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Real Hypersurfaces in the Complex
Quadric with Lie Invariant Structure
Jacobi Operator

Young Jin Suh and Gyu Jong Kim

Abstract. 'We introduce the notion of Lie invariant structure Jacobi operators for real hypersurfaces
in the complex quadric Q™ = $O,,42/SOm SO>. The existence of invariant structure Jacobi operators
implies that the unit normal vector field N becomes 2(-principal or 2(-isotropic. Then, according to
each case, we give a complete classification of real hypersurfaces in Q™ = SO,42/S0,» SO, with Lie
invariant structure Jacobi operators.

1 Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give
examples of Riemannian symmetric spaces SU,,42/S(U, Uy, ) and SU, ,, /S(U, Uy, ),
which are said to be complex two-plane Grassmannians and complex hyperbolic two-
plane Grassmannians, respectively (see [10, 12,13]). These are viewed as Hermit-
ian symmetric spaces and quaternionic Kéihler symmetric spaces equipped with the
Kaihler structure J and the quaternionic Kéhler structure J.

The classification problems of the complex 2-plane Grassmannian with certain
geometric conditions were mainly discussed in Jeong, Kim, and Suh [3], Pérez [6], and
Suh [10,12,13], where the classification of contact hypersurfaces, parallel Ricci tensors,
harmonic curvatures, and Jacobi operators for real hypersurfaces in SU,,4,/S(U,U,,)
were extensively studied.

For the complex hyperbolic two-plane Grassmannians SU, ., /S(U, Uy, ), Suh [14]
asserted that the Reeb flow on a real hypersurface M is isometric if and only if M is an
open part of a tube around a totally geodesic SUs y—1/S(U2Up—1) € SUz, 1 [S(U2Up,)
or a horosphere whose center at infinity is singular. More generally, this result was ex-
tended to the commuting Ricci tensor, that is, Ric-¢ = ¢ - Ric in Suh [11]. Here, ¢ is a
tensor field of type (1,1) on M defined by ¢ X = (JX)T, where (JX)T denotes the tan-
gential part of /X for any vector field X on M. By virtue of this result, Suh and Kim [19]
considered real hypersurfaces M in SU, ,,/S(U,U,, ) with thenotion of Reeb invari-
ant Ricci tensor, that is, £ ;Ric = 0 for the Reeb vector field &= —JN, where N denotes
a unit normal vector field on M, and gave a characterization of these hypersurfaces.
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Moreover, the parallel Ricci tensor for real hypersurfaces in SU3,,,/S(U,U,, ) was in-
vestigated by Suh and Woo [21].

As another kind of Hermitian symmetric space with rank 2 of compact type dif-
ferent those given above, we can give an example of complex quadric Q™ = SO,.2/
$0,,SO,, which is a complex hypersurface in complex projective space CP™*! (see
Klein [4] and Smyth [9]). The complex quadric can also be regarded as a kind of real
Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [5]).
Accordingly, the complex quadric admits two important geometric structures, a com-
plex conjugation structure A and a Kéhler structure J, which anti-commute with each
other, that is, A] = —JA. Then for m > 2 the triple (Q™, ], g) is a Hermitian symmet-
ric space of compact type with rank 2 and its maximal sectional curvature is equal to
4 (see Klein [4] and Reckziegel [8]).

Apart from the complex structure J there is another distinguished geometric struc-
ture on Q™, namely a parallel rank two vector bundle 2 which contains an S'-bundle
of real structures, that is, complex conjugations A on the tangent spaces of Q™. This
geometric structure determines a maximal 2-invariant subbundle Q, that is, AQ c Q
for any complex conjugation A € &, of the tangent bundle TM of a real hypersurface
M in Q™. Here the notion of parallel vector bundle 2 means that

(VxA)Y = q(X)JAY

for any vector fields X and Y on Q”, where V and g denote a connection and a certain
1-form defined on Tj,;Q™ and [z] € Q™, respectively (see Smyth [9]).

For real hypersurfaces in the complex quadric Q™, Berndt and Suh [1] have clas-
sified the problem of isometric Reeb flow, which was mainly used in [15-17]. Now we
want to introduce the following theorem.

Theorem A  Let M be a real hypersurface of the complex quadric Q™, m > 3. The
Reeb flow on M is isometric if and only if m is even, say m = 2k, and M is an open part
of a tube around a totally geodesic CP* ¢ Q?*.

Recall that a nonzero tangent vector W € Tp;;Q™ is called singular if it is tangent
to more than one maximal flat in Q™. There are two types of singular tangent vectors
for the complex quadric Q™.

1. If there exists a conjugation A € 2 such that W € V(A), then W is singular.
Such a singular tangent vector is called A-principal.

2. If there exist a conjugation A € 2( and orthonormal vectors X, Y € V(A) such
that W/|W| = (X + JY)/V/2, then W is singular. Such a singular tangent vector is
called 2(-isotropic.

Here,

V(A)={X¢e T[Z]Qm |AX=X} and JV(A)={Xc¢e T[Z]Qm | AX = -X}
denote the (+1)-eigenspace and (—1)-eigenspace, respectively, for the involution
A?=Ton T,)Q", [z] € Q™.

