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In a variety of recently developed medical procedures, bubbles are formed directly in
soft tissue and may cause damage. While cavitation in Newtonian liquids has received
significant attention, bubble dynamics in tissue, a viscoelastic medium, remains poorly
understood. To model tissue, most previous studies have focused on Maxwell-based
viscoelastic fluids. However, soft tissue generally possesses an original configuration
to which it relaxes after deformation. Thus, a Kelvin–Voigt-based viscoelastic
model is expected to be a more appropriate representation. Furthermore, large
oscillations may occur, thus violating the infinitesimal strain assumption and requiring
a nonlinear/finite-strain elasticity description. In this article, we develop a theoretical
framework to simulate spherical bubble dynamics in a viscoelastic medium with
nonlinear elasticity. Following modern continuum mechanics formalism, we derive
the form of the elastic forces acting on a bubble for common strain-energy functions
(e.g. neo-Hookean, Mooney–Rivlin) and incorporate them into Rayleigh–Plesset-like
equations. The main effects of nonlinear elasticity are to reduce the violence of the
collapse and rebound for large departures from the equilibrium radius, and increase
the oscillation frequency. The present approach can readily be extended to other
strain-energy functions and used to compute the stress/deformation fields in the
surrounding medium.
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1. Introduction
Motivated by negative outcomes such as vibrations, noise and erosion (Hammitt

1980; Brennen 1995), cavitation research originally focused on hydrodynamically
produced vapour bubbles in water in the context of naval engineering and
turbomachinery, starting with the work of Rayleigh (1917). Plesset (1949) generalized
this approach by incorporating a time-varying pressure, viscosity and surface tension
into the celebrated Rayleigh–Plesset equation, which describes the dynamics of a
single spherical bubble. Subsequent refinements to the theory include heat transfer
(Hickling & Plesset 1964; Stricker, Prosperetti & Lohse 2011), compressibility
(Herring 1941; Gilmore 1952; Keller & Miksis 1980; Prosperetti & Lezzi 1986) and
other effects summarized in Plesset & Prosperetti (1977). More recently, advances
in high-speed imaging and pressure transducers (reviewed in Lauterborn & Kurz
2010) and numerical simulations, incompressible (e.g. Blake & Gibson 1987) and
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compressible (e.g. Johnsen & Colonius 2009), have expanded our understanding of
cavitation in Newtonian liquids.

Interest in hydrodynamic cavitation in non-Newtonian liquids started when it was
demonstrated that even a small amount of macromolecular additive inhibits cavitation
inception (Ellis & Hoyt 1958). Theoretical studies of cavitation in viscoelastic
fluids based on Maxwell models have further shown that viscoelasticity retards
and damps the bubble collapse (Fogler & Goddard 1970, 1971; Shima & Tsujino
1976), introduces memory effects that are dominant at early times (Papanastasiou,
Scriven & Macosko 1984) and reduces the growth of non-spherical perturbations
by increasing viscosity or amplifies it by increasing relaxation (Hara & Schowalter
1984). Experimental investigations have shown that polymer additives decrease the
speed of the re-entrant jet in non-spherical collapse (Brujan et al. 1996). Bubbles in
shear-thinning non-Newtonian media like blood have been investigated in the context
of intravascular gas embolism as well (Mukundakrishnan, Eckmann & Ayyaswamy
2009). While some direct simulations of the equations of motion have been performed
(Foteinopoulou & Laso 2010; Lind & Phillips 2010), none have accounted for
compressibility of the surrounding medium, which is expected to play an important
role in inertial collapse.

More recently, acoustic cavitation in soft tissue has received interest, following
progress in diagnostic and therapeutic ultrasound (Goldberg, Liu & Forsberg 1994;
Lingeman 1997; Roberts et al. 2006). In these non-invasive procedures, cavitation
generated by incoming pressure waves may occur directly in tissue (Coussios & Roy
2008), an inherently viscoelastic medium with complex constitutive relations (Fung
1993), and cause damage to the surroundings. In particular, histotripsy (Parsons et al.
2006; Roberts et al. 2006) is a recently developed tissue ablation procedure that has
been shown to be capable of treating, in animal models, benign prostatic hyperplasia,
prostate cancer, renal masses and renal stones (Roberts 2014). Histotripsy is thought
to be a non-thermal cavitation-based procedure, in contrast to high-intensity focused
ultrasound in which boiling plays an important role (ter Haar, Sinnett & Rivens
1989); however, isolation of mechanical effects from thermal ones is challenging.

