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In the present study, we apply a proportional (P)–integral (I) feedback control to
a turbulent channel flow for skin-friction reduction. The instantaneous wall-normal
velocity at a sensing plane above the wall is measured as a sensing parameter, and
blowing/suction is provided at the wall based on the PI control. The performance of PI
controls is estimated by the change in the skin friction while varying the sensing plane
location ys and the proportional and integral feedback gains (α and β respectively).
The opposition control proposed by Choi et al. (J. Fluid Mech., vol. 262, 1994, pp.
75–110) corresponds to a P control with α = 1. When the sensing plane is located
close to the wall (y+s . 10), PI controls result in greater skin-friction reductions than
corresponding P controls. The root-mean-square (r.m.s.) sensing velocity fluctuations,
considered as the control error, approach zero with successful PI controls, but do
not with P controls. Successful PI controls reduce the strength of near-wall coherent
structures and the r.m.s. velocity fluctuations above the wall apart from those near the
wall due to the control input. The frequency spectra of the sensing velocity show that
the I component of PI controls significantly reduces the energy at low frequencies,
much more than P controls do. Proportional–integral controls are also applied to a
linearized flow model having transient growth of disturbances. The performance of
PI controls for a linearized flow model is very similar to that for a turbulent channel
flow, i.e. the low-frequency components of disturbances are significantly reduced by
the I component of PI controls, and the transient energy growth is suppressed more
than by P controls.

Key words: drag reduction, turbulence control, turbulent boundary layers

1. Introduction

The skin friction exerted by turbulence causes significant energy losses in flow
systems, and thus reduction of the skin friction in a turbulent boundary layer is one
of the most important and challenging problems in fluid mechanics. Various control
methods have been suggested to reduce the skin friction (Kim 2003, 2011; Collis
et al. 2004). Among these control methods, active ones have the potential to achieve
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the control purpose, and can be categorized into feedback and feedforward ones
depending on the usage of sensors for feedback. Examples of feedforward controls
(i.e. without sensors for feedback) are spanwise wall oscillation (Jung, Mangiavacchi
& Akhavan 1992; Quadrio & Ricco 2004), streamwise-travelling waves of blowing
and suction (Min et al. 2006) and wall deformation (Nakanishi, Mamori & Fukagata
2012), and streamwise-travelling waves of spanwise velocities (Quadrio, Ricco &
Viotti 2009). These control methods have been implemented in experiments (see, e.g.,
Choi, DeBisschop & Clayton 1998; Choi, Jukes & Whalley 2011) and have shown
large amounts of drag reduction. However, they require relatively large power inputs
to provide the control input, such as the oscillating wall. On the other hand, feedback
controls are expected to be more efficient than feedforward ones. A well-known
example of a feedback control is the opposition control suggested by Choi, Moin &
Kim (1994). This control method provided blowing and suction at the wall that was
opposite to the instantaneous wall-normal velocity at the sensing plane above the wall.
The effect of the sensing plane location (y+s0

= ysuτ0/ν) on the skin-friction reduction
was investigated, from which y+s0

≈ 10 was provided to be the optimal location for
the skin-friction reduction (approximately 25 %), where uτ0 is the wall-shear velocity
of uncontrolled flow and ν is the kinematic viscosity. Later, Hammond, Bewley &
Moin (1998) reported that a sensing plane of y+s0

= 15 resulted in a slightly larger
skin-friction reduction. Chung & Talha (2011) investigated the effects of the amplitude
of blowing and suction, and showed that the optimal location of the sensing plane
depends on the amplitude of blowing and suction. The applicability of opposition
control to higher Reynolds numbers has been also investigated by other researchers
(Chang, Collis & Ramakrishnan 2002; Iwamoto, Suzuki & Kasagi 2002; Pamiés et al.
2007). However, opposition control has practical difficulties in implementing sensors
at a sensing plane located very near the wall, and thus control methods with sensors
at the wall were introduced for more practical purposes (Choi et al. 1994; Lee et al.
1997; Lee, Kim & Choi 1998; Lee et al. 2001). In the latter two studies, the blowing
and suction was determined by the weighted average of neighbouring wall-shear
stresses or wall pressures. These feedback controls are much harder to implement in
experiments than feedforward ones, but some experiments have been performed to
realize these feedback controls using distributed microsensors and actuators (Kasagi,
Suzuki & Fukagata 2009).

More systematic methods based on control theories have been also suggested
for skin-friction reduction or the reduction of transient growth of disturbances. For
example, gradient-based optimal and suboptimal controls were proposed by Abergel
& Temam (1990), Choi et al. (1993) and Bewley & Moin (1994), and H∞ (robust)
and H2 (optimal) controls were suggested by Bewley & Liu (1998), Joshi, Speyer
& Kim (1999), Lee et al. (2001), Högberg, Bewley & Henningson (2003), Chevalier
et al. (2007), Sharma et al. (2011) and Nita, Vandewalle & Meyers (2016). Although
these controls were successful in achieving their goals, they require more information
on flow fields or somewhat excessive computational work, making it difficult for
them to be implemented for the control of turbulent flow.

One of the most popular linear controls in the control society is proportional
(P)–integral (I)–differential (D) control. Proportional–integral–differential control has
been used widely for engineering applications. Because a PID controller determines
the actuation directly from the sensing variable without additional computations, it
may be easily implemented in flow systems. Nevertheless, PID control has been
applied to only a few fluid flows, including flow over a cylinder and flow with
two-dimensional perturbations in a channel. Since the purpose of the present study
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is skin-friction reduction, we do not discuss the flow over a cylinder in the present
paper; for more details on the application of PID control to this flow, see the recent
studies by Son, Jeon & Choi (2011) and Das et al. (2016), and references therein.
Hu & Bau (1994) applied P control based on wall-shear measurement to stabilize a
laminar plane channel flow by changing the viscosity by heating and cooling at the
wall. Joshi, Speyer & Kim (1997) applied a linear control theory to stabilize the flow
in a two-dimensional channel by blowing and suction at the wall with measurement
of the wall-shear stress. Opposition control (Choi et al. 1994), mentioned above, is
also a type of P control with a proportional gain of α = 1, and the change in the
amplitude of blowing and suction in the work by Chung & Talha (2011) and Deng
et al. (2014) is also a P control with different magnitudes of the proportional gain.
According to Son et al. (2011), a PID control is considered as a P control with a
phase shift if the system under consideration is linear. Therefore, opposition control
with upstream sensing (Lee 2015) can be considered as a PID control if the near-wall
dynamics in turbulent channel flow is assumed to be essentially linear.

