. Finally, the flow from a nozzle often has

at least some element of swirl in it, a factor which the modelling should also aim to

accommodate at some stage. The ensuing edge effects as the interference takes place

between the three-dimensional (3D) jets in an array are of much interest.

Multiple two-dimensional (2D) jets and their interference have been studied in [11]

based on the approach of [12] for 2D wake interference; see also [13], on transient growth

of billets, where approximate averaging methods are used as distinct from the present

rational approach on spatial evolution, and the reviews in [14]. Westwood [11] finds close

agreement between computational results and a small-distance analysis, especially for a

single jet, and also addresses the development of an unsteady jet. The nozzle array and

accompanying configuration of real concern in the industry however are 3D, and it is taken

here that the modelling study has to be spatially 3D by virtue of not only that geometry

but also the complicated 3D fluid flows within the jets and the interactions between

them. Being fully 3D implies that substantially new problems are to be encountered and

that 2D or axi-symmetric approaches, as used in most previous theories, become perhaps

questionable and /or invalid. Much theoretical, analytical and numerical work, and little

experimental work of course, has been done on the 2D jet but rather the opposite is true

of the more realistic 3D case.

For a typical jet in the industrial setting the Reynolds number based on a representative

nozzle diameter of about 2–5 mm and incident axial velocity of about 20–40 m/s is

approximately 4 − 6 × 103. The development length of the jet in the axial direction is

then of the order of Re multiplied by the nozzle diameter, giving approximately 5m say.

This is for laminar flow which is considered primarily in the present analysis although

the work also applies to the turbulent regime as we shall see. The axial length of concern

to the industry on the other hand as regards impacts on target grains is about 150 mm,
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a distance that is large compared with the nozzle diameter but small compared with

the development length of 5 m evaluated above. (The situation is thus very suitable for

asymptotic treatment of course.) In consequence our interest is to be in axial behaviour

over a long length scale but still short relative to the viscous scale. Moreover, a fairly

general 3D configuration is accommodated in the present work, allowing for various

arrays of variously shaped nozzles as well as various sizes of different input velocity from

each nozzle in order to be able to model the effects of distributed and phased firing of

the fluid jets and the possible influences of changes in nozzle design.

Given that the incident velocity profiles of most present concern are of under-developed

type (having edge layers as described earlier), or are less smooth in a sense, and they

are issuing from many nozzles, a direct computational approach is likely to have some

difficulty in dealing well with the 3D case in full. In contrast the 3D case appears to

yield well to an analytical asymptotic approach exploiting the slenderness of the jets, the

long but not excessively long axial scales of interest and the limited but not extremely

limited smoothness of the input. These properties enable the task to be reduced from a

3D to an effective 2D problem by accounting for the feedback and interaction between

the cross-plane and axial responses in the jets. The edge effects in particular are found to

be important in controlling the directions of the jets.

The present article describes a theoretical examination of incompressible 3D steady

or unsteady flow within a 3D array of jets, then. Section 2 below describes the model

system under discussion in which a relatively long axial length scale is supposed, from

nozzle to target; the analysis leads through validated steps based on asymptotic analysis

to a reduced 2D interactive problem for the 3D longitudinal vortex-like behaviour in

the jet array. Any nozzle cross-section and any number of them can be accommodated

in principle in the analysis. Analytical based solutions are addressed in Sections 3–6.

These help in exploring the vast parameter space. Smooth and non-smooth inputs from

the nozzle jets, multiple inputs from multiple nozzles, swirl effects and unsteadiness are

considered, and cross-flows are especially examined in the results. The work includes

proof of non-periodicity in the solution. Further comments are then presented in Section

7, including design implications.

2 The three-dimensional jets

The model configuration has an array of nozzles whose cross-sectional planes lie in

or nearly in the same plane, of y, z, and from which jets of incompressible fluid issue

in or approximately in the direction of x, where x, y, z are non-dimensional Cartesian

coordinates as in Figure 1. The corresponding velocity components are u, v, w, respectively

and the fluid pressure is p. The distance of interest in the axial direction x is that between

representative nozzle and target and typically it is comparatively large, while the jets

themselves evolve over an even longer axial distance. The non-dimensionalization used

here is based on a representative nozzle diameter, on a typical incident axial velocity of a jet

and on the fluid density, yielding a Reynolds number Re in the Navier–Stokes equations

with laminar flow assumed. The present investigation is of reduced systems based on

asymptotic properties to predict the flow produced by the array of fluid jets issuing

into otherwise quiescent or non-quiescent identical fluid. The typical non-dimensional 3D
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Figure 1. Sketch of the 3D jet array firing. Generally the input profile u0 depends on y, z, t.

jet in the array is to be examined over an axial length scale L corresponding to the

nozzle-to-target distance which is large whereas the cross-sectional length scales remain

of O(1) by definition, unless the cross-section of the jet and/or direction of the original

nozzle at the inlet is particularly distorted.

For steady motion which is the starting point for this investigation (the comparison

with unsteadiness is examined later in Section 6) the spatial scalings

x = LX, y ∼ z ∼ 1, (2.1)

apply with X of O(1) and 1 � L � Re as explained earlier, and then the flow solution

expands in the form

[u, v, w, Ω] =[
u0 + γ u1 + · · · ,Re−1(v0 + γv1 + · · · ),Re−1(w0 + γw1 + · · · ),Re−1(Ω0 + γ Ω1 + · · · )

]
,

(2.2a)

p = π1 + O(γ) + Re−2(π2 + O(γ)) + · · · . (2.2b)

The secondary vorticity Ω = Wy − Vz is introduced here for convenience. Also the

parameter γ = L/Re is small. The scalings on velocity are implied by the continuity

balance while those involved in the pressure response stem from the axial momentum

balance as far as the O(1) term independent of y, z is concerned and from the cross-

sectional momentum equations for the O(L−2) contribution which depends on y, z as well
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as X. Two points stand out here, namely that the ratio γ of the target distance L over the