When we consider a hypersurface M in the complex quadric Q™ under the as-

sumption of some geometric properties, the unit normal vector field N of M in Q™
can be divided into two classes: N is either 2(-isotropic or 2-principal (see [1,2,15,16]).
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In the first case where N is A-isotropic, we have shown in [1] that M is locally con-
gruent to a tube over a totally geodesic CP* in Q2*. In the second case, when the unit
normal N is 2(-principal, we proved that a contact hypersurface M in Q™ is locally
congruent to a tube over a totally geodesic and totally real submanifold ™ in Q™
(see [2]).

On the other hand, Jacobi fields along geodesics of a given Riemannian manifold
M satisfy an well known differential equation. Naturally the classical differential equa-
tion inspires the so-called Jacobi operator. That is, if R denotes the curvature operator
of M, then the Jacobi operator with respect to X at x € M, is defined by

(RxY)(x) = (R(Y, X)X)(x)

forany Y € T, M. Then Rx € End(T, M) becomes a symmetric endomorphism of the
tangent bundle TM of M. Clearly, each tangent vector field X to M provides a Jacobi
operator with respect to X.

From such a viewpoint, for a real hypersurface M in the complex quadric Q™ the
structure Jacobi operator Ry is defined by

Ri=R(&)¢e End (T, M), zeM,
where R denotes the curvature tensor of the complex quadric Q™. Of course, the
structure Jacobi operator Ry is a symmetric endomorphism of M in Q™.
The structure Jacobi operator R; of M in Q™ is said to be Lie invariant if the oper-
ator R; satisfies
(LxRE)Y =0
for any X, Y € T, M, z € M, where the Lie derivative ({xR;)Y is defined by
(LxRe)Y = [X, Re(Y)] = Re([X, Y])
= Vx(Rg(Y)) = Vryr)X = Re(VxY - VyX)
= (VxRE)Y - VRE(Y)X + RE(va)

Recently, for real hypersurfaces in the complex quadric Q™ we investigated the
notions of parallel Ricci tensor, harmonic curvature, commuting Ricci tensor and Lie
invariant normal Jacobi operator, which are respectively given by V Ric = 0, §Ric = 0,
Ric-¢ = ¢-Ric(see Suh [16], [17], Suh and Hwang [18]). Then, motivated by such facts
and the classification of isometric Reeb flow due to Theorem A, Suh and Kim ([20])
gave the following theorem for real hypersurfaces in the complex quadric Q™ with
Lie invariant normal Jacobi operator, that is, £ xRy =0.

Theorem B Let M be a Hopf real hypersurface in the complex quadric Q™, m > 3,
with Lie invariant normal Jacobi operator. Then M is locally congruent to a tube of
radius r over a totally geodesic complex k-dimensional complex projective space CP* in
the complex 2k-dimensional complex quadric Q?*,

On the other hand, from the assumption of Ricci parallel or harmonic curvature,
it was difficult for us to derive the fact that the unit normal vector field N is either
A-isotropic or A-principal. So in [16,17] we gave a classification with the further
assumption that N is 2(-isotropic. But fortunately, when we consider Lie invariant
structure Jacobi operator, that is, LxR; = 0 for any tangent vector field X on M
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in Q™, we can assert that the unit normal vector field N becomes either 2l-isotropic or
2A-principal as follows.

Main Theorem 1 Let M be a Hopf real hypersurface in the complex quadric Q™,
m >3, with Lie invariant structure Jacobi operator. Then the unit normal vector field N
is singular, that is, N is 2-isotropic or 2A-principal.

Then, motivated by Theorem 1 and Theorem A due to Berndt and Suh [1], we can
give a classification theorem for real hypersurfaces in the complex quadric Q™ with
Lie invariant structure Jacobi operator. Now we want to assert the following, which is
quite different from Theorem B.

Main Theorem 2 Let M be a Hopf real hypersurface in the complex quadric Q™,
m >3 with Lie invariant structure Jacobi operator. Then M is locally congruent to one
of the following:

(i) a tube of radius 7 over a totally geodesic complex k-dimensional complex projec-
tive space CP* in Q*, m = 2k;

(ii) a hypersurface that has at most five distinct constant principal curvatures a, 0,
and the solution of the cubic equation

ocx3—x2+2ax+1:0,
where o = g(S&, &) denotes the Reeb function on M,
(iii) a hypersurface that has four distinct constant principal curvatures given o, 0,
-, and -1 with multiplicities 1, 2, m — 2, and m — 2, respectively,
(iv) a hypersurface that has three distinct constant principal curvatures a, and two
distinct roots given by

o =24Vt + 122 + 4
20
with multiplicities 1, m — 1, and m — 1, respectively,
(v) a hypersurface that has three distinct constant principal curvatures o and two
distinct roots given by

/\:

atvVa?+4

2
with multiplicities 1, m — 1, and m — 1, respectively, provided with non-vanishing Reeb
function a.

A:

In Main Theorem 2, if the unit normal vector field N is 2-isotropic, then M is
locally congruent to a real hypersurface of type (i), (ii), or (iii). If N is A-principal, M
is locally congruent to one of type (iv) or (v). Moreover, the case (i) in Theorem 2 is a
special case of the case (ii) when the Reeb function « is vanishing.