To the best of our knowledge, there has been no attempt to apply PI or PID controls
to turbulent channel (or boundary layer) flow, although a P control has been applied
to this flow, as mentioned above. Therefore, in the present study, we apply PI control
to turbulent channel flow for skin-friction reduction, and compare its performance
with that of P control. Here, we do not consider the D (differential) component of
PID control because the system becomes easily unstable with this component due
to turbulent fluctuations in channel flow. We vary the sensing plane location (y+s0

)
and the proportional and integral gains (α and β) to investigate their effects on
the performance of skin-friction reduction. To further understand the performance
of PI controls, we also consider a linearized flow model having transient growth
of disturbances in a channel. Details of the PI control and numerical methods are
described in § 2. The results of the PI control for a turbulent channel flow from direct
numerical simulations are given in § 3. In § 4, we show the performance of the PI
control applied to a flow model obtained from the linearized Navier–Stokes equations,
followed by conclusions in § 5.

2. Control method and numerical details
2.1. Proportional–integral–differential control

The linear PID control is based on only the output being available for feedback, and
its controller is composed of the simple gain (P control), integrator (I control) and
differentiator (D control), or some weighted combination of these components, as
follows:

ψ(t)= αe(t)+ β
∫ t

0
e(τ ) dτ + γ de(t)

dt
. (2.1)

Here, ψ(t) is the control input, e(t) (= r(t) − ζ (t)) denotes the error (that is, the
discrepancy between the reference input r(t) and the control output ζ (t)), and α, β and
γ are the proportional, integral and differential gains respectively. The proportional
part adjusts the output signal in direct proportion to the error. When the proportional
gain α increases, the system under consideration yields a fast response, small steady-
state errors and a highly oscillatory response. The integral part corrects for any error
that may occur between the desired value and the process output over time. Thus, the
steady-state error can be zero due to the integral part. However, because the integral
part responds to accumulated errors from the past, it can cause the present value
to overshoot the set-point value. The differential part uses the rate of change of the
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error signal and forces the error to zero, without oscillations of excessive amplitude.
However, the differential part slows the transient response of the controller and is
highly sensitive to noise in a signal, because it amplifies the noise, the high-frequency
component of the signal. Thus, the differential part makes a process unstable when
the noise and differential gain are sufficiently large. For this reason, we consider only
P and PI controls for the present turbulent channel flow. In the present study, the
control output ζ (t) is the sensing velocity vs, which is the wall-normal velocity at
a sensing plane above the wall. We set the reference input r(t) to zero, meaning that
we consider the control output ζ (t) itself as an error with opposite sign (e=−ζ ) and
want to drive ζ (t) to zero through the present feedback control. A successful feedback
control removes the wall-normal velocity fluctuations at the sensing plane, which may
in turn reduce the strength of near-wall streamwise vortices and result in a decrease
in the skin friction.

2.2. Numerical methods
The governing equations for an unsteady incompressible viscous flow are given as

∂ui

∂t
+ ∂uiuj

∂xj
=− dP

dx1
δi1 − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
, (2.2)

∂ui

∂xi
= 0, (2.3)

where the xi are the Cartesian coordinates, the ui are the corresponding velocity
components (u, v, w), p is the pressure fluctuation and −dP/dx1 is the mean
streamwise pressure gradient to drive a constant mass flow rate in a channel.
All variables are non-dimensionalized by the channel half-height (h) and laminar
centreline velocity (ul = (3/2)ub; ub is the bulk mean velocity). The Reynolds
number considered is Re= ulh/ν = 3000 (Reτ = uτ0h/ν ≈ 140). The Reynolds number
considered here is quite low but is within the range (Reτ = 100–180) considered in
previous studies (Choi et al. 1994; Lee et al. 1997, 1998; Hammond et al. 1998;
Högberg et al. 2003; Chung & Talha 2011; Sharma et al. 2011; Deng et al. 2014;
Lee 2015; Nita et al. 2016). Chang et al. (2002) and Iwamoto et al. (2002) applied
P controls to turbulent channel flow at various Reynolds numbers, and showed that
the maximum amount of skin-friction reduction and its optimal sensing location
(y+s0

) decrease with increasing Reynolds number. Thus, the results from the present
parametric study on the sensing plane (y+s0

) and feedback gains (α and β) should also
be dependent on the Reynolds number, but the main conclusions regarding the effects
of these parameters on the skin-friction reduction obtained at low Reynolds number
should not be significantly changed even at higher Reynolds number.

A second-order semi-implicit fractional step method is used for time advancement, a
third-order Runge–Kutta method is used for convective terms and the Crank–Nicolson
method is used for diffusive terms. The second-order central difference scheme is
applied to spatial derivative terms. Periodic boundary conditions are used in the
streamwise and spanwise directions, and a no-slip condition is applied to both the
upper and lower walls (u=w= 0). The computational domain size is 3π(x)× 2(y)×
π(z) and the number of grid points is 64(x) × 65(y) × 64(z). Uniform grids are
used in the streamwise and spanwise directions, while a non-uniform grid is used in
the wall-normal direction. The grid spacings in wall units are 1x+0 = 1xuτ0/ν ≈ 20,
1y+min 0 ≈ 0.45, 1z+0 ≈ 6.6 respectively, which are slightly coarser than those of
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Choi et al. (1994). To validate the results from the present grid resolution, we
conducted simulations with a higher resolution of 1x+0 ≈ 10, 1y+min 0≈ 0.22, 1z+0 ≈ 3.3
for two successful P control (α = 1, and y+s0

= 11.1 and 15.4 respectively) and one
PI control (α = 1, β = 214 and y+s0

= 11.1) cases (see § 3), resulting in only 2 %
differences in the skin-friction reduction compared with the results with the present
resolution. The slightly coarse resolution at a low Reynolds number adopted here
allows us to conduct an extensive parametric study on the P and PI controls.

