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Introduction

Benjamin Franklin’s famous phrase that “nothing is 
certain, but death and taxes,” while true, could per-
haps be expanded to “nothing is certain, but death, 
taxes, and risky decisions.” We do not escape the need 
to make complex decisions as we get older. Retirement 
and funding plans need to be managed. Medical insur-
ance and subsidies need to be organized. Personal end-
of-life goals need to be planned and, ideally, met. All 
of these decisions involve a degree of uncertainty, or 
risk, and have a large impact on an individual’s life 
and well-being. It is crucial to understand how older 

adults evaluate risky prospects and make decisions, 
especially with one in five Americans projected to be 
over the age of 65 by the year 2030 (Ortman, Velkoff, & 
Hogan, 2014). Worldwide, the number of individuals 
age 65 or older is projected to grow to about one billion 
by 2030 (He, Goodking, & Kowal, 2016).

In this article, we report the results of an experiment 
designed to evaluate whether older adults are less 
likely than younger adults to obey a foundational 
axiom of rational decision making: transitivity of pref-
erence. This question is well-motivated by established 
differences in cognition between older and younger 
adults. Prior work has demonstrated that older 
adults, on average, tend to have significant declines in 
cognitive abilities, particularly in prospective memory 
(Ballhausen et al., 2017) and memory retrieval (Hertzog, 
Cooper, & Fisk, 1996). Examining decision making 
behavior in particular, many studies have reported that 
older adults tend to employ simpler, more heuristic-
based decision making strategies and utilize automatic 
information processing (Mata, Schooler, & Rieskamp, 
2007; Peters et al., 2007; Queen et al., 2012). Even 
though these strategies are simpler, there is growing 
evidence that older adults are also able to adapt their 
use of decision strategies to the choice environment 
and, in many circumstances, perform on par with 
younger adults. However, a decrease in decision 
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performance appears for older adults, as compared to 
younger adults, as the number of choice options in a 
choice set increases (Besedeš et al., 2012; Frey, Mata, & 
Hertwig, 2015). Frey et al. (2015) interpret this decrease 
as a cognitive limitation in information processing in 
older adults, i.e., the amount of information that must 
be processed becomes too great to handle, leading 
older adults to choose the sub-optimal option. Frey  
et al. also found that older adults tend to spend less 
time investigating their options before making a 
decision, perhaps due to the increased demand on cog-
nitive load (see also Berg, Meegan, and Klaczynski, 
1999, and McGillivray, Friedman, and Castel, 2012). 
Older adults have been shown to be less consistent in 
their choices than their younger counterparts (Finucane 
et al., 2002). Tymula et al. (2013) found that older adults 
showed the greatest fluctuation in their responses over 
repeated choices (i.e., repeated decisions based on the 
same choice sets). Examining risky choice, Denburg 
et al. (2007) found that older adults performed worse 
than younger adults on the Iowa Gambling Task, i.e., 
they were less likely to identify the optimal decks (see 
Denburg et al., 2007, for a description of the Iowa 
Gambling Task) and that poor-performing older adults 
were more likely to fall prey to the effects of deceptive 
advertising.

Based on the overall picture of prior research, we 
hypothesized that older adults tend to make fewer 
rational decisions than younger adults in our experi-
ment. While there are many ways to define rational 
choice, we take an axiomatic approach as opposed to 
one involving an experimental paradigm with pre-
defined “correct” or “optimal” choices. We define 
rational decision making via the axiom of transitivity 
(and negative transitivity) of preference. Transitivity of 
preference has long been considered a foundational 
property of rational decision making (e.g., Tversky, 
1969). Let S be a set of choice alternatives and let a,b,c 
be any three distinct elements of S. A decision maker is 
transitive in her preferences if, and only if, for any triple 
a,b,c, whenever she prefers a to b and prefers b to c then 
she also prefers a to c.1 The transitivity axiom is impor-
tant for two major reasons. First, transitivity of prefer-
ence is a necessary assumption for nearly all modern 
utility theories, including expected utility theory and 
prospect theory (see Luce, 2000, for a review and dis-
cussion). More precisely, any theory in which prefer-
ences are representable via a unidimensional scale 
requires transitivity of preference. If older adults were 
more susceptible to violations of transitivity than 
younger adults then common utility-based decision 

models might be less appropriate to describe their 
behavior. This would point towards the development 
of alternative mathematical accounts of risky decision 
making for older adults, such as heuristic models that 
may violate transitivity. Second, transitivity is often 
considered a basic tenet of consistent, rational prefer-
ence. For example, as described in the well-known 
‘money pump’ argument (e.g., Anand, 1993), an indi-
vidual with unwavering intransitive preferences could 
be exploited in a marketplace. A decision maker could 
be induced to trade one item for a preferred one, at 
cost, and, after a given number of trades, eventually 
sold back the original item - thus exploiting her intran-
sitive preferences. The decision maker would be where 
she began, but poorer because of the trading costs. 
While this is a stylized argument, an older adult whose 
preferences violated transitivity could potentially be 
taken advantage of by savvy traders over a series of 
transactions. If this were the case, then this might sug-
gest specific kinds of policies so as protect the elderly 
from certain types of predators.

For contexts involving monetary risk, the transi-
tivity axiom appears to be a reasonable assumption for 
adult (non-geriatric) populations, thus providing sup-
port for the usage of utility theories as descriptive 
models of choice - see Regenwetter, Dana, and Davis-
Stober (2011) and Cavagnaro and Davis-Stober (2014) 
for reviews of the experimental transitivity literature. 
Transitivity appears to be a relatively stable property 
of individual decision making and appears to be robust 
to various environmental manipulations, such as 
time pressure (Cavagnaro & Davis-Stober, 2014), how 
stimuli are displayed (Davis-Stober et al., 2015), and 
even direct cognitive impairment via alcohol intoxica-
tion (Davis-Stober et al., 2019). To date, the empirical 
literature on the transitivity axiom has almost exclu-
sively focused on the choice behavior of relatively 
young, healthy adults. In contrast, very little is known 
about whether older adults satisfy this axiom at sim-
ilar rates as younger adults. There is recent evidence 
that older adults violate the conceptually related 
Generalized Axiom of Revealed Preference at higher 
rates than younger adults and that these violations corre-
late with the volume of gray matter in the ventrolateral 
prefrontal cortex (Chung, Tymula, & Glimcher, 2017).

