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Abstract. An exact nonlinear solution for a cold fluid in presence of a gravitational
field and viscous dissipation is obtained using Lagrange variable. It is shown that
with a density-dependent viscosity the nonlinear equation can be exactly solved.
The solution indicates that in absence of viscosity and initial fluid velocity shear,
density collapse occurs at time of the order of inverse Jeans frequency. The effect
of viscosity is to delay the collapse but it can not halt the collapse. The initial fluid
velocity shear can act in both directions: a positive one leads to delay, a negative
one to a speeding up of the density collapse. This nonlinear solution may have some
bearing with the structure formations in the universe.

1. Introduction
Investigations on physical processes in the interstellar
gas clouds are important for a number of reasons. The
star formation mechanism is believed to be due to the
interaction between very high velocity interstellar gas
clouds leading to the formation of a dense gaseous
clump. The gaseous clump grows in mass by the gravit-
ational Jeans instability and finally fragments into slabs.
These in turn collapse further by self-gravity and evolve
into stars and/or clusters of stars.

The star formation mechanisms based on the lin-
ear description of the Jeans instability have been dis-
cussed by various authors (Chandrasekhar 1961; Griv
et al. 2002). Among these we mention the work of
Chandrasekhar in particular, where the system, an infin-
ite homogeneous medium, is affected by viscous effects.
It has been shown that the viscosity gives rise to a
stabilizing effect that may not alone overcome the Jeans
instability. In this paper, we have investigated the nonlin-
ear Jeans instability with a density-dependent viscosity
and demonstrate that there is a possible delay but not
a halt of the density explosion. However, in presence of
fluid pressure a linear analysis indicates stabilization but
unfortunately in the present nonlinear solution we have
not been able to keep the fluid pressure to obtain the
solution with full generality. It may, however, be possible
to obtain numerical solutions in order to evaluate its
effect further. In case of charged fluid (charged dust
grains), a numerical proof of the stabilization of density
collapse by pressure had been given by Eliasson et al.
(2008).

In our work the linear instability of infinite homogen-
eous plasma invoking “Jeans swindle” is our starting
point and then we construct a more realistic nonlinear
solution taking into account the effect of zeroth-order

gravitational field. Nonlinear effects are studied using
the Lagrangian fluid model demonstrating the non-
uniformity of density distributions and of gravitational
field in an astrophysical system (Avinash and Shukla
2006; Avinash et al. 2006). We exploit the extremely
beautiful and powerful Lagrangian technique to solve
the nonlinear equations (Dawson 1959; Davidson and
Schram 1968; Davidson 1972; Schamel 2004). Extra
simplicity in this model is achieved through the as-
sumption of one spatial dimension and by utilizing a
mathematically more tractable and comprehensible case.
This enables us to extend the investigation to a wider
class of similar systems.

The rest of the paper is organized as follows. In
Sec. 2, basic equations and linear mode are presented
expressing all assumptions made. In Sec. 3, nonlinear
equations are solved for the density that shows the
collapse due to singularity formation in finite time.
Summary is presented in Sec. 4 with a brief discussion
of results.

2. Basic equations and linear mode
The fluid equations in presence of viscosity may be
written as

ρ

[
∂

∂t
+ (u · ∇)

]
u = −∇p + ρg + ∇

(
4

3
μ∇ · u

)
(2.1)

∂ρ

∂t
+ ∇ · ρu = 0 (2.2)

∇ · g = −4πGρ, (2.3)

where ρ is the mass density, u is the fluid velocity, g
is the gravity, and μ is the shear viscosity. Although
a gravitational system, specially the Jeans instability, is
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usually investigated in three-dimensional fluid, for the
study of nonlinear features we shall concentrate on one-
dimensional analysis. This will simplify the mathematical
analysis without taking the essential physics. By one-
dimensional we mean all variables are functions of (x, t)
only. We take gravitational field in the negative x dir-
ection and assuming p = c2

s ρ, where cs represents sound
velocity. In context of dusty, plasma both equilibrium
and stability were studied in detail (Avinash 2007a,b).
Also a comparative analysis on Jeans mode and dust
acoustic wave had been studied in the light of dusty
plasma by Pandey and his collaborators (Pandey et al.
1994).

For the linear analysis we recapitulate the results
of Chandrasekhar (1961) in an infinite homogeneous
medium. The linear part is intended to introduce the
reader to the concept of Jeans instability and frequency
and not to a correct treatment of the linear stability
problem with proper equilibrium. Similar to the Jeans
treatment we invoke Jeans swindle in the linear problem
in which we assume in equilibrium, g = 0.