Reynolds number Re is important since the latter yields an inertial–viscous balance of

forces corresponding to the viscous development length scale, and that the leading order

pressure π1 and its O(γ) correction must be constant in order to match to effectively zero

axial flow outside the jet or jet array. The balances in the Navier–Stokes equations then

point to the appropriate form of the solution being

[u0, v0, w0, Ω0] = [U0(y, z), V0(y, z),W0(y, z),−ζ0(y, z)] , with π1 = 0, (2.3)

at leading order, where X dependence is absent thus far. One could of course argue that

the Re−1 scalings in equation (2.2a) should be increased to L−1 in order to allow for the

possibility of u0 being dependent on X but subsequent reasoning is found to lead back

to the self-consistent form of equations (2.2a) with (2.3). The pressure π1 is set as zero

without loss of generality. At next order the implied solution form is

[u1, v1, w1, Ω1] = X [U1(y, z), V1(y, z),W1(y, z),−ζ1(y, z)] ,with π2 = π2(y, z), (2.4)

and X, y, z dependence again is shown explicitly. Hence the continuity equation becomes

U1 + V0y +W0z = 0, (2.5a)

along with the X-momentum equation

U0U1 + V0U0y +W0U0z = Δ U0, (2.5b)

and the cross-sectional momentum balances

U0V1 + V0V0y +W0V0z = −∂π2/∂y + ΔV0, (2.5c)

U0W1 + V0W0y +W0W0z = −∂π2/∂z + ΔW0. (2.5d)

Here, Δ is the 2D Laplacian operator (∂y
2 + ∂z

2) since longitudinal diffusion is negligible

over the current axial length scales.

The governing equations of concern then are the long-scale ones; equations (2.5a)–

(2.5d). Once the incident flow with u = U0(y, z) say at X = 0 is appropriately defined, the

system which is elliptic in the cross plane of y, z can be solved in principle to predict the

flow velocities and pressures everywhere. The three-dimensionality of the motion makes

the task of solving a relatively complex task, as does the need to deal with the multiple

inlets especially as we would wish to accommodate many types of nozzle shape, see

Figure 1, as well as provide some analytical and/or physical insight from which analysis

concerning interference might develop. We shall incorporate in general a non-symmetrical

array of nozzles and corresponding non-symmetrical 3D jet flow. Again, clearly the typical

angles of divergence or convergence of the jets here are assumed small and of order 1/L

from the length scales in equation (2.1) or 1/Re from the velocity scales in equation (2.2a).

We recall that the length scale L above satisfies 1 � L � Re. At one extreme, on the

O(Re) length scale in general viscous filling of the representative jet flow and of the flows

in its neighbours takes place along with nonlinear inertial–viscous balancing as described
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in [15,16] together with incident boundary conditions at the upstream inlet positioned at

X = 0 say and a condition of no axial flow, u → 0, in the far field outside the jet array. (In

the far field the cross-flow velocities V ,W decay slowly in the 3D case, whereas 2D cases

would yield O(1) lateral velocities.) The paper [15] also shows good agreement with direct

simulations of the Navier–Stokes equations at realistic Reynolds numbers. On the O(1)

length scale, at the other extreme, the full Euler equations would apply at leading order

except that their solution is the uni-directional flow associated with U0 in equation (2.3).

Higher order contributions satisfy linear equations forced by the small viscous effects due

to U0 in essence.

It is preferable to work in terms of the vorticity and velocity, thus replacing equations

(2.5a)–(2.5d) by

U0ζ1 + V0ζ0y +W0ζ0z = ζ0(V0y +W0z) −U0zV1 +U0yW1 + Δζ0, (2.6a)

ΔV0 = ζ0z −U1y, (2.6b)

ΔW0 = −ζ0y −U1z , (2.6c)

U0U1 + V0U0y +W0U0z = ΔU0; (2.6d)

the alternative equation ζ0 = V0z − W0y can be used in place of equation (2.6c). Here

it can be seen that U0, ζ0 must be regarded as known input (V0,W0 for instance cannot

be specified arbitrarily). All other quantities in (2.2a)–(2.5d) are in effect unknowns in

the jet motion and are governed by (2.6a)–(2.6d) with appropriate boundary conditions.

The perhaps surprising feature that the precise cross-flow V0,W0 even at leading order is

among the unknowns is in keeping with previous 2D findings [12]. Working with equations

(2.6a)–(2.6d) is generally more useful here than with the counterparts derived in equations

(2.5a)–(2.5d).

Another notable feature is that the 3D flow solution is non-periodic in the cross-plane

even if the nozzle array itself is periodic. The feature applies for any input profiles and

is demonstrated later in the article. Also, in terms of a check, marching computations

for a 3D jet were made on the basis of a Cartesian gridding method as in [15, 17], over

the longer O(Re) axial scale where 3D longitudinal-vortex equations hold. Agreement

between the marching computational results at decreased lengths and the O(L) based

analysis in equations (2.1)–(2.5d) is found for a smooth u0 profile as demonstrated in [11];

this is essentially for a single jet. The marching computational approach necessarily has a

certain amount of difficulty with satisfactory handling of less smooth input profiles from

many nozzles, which is the case of most present concern, a feature that helps to motivate

the subsequent more analytical work.

3 Properties for smooth jets

Our eventual concern lies with less smooth inputs and with multiple jets as just stated. A

central case seems desirable for this. To be specific we take as one central form here that

of zero input swirl, meaning that ζ0 is identically zero. ([11] examines some effects due

to nonzero swirl for a single jet and we examine swirl effects for many jets in Section 6).
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Then equations (2.6b)–(2.6c) reduce to

ΔV0 = −U1y, (3.1a)

ΔW0 = −U1z . (3.1b)

So with U1 also undetermined as yet equations (3.1a) and (3.1b) with (2.6d) provide three

coupled equations for the induced axial correction U1 and the leading-order cross-flow

velocity components V0,W0. Working similar to that in this and the next two sections

holds wherever the secondary vorticity is identically constant: see Section 6.

