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Real Hypersurfaces in the Complex
Quadric with Lie Invariant Structure
Jacobi Operator

Young Jin Suh and Gyu Jong Kim

Abstract. We introduce the notion of Lie invariant structure Jacobi operators for real hypersurfaces
in the complex quadric Qm = SOm+2/SOmSO2 . he existence of invariant structure Jacobi operators
implies that the unit normal vector ûeld N becomes A-principal or A-isotropic. hen, according to
each case, we give a complete classiûcation of real hypersurfaces in Qm = SOm+2/SOmSO2 with Lie
invariant structure Jacobi operators.

1 Introduction

When we consider some Hermitian symmetric spaces of rank 2, we can usually give
examples of Riemannian symmetric spaces SUm+2/S(U2Um) and SU2,m/S(U2Um),
which are said to be complex two-plane Grassmannians and complex hyperbolic two-
plane Grassmannians, respectively (see [10, 12, 13]). hese are viewed as Hermit-
ian symmetric spaces and quaternionic Kähler symmetric spaces equipped with the
Kähler structure J and the quaternionic Kähler structure J.

he classiûcation problems of the complex 2-plane Grassmannian with certain
geometric conditionsweremainly discussed in Jeong, Kim, and Suh [3], Pérez [6], and
Suh [10, 12, 13], where the classiûcation of contact hypersurfaces, parallel Ricci tensors,
harmonic curvatures, and Jacobi operators for real hypersurfaces in SUm+2/S(U2Um)
were extensively studied.
For the complex hyperbolic two-plane Grassmannians SU2,m/S(U2Um), Suh [14]

asserted that the Reeb �ow on a real hypersurfaceM is isometric if and only ifM is an
open part of a tube around a totally geodesic SU2,m−1/S(U2Um−1) ⊂ SU2,m/S(U2Um)
or a horosphere whose center at inûnity is singular. More generally, this result was ex-
tended to the commuting Ricci tensor, that is, Ric ⋅ϕ = ϕ ⋅ Ric in Suh [11]. Here, ϕ is a
tensor ûeld of type (1, 1) on M deûned by ϕX = (JX)T , where (JX)T denotes the tan-
gential part of JX for any vector ûeld X onM. By virtue of this result, Suh andKim [19]
considered real hypersurfaces M in SU2,m/S(U2Um) with thenotion of Reeb invari-
ant Ricci tensor, that is,LξRic = 0 for the Reeb vector ûeld ξ = −JN , where N denotes
a unit normal vector ûeld on M, and gave a characterization of these hypersurfaces.
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Moreover, the parallel Ricci tensor for real hypersurfaces in SU2,m/S(U2Um) was in-
vestigated by Suh and Woo [21].
As another kind of Hermitian symmetric space with rank 2 of compact type dif-

ferent those given above, we can give an example of complex quadric Qm = SOm+2/
SOmSO2, which is a complex hypersurface in complex projective space CPm+1 (see
Klein [4] and Smyth [9]). he complex quadric can also be regarded as a kind of real
Grassmann manifold of compact type with rank 2 (see Kobayashi and Nomizu [5]).
Accordingly, the complex quadric admits two important geometric structures, a com-
plex conjugation structure A and a Kähler structure J, which anti-commute with each
other, that is, AJ = −JA. hen for m ≥ 2 the triple (Qm , J , g) is a Hermitian symmet-
ric space of compact type with rank 2 and its maximal sectional curvature is equal to
4 (see Klein [4] and Reckziegel [8]).
Apart from the complex structure J there is another distinguished geometric struc-

ture on Qm , namely a parallel rank two vector bundleAwhich contains an S1-bundle
of real structures, that is, complex conjugations A on the tangent spaces of Qm . his
geometric structure determines a maximal A-invariant subbundle Q, that is, AQ ⊂ Q

for any complex conjugation A ∈ U, of the tangent bundle TM of a real hypersurface
M in Qm . Here the notion of parallel vector bundle A means that

(∇XA)Y = q(X)JAY
for any vector ûelds X and Y onQm , where∇ and q denote a connection and a certain
1-form deûned on T[z]Qm and [z] ∈ Qm , respectively (see Smyth [9]).
For real hypersurfaces in the complex quadric Qm , Berndt and Suh [1] have clas-

siûed the problem of isometric Reeb �ow, which was mainly used in [15–17]. Now we
want to introduce the following theorem.

heorem A Let M be a real hypersurface of the complex quadric Qm , m ≥ 3. he
Reeb �ow on M is isometric if and only if m is even, say m = 2k, and M is an open part
of a tube around a totally geodesic CPk ⊂ Q2k .

Recall that a nonzero tangent vector W ∈ T[z]Qm is called singular if it is tangent
to more than one maximal �at in Qm . here are two types of singular tangent vectors
for the complex quadric Qm .

1. If there exists a conjugation A ∈ A such that W ∈ V(A), then W is singular.
Such a singular tangent vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X ,Y ∈ V(A) such
that W/∥W∥ = (X + JY)/

√
2, then W is singular. Such a singular tangent vector is

called A-isotropic.
Here,

V(A) = {X ∈ T[z]Qm ∣ AX = X} and JV(A) = {X ∈ T[z]Qm ∣ AX = −X}
denote the (+1)-eigenspace and (−1)-eigenspace, respectively, for the involution
A2 = I on T[z]Qm , [z] ∈ Qm .