We report the results of a decision making study in 
which all participants made a series of binary decisions 
(two alternative, non-forced choice) across pairs of 
binary lotteries. We employed three five-lottery stim-
ulus sets, each giving 10 distinct lottery pairs for pair-
wise comparison. The stimuli were designed to induce 
decision makers to use intransitive decision heuristics. 
Two groups participated in the experiment, older 
adults (60-75 years of age, 23 participants) and younger 
adults (18-30 years of age, 21 participants).

1We actually consider the somewhat stronger axiom of negative tran-
sitivity, according to which, for any triple a,b,c, if she does not prefer a 
to b and does not prefer b to c then she also does not prefer a to c
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In our analysis, we focus on two types of preference 
structures: 1) We model transitive preferences with 
weak orders on each five-element set of choice alterna-
tives and 2) we model potentially intransitive prefer-
ences with a “lexicographic semiorder” heuristic 
(Davis-Stober, 2012; Regenwetter, Dana, Davis-Stober, 
et al., 2011; Tversky, 1969). Conceptually, a decision 
maker using a lexicographic semiorder heuristic searches 
sequentially through the attributes of the choice alter-
natives until an attribute is found that sufficiently dis-
criminates between the alternatives. The decision maker 
then chooses the alternative with the better value on 
that attribute2. Among the available lexicographic 
semiorder models, we use the one studied by Davis-
Stober (2012) because it has features that make it par-
ticularly tractable mathematically. In that model, some, 
but not all, lexicographic semiorders are intransitive.

Researchers have argued that lexicographic heuris-
tics, such as lexicographic semiorders, require less cog-
nitive effort to apply as compared to other, often 
transitive, models of choice (Brandstätter, Gigerenzer, 
& Hertwig, 2006; Gigerenzer et al., 1999; Rieskamp & 
Hoffrage, 2008). A lexicographic heuristic requires less 
information to arrive at a decision and is less taxing on 
decision maker’s memory - as only one attribute is 
compared between choice alternatives at a time. Given 
the established memory deficits associated with 
aging (Ballhausen et al., 2017; Hertzog et al., 1996), 
we hypothesized that older adults would utilize lex-
icographic semiorder heuristics at greater rates than 
younger adults.

In addition to preference structure (weak order ver-
sus lexicographic semiorder), we also investigated dif-
ferent types of within-person choice variability. If an 
individual is presented with a similar decision multi-
ple times they often do not respond with the same 
choice on every presentation. This raises a question of 
how to model such variable responses. For example, 
some individuals may be best described as having a 
single preference that is transitive and they express 
that preference with some degree of error. Other indi-
viduals may draw upon multiple preference states, 
possibly all transitive, and express these without error, 
i.e., the variability in responses are generated by vari-
able preferences, not by one single error-prone stable 
preference. Many scholars have argued that the choice 
of how to model behavioral variability matters a great 
deal for data analysis and subsequent interpretation, 
see Hey (2005), Regenwetter et al. (2014), and Marley 
and Regenwetter (2017) for summaries and reviews.

To this end, we specify and evaluate twelve stub-
stantive models of choice. We consider a total of four 
models based on weak orders: a) One model con-
siders variable transitive preferences without error 
and b) another collection of three models considers sta-
ble transitive preferences with three different upper 
bounds on permissible response error rates. Likewise, 
we consider a total of eight models based on lexico-
graphic semiorders: For each of two different priority 
orders among attributes, we consider c) a model that 
captures variable lexicographic semiorder preferences 
without response errors and d) another collection of 
three models with a stable lexicographic semiorder 
and different upper bounds on permissible response 
error rates. Finally, in addition to these 12 substan-
tive models, we also consider a model that places no 
restrictions on choice probabilities. This “encompass-
ing” model serves as a benchmark against which we 
compare the other models and it helps identify  
behavior that is not well described by any of the 12 
substantive models under consideration.

Similar to Cavagnaro and Davis-Stober (2014), Dai 
(2017) and Regenwetter et al. (2018), we use Bayesian 
model selection to classify participants according to 
which model of preference and choice variability best 
accounts for their responses. These classifications are 
carried out within-subject, thus avoiding data artifacts 
from aggregating data across participants (Estes, 1956; 
Luce, 2000; Regenwetter & Robinson, 2017).

We also evaluate group-level differences in model 
fit, i.e., whether the distribution of fitted transitive and 
intransitive models differ across older and younger 
adults, using a Bayesian generalization of Fisher’s 
exact test (Cavagnaro & Davis-Stober, 2018) as well 
as a commonly applied classical approach. We con-
trast differences between the approaches and, in 
general, support the results of the more comprehen-
sive Bayesian hierarchical test. 3

Experiment

We recruited 25 older adults (age 60-75) and 25 younger 
adults (age 18-30) from Champaign-Urbana, IL, USA, 
community. Four older adults and five younger adults 
ended their participation before the study was com-
pleted and were removed from the analysis, leaving 21 
older and 20 younger adults. This number of partici-
pants per group is similar to prior studies testing tran-
sitivity using pairs of lotteries as stimuli, see Cavagnaro 
and Davis-Stober (2014), Regenwetter and Davis-
Stober (2012), Regenwetter, Dana, and Davis-Stober 
(2011), and Tversky (1969). The two age groups  
were not matched on any variables. Each participant 2Note, however, that, to our knowledge, there are no full-fledged 

stochastic process models in the literature that would capture lexico-
graphic semiorder models as stochastic models of mental deliberation 
over time.