Our paper is organized as follows. In Section 2 we present basic material about the
complex quadric Q™, including its Riemannian curvature tensor and a description
of its singular tangent vectors. Apart from the complex structure J, there is another
distinguished geometric structure on Q™, namely a parallel rank two vector bundle 2
that contains an $'-bundle of real structures on the tangent spaces of Q™. In Section 3
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we investigate the geometry of the maximal subbundle Q and introduce the equation
of Codazzi. In Section 4 we give a complete proof of Theorem 1, which acts as a key
lemma for the proof of Theorem 2 according to the -principal or 2-isotropic unit
normal vector field.

In Section 5 we give a contradiction for real hypersurfaces in Q™ with Lie invariant
normal Jacobi operator if they have the 2(-principal unit normal. Finally, in Section 6,
we present the proof of our Theorem 2 when M admits the 2(-isotropic unit normal. In
order to do this, we introduce Lemma 6.1, saying that SAN = 0 and SA¢ = 0 for a Hopf
real hypersurface with 2-isotropic unit normal vector field N. Lemma 6.1 is crucial
for the proof of Main Theorem 2. From this, together with the equation of Gauss
between the curvature tensors R(X, Y)Z for M and R(X, Y)Z for Q™ respectively,
we give a complete proof of Main Theorem 2.

2 The Complex Quadric

For more background to this section, we refer the reader to [4,5,8,15-17]. The com-
plex quadric Qm is the complex hypersurface in CP™*!, which is defined by the equa-
tion z(z) -+ zm+1 = 0, where zo, ..., Z,y+1 are homogeneous coordinates on Ccpm+L,
We equip Qm with the Riemannian metric g that is induced from the Fubini-Study
metric g on CP™*! with constant holomorphic sectional curvature 4. The Fubini-
Study metric g is defined by g(X,Y) = ®(JX,Y) for vector fields X and Y on
CP™*! and a globally closed (1,1)-form @ given by ® = —4i8510gfj on an open set

U;={[2"2,...,2"" ] e CP™*! | 2/# 0}, where the function f; denotes f;= ¥ 1= t;‘ f,

and t;‘ = i—j for j,k = 0,...,m + 1. Then, naturally, the Kéhler structure on CcpmHt
induces canonically a Kéhler structure (J, g) on the complex quadric Q™.

The complex projective space CP™*!' is a Hermitian symmetric space of the
special unitary group SU,,;,, namely, CP"™*! = SU,,,,/S(Upn41U;). We denote by
0=[0,...,0,1] € CP™*! the fixed point of the action of the stabilizer S(U,,+1U; ). The
special orthogonal group SO,,12 © SU,4, acts on CP™*! with cohomogeneity one.
The orbit containing o is a totally geodesic real projective space RP™*! ¢ CP™*!, The
second singular orbit of this action is the complex quadric Q™ = SO,,42/S0,,SO;.
This homogeneous space model leads to the geometric interpretation of the complex
quadric Q™ as the Grassmann manifold G5 (R™*?) of oriented 2-planes in R™*2. It
also gives a model of Q™ as a Hermitian symmetric space of rank 2. The complex
quadric Q' is isometric to a sphere S? with constant curvature, and Q? is isometric
to the Riemannian product of two 2-spheres with constant curvature. For this reason
we will assume m > 3 from now on.

Now let us denote by Az the shape operator of Q™ in CP™*! with respect to the
unit normal z. It is defined by Azw = V,,z = w for a complex Euclidean connection
V induced from C"*? and all w € T},;Q™. That is, the shape operator Az is just a
complex conjugation restricted to Tj, Q’" Moreover, it satisfies the following for any
we T;)Q" andany A€ S'cC

Aizw = A)LEAAEW = A,{g/\w
= MAW = AV)5Z = \MAw = |A|*w = w.
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Accordingly, A3, = I for any A1€S'. So the shape operator Az becomes an anti-
commuting involution such that A% = I and AJ = —JA on the complex vector space
T[Z]Qm and

Ti.1Q" = V(Az) @ JV(Az),

where V(Az) = R"**nT,;Q™ is the (+1)-eigenspace and JV (Az) = iR"**nT(,;;Q"
is the (-1)-eigenspace of Az. That is, AzX = X and AzJX = -] X, respectively, for any
Xe V(A;)

There is a geometric interpretation of these conjugations. The complex quadric
Q™ can be viewed as the complexification of the m-dimensional sphere $”. Through
each point [z] € Q™, there exists a one-parameter family of real forms of Q™ that
are isometric to the sphere S”. These real forms are congruent to each other under
action of the center SO, of the isotropy subgroup of SO, at [z]. The isometric
reflection of Q™ in such a real form S™ is an isometry, and the differential at [z] of
such a reflection is a conjugation on T,;Q™. In this way the family 2 of conjugations
on T;;1Q™ corresponds to the family of real forms $™ of Q™ containing [z], and the
subspaces V(A) c T;)Q™ correspond to the tangent spaces T7,)S™ of the real forms
S§™of Q™.