All simulations are started with the fully developed velocity field of the no-control
case. For the control, all conditions are kept the same as in the simulation without
control, except for the boundary conditions at the wall at which the P and PI controls
are implemented. At each instant, the boundary condition of the wall-normal velocity
component (i.e. blowing/suction) is defined as

vw(x, z, t)=−αvs(x, z, t)− β
∫ t

0
vs(x, z, τ ) dτ , (2.4)

where vs(x, z, t) is the wall-normal velocity at a sensing plane (y+s0
) above the wall.

The variation of the skin-friction drag (1D) is defined as

1D(%)= D(control)−D(no control)
D(no control)

× 100. (2.5)

Unless otherwise specified, the variables in wall units are normalized with the
uncontrolled wall-shear velocity uτ0 .

3. Proportional and proportional–integral controls applied to turbulent channel
flow

3.1. Proportional (P) control
In this section, we present the results of P control by varying the sensing plane
location (y+s0

) and the proportional gain (α). Figure 1 shows the variations of the
skin friction with the sensing plane location (y+s0

) and proportional gain (α), where
y+s0
= 5–32 and α = 0–1. When α > 1, all the cases considered diverged even if y+s0

was small. The opposition control by Choi et al. (1994) corresponds to the case with
α = 1, where the skin friction decreases at y+s0

. 21 but rapidly increases at y+s0
> 21

(figure 1a). The maximum skin-friction reduction of 29 % is obtained with the sensing
plane at y+s0

= 15.4 for α = 1. This sensing plane location is in good agreement with
that of Hammond et al. (1998), and the amount of skin-friction reduction is slightly
larger than that in Choi et al. (1994) and Hammond et al. (1998). This is because we
perform simulations at Reτ = 140, which is slightly lower than Reτ = 180 adopted in
previous studies (Choi et al. 1994; Hammond et al. 1998; Chung & Talha 2011), and
the maximum amount of skin-friction reduction decreases with increasing Reynolds
number (Chang et al. 2002).

With increasing y+s0
, the skin friction decreases and reaches its minimum at y+s0

=
y+s,opt. With further increase in y+s0

, the skin friction starts to increase from its minimum
and becomes larger than that without control. At larger α (6 1), the optimal sensing
position resulting in minimum skin friction is lower (e.g. y+s,opt ≈ 15 for α = 1 and
20 for α= 0.4) (Chung & Talha 2011) and the skin-friction reduction is larger. Thus,
the optimal proportional gain providing maximum skin-friction reduction also depends
on the sensing plane location. When y+s0

6 15.4, the skin friction decreases more with
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FIGURE 1. Variation of the skin friction with P control: (a) sensing location y+s0
with@,

α= 0.2; ×, 0.4;C, 0.6; +, 0.8;E, 1.0; (b) proportional gain α with@, y+s0
= 5.1; ×, 9.3;

C, 15.4; +, 20.9;E, 24.2;6, 32.

larger α, and the P control with α = 1 shows the maximum skin-friction reduction.
On the other hand, when y+s0

> 15.4, maximum skin-friction reduction is obtained with
α < 1, although the amount of skin-friction reduction is smaller than that with α = 1
at y+s0

= 15.4.
Figure 2 shows the root-mean-square (r.m.s.) velocity fluctuations normalized by

uτ0 and uτ respectively for y+s0
= 15.4, at which the skin friction is minimum for α= 1.

Here, uτ is the wall-shear velocity of controlled flow. The r.m.s. velocity fluctuations
decrease more with larger α (except very near the wall for the wall-normal velocity
fluctuations due to the control input; figure 2a,b). As observed in previous studies
(Choi et al. 1994; Hammond et al. 1998; Chung & Talha 2011), the P control
establishes a ‘virtual wall’, showing a local minimum of vrms in between the physical
wall and the sensing plane (figure 2c,d). The location of the virtual wall moves
away from the physical wall as α increases. The outward shifts of the r.m.s. velocity
fluctuations in the controlled cases also indicate the displaced virtual wall and
thickened sublayer due to control (figure 2c,d).

It is interesting to mention the behaviour of the wall-normal velocity at the sensing
plane (vs,rms) for different values of α here. As described earlier, the sensing velocity
vs is considered as an error, and the purpose of control is to reduce this error.
Figure 3 shows the r.m.s. sensing velocity fluctuations for different values of α and
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FIGURE 2. Root-mean-square velocity fluctuations with various values of α at y+s0
= 15.4,

normalized by (a,b) uτ0 and (c,d) uτ . The dashed vertical line in (b) denotes the location
of the sensing plane.

y+s0
. The sensing velocity fluctuations increase as y+s0

increases and gradually decrease
with increasing α (figure 3a). When v+s,rms is normalized by the uncontrolled value at
each y+s0

, we obtain a simple relation as

v+s,rms

v+s,rms0

≈ 1
(1+ α), (3.1)

except for y+s0
= 18.0 and 20.9 (figure 3b). The relation in (3.1) may be explained

by the block diagram provided in figure 4. From this figure, one can easily find that
v+s /v

+
so
= G/(1+ Gα), where G is the transfer function between ζ = v+s and ψ + v+so

.
In the absence of control (i.e. ψ = 0), G= I. Thus, in cases where the sensing plane
location is not far from the wall where the control is applied and the magnitude of
the control input is not large, G≈ 1, resulting in v+s /v

+
so
≈ 1/(1+ α).