Neglecting all nonlinear terms, linearized equations in
one-spatial dimension become

∂u1

∂t
= −c2

s

1

ρ0

∂ρ1

∂x
− g1 + η̄

∂2u1

∂x2
, (2.4)

∂ρ1

∂t
+ ρ0

∂u1

∂x
= 0, (2.5)

∂g1

∂x
= 4πGρ1, (2.6)

where η̄ = 4μ/3ρ0. Variables with subscript 1 are the
perturbed quantities and those with subscript 0 are the
equilibrium quantities. A simple algebra reduces (2.4)–
(2.6) as[

∂2

∂t2
− c2

s

∂2

∂x2
− 4πGρ0 − η̄

∂

∂t

∂2

∂x2

] (
ρ1

ρ0

)
= 0. (2.7)

Assuming the perturbation ρ1 ∼ exp(ikx − iωt) we have
the dispersion relation as

ω2 + iωη̄k2 + (ω2
J − k2c2

s ) = 0, (2.8)

where ω2
J = 4πGρ0. In absence of pressure (cs = 0) and

viscosity (η̄ = 0), there is a purely growing instability
known as the Jeans instability. Surely both pressure and
viscosity act as stabilizing agents. In the next section, we
shall study the nonlinear solution in a cold fluid.

3. Nonlinear analysis
The basic nonlinear equations to study this problem are

ρ

(
∂

∂t
+ u

∂

∂x

)
u = −c2

s

∂ρ

∂x
− ρg +

∂

∂x

(
4

3
μ
∂u

∂x

)
, (3.1)

(
∂

∂t
+ u

∂

∂x

)
ρ = −ρ

∂u

∂x
, (3.2)

and Poisson’s equation for the gravitational field g can
be written as

∂g

∂x
= 4πGρ, (3.3)

where G is the gravitational constant. It is to be noted
here that in (3.1) and (3.2), there are same convective
operators. These operators can be simplified if we trans-
form Eulerian variables (x, t) to Lagrangian variables
(ξ, τ) such that

ξ = x −
∫ τ

0

u(ξ, τ′)dτ′, τ = t. (3.4)

With such transformations, the derivative operators can
be written as

∂

∂τ
≡ ∂

∂t
+ u

∂

∂x
,

∂ξ

∂x
≡

[
1 +

∫ τ

0

∂u

∂ξ
dτ′

]−1

. (3.5)

The continuity (3.2) now can be expressed as

ρ(ξ, τ) =
ρ(ξ, 0)(

1 +
∫ τ

0
∂u
∂ξ

dτ′
) . (3.6)

Therefore from the above analysis, we can write ρ(ξ, τ)/
ρ(ξ, 0) = ∂ξ/∂x. Using these relations, the momentum
and continuity equations are simplified as

∂u

∂τ
= −g − c2

s

1

ρ̂(ξ, 0)

∂ρ̂

∂ξ

+
1

ρ0ρ̂

ρ̂

ρ̂(ξ, 0)

∂

∂ξ

[
4

3
μ

ρ̂

ρ̂(ξ, 0)

∂u

∂ξ

]
(3.7)

∂

∂τ

(
1

ρ̂

)
=

1

ρ̂(ξ, 0)

∂u

∂ξ
. (3.8)

∂g

∂ξ
= 4πGρ0ρ̂(ξ, 0), (3.9)

where ρ̂ = ρ/ρ0 and ρ0 is a constant normalizing density.
These equations can be further simplified by introducing
Lagrange mass variable

ζ =

∫ ξ

0

ρ̂(ξ, 0)dξ. (3.10)

Consequently, the above equations are simplified as

∂u

∂τ
= −g − c2

s

∂ρ̂

∂ζ
+ η

∂2u

∂ζ2
(3.11)

∂

∂τ

(
1

ρ̂

)
=

∂u

∂ζ
(3.12)

∂g

∂ζ
= 4πGρ0. (3.13)

For an analytical progress we have defined μ as inversely
proportional to the fluid mass density, i.e. 4μρ/3 = η,
where η is constant viscosity coefficient. Substituting
(3.11) in (3.13) we have

∂

∂ζ

[
∂u

∂τ
+ c2

s

∂ρ̂

∂ζ
− η

∂2u

∂ζ2

]
= −4πGρ0. (3.14)