An example for a single jet in which

U0 = 1/(1 + yn + (z/H)n) + c, (3.2)

and the input swirl is zero is presented in Figure 2 for two distinct cases, a square and

a rectangle. (The numerical work is based on iteration with standard central-differencing

throughout.) Here n, c, H are positive constants and there is much interest in the effects

of increasing the integer power n, thus making the input velocity profile increasingly less

smooth. As n becomes larger the form in equation (3.2) tends to pick out the edges of the

rectangle where |y| = 1, |z| = H and U0 tends towards a discontinuous profile; in Figure

2(a) and (b) H is 1/3 to represent an approach to a thin rectangle whereas Figure 2(c)

has H as unity for an emergent square. The influence on the cross-flow is a marked one,

in line with the analysis in the next section. Figure 2 is with U0 as in equation (3.2) and

c = 0.05, n = 10. Local results from two different grids and/or outer boundaries agree

reasonably well, confirming that v is odd in y, w is even in y, given the input symmetry,

while the inward suction effect seen in the “far field” is as expected physically. Many

different cases could be computed thus but we want to have many jets altogether.

Examples with two jets essentially of quite thin rectangular planform in which U0 is

similar to the type just mentioned are presented in Figure 3. In detail the figure has two

smooth jets for two cases (a), (b) each with U0 as in equation (3.2) with c = 0.05, n = 10

but displaced horizontally by a distance of 3 giving relatively thin nozzles side by side:

(a) is for two emergent squares and (b) for two emergent rectangles. Here and below,

results from a doubled grid agreed well with those shown. The symmetry about y = −3/2

is as expected. See also thin-body theory later. Given the above we may turn now to

non-smooth input from multiple jets.

4 Analysis of plug-type jets

So far the working has assumed that the input axial profile U0(y, z) is smooth. For

plug-type profiles we let U0 approach a discontinuous form

U0 = constant inside C and constant outside C, (4.1a)

for the typical jet within an array, where C is the boundary edge of the jet. Here the

constants are nonzero usually, while very close to and astride C a thin smoothing region

or edge layer of thickness ε(� 1) matches U0 locally to the two constants on either side
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Figure 2. Results for a single smooth jet in two cases. Here U0 is as in equation (3.2) with

c = 0.05, n = 10. (a) and (b) Emergent rectangle measuring 1 (horizontal) by 1/3 (vertical). Plotted

are v, w against y at fixed z stations. (c) Emergent rectangle 1 by 1, i.e. square.

of C , such that

U0 = U00(N) astride the edge C (4.1b)

where N is the scaled lateral coordinate within the edge layer and U00 is smooth in N. An

exponential profile of U00 is usually kept in mind. The form in equation (4.1a) and (4.1b)

is to be applied to the approach in equations (2.6d), (3.1a) and (3.1b). The alternative of

specifying U0 as discontinuous right from the start is worth just mentioning. It provokes

X1/2 edge layers (Chapman layers) at the edges, similar to those in the current scenario,

but the present approach takes ε � X1/2 from an order-of-magnitude argument which

allows equations (4.1a) and (4.1b) to be used within the context of equations (2.6d), (3.1a)

and (3.1b). The overall benefit of the present approach is that it accommodates a wide
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Figure 3. For two smooth jets. (a) Two emergent squares measuring 2 (horizontal) by 2 (vertical),

occupying –4 to –2 and –1 to 1 in terms of y. Plotted are v, w against y at fixed z stations. (b) Two

emergent rectangles 2 by 1/3, again with a gap of 3 between the centres of the jets.

range of input profiles. We mention also that the approach so far has taken U0 as positive

corresponding to forward axial motion but the following analysis also works with U0

being zero outside C , or indeed inside C . The case of U0 being zero outside the boundary

or edge C will be treated subsequently as a limiting case.
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Given equation (4.1a), it follows from equation (2.6d) that U1 = 0 throughout the bulk

of the cross-plane. Hence the controlling equations there are the pair

ΔV0 = 0, (4.2a)

ΔW0 = 0. (4.2b)

The continuity equation with zero U1 now reduces however to V0y +W0z = 0, while zero

input swirl implies that V0z − W0y = 0, and so the scaled cross-flow stream function ψ

and cross-flow velocity potential ϕ form a conjugate pair such that

V0 = ε−1ψz = ε−1ϕy, (4.3a)

W0 = −ε−1ψy = ε−1ϕz. (4.3b)

The factors ε−1 are explained below, and ϕ,ψ both satisfy Laplace′s equation,

Δϕ = 0, (4.4a)

Δψ = 0. (4.4b)

These apply in the majority of the cross-plane whereas the smoothing regions astride each

edge C yield the jump requirement across each edge

1

U0
+

(
∂φ+

∂n

)
− 1

U0
−

(
∂φ−

∂n

)
= −J, (4.4c)

where J =

∫ ∞

−∞

(
U00

′′

U00
2

)
dN, (4.4d)

on the velocity potential in particular. Here the superscripts +,− refer to quantities on

either side of the edge in the sense defined below and n is the un-scaled normal coordinate.

The jump J is produced by the quasi-planar behaviour within the thin edge layer holding

in terms of N(= n/ε), such that if N is aligned with the y direction for instance then in

effect equations (3.1a) and (2.6d) reduce respectively to

V0yy = −U1y, (4.5a)

U00U1 + V0U00
′ = U00

′′ (4.5b)

to leading order, because of an expansion based on (4.1b), with z derivatives and allied

effects being negligible; the solution of (4.5a) and (4.5b) for V0 then gives J as above

from matching at large N. Similar working applies for N lying in any direction, thus

confirming equations (4.4c) and (4.4d). The factors ε−1 in the definitions in equations

(4.3a) and (4.3b) and hence the O(1) scaling on the jump contribution J stem from

the scaling on N and indicate that the induced cross-plane velocities are in general

relatively large for the less smooth input jet profiles here. We should remark that from

an integration by parts the jump J is positive and that in principle it can depend on the

distance s around the edge C although here J will usually be taken not to vary around

https://doi.org/10.1017/S0956792514000448 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000448


Interference in a three-dimensional array of jets 805

a given edge. The effect J is a Coanda-like one. The physical balance of 3D effects,

between the cross-plane dynamics in equations (4.2a), (4.2b)–(4.4a) and (4.4b) and the

axial dynamics implicit in equations (4.4c) and (4.4d), is also noteworthy with the present

reduction to an effectively 2D problem. The signs are such that a fluid particle leaving

the jet has a relative velocity v/u less than that of a particle entering at the same location

in X, s, i.e. there is net relative entrainment, as expected physically for a jet.