When we consider a hypersurface M in the complex quadric Qm under the as-
sumption of some geometric properties, the unit normal vector ûeld N of M in Qm

can be divided into two classes: N is eitherA-isotropic orA-principal (see [1,2,15,16]).
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In the ûrst case where N is A-isotropic, we have shown in [1] that M is locally con-
gruent to a tube over a totally geodesicCPk in Q2k . In the second case, when the unit
normal N is A-principal, we proved that a contact hypersurface M in Qm is locally
congruent to a tube over a totally geodesic and totally real submanifold Sm in Qm

(see [2]).
On the other hand, Jacobi ûelds along geodesics of a given Riemannian manifold

M satisfy anwell knowndiòerential equation. Naturally the classical diòerential equa-
tion inspires the so-called Jacobi operator. hat is, if R denotes the curvature operator
of M, then the Jacobi operator with respect to X at x ∈ M, is deûned by

(RXY)(x) = (R(Y , X)X)(x)
for any Y ∈ TxM. hen RX ∈ End(TxM) becomes a symmetric endomorphism of the
tangent bundle TM ofM. Clearly, each tangent vector ûeld X to M provides a Jacobi
operator with respect to X.
From such a viewpoint, for a real hypersurface M in the complex quadric Qm the

structure Jacobi operator Rξ is deûned by
Rξ = R(⋅, ξ)ξ ∈ End (TzM), z ∈ M ,

where R denotes the curvature tensor of the complex quadric Qm . Of course, the
structure Jacobi operator Rξ is a symmetric endomorphism of M in Qm .

he structure Jacobi operator Rξ ofM in Qm is said to be Lie invariant if the oper-
ator Rξ satisûes

(LXRξ)Y = 0
for any X ,Y ∈ TzM, z ∈ M, where the Lie derivative (LXRξ)Y is deûned by

(LXRξ)Y = [X , Rξ(Y)] − Rξ([X ,Y])
= ∇X(Rξ(Y)) − ∇Rξ(Y)X − Rξ(∇XY −∇YX)
= (∇XRξ)Y −∇Rξ(Y)X + Rξ(∇YX).

Recently, for real hypersurfaces in the complex quadric Qm we investigated the
notions of parallel Ricci tensor, harmonic curvature, commuting Ricci tensor and Lie
invariant normal Jacobi operator, which are respectively given by∇Ric = 0, δRic = 0,
Ric⋅ϕ = ϕ⋅Ric(see Suh [16], [17], Suh and Hwang [18]). hen, motivated by such facts
and the classiûcation of isometric Reeb �ow due to heorem A, Suh and Kim ([20])
gave the following theorem for real hypersurfaces in the complex quadric Qm with
Lie invariant normal Jacobi operator, that is, LXRN = 0.

heorem B Let M be a Hopf real hypersurface in the complex quadric Qm , m ≥ 3,
with Lie invariant normal Jacobi operator. hen M is locally congruent to a tube of
radius r over a totally geodesic complex k-dimensional complex projective spaceCPk in
the complex 2k-dimensional complex quadric Q2k .

On the other hand, from the assumption of Ricci parallel or harmonic curvature,
it was diõcult for us to derive the fact that the unit normal vector ûeld N is either
A-isotropic or A-principal. So in [16, 17] we gave a classiûcation with the further
assumption that N is A-isotropic. But fortunately, when we consider Lie invariant
structure Jacobi operator, that is, LXRξ = 0 for any tangent vector ûeld X on M
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inQm , we can assert that the unit normal vector ûeldN becomes eitherA-isotropic or
A-principal as follows.

Main heorem 1 Let M be a Hopf real hypersurface in the complex quadric Qm ,
m ≥ 3, with Lie invariant structure Jacobi operator. hen the unit normal vector ûeld N
is singular, that is, N is A-isotropic or A-principal.

hen, motivated by heorem 1 andheorem A due to Berndt and Suh [1], we can
give a classiûcation theorem for real hypersurfaces in the complex quadric Qm with
Lie invariant structure Jacobi operator. Now we want to assert the following, which is
quite diòerent from heorem B.

Main heorem 2 Let M be a Hopf real hypersurface in the complex quadric Qm ,
m ≥ 3 with Lie invariant structure Jacobi operator. hen M is locally congruent to one
of the following:

(i) a tube of radius π
4 over a totally geodesic complex k-dimensional complex projec-

tive space CPk in Q2k , m = 2k;
(ii) a hypersurface that has at most ûve distinct constant principal curvatures α, 0,

and the solution of the cubic equation

αx3 − x2 + 2αx + 1 = 0,

where α = g(Sξ, ξ) denotes the Reeb function on M,
(iii) a hypersurface that has four distinct constant principal curvatures given α, 0,

− α
α2+2 , and −

1
α with multiplicities 1, 2, m − 2, and m − 2, respectively,

(iv) a hypersurface that has three distinct constant principal curvatures α, and two
distinct roots given by

λ = α
2 − 2±

√
α4 + 12α2 + 4
2α

with multiplicities 1, m − 1, and m − 1, respectively,
(v) a hypersurface that has three distinct constant principal curvatures α and two

distinct roots given by

λ = α±
√
α2 + 4
2

with multiplicities 1, m − 1, and m − 1, respectively, provided with non-vanishing Reeb
function α.

In Main heorem 2, if the unit normal vector ûeld N is A-isotropic, then M is
locally congruent to a real hypersurface of type (i), (ii), or (iii). If N isA-principal,M
is locally congruent to one of type (iv) or (v). Moreover, the case (i) in heorem 2 is a
special case of the case (ii) when the Reeb function α is vanishing.

Our paper is organized as follows. In Section 2 we present basic material about the
complex quadric Qm , including its Riemannian curvature tensor and a description
of its singular tangent vectors. Apart from the complex structure J, there is another
distinguished geometric structure on Qm , namely a parallel rank two vector bundleA
that contains an S1-bundle of real structures on the tangent spaces ofQm . In Section 3
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we investigate the geometry of the maximal subbundle Q and introduce the equation
of Codazzi. In Section 4 we give a complete proof of heorem 1, which acts as a key
lemma for the proof of heorem 2 according to the A-principal or A-isotropic unit
normal vector ûeld.