In principle, we have to solve (3.14) in order to obtain
the full generality of the solution proposed in the model
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equations. However, this equation is difficult to solve
analytically exactly. Therefore, for analytical progress
we solve this nonlinear equation using cold fluid ap-
proximation, i.e. neglecting pressure term equivalent to
cs = 0 in (3.14). In a way, we are investigating the effect
of viscosity on Jeans instability in a cold gravitating
fluid. Using (3.12) we have

∂

∂τ

[
∂

∂τ
− η

∂2

∂ζ2

] (
1

ρ̂

)
= −4πGρ0. (3.15)

Integrating (3.15) with respect to time we have[
∂

∂τ
− η

∂2

∂ζ2

] (
1

ρ̂

)
= −4πGρ0τ + c1(ζ), (3.16)

where c1(ζ) is the integration constant that can be
determined from initial condition. It is to be noted here
that from (3.12)

∂

∂τ

(
1

ρ̂

)
=

∂u

∂ζ
, where from

c1(ζ) =

[
∂u

∂ζ
− η

∂2

∂ζ2

(
1

ρ

)]
τ=0

.

With this integration constant (3.16) in normalized form
can be written as[
∂

∂τ̂
− η̂

∂2

∂ζ̂2

](
1

ρ̂

)
= −τ̂+

[
∂û

∂ζ̂
− η̂

∂2

∂ζ̂2

(
1

ρ̂

)]
τ=0

, (3.17)

where all the normalized variables are defined as τ̂ =
ωJτ, ζ̂ = ζ/L, η̂ = η/L2ωJ, û = u/LωJ. Hereafter
we will remove all hats for simplicity of notation but
keep in our mind that we are working on normalized
variables. Also to simplify notation we have defined
normalized specific volume V (ζ, τ) = 1/ρ(ζ, τ) so that
V0(ζ) = 1/ρ(ζ, 0). Proposing the solution of (3.17), which
now reads[

∂V

∂τ̂
− η̂

∂2V

∂ζ̂2

]
= −τ +

[
∂u

∂ζ
− η

∂2V

∂ζ̂2

]
τ=0

, (3.18)

to be of the form

V (ζ, τ) = V0(ζ) − τ2

2
+ φ(ζ, τ), (3.19)

and substituting (3.19) in (3.18), it can be shown that φ
satisfies diffusion equation that is given by

∂φ

∂τ
= η

∂2φ

∂ζ2
+

(
∂u

∂ζ

)
0

, (3.20)

which is forced diffusion equation subject to the initial
condition φ(ζ, 0) = 0 and subscript zero in the right-
hand side signifies value of velocity shear at τ = 0.
Hereafter we denote u′

0(ζ) for (∂u/∂ζ)0. In absence of
viscous dissipation, η = 0, the solution of φ is easily
found and is given by φ(ζ, τ) = u′

0(ζ)τ, which after
insertion in (3.19) tells us that there is a specific point
in the (ζ, τ) plane:(ζc, τc ), where V (ζc, τc) = 0. Therefore
(ζc, τc) is a point, where the specific volume (inverse of
density) becomes zero and hence density collapses.

In presence of viscous dissipation where φ(ζ, τ) solves
the forced diffusion (3.20) with the driving term u′

0(ζ),

the specific solution may be written as

φ(ζ, τ) =

∫ τ

0

ds

∫ +∞

−∞
dζ ′u′

0(ζ
′)

1√
4πη(τ − s)

× exp

[
− (ζ − ζ ′)2

4πη(τ − s)

]
, (3.21)

which is valid for arbitrary u′
0(ζ). It should be emphas-

ized here that for non-viscous case, i.e. η → 0, the above
solution reduces to the known solution as obtained
before. In the limit of η → 0, the inner integrand Green’s
function in (3.21) becomes a delta function

φ(ζ, τ) =

∫ τ

0

ds

∫ +∞

−∞
dζ ′u′

0(ζ
′)δ(ζ − ζ ′)

= u′
0(ζ)

∫ τ

0

ds = u′
0(ζ)τ, (3.22)

which gives back our old result. Moreover, the tend-
ency of delay (or speeding up) of the collapse process
is essentially maintained by the action of the viscous
dissipation.