3All choice data and code are available at https://doi.org/10.6084/
m9.figshare.7697888.v1.
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completed a series of pairwise non-forced choice tasks 
with three distinct stimulus sets consisting of five gam-
bles each. On each trial, participants would indicate 
via keyboard press which of the two binary gambles 
they preferred. They could also indicate lack of a prefer-
ence between the two gambles. For each stimulus set, 
all 10 possible pairs were presented a total of 30 times 
each, resulting in 10 × 30 × 3 = 900 trials. Additionally, 
these trials were interspersed with a set of distractor 
trials consisting of 300 total trials intended to minimize 
memory effects across trials. Each participant completed 
the experiment over the course of two separate sessions 
scheduled at least one day apart. Each session consisted 
of 450 primary trials and 150 distractor trials.

The three gamble sets in the experiment were as fol-
lows. In Set 1, the five gambles were identical to those 
used by Tversky (1969) to induce intransitive choice 
via lexicographic semiorder heuristics, with the only 
modification being to update the payoff amounts for 
inflation to 2008 dollars using the Consumer Price 
Index. The five gambles in Set 1 were: 7$28.00, ,$0

24
 
 
 

, 
8$26.60, ,$0
24

 
 
 

, 9$25.20, ,$0
24

 
 
 

, 10$23.80, ,$0
24

 
 
 

, 11$22.40, ,$0
24

 
 
 

, where 

(X, p ,Y) denotes a binary gamble with a winning 
prize of X with probability p and a winning prize of 
Y with probability 1 − p. The expected value of the 
gambles in Set 1 increases as the probability of win-
ning increases. Set 2 is nearly identical to Gamble Set 
2 from Regenwetter and Davis-Stober (2012) and 
features larger payouts than Set 1. Here, the expected 
values of all five gambles are equal, thereby creating 
a more difficult tradeoff between the probability of 
winning and the sizes of the prizes. The five gambles 
in Set 2 were: ($31.43, .28, $0), ($27.50, .32, $0), 
($24.44, .36, $0), ($22.00, .40, $0), ($20.00, .44, $0). Set 
3 featured binary gambles with non-zero minimum 
payouts and, similar to Set 1, were designed to facil-
itate lexicographic heuristics. The five gambles in 
Set 3 were: ($26.90, .50, $15.50), ($25.28, .54, $16.40), 
($24.10, .58, $17.20), ($22.98, .62, $18.30), ($22.25, .66, 
$19.15).

At the conclusion of each experimental session, 
participants were paid a flat $20 payment for their 
time. In addition, up to two binary gambles were 
randomly selected by the experimenter out of all  
binary gambles that the participant selected during 
their experimental trials (for Sets 1-3) for that exper-
imental session. The gamble(s) were then played in 
real time, with the participant receiving the payoff 
amount determined by the random process of the  
binary gamble.

Likelihood and Basic Notation

Our experimental designs follows a ternary paired com-
parison paradigm, where each participant is presented 

with two choice alternatives and is allowed to indi-
cate preference for either alternative or indicate lack 
of preference. The data generating process, of each 
individual, can be described via a system of ternary 
paired comparison probabilities. Let abP  denote the 
probability of choosing alternative a when offered 
the choice between a and b. Let A denote the set of 
all choice alternatives. The collection ( ) ∈ ≠A, ,ab a b a bP  is 

called a system of ternary paired comparison probabilities 
if, and only if,

0 1, , , ,abP a b a b≤ ≤ ∀ ∈ ≠A

1, , , .ab baP P a b a b+ ≤ ∀ ∈ ≠A

In all, abP  and baP  denote the probability of choosing a 
over b and b over a, respectively. The term 1 ab baP P− −  
denotes the probability of a participant declining to 
express a preference for either option.

The choice data we consider are comprised of partici-
pant responses to a series of ternary paired comparisons 
among monetary gambles. The participant indicates 
one of three possible responses on each presented trial 
(preference for either gamble or indifference between 
both gambles). Assuming a balanced design, let N be 
the number of times each distinct gamble pair is pre-
sented to the participant and let abN  (respectively baN ) 
denote the number of times choice alternative a was 
chosen over b (respectively b over a). Assuming inde-
pendent and identically distributed responses across all 
trials, we model each participant’s choice responses via 
a multinomial distribution with the following likeli-
hood function,

 

( ) ( )

( )

,

!|
! ! !

1 .ab baab ba

ab ba ab baa b
a b

N N NN N
ab baab ba

NL
N N N N N

P P P P

∈
≠

− −

=
− −

× − −

∏
A

P N

 

(1)

The above likelihood function explicitly links a data 
generating process (observable choices) with binary 
choice probabilities. As we show in the next section, 
these binary choice probabilities will be used to 
define our models of transitive and (potentially)  
intransitive preference. While we assume iid distrib-
uted sampling in the above likelihood definition, it 
is important to note that the Bayesian methodology 
we adopt to carry out model comparison only 
requires the weaker assumption of exchangeability 
(e.g., Bernardo, 1996). Regenwetter and Davis-Stober 
(2018) and Regenwetter and Cavagnaro (2018) pro-
vide comprehensive discussions of assumptions  
underlying various kinds of probabilistic choice 
models.
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Models

The strict Weak order Mixture model (WM) of Regenwetter 
and Davis-Stober (2012) is our model of variable transi-
tive preference and no response error. According to WM, 
a decision maker chooses according to a probabilistic 
mixture of weakly ordered preferences at all times and 
never makes a response error.

More formally, let WO be the set of all strict weak 
orders on A. Similar to Regenwetter and Davis-
Stober (2012), a collection of ternary paired compar-
ison probabilities satisfy the strict weak order mixture 
model if, and only if, there exists a probability distribution 
on WO,

: [0,1]→P WO

,≻≻ ֏ P

that assigns probability ≻P  to any weak order ≻, such 
that , ,a b a b∀ ∈ ≠A ,

.ab

a b

P
∈

=  ≻
≻
≻
WO

P

In other words, the probability of a decision maker 
choosing choice alternative a over choice alternative b 
is the marginal probability of all weak orders in WO 
according to which a is strictly preferred to b 4. In other 
words, WM enforces the restriction that a decision 
maker must make choices consistent with a weak order 
at every time point. As described by Regenwetter and 
Davis-Stober (2012) (p. 411):

Over repeated ternary paired comparisons, the 
decision maker may fluctuate in the strict weak 
order that he or she uses in the various decisions. 
This is either because he or she varies in his or 
her preferences over time or because he or she 
experiences uncertainty about his or her own 
preferences and, when asked to decide, ends up 
fluctuating in those forced choices.