The Gauss equation for Q™ ¢ CP™*! implies that the Riemannian curvature ten-
sor R of Q™ can be described in terms of the complex structure J and the complex
conjugations A € 2:

R(X,Y)Z=g(Y,Z)X-g(X,2)Y +g(JY,Z)]X
- g(UX,2)]Y -2g(JX,Y)]Z + g(AY, Z)AX
- g(AX, Z)AY + g(JAY, Z)JAX - g(JAX, Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, A] = —JA for each
Aeil

For every unit tangent vector W € T[;;Q™ there exist a conjugation A € 2l and
orthonormal vectors X, Y € V(A) such that

W = cos(t)X +sin(t)JY

for some ¢ € [0,7/4]. Here ™A-principal W corresponds to the value t = 0 and -
isotropic W to t = /4. Here the vector W = X for X € V(A) with ¢ = 0 is singular,
because for any unit vector Y € V(A) orthogonal to X, RX + RJY is a maximal flat
that contains X. Also the vector W = (X +JY)/v/2for t = 7 is singular, because W is
2l-isotropic, and the kernel of the Jacobi operator Ry is RW@&CAW. Then it follows
that for any e S!, a := R(X +JY)®R(u(X - JY)) is a maximal flat that includes the
vector W.

3 Some General Equations

Let M be a real hypersurface in Q™ and denote by (¢, &, 7, g) the induced almost
contact metric structure. Note that £ = —JN, where N is a (local) unit normal vec-
tor field of M and # the corresponding 1-form defined by n(X) = g(&, X) for any
tangent vector field X on M. The tangent bundle TM of M splits orthogonally into
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TM = CaRE, where € = ker(#) is the maximal complex subbundle of TM. The struc-
ture tensor field ¢ restricted to C coincides with the complex structure J restricted to
C,and ¢& = 0.

At each point z € M, we define a maximal 2(-invariant subspace of T,M, z€ M as

Q,={XeT,M|AX e T,Mforall Ac2l,}.
Then we want to introduce an important lemma that will be used in the proof of

our main theorem.

Lemma 3.1 ([15]) For each z € M, we have the following.
(i) IfN, is A-principal, then Q, = C,.
(ii) If N, is not U-principal, there exist a conjugation A € A and orthonormal vectors
X,Y € V(A) such that N, = cos(t)X + sin(t)]Y for some t € (0, m/4]. Then we
haveQ,=C, 0 C(JX+Y).

We now assume that M is a Hopf hypersurface. Then the Reeb vector field £ = -JN
satisfies S& = a&, where S denotes the shape operator of the real hypersurfaces M
with the smooth function & = g(S&, &) on M. When we consider the transform
JX by the Kahler structure J on Q™ for any vector field X on M in Q™, we can put
JX = ¢X +#(X)N for a unit normal N to M. We now consider the Codazzi equation,

(3.1) 2((VxS)Y - (VyS)X,Z)
=1(X)g(¢Y, Z) - n(Y)g(¢X, Z2) - 2n(Z)g(¢X, Y)
+g(X,AN)g(AY,Z) - ¢g(Y,AN)g(AX,Z)
+ g(X, AE)GUAY, 2) - g(Y, A§)g(JAX, Z).
Putting Z = £ in (3.1), we get
32 g((VxS)Y — (VyS)X, &) = —2g(¢X,Y)
+8(X, AN)g(Y, Af) - g(Y, AN)g(X, Af)
- 8(X, A8)g(JY, AS) + g(Y, A&)g(JX, AL).
On the other hand, we have
(33)  g((VxS)Y - (V¥$)X,§) = g((Vx$)E Y) - g((VrS)&. X)
- (Xa)n(Y) = (Ya)n(X) + ag((S¢ + )X, Y) - 2g(S$SX, V).
Comparing (3.2) and (3.3) and putting X = ¢ yields
(3.4) Ya = (§a)n(Y) - 2g(& AN)g(Y, AE) +2g(Y, AN)g (¢, AZ).
Reinserting this into (3.3) yields
g((Vx8)Y - (VyS)X, )
= -28(& AN)g(X, A§)n(Y) +2g(X, AN)g (&, A&)n(Y)
+2g(& AN)g(Y, AE)n(X) - 2g(Y, AN)g(&, A&)n(X)
+ag((¢S+S¢)X,Y) —2¢(S¢SX, Y).
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Altogether this implies
0=2g(S¢SX,Y) - ag((¢S+S¢)X,Y) - 2g(¢X,Y)
+8(X, AN)g(Y, A8) - g(Y, AN)g(X, Af)
- 8(X, AQ)g(JY, AE) + g(Y, AE)g(JX, AS)
+28(§ AN)g(X, AE)n(Y) - 2¢(X, AN)g(&, A&)n(Y)
-2g(& AN)g(Y, A§)n(X) +2g(Y, AN)g(§, A&)n(X).
At each point z € M we can choose A € 2, such that
N =cos(t)Z; +sin(t)]Z,
for some orthonormal vectors Z;, Z, € V(A) and 0 < t < 7 (see [8, Proposition 3]).
Note that ¢ is a function on M. First of all, since ¢ = =] N, we have
AN = cos(t)Z; —sin(t)]Z,,
& =sin(t)Z, - cos(t)]Zy,
A& =sin(t)Z, + cos(t)] Z;.
This implies g(§, AN) = 0, and hence
0=2g(S¢SX,Y) - ag((¢S+S¢)X,Y) - 2g(¢X,Y)
+g(X, AN)g(Y, A?) - g(Y, AN)g(X, A¢)
- 8(X, AQ)g(JY, AS) + g(Y, AE)g(JX, AS)
- 2g(X, AN)g(& AE)n(Y) +2g(Y, AN)g(&, A&)n(X).