Although the normal derivative is discontinuous across the edge C as shown in equation

(4.4c) the scaled potential function ϕ itself is continuous everywhere; it is also smooth

everywhere except at C and without loss of generality ϕ can be set to zero at some

internal point inside C for example. Adding a constant to ϕ does not affect the induced

velocities. Comparisons made in [11] between results from the reduced form in equations

(4.4a)–(4.4d) and results for smooth velocity profiles as in Figures 2 and 3 which become

increasingly less smooth tend to support the formulation in equations (4.4a)–(4.4d).

Here the jump condition (4.4c) makes it perhaps most convenient to work with ϕ,

while the boundary condition in the far field which is usually one of slow growth,

ϕ ∼ −n1lnr+n2 where n1, n2 are O(1) constants in general and r is the radial distance, can

be accommodated in numerical cases by means of a three-point relation. This far-field

response confirms that the cross-flow velocities decay slowly such that

ε(V0,W0) ∼ −n1(y, z)/r
2 in the far field, (4.6)

in most settings. By way of contrast, in a 2D case essentially, equation (4.4a) gives

d2ϕ/dy2 = 0, leading to ϕ being linear in y which forces V0 to be constant. In either

scenario a source-like effect is induced in the far field.

The analysis for plug-type input is valid not only for all nozzle shapes but also for

any number of nozzles as in an array. Linear superposition however does not apply

generally because the required jump condition across the edge C of any jet in the array

is affected by the solutions for all the other individual jets in view of the smoothness of

their solutions at C . The factors U0
± in equation (4.4c) play an important role in this. On

the other hand, if those factors are equal then superposition is seen to hold true, which

enables analysis or computation for a wide variety of arrays to proceed. See [11] and

techniques of potential flow and complex variables [18–20]. These issues are taken up in

the following section.

5 Properties for plug-type jets

For the present plug-type jets or arrays (currently without swirl, we recall, but swirl is

to be incorporated in the next section) the significance of the role of the edge velocity

constants U0
± becomes clear mostly through examples within three categories as follows.

These also lend themselves to examination of the solution behaviour when many jets are

present.

5.1 Jets of different strengths

First if the edge velocities U0
± are unequal, which is the general case, then given there are

clearly many possible parameters and jet nozzle shapes which could be considered here
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Figure 4. For plug cases with one or two rectangles, showing ϕ against y or z. (a), (b) One

rectangle: ϕ versus y, z respectively. Here (U0
+, U0

−) = (1, 0.25) and the edge jump J = 1.

(c-i) Two rectangles each 4 by 2 (except in the final case (i)), under various conditions: (c)

has (U0
+, U0

++, U0
−, J, J+) = (1, 1, 0.25, 1, 4); (d) has (0.5, 0.125, 0.25, 1, 1); (e) has (1, 1, 0.25, 1, J+

varying), plotting ϕ at the midline z = 0; (f) has (1, U0
++ varying, 0.25, 1, 4) where 1/U0

++ values

are 0.05, 1.05, 2.05, . . . , 10.05; (g) has (1, 1, U0
− varying, 1, 4) with 1/U0

− values 0.5, 1, 1.5, . . . , 4; (h) has

(1, 1, 0.25, 1, 4) but the gap width G = 1(0.2)4 varies from its usual value of 2; (i) has (1, 1, 0.25, 1, 4)

but the nozzle is a 4 by H rectangle with H values of 1(0.2)6.
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Figure 4. Continued

we highlight some major features through specific examples. Figure 4 gives the solution

for ϕ when there are one or two rectangular nozzles: (a), (b) are for a single rectangle

and (c) − (i) for two under various conditions. We remark as a reminder that the vertical

velocity W0 is essentially ∂ϕ/∂z and the horizontal V0 is ∂ϕ/∂y. The results indicate the

effects of varying the edge velocities and also of introducing a neighbouring rectangular

nozzle. Figure 4(a)–(i) indicates especially in (c) that on occasion the jumps at the outer

edges of the rectangles can only just be seen whereas the inner jumps are clear. Also the J

effects yield significant non-symmetry or skew and hence imply misdirection. The graphs

here resemble the catenaries found later on. In (d) the skew is found to be the other

way round compared with (c). Then (e) shows a variety of skew effects and specifically

a marked switch-round within the gap in the middle, while (f) indicates only quite small

skew effects being produced. Case (g) again shows considerably more variation in skew

effects being produced. In (h) all examples have similar trends although the magnitudes

increase with gap width, and similarly in (i) all cases have very similar results in the gap

but wider variation inside the rectangles and beyond.
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Figure 5 gives the solution with one or more modelled rectangles side by side with aspect

ratio of O(1) arranged in a single row. The background requires some explanation. The

simple model here is for zero ϕ or ∂ϕ/∂z on the upper and lower boundaries and allows an

exact solution for any number (N) of jets. In the former case, we take ϕ = ϕn(y) sin(Γz) in

the typical nth nozzle where H = π/Γ is the uniform nozzle height; the other case would

have cos(Γz) and yield the same working as below. Thus W0 ∝ ϕn and V0 ∝ ∂ϕ/∂y. In

the figure, the strong influence of the edge velocity effects J in determining the momentum

contributions within the array is evident. The equations involved begin with

ϕn = Rn cosh(Γ (y − yn)) + Sn sinh(Γ (y − yn)) in nth nozzle (for n = 2 to N − 1), (5.1a)

in view of equation (4.4a). Here the array has nozzles and jets extending from n = 1 to

n = N with the respective axial edge velocity components being Un, which are constants,

and the jumps J being jn sin(γz) in turn where the jn are given constants. The constants