3.2. Proportional–integral (PI) control
For PI control, the adjustable parameters are the proportional and integral gains
(α, β), and the sensing plane location y+s0

. Figure 5 shows the variation of the skin
friction with these parameters, where the values of β are normalized with uτ0 and
h. The cases with β = 0 are the P control, and those with α = 0 are the I control.
When β is sufficiently large (e.g. β > 200), the PI control provides more skin-friction
reduction than the P control (β = 0) for all of the sensing locations considered,
but the amount of skin-friction reduction is more or less saturated at large values
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FIGURE 3. Root-mean-square sensing velocity fluctuations with various values of α: (a)
vs,rms normalized by uτ ; (b) v+s,rms normalized by the value without control (v+s,rms0

);@, y+s0
=

5.1;q, 7.7; ×, 9.3; ∗, 11.1;3, 13.1;u, 15.4; +, 18.0;6, 20.9. In (b), the dashed line
indicates v+s,rms/v

+
s,rms0
= 1/(1+ α).

G
e

–1

FIGURE 4. Block diagram of the P control.

of β. On the other hand, the performance of the PI control is very sensitive to the
sensing plane location, y+s0

. At low values of y+s0
(like at y+s0

= 5.1; figure 5a), the
skin friction decreases monotonically with increasing β. However, as y+s0

increases
further (figure 5b–d), the skin friction rapidly increases for a certain range of β, and
this range of β becomes wider at higher sensing plane locations. It should also be
noted that this increase in the skin friction is attenuated at larger values of α. Among
all the values of parameters considered, the maximum skin-friction reduction of
approximately 34 % occurs at (α, β, y+s0

)= (1, 428, 11.1). This amount of skin-friction
reduction is larger than that with the optimal P control (29 %). On the other hand, PI
controls at y+s0

> 12 were unstable and diverged. We do not have a clear explanation
for the variation of the skin friction with β; i.e. the skin friction rapidly increases
and the system becomes unstable at intermediate values of β, and then the amount
of skin-friction reduction is maximum at high values of β. To further understand this
behaviour, we apply PI controls to a linearized flow model having transient growth
of disturbances. This result is given in § 4.

Figure 6 shows the variation of the r.m.s. velocity fluctuations with a PI control,
together with those from two P controls and no control. Here, y+s0

=15.4 is the optimal
sensing plane location for the P control, and y+s0

= 11.1 is that for the PI control.
Due to the control (figure 6a,b), the r.m.s. velocity fluctuations are overall reduced.
Notably, unlike the P control, the r.m.s. wall-normal velocity fluctuations show a
minimum at the sensing location with PI control, indicating that the I component of
PI control indeed minimizes the steady-state error, i.e. vs,rms. The r.m.s. wall-normal
velocity fluctuations at the wall, i.e. vwrms , represent the magnitude of blowing and
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FIGURE 5. Variation of the skin friction with PI control: (a) y+s0
= 5.1; (b) 7.7; (c) 9.3;

(d) 11.1;@, α = 0 (I control); ×, 0.2; C, 0.5; +, 0.7;E, 1.0. In (d), the cases of α = 0
and 0.2 are not drawn because numerical solutions diverge for these cases.

suction at the wall. For the P control, the magnitude of blowing and suction at the
wall is identical to that of the sensing velocity fluctuations vs,rms. For the PI control,
vrms at the wall is much larger than vs,rms because the control input should effectively
reach the sensing location y+s0

to minimize vs,rms. This is the reason why the PI
control becomes unstable when the sensing location is farther away from the wall.
The streamwise velocity fluctuations also increase very near the wall due to large vrms

at the wall. As observed from P controls, the outward shifts of the r.m.s. velocity
fluctuations in the PI control also indicate the displaced virtual wall and thickened
sublayer due to control (figure 6c,d).

Figure 7 shows the energy spectra of the sensing and actuation velocity fluctuations
of the PI control (α= 1 and β = 0∼ 500; y+s0

= 9.3). With the PI control, the spectra
of the sensing velocity fluctuations decrease with increasing β, indicating that vs,rms

also decreases with increasing β. With the P control (β = 0), the energy at all of
the frequency ranges is reduced from that of no control. With the addition of the I
component, the energy is notably further reduced at low to intermediate frequencies.
Moreover, this reduction of energy at low frequencies becomes more manifest at
larger β, and the frequency band for this reduction is bounded by ωh/uτ0 ∼ β,
which suggests that the PI control reduces the strength of large-scale structures
more effectively than the P control. It should also be noted that, unlike those of the
sensing velocity, the energy spectra of the actuation velocity are not very different
for different values of β because of the integral component of PI control. In the P
control with α= 1, vw is identical to −vs, and thus their energy spectra are the same.
With the PI control, however, vw is mainly determined by the integral component of
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FIGURE 6. Variation of the r.m.s. velocity fluctuations with PI control, normalized by (a,b)
uτ0 and (c,d) uτ ; ——, no control; – – – –, P control (α= 1, y+s0

= 11.1); · · · · · ·, P control
(α = 1, y+s0

= 15.4); – - – - –, PI control (α = 1, β = 214, y+s0
= 11.1).
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FIGURE 7. Energy spectra of the sensing and actuation velocities from PI control (y+s0
=

9.3, α = 1): (a) sensing velocity (vs); (b) actuation velocity (vw).

vs, e.g. the r.m.s. value of the integral component is five times that of the proportional
component for α = 1 and β = 200 at y+s0

= 9.3.
Figure 8 shows the time histories of the sensing velocities for the P (β = 0) and

PI (β 6= 0) controls, together with that for no control. In control theory (Franklin,
Powell & Emami-Naeini 1994), the settling time is defined as the time required for
the transient to decay to within a few per cent (usually 5 % or 2 %) of the final value.
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FIGURE 8. Time histories of the sensing velocities (y+s0
= 9.3, α = 1).