We now apply this result to get more information for the Reeb function & on Hopf
hypersurfaces in Q™.

Lemma 3.2 ([15]) Let M be a Hopf hypersurface in Q™ such that the normal vector
field N is A-principal everywhere. Then « is constant. Moreover, if X € C is a principal
curvature vector of M with principal curvature A, then 2A # o and ¢X is a principal

: o ad+2
curvature vector of M with principal curvature 5=

Lemma 3.3 ([1]) Let M be a Hopf hypersurface in Q™, m > 3, such that the normal
vector field N is 2(-isotropic everywhere. Then « is constant.

4 Invariant Structure Jacobi Operator and a Key Lemma

By the Gauss equation, the curvature tensor R(X, Y)Z for a real hypersurface M in
Q™ induced from the curvature tensor R of Q™ can be described in terms of the
complex structure J and the complex conjugation A € 2 as follows:

R(X,Y)Z=g(Y,2)X -g(X,2)Y +g(¢Y, Z)$pX - g(¢X, Z)¢Y
- 2g(¢X,Y)$Z + g(AY, Z)AX - g(AX, Z)AY
+ g(JAY, Z)JAX - g(JAX, Z)JAY + g(SY, Z)SX
-9(8SX,Z)SY
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forany X, Y, Z € T,M, ze M. Then the structure Jacobi operator Ry is defined in such
a way that
Re(X) = R(X, §)¢

for any tangent vector field X in T, M and the unit normal N of M in T,Q™, ze Q™.
Then the structure Jacobi operator R becomes a symmetric operator on the tangent
space T, M, ze M, of Q™. From this, by the complex structure J and the complex
conjugations A € 2, together with the fact that g(A¢, N) = 0and £ = —JN in Section 3,
the structure Jacobi operator R; is given by

(41)  Re(X)=X-n(X)E+B(AX)" - g(AX, E)AE - g(AX, N)(AN)T
+aSX - g(SX, &8¢

forany Y € T, M, z ¢ M, where the function S is defined by § = g(A¢, &) = —g(AN, N).
On the other hand, the definition of the Lie derivative of the structure Jacobi op-
erator R; gives

(42) (LxRe)(Y) = Lx(Re(Y)) = Re(£xY) = [X, Re(Y)] - Re([X, Y])

for any tangent vector fields X and Y on M in Q™. Moreover, the derivative of R; is
given by

(4.3) (Vng)Y = Vx(REY) - RE(VXY).

Now let us suppose that the structure Jacobi operator R is Lie parallel; that is,
LxR; = 0. Then (4.2) gives

X, Re(¥)] - Re([X, ¥]) =o0.
From this, together with (4.3), it follows that
(4.4) (VxRg)Y = Ve (r)X = Re(VyX).
Then, putting X = & in the above equation and using (4.1), we have
(VeRe)Y = Viry&— ReVy& = $SR;Y — Re$pSY
= pSY + BSS(AY)" - g(AT, §)$SAE - g(AY, N)§S(AN)"
+agS’Y — {¢SY + B(A¢SY)" - g(A$SY, )AL
- g(A¢SY,N)(AN)" + aS¢SY}.
From this, taking the inner product with the unit normal vector field N, we have
(4.5) 0=—{Bg(A¢SY,N) - g(A¢SY,N)g(AN,N)}

=—{B-g(AN,N)} g(A¢SY,N)

= 2¢(AN,N)g(A¢SY,N).
Then at some points x € M, the unit normal vector N, is 2-isotropic, that is, f(x) = 0
holds, whereas at other points y € M, we have $(y) # 0. Then by (4.5), on such points

we know that (SpAN), = 0. This gives us a motivation to consider the open subset
$={xeM|B(x)+0}. Then we assert the following lemma.
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Lemma 4.1 Let M be a Hopf real hypersurface in the complex quadric Q™, m >3,
with Lie invariant structure Jacobi operator. Then on the open subset L1 of M, we have
S¢AN = 0.
On the other hand, putting Y = £ in (4.4), we have
0= (VxR)& - Ve X + Re(VeX)
= Vx(Re(8)) = Re(Vx§) + Re(VeX)
= —Re(¢SX) + Re(VX)
= ~{9SX + B(APSX)" - g(APSX, §)AL - g(APSX, N)(AN)"
+aS¢SX - g(S$SX, £)SE}
H{VeX - n(VeX)E+ PAVEX) " - g(AVeX, §)AL
- g(AVEX, N)(AN)T + aSVeX - g(SVeX, £)SE}.

From this, taking the inner product with the unit normal vector field N and using
SPAN =0, we have
0=-2g(AN,N)g(VX,AN).