WM generalizes the mixture model of transitive 
preferences used by Regenwetter, Dana, and Davis-
Stober (2011), Cavagnaro and Davis-Stober (2014), 
Regenwetter et al. (2018) and Dai (2017) to test transi-
tivity by allowing the decision maker to express 

indifference between choice alternatives, i.e., binary 
non-forced choice as compared to binary forced choice.

While WM appears to be quite general, the propor-
tion of all possible ternary paired comparison probabil-
ities (for five choice alternatives) that are consistent with 
WM is quite small and is only .00045 (Regenwetter & 
Davis-Stober, 2012). Thus, the WM model is actually 
quite parsimonious in that it places strong constraints 
on choice behavior. As with all models we consider, WM 
is described via a system of linear inequalities on the ter-
nary paired comparison probabilities - see Regenwetter 
and Davis-Stober (2012) for a complete discussion.

The strict Weak order Error model (WE) is our model 
of error-prone choices based on a single stable transi-
tive preference 5. Under WE, a participant is allowed 
to have any weakly ordered preference, with the  
restriction that the person’s underlying preference 
cannot vary over the course of the study and that all 
choice variability is attributable to probabilistic mis-
takes in executing that preference through choice.  
A system of ternary paired comparison probabilities sat-
isfies a strict weak order error model with error bound λ if, and 
only if, there exists a strict weak order WO≻  such that

λ
λ

≥ − ⇔
 − − ≥ − ⇔

≻

≻ ≻

1 ,
1 1  neither [ ] nor  [ ].

ab WO
ab ba WO WO

P a b
P P a b b a

We consider this model with three levels of response 
error: We denote by WE50 the case when .5λ = , where 
we permit a large error rate of up to 50%. We denote by 
WE25 the case when .25λ = , i.e., with a moderate 
upper bound of 25% on the response error rate. The 
most restrictive version of the model, WE10 denotes 
the case when .10λ = , and where we allow response 
errors at a rate not to exceed 10%. The WE models gen-
eralize the “supermajority specification” under the 
QTest framework of Regenwetter et al. (2014) and 
Zwilling et al. (2019). WE50 can also be viewed as an 
extension of “weak stochastic transitivity” (Davidson 
& Marschak, 1959) from binary forced choice to binary 
non-forced choice (allowing indifference or lack of 
preference). As a point of clarification, λ is not a free 
parameter to be estimated, rather it serves as an a 
priori upper bound on response error rates. Response 
error rates are not fixed to be equal across choice pairs.

Before we proceed to our other probabilistic models, 
we define simple lexicographic semiorder preferences 
(Davis-Stober, 2012), as these types of preference rela-
tions will be at the heart of our lexicographic semi-
order-based models. We use the definitions and 
notation of Davis-Stober (2012; 2010). A lexicographic 

4A special case of WM would consider only those weak orders that 
are consistent with Cumulative Prospect Theory. In that nested model, 
the decision maker satisfies Cumulative Prospect Theory at all times 
but may fluctuate in their risk attitude and probability weighting over 
time because he or she experiences uncertainty about his or her own 
risk attitude or probability weights and, when asked to decide, ends 
up fluctuating in those choices. See Regenwetter et al., 2014, for exam-
ples of two types of random Cumulative Prospect Theory models 
involving binary forced choice.

5A nested special case of this model would require that single, tran-
sitive preference state to be consistent with Cumulative Prospect 
Theory with a single, stable risk attitude and stable probability 
weighting.
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semiorder is an extension of a semiorder. A binary rela-
tion, S, is a strict semiorder if, and only if, there exists 
a real-valued function g, defined on A, and a non- 
negative constant q such that, ,a b∀ ∈A ,

 ( ) ( ) .aSb g a g b q⇔ > +  (2)

A stylized example of a semiorder is a coffee drinker’s 
ability to discriminate between cups of coffee contain-
ing different amounts of sugar. Suppose this individual 
does not like sugar in her coffee. If asked to choose 
between two (otherwise identical) cups of coffee where 
one cup has no sugar and the other has a single micro-
gram of sugar, the decision maker would plausibly 
have no preference between the cups as a single micro-
gram does not exceed her threshold for discrimina-
tion. In (2), the function g plays the role of her utility 
for cups a and b, while q plays the role of a threshold. 
She expresses preference for one cup over another if 
and only if her ability to discriminate exceeds the 
threshold q.

A lexicographic semiorder is a binary relation on A 
that can be characterized by an ordered collection of 
semiorders (e.g., Pirlot & Vincke, 1997). In this article, 
we consider a special case of a lexicographic semi-
orders that we term simple lexicographic semiorders. The 
stimuli in our study have two primary attributes: pay-
off and probability of winning. These two attributes 
trade-off with one another: as the probability of winning 
increases, the payoff value decreases. Considering the 
semiorder representation (2) above with two different 
g functions that trade-off with one another, each with 
its own threshold parameter q, gives gives two families 
of semiorders, such that for each semiorder in one 
family, the reverse semiorder belongs to the other 
family.

A decision maker using a simple lexicographic semi-
order to make choices proceeds in the following way. 
Suppose the decision maker considers probability of 
winning to be the most important attribute. If the prob-
ability of winning in two options differs by more than 
the decision maker’s threshold, then the decision 
maker chooses the preferable option according to the 
semiorder associated with the probability of win-
ning (and ignore the payoffs). Otherwise, the decision 
maker chooses according to the semiorder for payoffs, 
including reporting lack of preference if the payoffs are 
also within threshold.