However, since the fluctuation magnitude itself is often larger than that amount in
turbulent flow, the settling time may not be a proper choice as the response time
of the control. Instead, the rise time, which is the time required for the system to
reach the vicinity of its new set point, may be more appropriate. It is clear from
figure 8 that larger β has shorter rise time, indicating that larger β can control flow
structures having smaller integral time (or streamwise length) scales. This is consistent
with the variation of the energy spectra of vs with β in figure 7, i.e. the reduction of
energy at low to intermediate frequencies by PI control is bounded by ωh/uτ0 ∼ β.
This rise time appears to be shorter than tuτ0/h = 5 (t+ = 700) for all of the cases
considered. For example, in the case of β= 500, the rise time may be tuτ0/h= 0.5∼ 1
(t+ = 70–140). Considering that the eddy turnover time in the near-wall region is
t+ ≈ 80, the control response time to reach an equilibrium state is comparable to or
longer than the near-wall eddy turnover time. For the linearized flow model discussed
in § 4, the frequency responses of the P and PI controls are given (see below).

Instantaneous vortical structures identified by isosurfaces of λ2 (Jeong & Hussain
1995) and the r.m.s. profiles and power spectra of the streamwise vorticity fluctuations
for the cases of no, P and PI controls are shown in figure 9. The P and PI
controls shown in this figure produced nearly the same amounts of drag reduction
(approximately 29 %). As shown, near-wall vortical structures and the strength of the
streamwise vorticity are significantly weakened by the P and PI controls. It is also
notable that the reductions of power of the streamwise vorticity from the P and PI
controls are very similar to each other, although the changes in the sensing velocities
are quite different (see, for example, figure 7a). This indicates that the near-wall
vortical structures are weakened and deformed according to the controls, but not very
differently depending on the P and PI controls (if the amount of drag reduction is
same), even if their target (i.e. sensing) velocities are changed quite differently.

Figure 10 shows the evolution of a near-wall vortex and contours of vs and vw,
together with cross-flow vectors (v, w) on a (y, z) plane. These time sequences of
flow fields are obtained right after the P and PI controls are applied. As shown, in
the case of no control, the near-wall vortex generates sweep and ejection motions on
its right and left sides respectively and travels downstream. In the case of P control
(y+s0
= 9.3 and α = 1; figure 10b), the actuation velocity is 180◦ out of phase with

the sensing velocity, and prevents the sweep and ejection motions induced by the
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FIGURE 9. Instantaneous vortical structures and streamwise vorticity: (a) vortical
structures (isosurfaces of λ2=−0.2); (b) r.m.s. streamwise vorticity fluctuations; (c) power
spectra of the streamwise vorticity fluctuations. In (b,c): ——, no control; – – – –, P control
(α = 1, y+s0

= 15.4); – - – - –, PI control (α = 1, β = 214, y+s0
= 9.3). In (c), the spectra for

the cases of no, P and PI controls are from the locations where the r.m.s. streamwise
vorticity fluctuations are local maxima, i.e. yuτ0/ν = 19.1, 25.6 and 33.7 respectively.

streamwise vortex, which lifts up the centre of the streamwise vortex away from the
wall. In the meantime, the magnitude of the actuation velocity at the wall decreases
as the streamwise vortex becomes weaker and is located further away from the wall.
In the case of PI control (y+s0

= 9.3, α = 1 and β = 214; figure 10c), the actuation
velocity is similar to that of P control right after the control, but becomes stronger
in time due to the time integration of sweep and ejection motions by the streamwise
vortex. This actuation lifts up the vortex further away from the wall than the P control
does, and the strength of the vortex is also much weaker than that by P control. It
should be noted that, after a short time (tuτ0/h= 0.0276), the PI control successfully
removes the wall-normal velocity fluctuations on the sensing plane.

The sweep motion induced by the near-wall vortical structure requires a time
to reach at the wall and generate high skin friction there. Therefore, Lee (2015)
suggested a P control with a sensor located upstream of the actuator, i.e. vw(x, z, t)=
−vs(x − xs, z, t), where xs (> 0) is the streamwise distance between the sensor
and the actuator. This control produced a slightly larger drag reduction. On the
other hand, in the present PI control, the sensing velocity is integrated over time
at a given sensing location. Then, one may wonder whether the present PI control
does not work properly because the near-wall vortical structures are inclined in
the wall-normal direction. However, it is well known that the inclination angle of
near-wall structures is only 9◦ (Jeong et al. 1997) and the statistical location of their
centre is approximately 20 in wall units (Kim, Moin & Moser 1987). Since the
sensing plane considered in this study is much lower than this location, the control
results are not greatly affected by the inclination of the structures. However, when the
sensing location moves away from the wall, the integrated actuation velocity becomes
too large even in the absence of near-wall vortices, which makes the system unstable.
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FIGURE 10. (Colour online) Evolution of a near-wall vortex and contours of the wall-
normal velocities on the sensing plane (y+ = y+s0

) and the wall, together with cross-flow
vectors (v,w) on a (y, z) plane at a streamwise location where maximum |vs| is observed
(denoted as a white dot in each figure): (a) no control; (b) P control (y+s0

= 9.3, α = 1);
(c) PI control (y+s0

= 9.3, α = 1, β = 214). The contours of the wall-normal velocities and
the cross-flow vectors are drawn in the domain sizes of (δx/h, δz/h)= (1.62, 0.491) and
(δz/h, δy/h)= (0.491, 0.135) respectively.