In Section 5 we give a contradiction for real hypersurfaces inQm with Lie invariant
normal Jacobi operator if they have theA-principal unit normal. Finally, in Section 6,
we present the proof of ourheorem2whenM admits theA-isotropic unit normal. In
order to do this, we introduce Lemma 6.1, saying that SAN = 0 and SAξ = 0 for aHopf
real hypersurface with A-isotropic unit normal vector ûeld N . Lemma 6.1 is crucial
for the proof of Main heorem 2. From this, together with the equation of Gauss
between the curvature tensors R(X ,Y)Z for M and R(X ,Y)Z for Qm respectively,
we give a complete proof of Main heorem 2.

2 The Complex Quadric

For more background to this section, we refer the reader to [4, 5, 8, 15–17]. he com-
plex quadricQm is the complex hypersurface inCPm+1, which is deûned by the equa-
tion z2

0 + ⋅ ⋅ ⋅ + z2
m+1 = 0, where z0 , . . . , zm+1 are homogeneous coordinates on CPm+1.

We equip Qm with the Riemannian metric g that is induced from the Fubini–Study
metric g on CPm+1 with constant holomorphic sectional curvature 4. he Fubini–
Study metric g is deûned by g(X ,Y) = Φ(JX ,Y) for vector ûelds X and Y on
CPm+1 and a globally closed (1, 1)-form Φ given by Φ = −4i∂∂ log f j on an open set
U j ={[z0 , z1 , . . . , zm+1] ∈CPm+1 ∣ z j /= 0}, where the function f j denotes f j =∑m+1

k=0 tkj t
k
j ,

and tkj = zk

z j for j, k = 0, . . . ,m + 1. hen, naturally, the Kähler structure on CPm+1

induces canonically a Kähler structure (J , g) on the complex quadric Qm .
he complex projective space CPm+1 is a Hermitian symmetric space of the

special unitary group SUm+2, namely, CPm+1 = SUm+2/S(Um+1U1). We denote by
o = [0, . . . , 0, 1] ∈ CPm+1 the ûxed point of the action of the stabilizer S(Um+1U1). he
special orthogonal group SOm+2 ⊂ SUm+2 acts on CPm+1 with cohomogeneity one.
he orbit containing o is a totally geodesic real projective spaceRPm+1 ⊂ CPm+1. he
second singular orbit of this action is the complex quadric Qm = SOm+2/SOmSO2.
his homogeneous space model leads to the geometric interpretation of the complex
quadric Qm as the Grassmann manifold G+

2 (Rm+2) of oriented 2-planes in Rm+2. It
also gives a model of Qm as a Hermitian symmetric space of rank 2. he complex
quadric Q 1 is isometric to a sphere S2 with constant curvature, and Q2 is isometric
to the Riemannian product of two 2-spheres with constant curvature. For this reason
we will assume m ≥ 3 from now on.

Now let us denote by Az the shape operator of Qm in CPm+1 with respect to the
unit normal z. It is deûned by Azw = ∇wz = w for a complex Euclidean connection
∇ induced from Cm+2 and all w ∈ T[z]Qm . hat is, the shape operator Az is just a
complex conjugation restricted to T[z]Qm . Moreover, it satisûes the following for any
w ∈ T[z]Qm and any λ ∈ S1 ⊂C

A2
λzw = AλzAλzw = Aλzλw

= λAzλw = λ∇λwz = λλw = ∣λ∣2w = w .
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Accordingly, A2
λz = I for any λ ∈ S1. So the shape operator Az becomes an anti-

commuting involution such that A2
z = I and AJ = −JA on the complex vector space

T[z]Qm and
T[z]Qm = V(Az) ⊕ JV(Az),

whereV(Az) = Rm+2∩T[z]Qm is the (+1)-eigenspace and JV(Az) = iRm+2∩T[z]Qm

is the (−1)-eigenspace of Az . hat is, AzX = X and Az JX = −JX, respectively, for any
X ∈V(Az).

here is a geometric interpretation of these conjugations. he complex quadric
Qm can be viewed as the complexiûcation of them-dimensional sphere Sm . hrough
each point [z] ∈ Qm , there exists a one-parameter family of real forms of Qm that
are isometric to the sphere Sm . hese real forms are congruent to each other under
action of the center SO2 of the isotropy subgroup of SOm+2 at [z]. he isometric
re�ection of Qm in such a real form Sm is an isometry, and the diòerential at [z] of
such a re�ection is a conjugation on T[z]Qm . In this way the familyA of conjugations
on T[z]Qm corresponds to the family of real forms Sm of Qm containing [z], and the
subspaces V(A) ⊂ T[z]Qm correspond to the tangent spaces T[z]Sm of the real forms
Sm of Qm .

he Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature ten-
sor R of Qm can be described in terms of the complex structure J and the complex
conjugations A ∈ A:

R(X ,Y)Z = g(Y , Z)X − g(X , Z)Y + g(JY , Z)JX
− g(JX , Z)JY − 2g(JX ,Y)JZ + g(AY , Z)AX
− g(AX , Z)AY + g(JAY , Z)JAX − g(JAX , Z)JAY .

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA for each
A ∈ A.
For every unit tangent vector W ∈ T[z]Qm there exist a conjugation A ∈ A and

orthonormal vectors X ,Y ∈ V(A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. Here A-principal W corresponds to the value t = 0 and A-
isotropicW to t = π/4. Here the vector W = X for X ∈V(A) with t = 0 is singular,
because for any unit vector Y ∈V(A) orthogonal to X, RX + RJY is a maximal �at
that contains X. Also the vectorW = (X+ JY)/

√
2 for t = π

4 is singular, becauseW is
A-isotropic, and the kernel of the Jacobi operator RW is RW⊕CAW . hen it follows
that for any µ ∈ S1, a ∶= R(X + JY)⊕R(µ(X − JY)) is a maximal �at that includes the
vector W .