Rn, Sn are unknowns. The component equation (5.1a) holds for all but the endmost nozzles

whereas the leftmost and rightmost ones have

ϕ1 = A exp(Γy), ϕN = B exp(−Γy), (5.1b)

respectively in line with decay in the far field, with the constants A,B to be found. The

decay is exponential here rather than the algebraic form near equation (4.6) due to the

continued constant height H in this example. Next, the junction requirements in equations

(4.4c) and (4.4d) applied at each edge y = yn say yield two relations

Rn+1 = Rnc̃+ Sns̃, (5.1c)

Sn+1/Un+1 − (Rns̃+ Snc̃)/Un = jn/Γ , (5.1d)

where c̃ = cosh(Γ (yn+1 − yn)), s̃ = sinh(Γ (yn+1 − yn)) and the edges may be uniformly

spaced or not. An iterative scheme may then be set up to solve for all the component

terms Rn, Sn such that the required end behaviours in equation (5.1b) are obtained and

this produces catenaries as displayed in Figure 5. This figure presenting the modelled plug

results covers several cases (i)–(vi) with varying jet velocities, locations, aspect ratios and

edge jumps, all displaying suction flow at infinity again. Sample (iv) shows a strengthened

effect due to the increased jumps jn on the right in the diagram, whereas (v) and (vi)

demonstrate that increased height H leads to more unevenness in V0. Overall the results

are in line with those in Figure 4 given earlier.

The main points to draw from the work include the ellipticity of the system and the

huge variety of configurations available. Certain extremes of the edge velocity ratios are

also of interest, while for Γ large or small we obtain the helpful cases of comparatively

thin or thick nozzles which are addressed in other results such as in thin-shape theory

below and clearly hinge on the factors Γy in equations (5.1a)–(5.1d). Also a configuration

with many jets leads to an essentially continuum limit in which equations (5.1c) and (5.1d)

tend to

R′˜̃c+ S ′˜̃s = 0, (5.1e)

(R/U)′˜̃s+ (S/U)′˜̃c = j/Γ , (5.1f)
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Figure 5. For modelled plug problem: (a)–(c) ϕ and dϕ/dy versus y for (i)N = 11, height

H = 1, Un = 4(n � 2), jn = 2 centred on locations yn = n− 2, (ii) is as for (i) but Un are altered to 4

for odd n and 1 for even n, (iii) is as in (ii) except that N = 21, yn = (n − 2)/2; (c) dϕ/dy versus y

for (iv), (v), (vi) along with original (i) for comparison. Here (iv) is for a different jump distribution

while (v), (vi) have heights increased to 3, 5 respectively.

with Γδ being of order unity where δ is the gap width and R, S,U, j, ˜̃c, ˜̃s are respectively the

continuous analogues related to the Rn, Sn, Un, jn, c̃, s̃ above. If U is constant throughout

corresponding to equal edge velocities then (R′, S ′) are given simply by jU(−˜̃s, ˜̃c)/Γ

whereas if U is not constant then from manipulation of (5.1e, 5.1f) the function R or

S is governed by a non-simple second-order differential equation subject to endmost

boundary conditions which are analogous to those of equation (5.1b) in the discrete case.

The predicted value for R(y) is reasonably close to the values seen in Figure 5 for an

appropriate example. Overall these results are in keeping with the properties holding in
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Figure 6. For thin rectangles: V ,W versus y, along horizontal axis just above each rectangle.

the other two categories below, in particular they indicate the invalidity of superposition

in the most common case of unequal edge velocities, they demonstrate again the ellipticity

of the jet array problem, and they show non-periodicity of the flow solutions in general.

The analysis can be extended from one to more rows in the vertical if necessary.

5.2 Equally strong jets

Next is the second category which has the constant values U0
± on either side of any

jet edge being equal. This situation makes physical sense in terms of equally strong jets

emerging from neighbouring nozzles and so being separated by a thin layer with zero

axial velocity jump across that layer but inducing the normal velocity jump of equations

(4.4c) and (4.4d). The study by [11] is within the current category. Highlighting is again

called for in view of the many different configurations available in principle. Figures 612,

613, 619, 620 of [11] show solutions for 1 or 2 rectangles computed directly; the trends

of the results agree with the more analytical work here.

Our Figure 6 on the other hand concerns any number of nozzles and focusses on thin

rectangles or other thin shapes laid sequentially in end-on fashion, i.e. horizontally laid.

Here thin-shape theory applies in terms of the small aspect ratio h say and can admit

superposition of solutions in many cases. The relevant expansions are

ϕ = ϕ̄0 + hϕ̄1 + h2ϕ̄2 + · · · inside any jet, (5.2a)

with z = hz̄ and z̄ of O(1), so that ϕ̄0 z̄z̄ = ϕ̄1 z̄z̄ = 0, ϕ̄2 z̄z̄ = −φ̄0yy, where ϕ is taken to be

an even function. Therefore

ϕ̄0 = B̄0(y), ϕ̄1 = B̄1(y), ϕ̄2 = B̄2(y) − 1

2
B̄0

′′
(y)z̄2. (5.2b)
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Here B̄0 is an unknown function of y in particular. Outside the jets we have

ϕ = ϕ0 + · · · (5.2c)

but with y, z of order unity, implying that Laplace′s equation controls ϕ0 and so on. The

boundary conditions are now of interest and indicate that ϕ0 is the dominant function

here. From equation (4.4c) at leading order ϕ0 satisfies ∂ϕ0/∂z = −JU−
0 at the jet edge

together with equation (4.6) in the far field, conditions which are sufficient usually to

determine φ0 everywhere outside and give ϕ0 on the jet edge. This also sets the edge

value of ϕ̄0, in other words B̄0, for the calculation inside the jet, which can then go on to

provide a slight correction to the outer problem by virtue of equation (5.2b), and so on.