For a specific example, we now assume u0(ζ) = tanh ζ

and defining Φ(ζ, τ) = φ(ζ, τ) + (1/η) ln cosh ζ we can
show that the new dependent variable Φ satisfies the
standard diffusion equation, which is given by

∂Φ

∂τ
= η

∂2Φ

∂ζ2
, (3.23)

with the initial condition Φ(ζ, 0) = (1/η) ln cosh ζ, where
the equilibrium velocity amplitude is taken to be unity
in normalized variable. The solution of (3.23) can be
found in a standard textbook and is given by

Φ(ζ, τ) =
1

η
√

4πητ

∫ +∞

−∞
dζ ′ ln cosh

(ζ ′) exp

[
− (ζ − ζ ′)2

4ητ

]
. (3.24)

The initial condition is readily satisfied since in the
limit τ → 0 the Green’s function in the above equation
becomes a delta function δ(ζ − ζ ′). Therefore complete
solution for ρ(ζ, τ) can be written as

ρ(ζ, τ)

=
ρ(ζ, 0)

1 − ρ(ζ, 0)
[
τ2/2 + (1/η) ln cosh ζ − Φ(ζ, τ)

] . (3.25)

The obtained solution is complete if we can express the
Lagrangian variable ζ in terms of Eulerian variable x. To
do this we consider the relation ρ(ξ, τ)/ρ(ξ, 0) = ∂ξ/∂x

as obtained before and we can write

∂ζ

∂x
=

∂ζ

∂ξ

∂ξ

∂x
= ρ(ξ, 0)

ρ(ξ, τ)

ρ(ξ, 0)
= ρ(ζ, τ).

Using (3.25) for ρ(ζ, τ) we have got a relation between
Eulerian and Lagrangian variables as

x=

∫ ζ

0

1

ρ(ζ ′, 0)
dζ ′ − τ2

2

∫ ζ

0

dζ ′ − 1

η

∫ ζ

0

ln cosh
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Figure 1. (Color online) Fluid density in Lagrangian variables (ξ − τ)(left) shows large amplitude behavior with time. In this
plot, we have taken η̂ = 0.001 and ωJτ = 1.35. In the right side, same plot has been shown with same viscosity parameter but
ωJτ = 1.4. Figure indicates a density collapse in finite time.
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Figure 2. (Color online) Fluid density in Eulerian variables (x− t)(left) shows large amplitude behavior with time. In this plot, we
have taken η̂ = 0.001 and ωJτ = 1.35. In the right side, same plot has been shown with same viscosity parameter but ωJτ = 1.4.
Figure indicates a density collapse in finite time.

ζ ′dζ ′ +

∫ ζ

0

Φ(ζ ′, τ)dζ ′, (3.26)

which clearly indicates that this relation crucially de-
pends on the initial density distribution. For a specific
initial density profile ρ(ζ, 0) = sech 2ζ we have obtained
density in Eulerian variables (x, t). Since in (3.26) the last
two integration is difficult to obtain analytically we have
calculated x, ζ relation numerically and density is plotted
with Lagrangian (Fig. 1) and Eulerian variables (Fig. 2).
Both plots show collapse behavior with increasing time,
which indicates that viscosity cannot arrest the density
collapse. In Eulerian variables, density contours are
more stretched as shown in Fig. 2. To find the condition
in which the solutions are valid is ρ � 0. This implies
that

1 − ρ(ζ, 0)

[
τ2

2
+ (1/η) ln cosh(ζ) − Φ

]
� 0. (3.27)

From the density solution (3.25) it is clear that in absence
of velocity shear (1/η term in normalized unit) and
viscosity, density collapse occur at time τ =

√
2/ωJ(x).

We have not observed that due to viscosity density
solution splits that is reported in electron plasma wave
dynamics (Infeld et al. 2009). Finally, we mentioned that
a new mechanism for matter clumping prior to the onset
of gravitational contraction, being based on nonlinear
magnetosonic wave steepening and collapse and treated
similarly by Lagrangian variables, has been proposed
recently (Chakrabarti et al. 2011, 2013).

4. Summary
In a short summary, we like to point out that the present
analysis of density collapse due to Jeans instability
is obtained through a very simplified model. In this
model, nonlinear time-dependent processes are involved
in a cold fluid. Non-relativistic gravitohydrodynamic
equations are solved and the solutions are physically
interesting in the sense that the density bursts are found
indicating the signature of nonlinear instability even in
presence of viscosity. From mathematical point of view,
it is interesting to note that the Lagrangian mass variable
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transformation (Sack and Schamel 1987) is introduced
to reduce the spatial partial derivative in some ana-
lytically tractable form. Perhaps calculations with these
transformation in the nonlinear states are very useful
and powerful. We have not introduced spatial variations
in more than one dimension to avoid complexity in cal-
culations. The type of solution considered represents a
class of nonlinear solutions that may arise in many such
similar physical situations. Full numerical solution of
basic equations is of general interest including pressure
term and we hope to report this in future.
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