3 Some General Equations

Let M be a real hypersurface in Qm and denote by (ϕ, ξ, η, g) the induced almost
contact metric structure. Note that ξ = −JN , where N is a (local) unit normal vec-
tor ûeld of M and η the corresponding 1-form deûned by η(X) = g(ξ, X) for any
tangent vector ûeld X on M. he tangent bundle TM of M splits orthogonally into
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TM = C⊕Rξ, whereC = ker(η) is themaximal complex subbundle ofTM. he struc-
ture tensor ûeld ϕ restricted to C coincides with the complex structure J restricted to
C, and ϕξ = 0.
At each point z ∈ M, we deûne a maximal A-invariant subspace of TzM, z ∈M as

Qz = {X ∈ TzM ∣ AX ∈ TzM for all A ∈ Az}.
hen we want to introduce an important lemma that will be used in the proof of

our main theorem.

Lemma 3.1 ([15]) For each z ∈ M, we have the following.
(i) If Nz is A-principal, then Qz = Cz .
(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal vectors

X ,Y ∈ V(A) such that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4]. hen we
have Qz = Cz ⊖C(JX + Y).

Wenow assume that M is a Hopf hypersurface. hen the Reeb vector ûeld ξ = −JN
satisûes Sξ = αξ, where S denotes the shape operator of the real hypersurfaces M
with the smooth function α = g(Sξ, ξ) on M. When we consider the transform
JX by the Kähler structure J on Qm for any vector ûeld X on M in Qm , we can put
JX = ϕX+η(X)N for a unit normal N to M. We now consider the Codazzi equation,

g((∇XS)Y − (∇YS)X , Z)
= η(X)g(ϕY , Z) − η(Y)g(ϕX , Z) − 2η(Z)g(ϕX ,Y)
+ g(X ,AN)g(AY , Z) − g(Y ,AN)g(AX , Z)
+ g(X ,Aξ)g(JAY , Z) − g(Y ,Aξ)g(JAX , Z).

(3.1)

Putting Z = ξ in (3.1), we get

(3.2) g((∇XS)Y − (∇YS)X , ξ) = −2g(ϕX ,Y)
+ g(X ,AN)g(Y ,Aξ) − g(Y ,AN)g(X ,Aξ)
− g(X ,Aξ)g(JY ,Aξ) + g(Y ,Aξ)g(JX ,Aξ).

On the other hand, we have

g((∇XS)Y − (∇YS)X , ξ) = g((∇XS)ξ,Y) − g((∇YS)ξ, X)(3.3)

= (Xα)η(Y) − (Yα)η(X) + αg((Sϕ + ϕS)X ,Y) − 2g(SϕSX ,Y).

Comparing (3.2) and (3.3) and putting X = ξ yields

(3.4) Yα = (ξα)η(Y) − 2g(ξ,AN)g(Y ,Aξ) + 2g(Y ,AN)g(ξ,Aξ).
Reinserting this into (3.3) yields

g((∇XS)Y − (∇YS)X , ξ)
= −2g(ξ,AN)g(X ,Aξ)η(Y) + 2g(X ,AN)g(ξ,Aξ)η(Y)
+ 2g(ξ,AN)g(Y ,Aξ)η(X) − 2g(Y ,AN)g(ξ,Aξ)η(X)
+ αg((ϕS + Sϕ)X ,Y) − 2g(SϕSX ,Y).
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Altogether this implies

0 = 2g(SϕSX ,Y) − αg((ϕS + Sϕ)X ,Y) − 2g(ϕX ,Y)
+ g(X ,AN)g(Y ,Aξ) − g(Y ,AN)g(X ,Aξ)
− g(X ,Aξ)g(JY ,Aξ) + g(Y ,Aξ)g(JX ,Aξ)
+ 2g(ξ,AN)g(X ,Aξ)η(Y) − 2g(X ,AN)g(ξ,Aξ)η(Y)
− 2g(ξ,AN)g(Y ,Aξ)η(X) + 2g(Y ,AN)g(ξ,Aξ)η(X).

At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1 , Z2 ∈ V(A) and 0 ≤ t ≤ π
4 (see [8, Proposition 3]).

Note that t is a function on M. First of all, since ξ = −JN , we have
AN = cos(t)Z1 − sin(t)JZ2 ,

ξ = sin(t)Z2 − cos(t)JZ1 ,
Aξ = sin(t)Z2 + cos(t)JZ1 .

his implies g(ξ,AN) = 0, and hence

0 = 2g(SϕSX ,Y) − αg((ϕS + Sϕ)X ,Y) − 2g(ϕX ,Y)
+ g(X ,AN)g(Y ,Aξ) − g(Y ,AN)g(X ,Aξ)
− g(X ,Aξ)g(JY ,Aξ) + g(Y ,Aξ)g(JX ,Aξ)
− 2g(X ,AN)g(ξ,Aξ)η(Y) + 2g(Y ,AN)g(ξ,Aξ)η(X).

We now apply this result to get more information for the Reeb function α on Hopf
hypersurfaces in Qm .

Lemma 3.2 ([15]) Let M be a Hopf hypersurface in Qm such that the normal vector
ûeld N is A-principal everywhere. hen α is constant. Moreover, if X ∈ C is a principal
curvature vector of M with principal curvature λ, then 2λ ≠ α and ϕX is a principal
curvature vector of M with principal curvature αλ+2

2λ−α .