Then we assert the following lemma.
Lemma 4.2 Let M be a Hopf real hypersurface in the complex quadric Q™, m >3,

with Lie invariant structure Jacobi operator. Then on the open subset L1 of M, we have
g(VeX, AN) = 0 for any vector field X on M.

Then on the open subset [, by Lemma 4.2, we have, for any tangent vector field X
on M,
(4.6) 0=2g(Ve(¢X),AN) = g(¢VX, AN)
= 8UVX - n(VeX)N, AN) = —g(V X, Af).

Then putting X = A in (4.6), we have naturally
(4.7) 0= g(Ve(A8), AN)

- ~q(£)g(AN, AN) + ag(AN, AN) - afg(N, AN)

=—{a(§) -a} +ap?,
because we have used

Ve(AE) = q(§)JAL + aAN - afiN,

where g denotes a certain I-form defined on Tj,;Q", [z] € Q™ as in the introduction.
On the other hand, for X1 A&, X € T,M, and X L ¢, we know that

0= g(VeX, AL) = ~g(X, Ve(49))
= ~g(X. q(§)JAE + aAN ~ apN)
=-g(X,-q(§)AN + aAN) = (q(&) - a) g(X, AN).

From this, putting X = ANT, we have q(&) = a. Substituting this into (4.7), the Reeb
function « is then vanishing on the open subset 4[. Then (3.4) gives that g(Y, AN)
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g(& AE) = 0 for any vector field Y on Y on M. This means that AN = Nj that is,
the unit normal vector field N is -principal. Here the 2A-principalness of the unit
vector N has been shown only at the points of the open set {{. However, this implies
that i = {x e M | AN, = N, } is closed. Because M is connected, it follows that either
i = @ holds, meaning that N is 2-isotropic on M, or else 4l = M holds, meaning that
N is A-principal on M. That is, we assert the following lemma.

Lemma 4.3 Let M be a Hopf real hypersurface in the complex quadric Q™, m >3,
with Lie invariant structure Jacobi operator. Then the unit normal vector field N is
A-principal or U-isotropic.

5 Invariant Normal Jacobi Operator with 2-principal Normal

Vector Field

In this section let us consider a real hypersurface M in a complex quadric with
2l-principal unit normal vector field. Then the unit normal vector field N satisfies
AN = N for a complex conjuagation A €®l. This also implies that A = —£ for the
Reeb vector field £ = —]N.

Then the structure Jacobi operator R; in Section 4 becomes

Re(X) =X - n(X)&+B(AX)" - n(X)E- g(AX,N)(AN)"
+aSX - g(SX,&)S¢

for any Y € T, M, z € M, where the function f3 denotes 8 = g(A¢&, £). Moreover, the
formula (4.2) for the 2-principal unit normal vector field, that is, A = —&, becomes

(5.0) (VeRe)Y = BSAY + apS*Y — {BASSY + aS¢SY},

and, using the constancy of the Reeb function & in Lemma 3.2 and the function f = -1,
we have the formula

(5.2) (VeRe)Y = Ve(Re(Y)) — Re(VY) = B(VA)Y + a(VS)Y.
Then (5.1) and (5.2), together with the function 8 = -1, give

(5.3) ~@SAY + apS’Y + {APSY — aSPSY} = —(VA)Y + a(VS)Y.
On the other hand, the Codazzi equation gives

(VeS)Y = (VyS)E+ @Y — pAY
=Vy(SE) - SVy&+¢Y — gAY
= (Ya)E+apSY — SPSY + ¢Y — pAY.

From this, (5.3) becomes

(5.4) ~PSAY + apS?Y + APSY = —2apAY + a’$SY + apY — agAY,
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where we have used the derivative formula
(5.5) (VeA)X = Ve(AX) - AV X
=Ve(AX) - 0(§,AX) - AV X
= (VeA)X + Ad (&, X) - ag(§, AX)N
=q(&)JAX + 2an(X)N.
Taking the inner product of (5.5) with the unit normal vector field N, we have

(5.6) q(¢) = 2a.

Remark 5.1 When the Reeb function « is vanishing, by (5.2), (5.5), and (5.6), the
structure Jacobi operator R is parallel along the Reeb direction.

From (5.6), together with (5.4), we have
(5.7) —@SAY + apS?Y + APSY = —3apAY + a’*$pSY + agY.
Now let us consider the following three cases.

Casel. YeV(A)nT, M, ze M. Since M is Hopf, that is, S§ = a&, we can put SY = 1Y
for YeC =& and use AY = Y and A¢Y = —¢Y. Then (5.7) gives

“APY + aA*PY — 1Y = a*ApY — 2a Y.

From this, if the Reeb function « vanishes, then all A = 0. This means M is totally
geodesic, which gives a contradiction to the Codazzi equation (see Suh [15]). So in
Case 1, the Reeb function « cannot be vanishing. Then we have (al - 2)(1 - «) = 0.