In the context of mechanical tissue fractionation, experiments on cavitation in
hydrogels indicate that elasticity inhibits cavitation activity (Maxwell et al. 2013;
Vlaisavljevich et al. 2014). Due to challenges with experiments, e.g. space/time
resolution and optical access, numerical modelling shows promise towards
understanding the basic mechanics. Originally, cavitation in tissue was modelled
as occurring in a Maxwell-based viscoelastic fluid, e.g. with linear Maxwell (Allen
& Roy 2000a) and nonlinear Oldroyd (Allen & Roy 2000b; Jimenez-Fernandez &
Crespo 2006; Naude & Mendez 2008) models. Given that soft tissue typically relaxes
to an original configuration after deformation, Kelvin–Voigt-based models have been
explored more recently, e.g. linear Kelvin–Voigt (Yang & Church 2005) and Zener
(Hua & Johnsen 2013) models. Other studies have focused on the dynamics of bubbles
encapsulated in a thin viscoelastic shell: Khismatullin & Nadim (2002) considered a
linear Kelvin–Voigt shell in an Oldroyd fluid, while Liu et al. (2012) investigated a
neo-Hookean shell in water.

In biomedical applications, large and rapid bubble oscillations may be observed
due to the small bubble sizes and high driving-pressure amplitudes, thus leading to
large strains and high strain rates. As a result, two important effects absent in most
previous studies may be important: compressibility of the surroundings and nonlinear
(visco)elasticity. The former is addressed in Yang & Church (2005) and Hua &
Johnsen (2013), but the latter remains mostly unexplored. While Oldroyd-based
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models include nonlinearity of the viscoelasticity in the stress relaxation, they
do not account for the presence of an original configuration and the finite-strain
elasticity associated with large deformations (for the present purpose, hyperelasticity,
finite-strain elasticity and nonlinear elasticity are synonymous). For inertial cavitation,
characterized by large strains and high strain rates, linear elasticity is expected to
fail.

The present work investigates the dynamics of a single spherical bubble in a
homogeneous viscoelastic medium with nonlinear elasticity, ranging from small-
amplitude oscillations to violent inertial collapse. An accurate description of elasticity
is crucial because of its strong impact on bubble collapse (Fogler & Goddard 1970),
which is expected to be responsible for damage caused to the surroundings. To
derive the equations of motion, we follow modern continuum mechanics finite-strain
formalism (e.g. Mooney 1940; Ogden 1972; Holzapfel 2000). To the best of our
knowledge, only one other study has accounted for nonlinear elasticity in the context
of bubble dynamics (Liu et al. 2012), albeit to describe the infinitesimally thin shell
encapsulating a bubble in water. In contrast, our work focuses on the more general
problem of a bubble located directly in a viscoelastic medium whose elasticity is
nonlinear. We consider several common models: linear elasticity, (one-parameter)
neo-Hookean strain-energy function and (two-parameter) Mooney–Rivlin strain-energy
function. Our approach can readily be generalized to other models. The focus of this
article lies in purely mechanical effects; thermal effects are beyond the present scope
but could be included. The present article is organized as follows. The governing
equations for bubble dynamics in a neo-Hookean medium are first derived. Then, we
analytically assess the role of (nonlinear) elasticity under various limits for different
models. Next, we provide numerical results to illustrate the effect of (nonlinear)
elasticity. Finally, the article summarizes the results and provides an outlook for
future work.

2. Governing equations

The dynamics of a single spherical bubble in an infinite homogeneous isotropic
medium is described following modern continuum mechanics formalism (e.g.
Holzapfel 2000). Figure 1 shows the problem set-up. The bubble, whose centre
lies at the origin, starts from an initial strain-free configuration with radius Ro. In
the ‘current’ configuration at time t, its radius is denoted R(t). Similarly, any other
material point initially at xo= roer is denoted x= r(ro, t)er in the current configuration.
The deformation tensor is defined as

F = ∂x
∂xo
=




∂r
∂ro

0 0

0
r
ro

0

0 0
r
ro



, (2.1)

based on the gradient of a rank-two tensor in spherical coordinates (see, for example,
Arfken, Weber & Harris 2013). The near field is assumed incompressible, with
det(F )= 1. Thus,

∂r
∂ro
=
(ro

r

)2⇒ r(ro, t)= [r3
o +C1(t)]1/3, (2.2)
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F

Original configuration Current configuration

FIGURE 1. Problem setting using typical continuum mechanics convention.