Figure 11 shows the mechanisms responsible for the skin-friction reduction by P
and PI controls. In this figure, we draw the streamwise evolution of a tilted elongated
near-wall streamwise vortex due to P and PI controls. Since a downwash motion
towards the wall is induced by this streamwise vortex, the P or PI control provides a
blowing underneath this downwash motion and attenuates this motion in time. With
the P control (α = 1), at each instant, the actuation vw is opposite to the sensing
velocity vs. When vs decreases due to the P control, vw also decreases in time.
Therefore, the P control cannot eliminate vs, but drives the wall-normal velocity at
y≈ ys/2 to nearly zero. On the other hand, with the PI control, vw keeps increasing
until vs becomes zero, because the I component of the PI control accumulates past
values of ys. Thus, successful PI controls remove the wall-normal motion at the
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FIGURE 11. (Colour online) Schematic diagram of the mechanisms responsible for the
skin-friction reduction by P and PI controls. The streamwise vortex shown in this figure
has positive streamwise vorticity and its centre is located behind the (x, y) plane.

sensing plane and reduce the strength of near-wall streamwise vortices, resulting in
more reduction in the skin friction than the P control.

4. Proportional–integral control based on a linearized flow model
In the previous section, we showed that the PI control performs better than the P

control in reducing the skin friction in a turbulent channel flow. Although turbulent
channel flow is overall highly nonlinear, the underlying mechanism of drag reduction
by the present control may be linear. Therefore, to further understand the effects of
the P and PI controls, we consider a flow model linearized from the Navier–Stokes
equations,

∂u
∂t
+U(y)

∂u
∂x
+
(
v

dU
dy
, 0, 0

)
=−∇p+ 1

Reτ
1u, (4.1)

where U(y) is the mean velocity profile of turbulent channel flow, u = (u, v, w) is
the velocity vector of the perturbations, p is the pressure perturbation and 1=∇2 =
∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.

For turbulent channel flow that is statistically homogeneous in the streamwise and
spanwise directions, the Navier–Stokes equations are reformulated with the Fourier
modes of the wall-normal velocity v̂ and wall-normal vorticity ω̂y. Then, the linearized
Navier–Stokes equations (4.1) are written in the following operator form (Schmid &
Henningson 2001):

∂

∂t

[
v̂

ω̂y

]
=
[

Los 0
Lc Lsq

] [
v̂

ω̂y

]
, (4.2)

where Los, Lsq and Lc are the Orr–Sommerfeld, Squire and linear coupling operators
respectively, and they are given by

Los = 1̂−1

(
−ikxU1̂+ ikxU′′ + 1

Reτ
1̂2

)
, (4.3)
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Lsq =−ikxU + 1
Reτ

1̂, (4.4)

Lc = ikzU′. (4.5)

Here, the superscript (′) denotes d/dy, kx and kz are the streamwise and spanwise
wavenumbers respectively, and 1̂= ∂2/∂y2 − k2

x − k2
z .

The linearized Navier–Stokes equations with a control input q can be written in the
following state-space representation (Bewley & Liu 1998; Lim & Kim 2004):

ẋ= Ax+ Bq, (4.6)
y= Cx, (4.7)

where x= (v̂, ω̂y)
T is the state of the system, q is the control input v̂w (blowing and

suction at the wall) and y is the control output v̂s (sensing velocity). The operators A
and B are the matrices for internal and boundary grid points respectively, which are
obtained by applying spatial discretizations to (4.2). The details of the matrices A and
B can be found in Bewley & Liu (1998). The observation operator C is constructed
once the sensing location ys is chosen; the components of C are 1 only at the sensing
location and 0 otherwise. For P control, the control input is q = −αy = −αCx. By
substituting this into (4.6), the system equation becomes

ẋ= (A− αBC)x. (4.8)

For PI control, we introduce a vector z satisfying ż= y=Cx. Then, the control input
becomes q=−αy− βz. By substituting this into (4.6), the system equation is given
as [

ẋ
ż

]
=
[

A− αBC −βB
C 0

] [
x
z

]
. (4.9)

Thus, the modified system matrix for P control is Ac=A−αBC and that for PI control

is Ac =
[

A− αBC −βB
C 0

]
.

The model based on the linearized equation may miss some nonlinear characteristics
existing in turbulent flow, but it is well known that the linear process plays an
important role in generating and sustaining near-wall turbulent structures (Reddy &
Henningson 1993; Kim & Lim 2000). Many studies (Hu & Bau 1994; Joshi et al.
1997; Bewley & Liu 1998; Lee et al. 2001; Högberg et al. 2003; Kim & Bewley
2007) have investigated various control methods aiming at altering this linear process
based on a flow model from linearized equations, and have shown that some of the
controls are successful in changing turbulent channel and boundary layer flows. In
this section, we apply the P and PI controls to the flow models, (4.8) and (4.9),
obtained from the linearized equations, and compare the results with those from
direct solutions of the Navier–Stokes equations discussed in § 3.

4.1. Frequency response
The frequency response of the system is obtained from the linearized flow model, (4.6)
and (4.7). With a harmonic control input q̂(ω), the control output after enough time
is ŷ= T ŷq̂q̂, where the transfer function is given as T ŷq̂=C(iωI −A)−1B. In this case,
the frequency response, ‖ŷ‖/‖q̂‖, is defined by the L2-norm of the transfer function,
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FIGURE 12. (Colour online) The L2-norm of the frequency response of the system output
to sinusoidal noise: (a) P control (α=0.1, 0.2, 0.5, 1, 2, 5, and 10); (b) I control (β=1, 2,
5, 10, 20, 50, 100, 200, and 500). The wavenumber pair of the system is (kx, kz)= (0, 8.5)
and y+s0

= 10.7. The thick solid line corresponds to the case of no control. In (a), the
inset shows the variation of ‖T ŷn̂‖ with α at ωh/uτ0 = 1, together with a dotted line of
‖T ŷn̂‖ = 1/(1+ α).