This gives
2
(5.8) A=« or A=—.
o
Moreover, by Lemma 3.2, we know that S¢X = u¢X, y = %
Now from (5.8), we consider the first case A = a. Then from also (ap-2)(u-a) =0
and p = g‘ffﬁ, naturally we can consider two subcases:
o +2 a?+2 2
= =a oOor = = —
“ o “ o o

The above two subcases can be valid only for a non-vanishing Reeb function «. The
first subcase gives us a contradiction. From the second subcase we get & = 0, which
gives a contradiction for non-vanishing «. So we cannot consider the first case.

Next it remains only to consider the second case of (5.8), that is, A = % This case
can be also considered for a non-vanishing Reeb function «. In this case, by (5.8), the

function y becomes p = 2% = aor y = 2% = 2. Then the first subcase implies
- 4-a «
a = 0, which also gives us a contradiction. The second subcase y = ﬁ‘;‘cz = % is valid

only for &> = %, but A = p = 2 implies S¢ = ¢S, which means that the Reeb flow
is isometric. But Berndt and Suh [1] proved that the unit normal vector field N is
-isotropic if S¢ = ¢S. Accordingly, we conclude that Case 1 cannot be considered.
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Case 2. YG]V(A) NT,M, ze M. In this case, AY = -Y, A¢pY = —¢pAY = ¢Y. Then
(5.7) gives
GSY + apS?Y + APSY = 3a¢Y + a’pSY + agY.
From this, putting SY = 1Y for Y € C, and using A¢Y = ¢Y, we have
al? - (a* —2)A —4a = 0.

So M has three distinct constant principal curvatures o with multiplicities 1, m — 1,
and m — 1, and two distinct roots given by

_ o’ -2Vt +12a2 + 4

2«

A

Case 3. YeC, N (V(A)UJV(A)), ze M. Then we can put Y = Z + W for some
non-vanishing two unit vector fields Z € V(A) and W € JV (A). From this, it follows
that

AY=A(Z+W)=Z-W.

So for SY = AY for Y € € = [&]*, where [&]* denotes the orthogonal complement of
the Reeb vector field & in T, M, z € M, we have

APSY = AAPY = ~APAY = -A($Z — oW).
From this, (5.7) implies that
(5.9) —¢S(Z-W)+ar*(¢Z + W) —A($pZ - ¢W) =
-3a(PZ — W) + &*A(Z + W) + a(¢pZ + ¢W).
Then taking the inner product of (5.9) with the vector fields ¢Z and ¢§ W respectively,

we get
(5.10) -9(8S2,2) + g(SW,Z) + aA* = X = -3a + a’A + a,
(5.11) ~g(SZ, W) + g(SW, W) + aA* + A = 3a + a’A + .

On the other hand, SY = 1Y gives SZ + SW = AZ + AW. Then, taking the inner
products with two unit vector fields Z and W, we get g(SW, Z) = -¢(SZ,Z) + A and
g(SW, W) + ¢g(SZ, W) = A, respectively. Subtracting these two equations, we have

g(82,Z) = g(SW, Ww).
Now adding equations (5.10) and (5.11) and using the above formula, we have
A —al-1=0,

provided that the Reeb function « is non-vanishing. When the Reeb function « van-
ishes, we get no information; only identity holds. So by Lemma 3.2, M has three
distinct constant principal curvatures « and

_axV a’+4
- 2
with multiplicities 1, m — 1, and m — 1, respectively.

A
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6 Invariant Structure Jacobi Operator with 2-isotropic Normal
Vector Field

Under the assumption of 2(-isotropic unit normal, the structure Jacobi operator R; in
Section 4 becomes

R¢(X) =X - n(X)& - g(AX, §) AL - g(AX, N)(AN)"
+aSX - a’n(X)E
for any Y € T, M, z € M. Under the assumption of -isotropic and LxR; = 0, we have
0= (LxRe)Y = (VxRe)Y = Viy(ry X + Re(VyX).

From this, putting Y = & and using R¢(&) = 0, we have
61 (VxRe)§=Vr(pX ~ ReVeX

= {VeX - n(VeX)E - g(AVX, )AL - g(AVeX,N)AN

+aSVeX — a’n(VeX)E}.

Moreover, differentiating the structure Jacobi operator R gives
(6.2) (VxRg)§=Vx(Re(§)) - Re(Vx$)

= —{$SX - g(A¢SX, §)AE - g(ASX,N)AN + aS¢SX}.
Then from (6.1) and (6.2),
(6.3) VeX— n(VeX)E - g(AVEX, §)AE - g(AVX, N)AN

+aSVeX —a’n(VeX)E

= $SX - g(APSX, £) A& — g(APSX,N)AN + aS¢SX.

Then we can prove the following lemma for a Hopf hypersurface in Q™ with
2A-isotropic unit normal.

Lemma 6.1 Let M be a Hopf real hypersurface in the complex quadric Q™, m >3,
with -isotropic unit normal. Then we have

SAN =0 and SA&=0.

Proof Let us denote by C — Q = Span[A¢&, AN]. Since N is isotropic, g(AN,N) = 0
and g(A¢, &) = 0. Differentiating g(AN, N) = 0 and using (VxA)Y = q(X)JAY and
the equation of Weingarten, we know that

0=g(Vx(AN),N) + g(AN,VxN)
= ¢(q(X)JAN - ASX, N) - g(AN, SX)
- ~2¢(ASX,N).