FIGURE 2. Schematic of the present Kelvin–Voigt viscoelastic model consisting of a
spring η and a dashpot µ in parallel.

where C1(t) is an integration factor. Compressibility of the surrounding medium is
included later by allowing for far-field wave propagation to provide a mechanism for
energy dissipation by acoustic radiation (Herring 1941; Gilmore 1952).

The surrounding medium is assumed to behave in a viscoelastic fashion. Given that
soft tissue generally relaxes to an original configuration after loading, a Kelvin–Voigt
viscoelastic medium with a spring and dashpot in parallel (Figure 2) is used, with the
stress tensor given by

T = T f + T e. (2.3)

The parallel spring allows for the medium to eventually recover its original
configuration after deformation. In this formulation, a linear or nonlinear spring
can readily be considered, corresponding to linear or nonlinear elasticity. Pressure is
included in the elastic term, as explained later. The fluid component of the stress is
purely deviatoric, given by Newton’s law of viscosity,

T f = 2µS =µ(∇u+∇uT), (2.4)

where µ is the viscosity, Sij is the strain-rate tensor and ui is the velocity. The elastic
component is the Cauchy stress tensor, which in its most general form is written

T e = 2

[(
∂Ŵ
∂I1
+ I1

∂Ŵ
∂I2

)
B− ∂Ŵ

∂I2
B2

]
−Pδ, (2.5)

where B = FF T is the left Cauchy–Green tensor, Ŵ the strain-energy function
describing the surrounding medium, δ is the identity tensor, P(r, t) is a pseudo-
pressure to be discussed later and Ii are the strain invariants, with i= 1, 2, 3. For a
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prescribed strain-energy function, the dynamics is given by the momentum balance
equation,

ρa= div(T ), (2.6)

where ρ is the constant density of the surroundings and a is the acceleration of any
material point. By symmetry, only the radial component is retained in this equation,
with an Eulerian acceleration in the current configuration given by

ar =
[
∂u
∂t
+ u

∂u
∂r

]
, (2.7)

where the divergence-free velocity field is u(r, t)= ṘR2/r2.
Without loss of generality, the bubble dynamics equations are derived for a

neo-Hookean model, the simplest one-parameter nonlinear elastic model. The
corresponding strain-energy function is Ŵ = η(I1 − 3)/2 (Treloar 1943a,b; Ogden
1972), where η is the shear modulus from linear theory and I1 = tr(B) is the first
strain invariant. Thus, the Cauchy stress tensor can be written

T e = ηB−P I =




η
(ro

r

)4 −P 0 0

0 η

(
r
ro

)2

−P 0

0 0 η

(
r
ro

)2

−P



. (2.8)

Since B is not purely deviatoric, P(r, t) is not the hydrodynamic pressure, p(r, t).
The latter is obtained by writing the left Cauchy–Green tensor in terms of a deviatoric
term, dev(B), and an isotropic component (pressure),

T e = ηdev(B)−
[
P − η

3
tr(B)

]
δ = ηdev(B)− pδ. (2.9)

For the neo-Hookean model, p =P − η[(ro/r)4 + 2(r/ro)
2]/3. While not absolutely

necessary, definition of P leads to less complicated derivations and provides a clear
connection to traditional continuum mechanics notation; the final results are written in
terms of p. In light of these definitions, the Cauchy stress tensor can be rewritten:

T e =




2η
3

[( ro

r

)4 −
(

r
ro

)2
]
− p 0 0

0
η

3

[(
r
ro

)2

−
( ro

r

)4
]
− p 0

0 0
η

3

[(
r
ro

)2

−
( ro

r

)4
]
− p




.

(2.10)

Acknowledging that a point at infinity remains unperturbed, i.e. ro/r→ 1 at infinity,
the pressure at infinity, which drives the bubble dynamics, is p∞(t)=P∞(t)− η.