In our experiments, decision makers utilizing a sim-
ple lexicographic semiorder either first consider prob-
abilities then payoff (like in the example above) or 
vice-versa. Let 1S  denote the semiorder according to 
the attribute considered first, and let 2S  denote the 
semiorder according to the attribute considered sec-
ond. The simple lexicographic semiorder associated with 

that sequence of attributes is a relation 
1 2S S≻  on A such 

that ,a b∀ ∈A:

1 2

1

1 1 2

either 
 or  [neither   nor  ] and  .S S

aS b
a b

aS b bS a aS b


⇔ 


≻

By keeping track of the sequence within which the 
attributes (hence the two semiorders) are considered, 
we are able to gain better insight into the nature of the 
individual’s decision considerations.

Similar to weak orders, we consider a mixture model 
specification that allows an arbitrary distribution over 
all preferences that conform to a simple lexicographic 
semiorder structure (Davis-Stober, 2012).

The simple Lexicographic semiorder Mixture model 
(LM) of Davis-Stober (2012) serves as our model of 
choice in which preferences are allowed to violate tran-
sitivity under a mixture specification. Let LS denote 
the set of all simple lexicographic semiorders defined 
on A subject to the constraint that one attribute is fixed 
as 1S , with the second attribute fixed as 2S . For exam-
ple, LS could be the set of all simple lexicographic 
semiorders such that probability of winning is consid-
ered before payoff values. Clearly the set LS could be 
quite large as it contains preference relations consistent 
with all possible threshold values of the semiorders 1S  
and 2S  - see Davis-Stober (2012) for an enumeration 
and further discussion.

As defined in Davis-Stober (2012), a collection of ter-
nary paired comparison probabilities satisfy the simple 
lexicographic semiorder mixture model (LM) if, and only 
if, there exists a probability distribution on LS,

: [0,1]→P LS

,≻≻ ֏ P

that assigns probability ≻P  to any simple lexicographic 
semiorder ≻ , such that , ,a b a b∀ ∈ ≠A ,

.ab

a b

P
∈

=  ≻
≻
≻
LS
P

In other words, the probability of a decision maker 
choosing choice alternative a over choice alternative b 
is the marginal probability of all simple lexicographic 
semiorders in LS such that a is strictly preferred to b.

As described in Davis-Stober (2012), the LM is 
described by a series of linear inequalities on binary 
choice probabilities. The proportion of all choice prob-
abilities (for five choice alternatives) that conform to 
LM is even smaller than WM and is equal to .0000013. 
Similar to WM, all variability in participant responses 
is explained by uncertainty in preferences, with the 
restriction that the decision maker is making choices 
consistent with a simple lexicographic semiorder at all 
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time points. We denote the LM model where proba-
bility of winning is considered first as LMP and the one 
where payoff amount is considered first as LMO.

The simple Lexicographic semiorder Error Model (LE) is 
our model of error-prone choices based on a single sta-
ble simple lexicographic semiorder. Under LE, a par-
ticipant can have any simple lexicographic semiorder 
preference (within a well definied collection of such 
simple lexicographic semiorders), with the restric-
tion that the person’s underlying preference cannot 
vary over the course of the study and that all choice 
variability is attributable to probabilistic mistakes in 
executing that preference through choice.

A system of ternary paired comparison probabilities 
satisfies a lexicographic semiorder error model with error 
bound λ if, and only if, there exists a simple lexico-
graphic semiorder LS≻  such that

λ
λ

≥ − ⇔
 − − ≥ − ⇔

≻

≻ ≻

1 ,
1 1  neither [  ] nor  [ ].

ab LS

ab ba LS LS

P a b
P P a b b a

Similar to WE, we consider LE with three levels of 
response error: .5λ = , .25λ = , and .10λ = . Additionally, 
similar to LM, we consider two LE models per error 
rate: In LEP probability is considered first, in LEO out-
come payoff is considered first. These give us six 
models, labeled LEP50, LEP25, LEP10, LEO50, LEO25, 
and LEO10, respectively. We eliminated all overlap 
with the WE models by removing the 81 preference 
states, for each LE model, that are also consistent with 
weak orders, leaving 513 simple lexicographic semi-
order preference states, in each case, that are not also 
weak orders.

Methods

Order-constrained Bayesian inference for individual-
level data

Each of the 12 models we consider can be described via 
a system of linear inequalities on the corresponding 
ternary paired comparison probabilities. As such, stan-
dard statistical techniques for evaluating probabilistic 
choice models are not appropriate because certain 
“boundary conditions” (e.g., Silvapulle & Sen, 2011) 
for off-the-shelf methods are easily violated. To pro-
vide a proper statistical analysis of these models, we 
employ so-called “order-constrained” statistical infer-
ence techniques, namely the Bayesian inference meth-
odology of Klugkist and Hoijtink (2007) that enables 
us to compute Bayes factors among pairs of models. 
A Bayes factor quantifies the amount of evidence in 
favor of, or against, one model compared to another. 
Let uM  denote the unconstrained, encompassing model 
formed by placing no a priori restrictions on the ter-
nary paired comparison probabilities. In other words, 

uM  is a model in which participants are allowed to 
have any set of ternary paired comparison probabil-
ities. The statistical method takes advantage of the fact 
that all 12 of the models we consider are nested in uM , 
thus, we need only compute the Bayes factor of each 
model relative to uM . Let tM  be the substantive model 
being evaluated, e.g., WM. The Bayes factor for tM  
compared to uM , denoted tuBF , is defined as the ratio 
of the two marginal likelihoods,

 

( )
( )

( ) ( )

( ) ( )

π

π
= = 


| ||

,
| | |

tt
tu

u u

L M dp M
BF

p M L M d

N P P PN
N N P P P

 

(3)

where ( )| tMπ P  is the prior distribution of P under 
model tM , which is defined to be uniform on the sup-
port of tM . The Bayes factor tuBF  is defined with respect 
to the encompassing model and evaluates the strength 
of evidence, in terms of the likelihood of generating 
the observed data, of the substantive model against the 
encompassing model. Bayes factors provide a measure 
of empirical evidence for each model while appropri-
ately penalizing for complexity. By assuming a uniform 
prior, model complexity is defined as the volume of the 
parameter space that each substantive model occupies 
relative to the encompassing model.