Then SAN = 0. Moreover, by differentiating g(A&, N) = 0 and using g(AN, N) = 0,
we have

0=g(Vx(AL),N) + g(A§, VxN)
= g(q(X)JAE + A(¢SX + g(SX, §)N), N) - g(SAE, X)
=-2g(SA§, X)
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for any X € T,M, z € M, where in the third equality we have used ¢ AN = JAN =
—AJN = A& Then it follows that SAE = 0, which completes the proof of our asser-
tion. [

By Lemma 3.3, it is known that the Reeb function « is constant. So we can consider
two cases: a = 0 and a #0.

Case I: o = 0 By Lemma 6.1, for any X € C the formula (6.3) with « = 0 gives
(6.4) $SX = VeX - g(AVX, E)AE - g(AVeX, N)AN.

Now let us consider that SX = AX, X € Q. Then it follows that S¢X = u¢pX, u = 1.

Then (6.4) gives that
(6.5) AX = VeX — g(AVX, E)AE - g(AVX, N)AN.
Moreover, if we consider ¢ X such that S¢X = u¢X in (6.4), it follows that
66)  —uX=Ve($X) - g(AVE($X), )AL - g(ATVE($X), N)AN

= VX - g(APV X, §) AL - g(APV X, N)AN.
Then, by transforming the structure tensor ¢ to (6.6), we have

uPX =VeX - g(ApV X, §)PAL - g(ApV X, N)pAN
=VeX - g(VeX,AN)AN - g(V X, AE) AL,

Comparing this with (6.5), it follows that (1 — #)¢X = 0. Then A = p = },s0 A = £1.
In such a case, the expression of the shape operator becomes

[0 0 00 - 0 0 --- 0]
00 00O 00 -~ 0
00 0O 00 -~ 0
00 01 0 0 0

S = : : s
0000 1 0 0
00 00O 0 -1 0
0o 000 ---0 0 - -1}

where the multiplicities of the principal curvatures 1 and —1 are respectively 2p and
2q, where p + g = m — 2. So, by virtue of a theorem due to Berndt and Suh [1] and
Suh [16], M is locally congruent to a tube of radius r = 7 over a totally geodesic CP*
in sz .
Case 2: a # 0. In this case, also by Lemma 6.1, we have

SéE=at, SAN=0, and SAE=0.
Then for X € Q, (6.3) gives
(6.7) VeX - n(VeX)E - g(AVEX, §)AE - g(AVeX, N)AN

+aSVeX - a’n(VeX)E

= PSX + aS¢SX.
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Then for SX = AX, X € Q such that S¢X = pu¢X, (6.7) gives

(6.8) AX + adudX = VX - g(AVX, E)AE
- g(AVEX, N)AN + aSVX.

On the other hand, if we change X to ¢.X in (6.7), then it follows that
PVeX — g(APV X, E)AL — g(APV X, N) + aSPV X = ¢SPX + aSpSPX.
This can be arranged as
PV X - g(VeX, AN)AE + g(VeX, AE)AN — aS¢V X = —uX — aduX.
By applying the structure tensor ¢ to both sides, we have
(6.9) VX — g(VeX, AN)AN — g(VeX, AE)AE + apSPV X = upX + adudX.
From(6.8) and (6.9) it follows that
(A-u)pX = aSVX - apSPVX.
Taking the inner product with ¢ X, we have
(6.10) A=—p=(A-u)g(¢X,¢X) = a(p+1)g(VeX, $X).

Here we want to get the information about the formula g(V¢X, $X). In order to

do this, we consider SX = AX, X €Qin (6.3) such that S¢X = X, y = gi‘f{f Then it
follows that

ApX + adupX =V X - g(AVX, §)AE
~ g(AV¢X, N)AN + aSVX.

Applying ¢X to both sides of (6.4), X € Q, and using Lemma 6.1, it follows that
AL+ ap) = ¢(VeX, 9X) + aug(VeX, ¢X) = (1+ ap)g(VeX, ¢X).
So we consider two subcases.
Subcase 2.1. 1+ ap # 0. In this subcase, g(V¢X, ¢X) = 1. So from (6.10) it follows that
A=p=a(d+u)g(VeX, $X) = MA +p).
Then
al® = A +2ad +1=0.

Accordingly, in such a subcase, M has at most five distinct constant principal curva-
tures «, 0, and the solution of the cubic equation mentioned above.

Subcase 2.2. 1+ ay = 0. In this subcase, y = -1 = ;‘ﬁi Then (a? +2)A = —a.

This means that A = ——% and g = —1. So M has four distinct constant principal
a’+2 «
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curvatures given by «, 0, ——*, and —1 with multiplicities 1, 2, m — 2, and m - 2,
respectively. The expression of the shape operator becomes

[ 0 O 0 0 0 07
0 0 0 0 0 0 0
0 0 0 0 0 0 0
000 ——% 0 0 0
s=|: : .
000 0 2= 0 0
000 O o -1 0
[0 0 0 0 0 o .- _l_

Accordingly, in such a subcase, by Lemma 3.3, M has four distinct constant principal
curvatures given by «, 0, ——*, and —1 with multiplicities 1, 2, m — 2, and m - 2,
respectively.
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