Now that T is fully defined, (2.6) can be integrated from R to ∞ to yield

RR̈+ 3
2

Ṙ2 = E (t)+P(R, t)−P∞
ρ

− 4νLṘ
R

, (2.11)
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where νL is the liquid viscosity and the elastic contribution is

E (t)≡ 2η
ρ

∫ ∞

R(t)

[
−r4

o

r5
− r

r2
o

+ 2ro

r2

]
dr, (2.12)

where ro = ro(r, t). For η= 0, (2.11) reduces to the Rayleigh–Plesset equation.
The bubble is constituted of vapour and contaminant gas, and its pressure is

assumed to be homogeneous (Brennen 1995). Thus, the bubble pressure is

pB(t)= pv(T∞)+ pGo

(
Ro

R

)3k

, (2.13)

where pv is the vapour pressure, T∞ is the ambient temperature, pGo is the initial
partial pressure of the contaminant gas and k is the polytropic index. For simplicity,
heat and mass transfer are neglected; these effects could readily be incorporated
into the model. The dynamic boundary condition at the bubble surface yields
−pB = T rr|r=R − 2S/R, where S is surface tension. Thus,

P(R, t)= pv + pGo

(
Ro

R

)3k

+ η
(

Ro

R

)4

− 2S
R
. (2.14)

An expression for ro(r, t) can be obtained by evaluating (2.2) at the bubble wall:

ro(r, t)= (r3 − R3 + R3
o)

1/3. (2.15)

Using integration by parts and rearranging, the elastic term yields

E =− η

2ρ

[
3+

(
Ro

R

)4

− 4
(

Ro

R

)]
, (2.16)

thus leading to the equation governing spherical bubble dynamics in an incompressible
and viscoelastic medium whose elasticity is described by a neo-Hookean model:

RR̈+ 3
2

Ṙ2 = pB − p∞(t)
ρ

− 4νLṘ
R
− 2S
ρR
− E
ρ
, (2.17)

where the elastic stress for a neo-Hookean medium is given by

ENH = η2

[
5− 4

(
Ro

R

)
−
(

Ro

R

)4
]
. (2.18)

Equation (2.18) is consistent with previous results for nucleation of voids in elastic
solids (Gent & Tompkins 1969; Horgan & Polignone 1995), although those studies
neglected inertia and viscosity and focused primarily on quasi-static behaviour, i.e.
Ṙ= 0 and R̈= 0 in (2.17).

Compressible effects are crucial during violent bubble collapse (Prosperetti &
Lezzi 1986; Fuster, Dopazo & Hauke 2011). The approach of Keller & Miksis (1980)
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FIGURE 3. (Colour online) Absolute value of the dimensionless elastic force acting on the
bubble (a, log–log) with a zoomed in view near R/Ro= 1 (b, linear–linear). For R/Ro < 1,
the force is negative.

incorporating acoustic radiation through liquid compressibility is implemented here,
following Yang & Church (2005) where it is assumed that, for the stress integral
calculation, the divergence-free velocity is not modified by first-order compressible
effects. The compressible extension to (2.17) yields

(
1− Ṙ

c

)
RR̈+ 3

2

(
1− Ṙ

3c

)
Ṙ2 =

(
1+ Ṙ

c

) [
pB − p∞(t)

ρ
− 4νLṘ

R
− 2S
ρR
− E

]

+ R
ρc

d
dt
( pa − p∞), (2.19)

where c is the constant sound speed of the undisturbed surrounding medium and

pa(t)= pB − 2S
R
− 4νLṘ

R
− E. (2.20)

While the focus in this section is on a neo-Hookean medium, similar expressions
can be derived for other constitutive relations (cf. appendix A for elastic terms
corresponding to a Mooney–Rivlin strain-energy function and ‘linear’ elastic models).

3. The role of nonlinear elasticity
3.1. The elastic force

The role of elasticity is investigated by determining the corresponding force under
various limiting circumstances and for different constitutive models, to understand
its main effects on the dynamics. The elastic terms correspond to a restoring force
or ‘spring’; at any point along the interface, an infinitesimal force element goes as
∼R2E(R). Table 1 summarizes the findings for the neo-Hookean, Yang & Church
(2005) and linear models, and Figure 3 provides a visual representation of the absolute
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value of the normalized elastic force. Since the force is dimensionless, the plots are
valid for any η. All the models reduce to zero for η= 0 or zero strains, as expected.
Unlike surface tension, the elastic terms can be positive (R< Ro, i.e. during collapse)
or negative (R> Ro, i.e. for growth).