‖T ŷq̂(ω)‖ =√trace(T ∗ŷq̂(ω)T ŷq̂(ω)), where ∗ denotes the complex conjugate. Similarly,
when we consider noise in the system, the state-space equation (4.6) becomes

ẋ= Ax+ Bq+Gn. (4.10)

Here, n is the noise in the system and G is the square root of the expected covariance
of the noise. In the present study, G is assumed to have simple covariance such as
G= I . Without control input (q̂= 0), the transfer function of the system output coming
from a sinusoidal noise n(ω) can be obtained from T ŷn̂(ω)= C(iωI − A)−1G. For the
control, we use the modified transfer function Ac instead of A. For the PI control, we

also use C ′=[C 0] and G′=
[

G
0

]
instead of C and G respectively to match the matrix

size. The L2-norm of the transfer function from noise is determined by ‖T ŷn̂(ω)‖ =√
trace(T ∗ŷn̂(ω)T ŷn̂(ω)). The value of (1/2π)

∫∞
−∞ ‖T ŷn̂(ω)‖2 dω is referred to as the

square of the H2-norm of the transfer function (Doyle et al. 1989; Bewley & Liu
1998).

Figure 12 shows the variation of ‖T ŷn̂(ω)‖ with the proportional gain α and the
integral gain β for a wavenumber pair of (kx, kz) = (0, 8.5) and y+s0

= 10.7. This
wavenumber pair corresponds to that of maximum transient energy growth (see below).
As shown, the P and I controls reduce ‖T ŷn̂(ω)‖ at almost all frequencies except very
high frequencies for the I control. For the P control, the magnitude of the frequency
response decreases as 1/(1 + α) for all frequencies (see, for example, the inset in
figure 12a). It should be noted that this linear system shows continuous reduction of
the magnitude even at very large α, although P control with α > 1 makes the system
unstable for turbulent channel flow. For the I control, the magnitude of frequency
response decreases at ωh/uτ0 6 β. These results are very similar to the modifications
of the energy spectra of the sensing velocity fluctuations in turbulent channel flow by
P and PI controls (figure 7).

4.2. Transient growth of disturbances
It is generally accepted that the transient growth of optimal disturbances in a
linearized flow model shows the formation of streaky structures (Butler & Farrell
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1992; Kim, Choi & Kim 2016), which play a key role in the regeneration of
near-wall turbulent structures. This transient growth of a disturbance has been shown
to be suppressed by opposition control (Farrell & Ioannou 1996; Lim & Kim 2004)
and by a linear optimal control (LQG) (Bewley & Liu 1998; Lim & Kim 2004). In
this subsection, we discuss the effects of P and PI controls on the transient growth
of disturbances. We calculate the transient-growth ratio of a disturbance G, defined
as the ratio of its kinetic energy at a given time to its initial value, by means of
singular value decomposition (SVD) (Lim & Kim 2004):

G(kx, kz, t)= sup
E(kx,kz,0)6=0

E(kx, kz, t)
E(kx, kz, 0)

, (4.11)

where the kinetic energy density of a disturbance is

E=
∫ 1

−1

[
v̂∗v̂ + 1

k2
x + k2

z

(
∂v̂∗

∂y
∂v̂

∂y
+ ω̂∗y ω̂y

)]
dy. (4.12)

The detailed procedures for obtaining G are shown in appendix A. The performance
of P and PI controls is evaluated by comparing the largest energy growth ratios for
various control parameters such as the sensing plane location y+s0

, and the control gains
α and β.

Butler & Farrell (1993) constrained the growth time of disturbances at t+ = 80,
which corresponds to the eddy turnover time in the near-wall region in turbulent
channel or boundary layer flow, and obtained an optimal spanwise wavelength of
λ+z ≈ 110, which is approximately the typical spanwise spacing of the near-wall
streaks. Therefore, we compare the maximum energy growth ratio, Max(G(t))
(= supkx,kz

G(kx, kz, t)), at t+ = 80 for different control parameters, to evaluate their
performance. The variation of Max(G(t+ = 80)) with y+s0

for the P and PI controls is
shown in figure 13. The variation of the maximum growth ratio is defined as

1Max(G)(%)= Max(G)−Max(G)no

Max(G)no
× 100, (4.13)

where Max(G(t+ = 80))no = 36.3. For the P control (figure 13a), the variation
of Max(G) is very similar to that of the skin friction in turbulent channel flow
(figure 1a). That is, Max(G) decreases with increasing y+s0

until it reaches a minimum,
and then it rapidly increases with further increase in y+s0

. The largest suppression of
Max(G) is 42.5 % at y+s0

= 13.4. The PI control shows a slightly better performance
in suppressing Max(G) than the P control when y+s0

6 8.2 (figure 13b). In this range
of y+s0

, Max(G) decreases with increasing β. The maximum suppression of Max(G)
is 45.4 % at y+s0

= 8.2 with β = 500. However, when y+s0
> 8.2, the PI control increases

Max(G(t)) drastically. All of these behaviours from P and PI controls are very
similar to those observed in turbulent channel flow. When y+s0

= 6.0 (figure 13c), the
PI controls (i.e. non-zero β) show better performance than the P control (β = 0), but
this enhanced performance is nearly insensitive to the values of α and β considered.
When y+s0

= 8.2 (figure 13d), the PI control increases Max(G(t)) for a range of β, and
this range becomes wider as α decreases. At a sufficiently large β (> 300), the PI
control suppresses Max(G(t)) for all values of α considered. This behaviour is also
very similar to that in turbulent channel flow (figure 5).

Figure 14 shows the contours of the energy growth ratio G(t+ = 80) on the
wavenumber (kx, kz) plane. For no control, the disturbance with (kx, kz) = (0, 8.5)
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FIGURE 13. Variation of Max(G(t+ = 80)) with y+s0
(a,b) and β (c,d): (a) P control (@,

α= 0.2; ×, 0.4;C, 0.6; +, 0.8;E, 1.0); (b) PI control with α= 1 (@, β= 0; ×, 10;C, 20;
+, 50;E, 100; 4, 200;6, 500); (c) PI control for y+s0

= 6.0; (d) PI control for y+s0
= 8.2.