Hence a hierarchy is formed. If J is uniform say it follows specifically that the velocities

produced just outside the jets are given by

π(V ,W ) = ΣKn{ln(r1/r2), θ2 − θ1}, (5.2d)

for an array of jets as presented in the above Figure 6. The figure is for thin end-on

rectangles, where we find wide-ranging positive and negative values of velocity being

produced and hence much implied misdirection. The quantities Kn, r1, r2, θ1, θ2 are the

effective jumps, distances |r − r1n| and |r − r2n| from a typical field point r to each nozzle

end, and the corresponding field-point angles, in turn, while the summation is over the

rectangles or other thin nozzles in operation. Superposition applies at leading order in

this category. The pattern of the solution agrees with the results in [11]. It is noted

in passing that an interesting modification occurs if the thin-shape theory of equations

(5.2a)–(5.2d) is combined with the extreme-ratio theory of the next paragraph to yield

an integral equation for the unknown function B̄0 since, in general, a Cauchy–Hilbert

integral describes the solution of equations (4.4a) and (4.4b). The thin-shape working in

fact holds in modified form for all of the three categories addressed in the present section.

We refer also to the analysis described in the previous paragraph.

5.3 Relatively strong jets

Thirdly, there is the category corresponding to relatively strong jets or to a plug jet or jets

surrounded by almost quiescent fluid. Here one of the edge velocity constants is much

larger than the other, U0
+ � U0

− or vice versa. The highlights are the following. The

analytical theory for this category rests on the relative increase in the velocity influence

due to the 1/U0
− factor in equation (4.4c). The prime formulae involved in the analysis

turn out to be:

∂ϕ−/∂n = −JU0
− on C, (5.3a)

for the outside flow say, which satisfies Laplace′s equation and so acts to determine the

function ϕ−(= Φ say) on the jet edge C; and

ϕ+ = Φ on C (5.3b)

for the inside flow from (4.4c). Then Laplace′s equation for ϕ+ with equation (5.3b) gives

us ϕ+ everywhere inside, hence ∂ϕ+/∂n on C and hence a small correction to equation
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(5.3a) and so on, leaving us with a suction effect first (outside say) as in equation (5.3a)

and then an internal adjustment (inside). This third-category framework but with the

suction effect acting inside a jet area enclosed by C is similar to that for suction acting

outside except for the mean influence which can be treated separately as for the circular

case where ϕ is zero within C and −J̄ln(r) outside to within an additive constant, for any

edge velocity ratio and effective jump J̄ . The asymptotic form shows the hierarchy above

which in turn re-confirms the role of the edge velocity constants. The structure is similar

to the second part of the second category in equations (5.2a)–(5.2d) although here there

is no restriction on the shape of the nozzles involved in the interaction.

For the specific example of one or more circular nozzles the induced velocities take the

form

π(Vm,Wm) = ΣAn{y − yn, z − zn}/(r − rn)
2, (5.4)

where the array summation is over the circular nozzles in operation with n not equal to

m and the An are the effective jumps for each nozzle. If many jets are operating then

the overall elliptic effect and slow decay with distance are apparent, for instance along

z = zn = 0 where an alternating series gives Vm. Results are presented in the next section

in order to compare them against the associated ones with swirl included. For the example

of thin vertically laid rectangles on the other hand the analysis yields instead

πVm = −2ΣBnθ1n, (5.5)

in contrast with the horizontally laid arrangement of equations (5.2a)–(5.2d). The sum-

mation now is over all n and the multiplicative factor for the jump effects Bn is halved

at zero n, with equation (5.5) applying along z = 0 where W is zero, with θ1n denot-

ing arctan( 1
2
Hn/(y − sn)) and with the relative gap widths Hn/[sn − sn−1] held uniform.

Superposition only applies for such an infinitely long array by virtue of symmetry.

Figure 7 displays the results for a number of these vertically laid rectangles. The figure

actually concerns any thin broadside-on bodies uniformly spaced in a large (long) array.

Results for small values of the gap width G point to the simple straight-line solution, in

contrast with the boundary-layer-like response for large G values. The height H is kept

fixed at unity.

6 Effects of swirl and unsteadiness

Properties for general swirl distributions are perhaps best approached via specific cases

again and in that spirit the current section will consider briefly effects from constant swirl,

followed by study of the unsteady regime. Before then however a proof of non-periodicity

for the general case is given.

6.1 Non-periodicity in the general case

This concerns the solution for the cross-plane velocities with or without input swirl ζ0.

Returning to the original form in equations (2.5a)–(2.5d) for general input profiles we
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Figure 7. For thin bodies broadside-on in a large (long) array: V versus y along z = 0 in a

representative gap for various scaled gap widths G.

eliminate U1 between equations (2.5a) and (2.5b) to obtain the relationship

(V0/U0)y + (W0/U0)z = −Δ(U0)/U0
2, (6.1)

between the cross-plane velocity components V0,W0, in which the axial velocity U0 is

assumed known as stated earlier. The situation of interest here has the input U0(y, z)

being periodic in the cross-plane coordinates y, z, say with periods My,Mz respectively.

Supposing V0,W0 to be periodic over those periods then leads to a contradiction since

the double integral of equation (6.1) with respect to y, z over the periods gives zero on the

left-hand side but a nonzero contribution on the right-hand side. The latter contribution

is

−2

∫ ∫
(overMy,Mz )

[
(U0y

2 +U0z
2)/U0

3
]
dy dz, (6.2)

after an integration by parts, and clearly this contribution is nonzero and negative in

general since U0 is positive in general. The contradiction between the two sides establishes

that V0,W0 cannot be periodic.

The main inference, that even if there is periodicity in the input axial velocity, in the

input swirl and implicitly in the nozzle array the resulting flow in the cross-plane cannot

be periodic, supports the view of some alteration in the direction of the input jet motion

having to take place. In other words misdirection is inevitable. The question of how much

misdirection occurs is answered largely by the specific results throughout Sections 2–6.
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Figure 8. For circles with or without swirl. (a) No swirl: (i) 21 equispaced circles, all firing, with

An = −1; (ii) as (i) but nos 4–13 switched off; (iii) 64 all firing. (b) With swirl dominating, this

shows W versus y for: (i) total N = 21, κn = 1 for all n, radii= 0.2; (ii) as (i) but switched off

nos 4-13; (iii) all ‘on’ but κn = (−1)(n+1). (c) For a double bank of nozzles, each bank having An
constant and κn = (−1)(n+1), plotting V ,W against y along the axis of the lower bank. The “1”, “3”

are V ,W for An = 0.1 while “2” is V for An = 0.02.