In general, the models with the largest elastic effects are the models that include
a stronger nonlinearity, a behaviour that is most clear during collapse (R� Ro). By
its sign and dependence on (Ro/R)n, with n> 0, the elastic force acts to reduce the
acceleration of the bubble wall during the last stages of collapse; in other words,
the elastic force (spring) is ‘pulling’ the bubble wall back towards the equilibrium
condition, and increases as the bubble radius decreases for the nonlinear models.
Given the asymptotic behaviour as R� Ro, this force is smallest in the linear elastic
case, which in fact tends to a constant value as the radius decreases, with a slope
given by the exponent of Ro/R in the fourth column in table 1. For other models,
nonlinearity leads to an increase in this restoring force as the bubble size decreases.
The neo-Hookean model exhibits the largest force. The rate at which the force of the
nonlinear models increases depends on the exponent of Ro/R.

For small departures from the initial radius, R≈Ro+ ε(t) with ε�Ro, perturbation
analysis shows that the elastic terms reduce to −4ηε to first order for all models, i.e.
small-amplitude oscillations in a linear elastic medium. For larger departures from Ro,
the behaviour depends on the model, though all are close. For R . Ro, the Yang &
Church (2005) model exhibits the largest force, followed by the neo-Hookean model.
The behaviour for R& Ro shows that the force is largest for the linear case, followed
by the neo-Hookean model. In the limit R � Ro, elasticity hinders growth at the
same rate for all models, although the coefficients are slightly different, with the neo-
Hookean model being the largest.

As a comparison, the elastic term for the Mooney–Rivlin model goes as η1[5 −
4(Ro/R)− (Ro/R)4]/2− η2[2(R/Ro)− (Ro/R)2− 1], with η= η1+ η2 (see appendix A).
Since η2 > 0, the total force is less. The behaviour as R� Ro is similar to that of
the neo-Hookean model; for large growth however, the behaviour is governed by the
term multiplied by η2. The Mooney–Rivlin model is not included in the comparison,
because of the need to define a second parameter. For the viscoelastic shell of Liu
et al. (2012), the elastic term goes as 2η[1 − (Ro/R)6]. For this case, the force at
collapse is large (∼1/R4); for large growth, the behaviour is similar to the linear
case.

3.2. Natural and peak frequencies of the bubble
The frequency response of the bubble is of particular interest for ultrasound
applications. To investigate this aspect, a bubble initially at equilibrium is subjected
to a pressure waveform of frequency ω:

p∞(t)= p∞[1+ g(t)], (3.1)

where 0 < |g| � 1. For simplicity, all forms of damping (viscous and compressible)
are included in an effective viscosity. For this small-amplitude perturbation analysis,
the same result is obtained with all models. The bubble is expected to oscillate about
an equilibrium radius, with

R(t)= Req[1+ f (t)], (3.2)

where 0< | f |� 1 and Req is not necessarily Ro. Substitution into (2.17) yields, to first
order,
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f̈ + 4νL

R2
eq

ḟ + 1
R2

eq

{
3k

pGo

ρ

(
Ro

Req

)3k

− 2S
ρReq
+ 2η
ρ

(
Ro

Req

)[
1+

(
Ro

Req

)3
]}

f + p∞
ρR2

eq

g

= 1
ρR2

eq

{
−( p∞ − pv)+ pGo
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The left-hand side of the equation contains all the perturbation terms, i.e. all terms that
are time dependent and O( f , g). The entire right-hand side is O(1) and corresponds
to equilibrium conditions. Two main cases are of interest: finite g> 0 where Req 6=Ro,
which corresponds to Rayleigh collapse, and Req = Ro. The former was investigated
using perturbation methods by Hua & Johnsen (2013) and is thus not pursued further
here. The latter simplifies greatly:

f̈ + 4νL

R2
eq

ḟ + 1
R2

eq

(
3k

pGo

ρ
− 2S
ρReq
+ 4η
ρ

)
f =− p∞

ρR2
eq

g. (3.4)

To first order, the damping is not affected by elasticity, but the oscillation frequency
is. The peak frequency is given by

ωp =
√

1
ρR2

o

[
3k( p∞ − pv)+ (3k− 1)

2S
Ro

]
− 8ν2

L

R4
o

+ 4η
ρR2

o

(3.5)

and the natural frequency is obtained by setting νL= 0. The frequency increases with
increasing elasticity, and on setting η=0 reduces to the Minnaert frequency, consistent
with Hua & Johnsen (2013).

Frequency response curves can be obtained following Lauterborn (1976). The curves
have the form

Rmax − Req

Req
= f

(
ω

ωn

)
, (3.6)

where ωn is the natural frequency of the bubble with no elasticity, Req = Ro and Rmax
is the maximum radius of the bubble during its steady-state oscillations.