Lemma 3.3 ([1]) Let M be a Hopf hypersurface in Qm , m ≥ 3, such that the normal
vector ûeld N is A-isotropic everywhere. hen α is constant.

4 Invariant Structure Jacobi Operator and a Key Lemma

By the Gauss equation, the curvature tensor R(X ,Y)Z for a real hypersurface M in
Qm induced from the curvature tensor R of Qm can be described in terms of the
complex structure J and the complex conjugation A ∈ A as follows:

R(X ,Y)Z = g(Y , Z)X − g(X , Z)Y + g(ϕY , Z)ϕX − g(ϕX , Z)ϕY
− 2g(ϕX ,Y)ϕZ + g(AY , Z)AX − g(AX , Z)AY
+ g(JAY , Z)JAX − g(JAX , Z)JAY + g(SY , Z)SX
− g(SX , Z)SY
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for any X ,Y , Z ∈TzM, z ∈M. hen the structure Jacobi operator RN is deûned in such
a way that

Rξ(X) = R(X , ξ)ξ
for any tangent vector ûeld X in TzM and the unit normal N of M in TzQm , z ∈Qm .
hen the structure Jacobi operator Rξ becomes a symmetric operator on the tangent
space TzM, z ∈M, of Qm . From this, by the complex structure J and the complex
conjugationsA ∈ A, togetherwith the fact that g(Aξ,N) = 0 and ξ = −JN in Section 3,
the structure Jacobi operator Rξ is given by

Rξ(X) = X − η(X)ξ + β(AX)T − g(AX , ξ)Aξ − g(AX ,N)(AN)T

+ αSX − g(SX , ξ)Sξ
(4.1)

for anyY ∈TzM, z ∈M, where the function β is deûned by β = g(Aξ, ξ) = −g(AN ,N).
On the other hand, the deûnition of the Lie derivative of the structure Jacobi op-

erator Rξ gives

(4.2) (LXRξ)(Y) = LX(Rξ(Y)) − Rξ(LXY) = [X , Rξ(Y)] − Rξ([X ,Y])

for any tangent vector ûelds X and Y on M in Qm . Moreover, the derivative of Rξ is
given by

(4.3) (∇XRξ)Y = ∇X(RξY) − Rξ(∇XY).

Now let us suppose that the structure Jacobi operator Rξ is Lie parallel; that is,
LXRξ = 0. hen (4.2) gives

[X , Rξ(Y)] − Rξ([X ,Y]) = 0.

From this, together with (4.3), it follows that

(4.4) (∇XRξ)Y = ∇Rξ(Y)X − Rξ(∇YX).

hen, putting X = ξ in the above equation and using (4.1), we have

(∇ξRξ)Y = ∇RξY ξ − Rξ∇Y ξ = ϕSRξY − RξϕSY

= ϕSY + βϕS(AY)T − g(AT , ξ)ϕSAξ − g(AY ,N)ϕS(AN)T

+ αϕS2Y − {ϕSY + β(AϕSY)T − g(AϕSY , ξ)Aξ
− g(AϕSY ,N)(AN)T + αSϕSY} .

From this, taking the inner product with the unit normal vector ûeld N , we have

0 = −{βg(AϕSY ,N) − g(AϕSY ,N)g(AN ,N)}
= −{β − g(AN ,N)} g(AϕSY ,N)
= 2g(AN ,N)g(AϕSY ,N).

(4.5)

hen at some points x ∈M, the unit normal vector Nx isA-isotropic, that is, β(x) = 0
holds, whereas at other points y ∈M, we have β(y) /= 0. hen by (4.5), on such points
we know that (SϕAN)y = 0. his gives us a motivation to consider the open subset
U = {x ∈M ∣ β(x) /= 0}. hen we assert the following lemma.
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Lemma 4.1 Let M be a Hopf real hypersurface in the complex quadric Qm , m ≥ 3,
with Lie invariant structure Jacobi operator. hen on the open subset U of M, we have
SϕAN = 0.

On the other hand, putting Y = ξ in (4.4), we have
0 = (∇XRξ)ξ −∇Rξ ξX + Rξ(∇ξX)
= ∇X(Rξ(ξ)) − Rξ(∇X ξ) + Rξ(∇ξX)
= −Rξ(ϕSX) + Rξ(∇ξX)
= −{ϕSX + β(AϕSX)T − g(AϕSX , ξ)Aξ − g(AϕSX ,N)(AN)T

+ αSϕSX − g(SϕSX , ξ)Sξ}
+ {∇ξX − η(∇ξX)ξ + β(A∇ξX)T − g(A∇ξX , ξ)Aξ

− g(A∇ξX ,N)(AN)T + αS∇ξX − g(S∇ξX , ξ)Sξ} .

From this, taking the inner product with the unit normal vector ûeld N and using
SϕAN = 0, we have

0 = −2g(AN ,N)g(∇ξX ,AN).
hen we assert the following lemma.

Lemma 4.2 Let M be a Hopf real hypersurface in the complex quadric Qm , m ≥ 3,
with Lie invariant structure Jacobi operator. hen on the open subset U of M, we have
g(∇ξX ,AN) = 0 for any vector ûeld X on M.

hen on the open subset U, by Lemma 4.2, we have, for any tangent vector ûeld X
on M,

0 = g(∇ξ(ϕX),AN) = g(ϕ∇ξX ,AN)
= g(J∇ξX − η(∇ξX)N ,AN) = −g(∇ξX ,Aξ).