6.2 Nonzero uniform swirl

Virtually the same working as in Sections 3 and 4 is found to apply wherever the secondary

vorticity ζ0 is identically K , a constant: then equations (3.1a) and (3.1b) still hold true

but the relation V0z − W0y = K must be satisfied also. If the input secondary swirl ζ0 is

piecewise constant then equations (3.1a) and (3.1b) remain valid inside each C , while if the

input axial velocity U0 is also piecewise constant then U1 is zero, which yields equations
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(4.2a) and (4.2b). Coupled with this V0z −W0y = K where K is the swirl constant within

C . Hence now the quasi-potential is defined conveniently by

V0 = ε−1(ϕy + κz/2), (6.3a)

W0 = ε−1(ϕz − κy/2), (6.3b)

inside each C , given that K must be O(ε−1), say ε−1κ, to influence the dominant behaviour.

It follows that equation (4.4a) still applies for ϕ. As regards the jump conditions across the

edge C where more locally smoothing takes place between the different constant values of

U0, K the balances in equations (4.5a) and (4.5b) remain dominant astride C and so there

V0 is as before. Stemming from that, the jump requirement in equation (4.4c) still applies

except that on the left-hand side ∂ϕ/∂n has to be replaced by ∂ϕ/∂n− κr cos(θ − α)/2 in

each occurrence due to equations (6.3a) and (6.3b). Here r, θ are polar coordinates inside

C such that (y, z) = r(cos θ, sin θ) and tan α is the slope of the edge at the point (y, z) on

C . The inference is that the jump requirement becomes

(∂ϕ+/∂n)/U0
+ − (∂ϕ−/∂n)/U0

− = −J∗, (6.4a)

where J∗ = J +
1

2

[
{κr cos(θ − α)/U0}+ − {κr cos(θ − α)/U0}−]

, (6.4b)

with the superscripts again denoting properties on either side of the typical edge C . The

influence of the piecewise constant swirl here is to replace J by J∗, i.e. to alter the jump

function in any particular case, and accordingly the earlier approach with zero swirl would

seem to go through. There is a second influence however, which is on the continuity of ϕ

effectively; it arises from the required continuity of the tangential velocity component at

C to leading order and it imposes the jump condition

∂ϕ+/∂s− ∂ϕ−/∂s = −1

2
[{κr sin(θ − α)}+ − {κr sin(θ − α)}−], (6.4c)

on the tangential derivatives of ϕ at C . Although θ, α are continuous at C provided the

same coordinates are used throughout the array, the swirl values κ± are in general not.

Thus the approach of Section 4 does not apply in that case.

A set of solutions for circular nozzles with swirl extending that of the zero-swirl

case (5.4) is presented in Figure 8. This shows in 8(a), for zero swirl with constant An, the

same trend throughout cases (i)–(iii) and the same broad range of induced velocities V ,

although (ii) gives rather different cross-flows and (i) and (iii) are antisymmetric about

their middle nozzles. In 8(b) where swirl dominates and Vm is zero in effect there is the

same kind of range of W with (iii) being all “on” but κn = (−1)(n+1) and in essence

the neighbours dominate, yielding a regular effect. The vertical range |W | is smaller here

and less variation occurs from jet to jet. The antisymmetry about the 11th nozzle is as

expected. In 8(c) for a double bank of nozzles the missing W is virtually identical with

that labelled “3”. The behaviour is much more regular and bounded, and we see an

alternating series effect. Also we can reduce the edge effects |An| simply by increasing

epsilon keeping |u0| fixed, and increase κn by increasing the swirling, i.e. the K values.

Further the induced V is as if divergent whereas W is convergent.
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6.3 Unsteadiness

With unsteadiness present, the time scale O(1/L) is indicated by the scales in Section

2, say t = T/L, and terms ∂U1/∂T , ∂V1/∂T , ∂W1/∂T then need adding on the left

in equations (2.5b)–(2.5d) respectively and ∂ζ/∂T in equation (2.6a). The contributions

−∂ζ0/∂T ,−∂U0/∂T are added to the right-hand sides of equations (2.6a) and (2.6d).

Concerning the plug-type setting in Section 4, the so-named constants in equation (4.1a)

become functions of T (only) while in equation (4.1b) we have U00(N,T ) now. Just

before equations (4.2a) and (4.2b) U1 is −(dU0/dT )/U0, which however does not affect

the subsequent results. Moreover the conditions in equations (4.4c) and (4.4d) remain

valid at leading order due to the thinness of the edge layers and the associated large

spatial derivatives, except if fast dynamics in the edge layers is particularly pronounced

(which would for example add a term −∂U00/∂T on the right in (4.5b)). Given that, the

substantial unsteady effects are confined to J in equations (4.4c) and (4.4d) becoming

time-dependent, J(T ), together with the piecewise axial velocities U0
±(T ) acting then on

the left of (4.4c).

7 Final comments

It is perhaps apt to start here by considering aspects of the interference between jets

and in particular the implications for misdirection of a jet. The general case of Sections

2 and 3 shows up clearly the issue of jet misdirection raised in the introduction. The

general case with its smooth axial velocity U0 and cross-plane vorticity ζ0 as in Section

2 has controlling equations that illustrate the elliptic nature of the fluid motion in the

cross-plane and hence the interdependency of all the jets that are firing at any instant,

accentuated by a slow decay with distance in the cross-plane, while in addition the cross-

flow velocities are prime indicators of misdirection of any jet since the axial velocity is

the largest and is only affected slightly by interaction over the length scales of current

industrial concern. We refer to the scalings in Section 2. The findings are supported

further by the proof presented in Section 6 of non-periodicity of the jet flow in the

general case and are confirmed specifically by the results in Sections 4–6 on interference

between rectangular jets, circular jets and comparisons between them. Misdirection seems

a common finding although there is some sensitivity to the interference as, for example,

neighbouring jets may reverse the cross-flows arising in each other and increased sizes

of array can increase it, and we should reiterate the point that the major flow velocity

is that in the axial direction so that any misdirection is rather limited. Throughout this

the predictions of interaction and misdirection of jets revolve around a phenomenon that

is dependent on a number of parameters, on the detailed shapes of nozzles and on the

detailed velocity profiles within the jets, unless high precision is unimportant and more

qualitative information or guidance is acceptable.