Bayes factors are ratios of the marginal likelihoods 
between two models. For example, a Bayes factor of 6 
between two models indicates that one model is 6 
times more likely to have generated the observed data 
than the other model. Following the common Jeffreys 
(1961) scale interpretation, a Bayes factor greater than 3 
is considered “substantial” evidence, greater than 10 is 
considered “strong” evidence, and greater than 100 is 
considered “decisive” evidence.

As described in Klugkist and Hoijtink (2007), we 
can further simplify Equation 3. This Bayes factor can 
alternatively be described as the ratio of two propor-
tions: i) the proportion of the encompassing prior 
distribution in agreement with the constraints of tM , 
which we denote by tupri , and ii) the proportion of the 
encompassing posterior distribution in agreement 
with the constraints of tM , which we denote as tupost . 
We can now re-write the Bayes factor, tuBF  as the fol-
lowing ratio

 
= .tu

tu
tu

postBF
pri  

(4)

We obtained the proportion tupri  via Monte Carlo sam-
pling for each of the 12 models. Under a uniform prior 
on the choice probabilities, this boils down to simply 
numerically estimating the volume of the space of all 
choice probabilities that satisfy the model in question. 
We also calculated the tupost  terms using standard Monte 
Carlo sampling methods, namely random draws from 
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the beta posterior obtained from a uniform prior over 
P in Equation 1. Similarly, this value is the “area” of the 
posterior distribution that is in agreement with the 
model in question. Heck and Davis-Stober (2019) pro-
vide additional details on this approach and alterna-
tive methods of calculating Bayes factors for this class 
of models.

We calculated Bayes factors for each model, for 
each data set (stimulus set and experimental ses-
sion), for each individual. Additionally, we would 
like to know which model performed best across all 
stimulus sets and experimental sessions for each indi-
vidual. In other words, which single model best 
describes each individual’s responses across all exper-
imental conditions? To answer this question, we cal-
culated an aggregate Bayes factor for each model, for 
each individual. This value is obtained by, for each 
model, taking products of the Bayes factors across 
each of the 6 data sets (3 stimulus sets × 2 sessions) 
and then selecting the model with the largest aggre-
gate Bayes factor. In contrast to a single Bayes factor 
computed just from pooled data, this Bayes factor 
quantifies how well a single model can account for 
all of the participant’s responses jointly across stim-
ulus sets and experimental sessions.

Bayesian inference for group-level data

Our larger research question is defined at the group 
level. We want to know whether the distribution of 
well-fitting decision strategies differs between older 
and younger adults. For example, are older adults 
more likely to utilize lexicographic semiorder strat-
egies than younger adults? To answer this question, 
we applied a hierarchical Bayesian test developed by 
Cavagnaro and Davis-Stober (2018). This test incorpo-
rates the participant-level Bayes factors to estimate a 
population-level distribution of model classifications 
for each group via a “latent Dirichlet allocation” model 
(Blei, Ng, & Jordan, 2003). The test proceeds as follows: 
First, we form two group-level models, one in which 
the distribution of substantive model classifications is 
equal between older and younger adults and one in 
which they differ. We then compute a Bayes factor 
between these two models. A large Bayes factor in 
favor of the more complex model (that allows differing 
distributions between groups) indicates a difference in 
the distribution of decision strategies between older 
and younger adults. Conversely, a small Bayes factor 
indicates evidence in favor of the simpler model, i.e., 
that the two distributions are the same. Most impor-
tantly, this test takes into account classification uncer-
tainty among the models, i.e., if multiple substantive 
models consistently perform well among participants 
there will be higher classification uncertainty.

Results

As described above, we calculated Bayes factors, at the 
participant level, for each of the 12 substantive models 
against uM  for each of the three stimulus sets, for 
each experimental session. These results are critical for 
determining which individuals are best described by 
what models, under which experimental conditions. 
Further, by carrying out these analyses at the individual 
level, we avoided potential aggregation artifacts that 
could arise when pooling data across participants (e.g., 
Estes, 1956; Luce, 2000; Regenwetter & Robinson, 2017; 
Regenwetter et al., 2018).

Individual-Level Results

Each participant generated 6 data sets (2 sessions ×  
3 stimulus sets), for a total of 72 Bayes factors per 
participant (12 models × 6 data sets), giving a grand 
total of 2,952 individual Bayes factors calculated for 
the entire experiment (see the online supplement in 
Footnote 3 for a full listing of all Bayes factors, for all 
models, and data sets).

Given the large number of experimental trials per 
data set and the extreme parsimony of our models, we 
have excellent resolution for distinguishing among the 
various models. The Bayes factors for the best per-
forming models were typically many orders of magni-
tude larger than those for the next-best performing 
model, thereby consistently yielding large Bayes fac-
tors between the two best-performing models.

Tables 1 and 2 summarize the individual-level best-
fitting models, across stimulus sets and experimental 
sessions, for older and younger adults, respectively. A 
model in parentheses indicates a case where the Bayes 
factor of the best model was smaller than 10 in favor of 
that model against the encompassing model, but still 
greater than 1. An italicized model (e.g., WM) indicates 
a model with a Bayes factor of at least 10 against the 
next-best model. The last column lists the best-fitting 
model, for that participant, over all six data sets based 
on the aggregate Bayes factor.

Notably, there is no single instance in Tables 1 and 2, 
in which the unconstrained, encompassing model 
turns out as the best-performing model. This indicates 
that our substantive models are doing a good job of 
capturing behavior. That said, the encompassing 
model outperforms two of our substantive models for 
all data sets in our experiment: LEO25 and LEO10. 
This suggests that nobody used a (potentially intransi-
tive) lexicographic semiorder in which they consid-
ered payoff amounts before the probability of winning, 
under an error specification with low to moderate 
error rates. This finding is unsurprising as we designed 
our stimulus sets to facilitate potential violations of 
transitivity via a lexicographic semiorder in which the 
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probability of winning supercedes the size of the pay-
off: Recall that stimulus Set 1 was an update of the 
stimuli used by Tversky (1969). Indeed, upon exam-
ining Tables 1 and 2, LMP, LEP50 and LEP25 are often 
the best-performing models for individual stimuli/
session data sets (columns 1-6) for older adults, and, 
less commonly so, for younger adults.