(4.6)

hen putting X = Aξ in (4.6), we have naturally
0 = g(∇ξ(Aξ),AN)
= −q(ξ)g(AN ,AN) + αg(AN ,AN) − αβg(N ,AN)
= −{q(ξ) − α} + αβ2 ,

(4.7)

because we have used
∇ξ(Aξ) = q(ξ)JAξ + αAN − αβN ,

where q denotes a certain 1-form deûned on T[z]Qm , [z] ∈Qm as in the introduction.
On the other hand, for X�Aξ, X ∈TzM, and X�ξ, we know that

0 = g(∇ξX ,Aξ) = −g(X ,∇ξ(Aξ))
= −g(X , q(ξ)JAξ + αAN − αβN)
= −g(X ,−q(ξ)AN + αAN) = (q(ξ) − α) g(X ,AN).

From this, putting X = ANT , we have q(ξ) = α. Substituting this into (4.7), the Reeb
function α is then vanishing on the open subset U. hen (3.4) gives that g(Y ,AN)
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g(ξ,Aξ) = 0 for any vector ûeld Y on U on M. his means that AN = N ; that is,
the unit normal vector ûeld N is A-principal. Here the A-principalness of the unit
vector N has been shown only at the points of the open set U. However, this implies
that U = {x ∈M ∣ ANx = Nx} is closed. BecauseM is connected, it follows that either
U = ∅ holds, meaning that N isA-isotropic on M, or else U = M holds, meaning that
N is A-principal on M. hat is, we assert the following lemma.

Lemma 4.3 Let M be a Hopf real hypersurface in the complex quadric Qm , m ≥ 3,
with Lie invariant structure Jacobi operator. hen the unit normal vector ûeld N is
A-principal or A-isotropic.

5 Invariant Normal Jacobi Operator with A-principal Normal
Vector Field

In this section let us consider a real hypersurface M in a complex quadric with
A-principal unit normal vector ûeld. hen the unit normal vector ûeld N satisûes
AN = N for a complex conjuagation A∈A. his also implies that Aξ = −ξ for the
Reeb vector ûeld ξ = −JN .

hen the structure Jacobi operator Rξ in Section 4 becomes

Rξ(X) = X − η(X)ξ + β(AX)T − η(X)ξ − g(AX ,N)(AN)T

+ αSX − g(SX , ξ)Sξ

for any Y ∈TzM, z ∈M, where the function β denotes β = g(Aξ, ξ). Moreover, the
formula (4.2) for the A-principal unit normal vector ûeld, that is, Aξ = −ξ, becomes

(5.1) (∇ξRξ)Y = βϕSAY + αϕS2Y − {βAϕSY + αSϕSY},

and, using the constancy of theReeb function α in Lemma 3.2 and the function β = −1,
we have the formula

(∇ξRξ)Y = ∇ξ(Rξ(Y)) − Rξ(∇ξY) = β(∇ξA)Y + α(∇ξS)Y .(5.2)

hen (5.1) and (5.2), together with the function β = −1, give

(5.3) −ϕSAY + αϕS2Y + {AϕSY − αSϕSY} = −(∇ξA)Y + α(∇ξS)Y .

On the other hand, the Codazzi equation gives

(∇ξS)Y = (∇YS)ξ + ϕY − ϕAY
= ∇Y(Sξ) − S∇Y ξ + ϕY − ϕAY
= (Yα)ξ + αϕSY − SϕSY + ϕY − ϕAY .

From this, (5.3) becomes

(5.4) −ϕSAY + αϕS2Y + AϕSY = −2αϕAY + α2ϕSY + αϕY − αϕAY ,
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where we have used the derivative formula
(∇ξA)X = ∇ξ(AX) − A∇ξX

= ∇ξ(AX) − σ(ξ,AX) − A∇ξX

= (∇ξA)X + Aσ(ξ, X) − αg(ξ,AX)N
= q(ξ)JAX + 2αη(X)N .

(5.5)

Taking the inner product of (5.5) with the unit normal vector ûeld N , we have

(5.6) q(ξ) = 2α.

Remark 5.1 When the Reeb function α is vanishing, by (5.2), (5.5), and (5.6), the
structure Jacobi operator Rξ is parallel along the Reeb direction.

From (5.6), together with (5.4), we have

(5.7) −ϕSAY + αϕS2Y + AϕSY = −3αϕAY + α2ϕSY + αϕY .

Now let us consider the following three cases.

Case 1. Y ∈V(A)∩TzM, z ∈M. SinceM is Hopf, that is, Sξ = αξ, we can put SY = λY
for Y ∈C = ξ�, and use AY = Y and AϕY = −ϕY . hen (5.7) gives

−λϕY + αλ2ϕY − λϕY = α2λϕY − 2αϕY .

From this, if the Reeb function α vanishes, then all λ = 0. his means M is totally
geodesic, which gives a contradiction to the Codazzi equation (see Suh [15]). So in
Case 1, the Reeb function α cannot be vanishing. hen we have (αλ − 2)(λ − α) = 0.
his gives

(5.8) λ = α or λ = 2
α
.

Moreover, by Lemma 3.2, we know that SϕX = µϕX, µ = αλ+2
2λ−α .

Now from (5.8), we consider the ûrst case λ = α.hen fromalso (αµ−2)(µ−α) = 0
and µ = αλ+2

2λ−α , naturally we can consider two subcases:

µ = α
2 + 2
α

= α or µ = α
2 + 2
α

= 2
α
.

he above two subcases can be valid only for a non-vanishing Reeb function α. he
ûrst subcase gives us a contradiction. From the second subcase we get α = 0, which
gives a contradiction for non-vanishing α. So we cannot consider the ûrst case.