In (c,d),@, α = 0; ×, 0.2; C, 0.5; +, 0.7;E, 1.0.

results in a maximum transient energy growth ratio of Max(G)no = 36.3. Its
corresponding spanwise wavelength, λ+z = 104, is approximately equal to that of the
wall-layer streaks. The P and PI controls with proper sensing locations suppress the
growth of this disturbance. Accordingly, Max(G(t)) occurs at different wavenumber
pairs for the P and PI controls. For the P control (α = 1, y+s0

= 13.4; figure 14b),
Max(G) = 20.8 at (kx, kz) = (1.4, 7.25), and for the PI control (α = 1, β = 200,
y+s0
= 8.2; figure 14c), Max(G) = 20.0 at (kx, kz) = (1.0, 7.5). This indicates that

the P and PI controls decrease the spanwise wavenumber (or increase the spanwise
wavelength) corresponding to maximum growth, which is similar to the increase in
the streak spacing in turbulent channel flow by these controls.

5. Conclusions

In the present study, we applied a linear PI control to a turbulent channel flow
at Reτ = 140 to reduce the skin friction on the wall. Similarly to the opposition
control introduced by Choi et al. (1994), the wall-normal velocity on a sensing
plane above the wall was detected for sensing, and blowing and suction (i.e. control
input) at the wall was determined by the P or PI control. We investigated the effects
of the proportional gain α, the integral gain β and the sensing plane location y+s0

on the flow and skin friction. The P controls successfully reduced the strength of
near-wall streamwise vortices and the skin friction when a proper sensing location
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FIGURE 14. Contours of G(t+ = 80) on the (kx, kz) plane: (a) no control; (b) P control
with α= 1; (c) PI control with α= 1 and β = 200. The contour levels are logarithmically
distributed from 100.4 to 101.5 with exponent increments of 0.1.

and proportional feedback gain were chosen (Choi et al. 1994; Chung & Talha
2011; Deng et al. 2014). The r.m.s. sensing velocity fluctuations decreased as
v+s,rms/v

+
s,rms0
≈ 1/(1+ α) when the sensing plane was near the wall. However, because

the P control contained a steady-state error (non-zero or non-negligible r.m.s. sensing
velocity fluctuations), we added an I component to the P control (i.e. PI control) to
remove this steady-state error. We showed that this PI control successfully removed
the steady-state error and thus the r.m.s. sensing velocity fluctuations became very
small. As a result, a larger reduction in the skin friction was obtained by the PI
control at y+s0

≈ 11. However, the performance of the PI control was very sensitive
to y+s0

, and the skin friction increased significantly when y+s0
> 11. From the energy

spectra of the sensing velocity fluctuations, it was shown that the I component of
PI control significantly reduced the low-frequency energy, and the frequency range
where the energy was decreased became wider at larger β.

To further understand how this linear control performed successfully for turbulent
flow, we applied the P and PI controls to a flow model linearized from the
Navier–Stokes equations. The performance of the P and PI controls in this linearized
flow model was very similar to that in turbulent channel flow. That is, the frequency
response showed that the I component of PI control successfully reduced the
low-frequency L2-norm of the transfer function between the control input and output.
The behaviour of the transient-growth suppression of a disturbance was also very
similar to that of the skin-friction reduction in turbulent channel flow. These results
demonstrate that the underlying mechanism of drag reduction by the present PI
control for turbulent channel flow is essentially linear.

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation
and Planning (KETEP) through the Ministry of Trade, Industry and Energy
(MOTIE) of the Republic of Korea (no. 20152020105600), and by the National
Research Foundation through the Ministry of Science, ICT and Future Planning (no.
2016R1E1A1A02921549).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

33
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.33


PI control for skin-friction reduction in a turbulent channel flow 449

Appendix A. Transient energy growth ratio

To consider the transient energy growth of disturbances in the linearized Navier–
Stokes equations, the growth ratio function is defined as the ratio of the kinetic energy
of a disturbance at a given time to its initial value:

G(kx, kz, t)= sup
E(kx,kz,0)6=0

E(kx, kz, t)
E(kx, kz, 0)

. (A 1)

The kinetic energy density of a disturbance is

E=
∫ 1

−1

[
v̂∗v̂ + 1

k2
x + k2

z

(
∂v̂∗

∂y
∂v̂

∂y
+ ω̂∗y ω̂y

)]
dy. (A 2)

For each wavenumber pair (kx, kz), the quantity E can be expressed as E(t) =
x∗(t)Qx(t), where x∗ is the conjugate transpose of x, and the matrix Q is defined in
terms of an inner product in discrete space. The matrix Q can be further decomposed
into the form Q= F ∗F , where F ∗ denotes the Hermitian conjugate of F . The solution
of the system equation, (4.8) or (4.9), is simply given by φ(t)= exp(Act)φ(0), where

φ = x for P control and φ =
[

x
z

]
for PI control. To match the size of matrices,

exp(Act) and F , the columns and rows in exp(Act) corresponding to the additive
integral state z are removed. For convenience, this reduced matrix is represented as
Ā(t). Then, it follows that

E(t)= x∗(t)F ∗Fx(t)= ‖Fx(t)‖2
2 = ‖FĀ(t)x(0)‖2

2, (A 3)

where ‖ • ‖2 represents the L2-norm (Euclidean norm). Combining (A 1) and (A 3), we
obtain the growth ratio as

G(t)= sup
x(0)6=0

‖FĀ(t)x(0)‖2
2

‖Fx(0)‖2
2
= ‖FĀ(t)F−1‖2

2. (A 4)

The L2-norm of a matrix can easily be computed from the SVD of the matrix. The
typical SVD process provides a diagonal matrix Σ and two orthogonal matrices U and
V such that A= UΣV ∗. The column vectors of V and U are referred to as the right
and left singular vectors respectively. The diagonal elements of Σ are the singular
values (σ values), which represent the L2-norm ratios of the corresponding column
vectors of V and U. The largest value of σ 2 represents the energy growth ratio at t,
G(t), and the corresponding column vectors of U and V are the flow field at t and
the initial flow field respectively.
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