A majority of older adults were best described via at 
least one simple lexicographic semiorder model for at 
least one data set. When comparing Tables 1 and 2, it 
also appears that older adults were less consistently 
classified for the same stimulus set across the two 
experimental sessions than younger adults. Compared 
to older adults, younger adults were both more fre-
quently classified as using weak orders and more fre-
quently classified as using a fixed preference with low 
error.

Examining the last column in each of Tables 1 and 2, 
we see that a simple lexicographic semiorder model is 
the best overall description for 8 older adults; but only 
for one younger adult. The aggregate Bayes factors for 
each model/participant are plotted in Figure 1 for both 
older and younger adults. This figure shows the over-
all differences in evidence between older and younger 
adults for the various models. Figure 1 shows that, 

compared to younger adults, older adults have larger 
aggregate Bayes factors for the lexicographic semi-
order models, especially LMP, LMO, LEO50 and 
LEP25.

Recall our main hypothesis, namely that older adults 
would obey transitivity at a lower rate than younger 
adults. Among the 12 models we examined, WM and 
WE unambiguously capture transitivity, whereas LM 
and LE permit intransitivity. Participants for whom 
WM and WE fit poorly may indicate the usage of tran-
sitivity-violating decision strategies. Table 3 shows the 
number of individuals in each group who had a Bayes 
factor smaller than 1

3  for WM or WE50 or both in at 
least one experimental session or stimulus set. These 
are the number of people for whom a weak order 
model does not provide a good description of their 
choices for at least one data set. Older adults generated 
more violations of weak order models than younger 
adults.

Group-Level Results

We apply the Bayesian test of Cavagnaro and Davis-
Stober (2018) to formally test whether older and younger 
adults differ in their distribution of model classifications. 

Table 1. Classifications of older adults for each session and each gamble set. Participants were classified to one of the 12 models that yielded 
the largest Bayes factor for the session and gamble set. For the best fitting model, we took a product of all Bayes factors across sessions and 
gamble sets for each participant. We then chose the largest one among the 12 resulting Bayes factors (i.e. Bayes factors for each of the 12 
models) to be the best fitting model for the participant

Participant Session 1 Session 2
Best fitting 
model(N = 21) Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

1 LMP LMP WE10 WE25 WM WM WM
2 LMP LMP LMP LMP LMP WE25 LMP
3 LEP50 LEP25 WM LEP50 LEP25 WM LEP50
4 WE25 WE25 WE25 WE25 WE25 WE10 WE25
5 LMP LMP LMP LMP LMP WE25 LMP
6 WM WE25 WM LMP WE10 LMO WM
7 LEP10 WE10 WM WE10 WE10 WE25 WE25
8 LMP WE25 LMP LMP LMO LMP LMP
9 WE10 WE10 WE25 WE10 WE10 WE10 WE10
10 WE25 LMO WE50 WE25 LMO WE50 WE25
11 LEP25 WE25 WM WE10 WE10 WE10 WE25
12 LEP50 WE25 WM WE25 WE10 WM WE50
13 LMP LMP WM LMP LMP LEP25 LMP
14 LMP LMP WM LMP LMP WM LEP50
15 WE50 WE10 WM WE10 WE10 LEP25 WE25
16 LMP LMP WM LMP LEP25 WE25 LMP
17 WE25 WE25 WE10 WE10 WE25 WE10 WE25
18 WM WE25 LMP WE25 WE10 LMP WM
19 WE10 LEP50 LMP WE10 LEP25 LMP LMP
20 WE25 WE25 WE10 LEP25 LMP WE25 WE25
21 WM LMP WM WE50 WM WE25 WM
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We apply our test to the individual-level Bayes factors 
aggregated across all six data sets. There were six 
models that were not selected as a best-fitting model 
for any participant: LEP25, LEP10, LMO, LEO50, 
LEO25, and LEO10. We removed these models from 
consideration for our group-level analyses6. The test 
on the distribution of the six remaining models yielded 
a Bayes factor of 3.11 in favor of a treatment effect due 
to age. Table 4 reports the mean posterior distribution 
estimates of the model classifications for both older 
and younger adults. These values represent point esti-
mates for the true distribution of model classifications 
in the older and younger adult populations respec-
tively. Looking at Table 4, older adults are less likely 
than younger adults to be classified as WE50 (.1 versus 
.22) or WE10 (.07 versus .22); conversely, older adults 
are more likely than younger adults to be classified 
according to LMP (.26 versus .07). The remaining 
classification probabilities are quite similar between 
the groups.

The previous test examined the distributions of 
each of the six models for both groups. We can further 
refine our hypothesis to focus solely on whether a 
model was based on weak order or simple lexico-
graphic semiorder preferences. Following Cavagnaro 
and Davis-Stober (2018), we can aggregate the evi-
dence for similar models and group the remaining 
Bayes factors according to preferences, ignoring sto-
chastic specification. Table 5 reports the mean poste-
rior estimates for these classifications. Carrying out a 
test between groups, we find a Bayes factor of 3.49 in 
favor of a difference between the groups. Table 5 
shows that older adults were more likely to be clas-
sified according to a simple lexicographic semiorder 
model (ignoring stochastic specification) than younger 
adults (mean posterior estimates of .39 versus .12, 
respectively).

We can examine in a similar fashion whether the 
distribution of stochastic specifications in different 
between older and younger adults. We aggregated 
evidence for the 6 best-fitting models into two cate-
gories: mixture specifications and error specifications. 
Table 6 reports the mean posterior estimates for these 
classifications. Older adults were more likely to be 
classified according to a mixture distribution as com-
pared to younger adults (mean posterior estimates of 
.47 versus .20). We find a Bayes factor of 2.48 in favor 
of a difference between the groups.