Next it remains only to consider the second case of (5.8), that is, λ = 2
α . his case

can be also considered for a non-vanishing Reeb function α. In this case, by (5.8), the
function µ becomes µ = 4α

4−α2 = α or µ = 4α
4−α2 = 2

α . hen the ûrst subcase implies
α = 0, which also gives us a contradiction. he second subcase µ = 4α

4−α2 =
2
α is valid

only for α2 = 4
3 , but λ = µ = 2

α implies Sϕ = ϕS, which means that the Reeb �ow
is isometric. But Berndt and Suh [1] proved that the unit normal vector ûeld N is
A-isotropic if Sϕ = ϕS. Accordingly, we conclude that Case 1 cannot be considered.
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Case 2. Y ∈ JV(A)∩TzM, z ∈M. In this case, AY = −Y , AϕY = −ϕAY = ϕY . hen
(5.7) gives

ϕSY + αϕS2Y + AϕSY = 3αϕY + α2ϕSY + αϕY .
From this, putting SY = λY for Y ∈C, and using AϕY = ϕY , we have

αλ2 − (α2 − 2)λ − 4α = 0.

So M has three distinct constant principal curvatures α with multiplicities 1, m − 1,
and m − 1, and two distinct roots given by

λ = α
2 − 2±

√
α4 + 12α2 + 4
2α

.

Case 3. Y ∈Cz ∖ (V(A)∪ JV(A)), z ∈M. hen we can put Y = Z + W for some
non-vanishing two unit vector ûelds Z ∈V(A) andW ∈ JV(A). From this, it follows
that

AY = A(Z +W) = Z −W .
So for SY = λY for Y ∈C = [ξ]�, where [ξ]� denotes the orthogonal complement of
the Reeb vector ûeld ξ in TzM, z ∈M, we have

AϕSY = λAϕY = −λϕAY = −λ(ϕZ − ϕW).

From this, (5.7) implies that

(5.9) −ϕS(Z −W) + αλ2(ϕZ + ϕW) − λ(ϕZ − ϕW) =
− 3α(ϕZ − ϕW) + α2λ(ϕZ + ϕW) + α(ϕZ + ϕW).

hen taking the inner product of (5.9) with the vector ûelds ϕZ and ϕW respectively,
we get

−g(SZ , Z) + g(SW , Z) + αλ2 − λ = −3α + α2λ + α,(5.10)

−g(SZ ,W) + g(SW ,W) + αλ2 + λ = 3α + α2λ + α.(5.11)

On the other hand, SY = λY gives SZ + SW = λZ + λW . hen, taking the inner
products with two unit vector ûelds Z andW , we get g(SW , Z) = −g(SZ , Z)+ λ and
g(SW ,W) + g(SZ ,W) = λ, respectively. Subtracting these two equations, we have

g(SZ , Z) = g(SW ,W).

Now adding equations (5.10) and (5.11) and using the above formula, we have

λ2 − αλ − 1 = 0,

provided that the Reeb function α is non-vanishing. When the Reeb function α van-
ishes, we get no information; only identity holds. So by Lemma 3.2, M has three
distinct constant principal curvatures α and

λ = α±
√
α2 + 4
2

with multiplicities 1, m − 1, and m − 1, respectively.
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6 Invariant Structure Jacobi Operator with A-isotropic Normal
Vector Field

Under the assumption ofA-isotropic unit normal, the structure Jacobi operator Rξ in
Section 4 becomes

Rξ(X) =X − η(X)ξ − g(AX , ξ)Aξ − g(AX ,N)(AN)T

+ αSX − α2η(X)ξ
for any Y ∈TzM, z ∈M. Under the assumption of A-isotropic and LXRξ = 0, we have

0 = (LXRξ)Y = (∇XRξ)Y −∇Rξ(Y)X + Rξ(∇YX).
From this, putting Y = ξ and using Rξ(ξ) = 0, we have

(∇XRξ)ξ =∇Rξ(ξ)X − Rξ∇ξX

= −{∇ξX − η(∇ξX)ξ − g(A∇ξX , ξ)Aξ − g(A∇ξX ,N)AN
+ αS∇ξX − α2η(∇ξX)ξ}.

(6.1)

Moreover, diòerentiating the structure Jacobi operator Rξ gives
(∇XRξ)ξ =∇X(Rξ(ξ)) − Rξ(∇X ξ)

= −{ϕSX − g(AϕSX , ξ)Aξ − g(AϕSX ,N)AN + αSϕSX} .

(6.2)

hen from (6.1) and (6.2),
∇ξX− η(∇ξX)ξ − g(A∇ξX , ξ)Aξ − g(A∇ξX ,N)AN

+ αS∇ξX − α2η(∇ξX)ξ
= ϕSX − g(AϕSX , ξ)Aξ − g(AϕSX ,N)AN + αSϕSX .

(6.3)

hen we can prove the following lemma for a Hopf hypersurface in Qm with
A-isotropic unit normal.

Lemma 6.1 Let M be a Hopf real hypersurface in the complex quadric Qm , m ≥ 3,
with A-isotropic unit normal. hen we have

SAN = 0 and SAξ = 0.

Proof Let us denote by C − Q = Span[Aξ,AN]. Since N is isotropic, g(AN ,N) = 0
and g(Aξ, ξ) = 0. Diòerentiating g(AN ,N) = 0 and using (∇XA)Y = q(X)JAY and
the equation of Weingarten, we know that

0 = g(∇X(AN),N) + g(AN ,∇XN)
= g(q(X)JAN − ASX ,N) − g(AN , SX)
= −2g(ASX ,N).

hen SAN = 0. Moreover, by diòerentiating g(Aξ,N) = 0 and using g(AN ,N) = 0,
we have

0 = g(∇X(Aξ),N) + g(Aξ,∇XN)
= g(q(X)JAξ + A(ϕSX + g(SX , ξ)N),N) − g(SAξ, X)
= −2g(SAξ, X)
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for any X ∈ TzM, z ∈ M, where in the third equality we have used ϕAN = JAN =
−AJN = Aξ. hen it follows that SAξ = 0, which completes the proof of our asser-
tion. ∎

By Lemma 3.3, it is known that the Reeb function α is constant. So we can consider
two cases: α = 0 and α /= 0.
Case 1: α = 0 By Lemma 6.1, for any X ∈C the formula (6.3) with α = 0 gives

ϕSX = ∇ξX − g(A∇ξX , ξ)Aξ − g(A∇ξX ,N)AN .(6.4)

Now let us consider that SX = λX, X ∈Q. hen it follows that SϕX = µϕX, µ = 1
λ .

hen (6.4) gives that

(6.5) λϕX = ∇ξX − g(A∇ξX , ξ)Aξ − g(A∇ξX ,N)AN .