Given that the velocity profiles in the jets emerging from the nozzles play a significant

part the present study has been divided into consideration of smooth profiles as the

most general case and plug-type profiles as special cases which are close to those of the

industrial setting. The latter provide some of the more qualitative information mentioned

above. Sample results are presented and described in Sections 4 and 5 for various velocity
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ratios and edge effects from the local velocity deficits and many more could be investigated

readily. The array flow analysis also works with axial velocity U0 being zero or close to

zero in part of the array of nozzles as a limiting process then applies to the edge conditions

in equations (4.4c) and (4.4d). Enhanced cross-flows are observed in the results. The wider

interest however remains probably in nonzero axial velocities since the quiescent scenario

is an unlikely one during the operation of a sorting machine for example. It is further

noteworthy that in the present 3D flow scenario there are effects from two main sources

of input, namely the axial velocity U0 and the cross-plane vorticity ζ0, and that much of

the current analysis has been concentrated on negligible such vorticity as a first central

case.

Unsteady effects also deserve more comment. Unsteady influences are discussed in brief

in Section 6 mostly in the context of plug flows and at some more length in [11] by

means of a model description and examples based on a quasi-steady assumption. The

model could be improved upon by using both the viscous contribution U0yy and the

scaled acceleration term U0T in the edge layer equations (4.5a) and (4.5b) or adding the

contribution U0T and so on to equation (4.4d) but in fact the latter contribution is small

compared with U0yy or more generally U0nn because of the scaling inherent in the presence

of the thin edge layer. So the acceleration effect seems more likely to appear in the bulks

of the jets. It is significant also that we can keep the account here quite short because

quasi-steady behaviour dominates in theory and is also believed to hold in the industrial

context. The unsteady flow analysis has still to address in full the progress of jet fronts in

the current setting and the typical impact of a jet upon a grain but a start has been made

in [11].

Miscellaneous points to note in passing here are the following. Laminar flow is con-

sidered primarily in the present analysis although the work also applies to the turbulent

regime. The latter has turbulent stresses replacing the laminar forms in Sections 2–6 and

leads to a much increased viscous thickness and likely shortened development length but

otherwise the same basic concept as here. Plug flows are especially appropriate in the

turbulent regime. More specifically in the laminar regime the typical scales associated

with swirl flow in the cross-plane are relatively small, which in a sense shows the practical

benefit of using predominantly axial jets. The scales and structure here are emphasised

in Sections 1 and 2. (In response to a referee′s comment we repeat that the correction

effects in the asymptotic analysis are of order 1/L and L/Re as discussed near the start

of Section 2.) Non-superposition of solutions in the plug cases for most circumstances

(Section 5.1) is worth mentioning again and can be verified by a perturbation about the

equi-velocity examples of Section 5.2. Likewise the potential function φ is non-constant

in general. Examination of large values of the parameter κ in Section 6 for instance

would seem worthwhile. Preliminary investigations of rectangles with swirl have been

done. Conformal mapping and other techniques of complex variable theory [18–20] can

be applied to Sections 4–6 but the specific examples shown seem to convey the major

findings.

Connections with industry can now be reconsidered. Particular issues which need to

be addressed concern the angles involved in misdirection and the uniformity of such

misdirection. The typical angles can be estimated from the scale analysis presented near

the start of the working as being of order 1/L and hence approximately 0.013–0.033 or
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1–2 degrees say. Broadly the same estimate results from consideration of the velocity

components. Hence over the representative axial distance of 150 mm mentioned in the

introduction the cross-plane distance is of the order 2–5 mms, in keeping with the nozzle

dimensions. This means that for a grain of typical dimension 2–4 mms a distance around 4

mms or so on either side of the grain is also affected significantly by the air jet. Therefore

an estimated 4–6 other grains are predicted to be hit collaterally, subject to variations

due to averaging of course. The velocity ratio in the nozzle jet and the influence of

turbulence [3, 4] would both tend to increase the prediction. As regards the uniformity

of misdirection our comments in a preceding paragraph indicate the sensitivity of the

interactions between jets and hence the likely variation in misdirection from firing to

firing. Yet the typical angles produced can be expected to remain as above and hence on

an order of magnitude basis a uniform estimate for the misdirection as used in the 150

mm calculation above seems plausible. Along with this the jump condition in equation

(4.4c) for the most realistic case of plug jets involves the velocity ratios v/u essentially

and hence angles operating in the X-n plane estimated as before, yielding a net inflow into

any edge layer and confirming the jet interactions are bound to misdirect. By contrast,

while the long-scale analysis begun in Section 2 shows there is significant cross-flow and

the periodic analysis in Section 6 shows cross-flows do not cancel out (in a sense), the

working suggests there is potential advantage to moving the target grain nearer the nozzle

because of the reduced departure from the centre-line trajectory there, an effect which is

linear in axial distance. This may be abetted by several factors: increasing the jet speed

or Reynolds number by even a comparatively small amount subject to flow transition;

using jets in combination (cf. the Kármán vortex street); swirling the jets especially in

an alternating pattern (which reduces the interference significantly); possibly ensuring

non-quiescent fluid (given the increased cross-plane activity found when U0 is small);

and possibly pulsing them to some extent although firm evidence for this last is lacking

as yet. To repeat, since detailed nozzle-array problems throughout are multi-parameter

multi-shape multi-profile ones more qualitative information or guidance as above is likely

to be potentially more useful for design requirements. General shapes of nozzle have

been accommodated here in principle, bearing in mind that rectangular and circular

shapes are the most commonly used in practice at least up to the present time and they

produce broadly similar effects. Several possible means to improve design are inherent

above and may be relatively easy to implement. The modelling work so far sets out a

possibly promising approach although there is clearly much still to do and specific design

questions remain from application to application.
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