Table 2. Classifications of younger adults for each session and each gamble set. Classification of younger adults was done in the same way as 
we did for older adults

Participant Session 1 Session 2
Best fitting 
model(N = 20) Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

1 LMP LMO WM WE25 LEO50 WE25 LMP
2 WE25 WE10 WE10 WE10 WE10 WE10 WE10
3 WE50 WE25 WM WE10 WE10 WM WE25
4 LEP50 LEP50 WM WE25 WE10 WE25 WE50
5 WE25 WM WE10 WE10 WE10 WE10 WE10
6 WE25 WE25 (WE50) WE10 WE10 WM WE25
7 LEP25 LEP50 WE50 WE10 LEP25 WE10 WE50
8 WE25 WE25 WM WE25 WE25 WM WM
9 LEP50 LEP25 WE25 LEP50 LEP25 WE25 LEP50
10 WM WM WM WM WE25 WM WM
11 WE10 WE10 (WM) WE10 WE10 WE50 WE25
12 WE25 WE25 WE50 WE10 WE10 WM WE25
13 WE25 LMP WM WE25 WE10 WE10 WE50
14 LEP25 LEP50 WE10 WE10 WE10 WE10 WE25
15 WE25 WE10 WM WE10 WE10 LEP25 WE25
16 WE10 WE10 WM WE10 WE10 WE10 WE10
17 WM WE10 WM WM WE10 WE25 WM
18 WM WE25 WE50 WE25 WE25 WM WE50
19 WE10 WE10 WE25 WE10 WE10 WE10 WE10
20 WE10 WE10 WE10 WE10 WE10 WE10 WE10

6We are interested in examining whether the distribution of best-
fitting models varies between younger and older adults. Including 
models that fit poorly for both groups would distort the results by 
making these distributions appear more similar. As an extreme exam-
ple, the two groups could have no overlap in best-fitting models, but if 
there were enough other models which perform poorly for both 
groups, the test would, all else equal, favor the hypothesis of “no dif-
ference between the groups.”
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Discussion

We reported the results of a decision making under 
risk experiment designed to evaluate whether older 
adults are less likely to obey the axiom of transitivity of 
preference. We also investigated the nature of possible 
decision strategy differences between older and younger 
adults via Bayesian model comparison. The main take-
aways from our results are:
 
	•	 	We	found	relatively	weak	evidence	supporting	the	

hypothesis that older and younger adults used 
weak order and lexicographic strategies in differing 
amounts/rates. This conclusion is based on two 

group-level Bayesian tests that take full account of 
the classification uncertainty among the various 
models. It appears that older adults were more likely 
to be classified according to a lexicographic semi-
order model than younger adults, specifically the 
LMP model.

	•	 	A	larger	portion	of	older	adults	showed	strong	evi-
dence against all weak order based models (all 
types of stochastic specifications) than younger 
adults - both in terms of number of individuals as 
well as number of data sets across experimental 
sessions and conditions. However, we caution that 
the absolute number of older adults (4 adults) that 

Figure 1. This figure plots the natural logarithm of the aggregate Bayes factors for each model, for each participant for both 
older adults (top graph) and younger adults (bottom graph). Each color denotes a unique participant. Note if a participant had 
a Bayes factor of 0 for a given model, the log is undefined and no point is produced. All participants had a Bayes factor of zero 
for LEP10 and LEO10 and are not plotted here.

https://doi.org/10.1017/sjp.2019.52 Published online by Cambridge University Press

https://doi.org/10.1017/sjp.2019.52


12  S. Park et al.

consistently displayed weak order model violations 
was not much greater than the number of younger 
adults that did so (1 adult).

	•	 	We	found	weak	evidence	 that	choices	 from	older	
adults were more likely than younger adults to be 
best described via a mixture specification, as com-
pared to an error specification. For fixed prefer-
ence specifications, older adults were classified to 
the model with the smallest allowable maximum 
response error, WE10, at a much smaller rate than 
younger adults. Consistent with the prior literature 
on cognitive aging, this suggest that older individ-
uals may be less consistent in their underlying pref-
erences across multiple decisions. 

Table 6. Mean posterior distribution estimates of mixture and error 
stochastic specifications for older and younger adults

Condition Mixture Error

Older Adults .47 .53
Younger Adults .20 .80

2.48treatmentBF =

Table 5. Mean posterior distribution estimates of weak order and 
lexicographic semiorder model classifications for older and younger 
adults

Condition Weak Order Lexicographic Semiorder

Older Adults .61 .39
Younger Adults .88 .12

3.49treatmentBF =

Table 3. Number (proportion) of participants who violate weak 
order models in each group

# people with 
1
3tuBF <

Group t = WM t = WE50 Both

Older adults 11 6 4
(N = 21) (52%) (29%) (19%)
Younger adults 6 4 1
(N = 20) (30%) (20%) (5%)

Table 4. Mean posterior distribution estimates of model 
classifications for older and younger adults

Condition WM WE50 WE25 WE10 LMP LEP50

Older Adults .18 .10 .28 .07 .26 .11
Younger Adults .14 .22 .28 .22 .07 .08

3.11treatmentBF =

One strength of our study is that our analyses were 
within-subject in design. This allows us to avoid arti-
facts due to aggregation (e.g., Estes, 1956). We also note 
that while our models are extremely parsimonious, in 
that they place strong constraints on the allowable 
choice probabilities of participants, every data set was 
classified as best described by a substantive theory. No 
data set was best described by the encompassing 
model, suggesting that our models were doing a good 
job of describing choice behavior. At the same time, the 
Bayesian analysis focused on a particular collection of 
12 models and does not address whether other models 
could also account for the same data.

It is important to note that there was a large amount 
of heterogeneity in model classifications for both older 
and younger adults. This means that there was no “one 
size fits all” model for either of the two groups. While 
older adults were more likely to violate weak order 
models than younger adults, many older adults made 
choices consistent with weak order based theories, 
including both types of specifications.

Future work could explore covariates and moder-
ating variables to explain differences in preference 
structure and choice behavior among older adults. 
While the current study did not attempt to control for 
such variables, future work could investigate the role 
of moderating variables, including neural covariates, 
measures of cognitive functioning, and health behav-
iors such as exercise and diet.
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