Moreover, if we consider ϕX such that SϕX = µϕX in (6.4), it follows that
−µX = ∇ξ(ϕX) − g(A∇ξ(ϕX), ξ)Aξ − g(A∇ξ(ϕX),N)AN

= ϕ∇ξX − g(Aϕ∇ξX , ξ)Aξ − g(Aϕ∇ξX ,N)AN .
(6.6)

hen, by transforming the structure tensor ϕ to (6.6), we have
µϕX =∇ξX − g(Aϕ∇ξX , ξ)ϕAξ − g(Aϕ∇ξX ,N)ϕAN

=∇ξX − g(∇ξX ,AN)AN − g(∇ξX ,Aξ)Aξ.

Comparing this with (6.5), it follows that (λ − µ)ϕX = 0. hen λ = µ = 1
λ , so λ = ±1.

In such a case, the expression of the shape operator becomes

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋅ ⋅ ⋅ ⋮
0 0 0 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0
0 0 0 0 ⋅ ⋅ ⋅ 0 −1 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the multiplicities of the principal curvatures 1 and −1 are respectively 2p and
2q, where p + q = m − 2. So, by virtue of a theorem due to Berndt and Suh [1] and
Suh [16], M is locally congruent to a tube of radius r = π

4 over a totally geodesic CPk

in Q2k .

Case 2: α /= 0. In this case, also by Lemma 6.1, we have

Sξ = αξ, SAN = 0, and SAξ = 0.

hen for X ∈ Q, (6.3) gives
∇ξX − η(∇ξX)ξ − g(A∇ξX , ξ)Aξ − g(A∇ξX ,N)AN

+ αS∇ξX − α2η(∇ξX)ξ
= ϕSX + αSϕSX .

(6.7)
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hen for SX = λX, X ∈Q such that SϕX = µϕX, (6.7) gives

λϕX + αλµϕX = ∇ξX − g(A∇ξX , ξ)Aξ
− g(A∇ξX ,N)AN + αS∇ξX .

(6.8)

On the other hand, if we change X to ϕX in (6.7), then it follows that

ϕ∇ξX − g(Aϕ∇ξX , ξ)Aξ − g(Aϕ∇ξX ,N) + αSϕ∇ξX = ϕSϕX + αSϕSϕX .

his can be arranged as

ϕ∇ξX − g(∇ξX ,AN)Aξ + g(∇ξX ,Aξ)AN − αSϕ∇ξX = −µX − αλµX .

By applying the structure tensor ϕ to both sides, we have

(6.9) ∇ξX − g(∇ξX ,AN)AN − g(∇ξX ,Aξ)Aξ + αϕSϕ∇ξX = µϕX + αλµϕX .

From(6.8) and (6.9) it follows that

(λ − µ)ϕX = αS∇ξX − αϕSϕ∇ξX .

Taking the inner product with ϕX, we have

λ − µ = (λ − µ)g(ϕX , ϕX) = α(µ + λ)g(∇ξX , ϕX).(6.10)

Here we want to get the information about the formula g(∇ξX , ϕX). In order to
do this, we consider SX = λX, X ∈Q in (6.3) such that SϕX = µϕX, µ = αλ+2

2λ−α . hen it
follows that

λϕX + αλµϕX =∇ξX − g(A∇ξX , ξ)Aξ
− g(A∇ξX ,N)AN + αS∇ξX .

Applying ϕX to both sides of (6.4), X ∈Q, and using Lemma 6.1, it follows that

λ(1 + αµ) = g(∇ξX , ϕX) + αµg(∇ξX , ϕX) = (1 + αµ)g(∇ξX , ϕX).

So we consider two subcases.

Subcase 2.1. 1+αµ /= 0. In this subcase, g(∇ξX , ϕX) = λ. So from (6.10) it follows that

λ − µ = α(λ + µ)g(∇ξX , ϕX) = λ(λ + µ).

hen
αλ3 − λ2 + 2αλ + 1 = 0.

Accordingly, in such a subcase, M has at most ûve distinct constant principal curva-
tures α, 0, and the solution of the cubic equation mentioned above.

Subcase 2.2. 1 + αµ = 0. In this subcase, µ = − 1
α = αλ+2

2λ−α . hen (α2 + 2)λ = −α.
his means that λ = − α

α2+2 and µ = − 1
α . So M has four distinct constant principal
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curvatures given by α, 0, − α
α2+2 , and −

1
α with multiplicities 1, 2, m − 2, and m − 2,

respectively. he expression of the shape operator becomes

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
0 0 0 − α

α2+2 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋅ ⋅ ⋅ ⋮
0 0 0 0 ⋅ ⋅ ⋅ − α

α2+2 0 ⋅ ⋅ ⋅ 0
0 0 0 0 ⋅ ⋅ ⋅ 0 − 1

α ⋅ ⋅ ⋅ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ − 1

α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Accordingly, in such a subcase, by Lemma 3.3,M has four distinct constant principal
curvatures given by α, 0, − α

α2+2 , and −
1
α with multiplicities 1, 2, m − 2, and m − 2,

respectively.
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