Figure 4 shows the frequency response contour map of a bubble in a neo-Hookean
medium (with viscosity 1 cP) as the shear modulus and driving frequency are varied.
A 100 × 100 point parameter space was used, and the amplitude was defined as
the average amplitude in the latter half of fifteen acoustic cycles to remove the
effect of the initial transient, with the bubble starting from rest. For low shear
modulus, one main resonant peak is observed close to the bubble natural frequency,
with many subharmonics occurring at lower frequencies. The spacing between these
subharmonics decreases with decreasing frequency; at high frequencies, the amplitude
of the oscillations is small. The resonance map does not significantly change until
the shear modulus reaches ∼1 kPa. At this point, the effect of elasticity is to shift
the resonance peak and dominant subharmonics to the right to higher frequencies.

In Figure 5, the resonance curve is shown for η = 100 kPa, for the Newtonian,
neo-Hookean, Yang & Church (2005) and linear elastic media. For the neo-Hookean
case, this plot corresponds to a horizontal cross-section of Figure 4. For elastic
media, the frequency response curves are shifted to the right since ωn is larger when
η 6= 0, as predicted by (3.5). Moreover, the resonance peaks are weakened because
of elasticity. Since the peaks occur for radii R & Ro, the elastic force is largest for
the linear model, followed by the neo-Hookean model. The Yang & Church (2005)
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FIGURE 4. (Colour online) Frequency response contour map: dimensionless amplitude of
a bubble in a neo-Hookean medium. The driving-pressure amplitude is 0.8 bar.
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FIGURE 5. (Colour online) Frequency response curves for η = 100 kPa and a pressure–
wave amplitude of 0.8 bar.

model exhibits the weakest force in that regime and thus predicts larger resonance
amplitudes, and at lower resonance frequencies, than the other models. Conversely,
the linear elastic model predicts the lowest amplitude resonance responses, and at the
highest frequencies. The Newtonian curve qualitatively corresponds to that obtained
in Lauterborn (1976). The present results are consistent with § 3.1.

This analysis can also be used to assess the presence of stable nuclei in an elastic
medium. Elasticity modifies the Blake radius (Blake 1949), e.g.

pv − p∞ >
4

S
Req
+ η

3
(3.7)
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FIGURE 6. (Colour online) Peak frequency ωp as a function of Req.

for the isothermal case. The additional elastic term in this stability condition is always
positive. Unsurprisingly, elasticity stabilizes the bubble equilibrium since the natural
frequency exists in a broader range of values for pv − p∞. Figure 6 shows the peak
frequency as a function of Req for η= 0, 105 and 106 Pa under isothermal conditions
(k= 1) and with a tension pv − p̄∞= 1 bar. The area under each curve corresponds to
the stability region. As expected, the larger the shear modulus, the larger the stability
region, such that smaller nuclei may exist. With a shear modulus of 1 MPa, the
smallest equilibrium radius possible is approximately 50 nm, compared with 500 nm
for zero shear modulus.

3.3. Minimum radius
The minimum radius and the maximum velocity during collapse are important
quantities related to potential damage incurred to the surroundings. To estimate the
role of elasticity on these quantities, analysis is performed for Rayleigh collapse
following Brennen (1995), in which viscous and compressible effects are neglected.
Here, we include elasticity using the neo-Hookean model under isothermal conditions.
From (2.13) and (2.17), the Rayleigh–Plesset equation can be rewritten
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(
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]
, (3.8)

where 1p is the instantaneous pressure increase. At collapse, R� Ro, such that

Ṙ→−
(

Ro

R

)3/2
√

2[p∞ +1p− pv]
3ρL

+ 2S
ρRo
+ 2pGo

ρL
log
(

R
Ro

)
+ η
ρ

(
2
3
− Ro

R

)
. (3.9)

Since R< Ro for this problem, elasticity always reduces the velocity during collapse.
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By defining A= 2pGo/ρL, B=−η/ρ and C= (2[p∞ +1p− pv]/3ρL)+ (2S/ρRo)+
(2η/3ρ), the minimum radius can be written in terms of the Wright function W(x):

Rmin

Ro
= exp[W(log(−B/A)+ (C/A))]

exp(C/A)
. (3.10)

It should be noted that if η = 0, Rmin = Ro exp(A/C), which corresponds to the
minimum radius in a Newtonian medium. The adiabatic case can be solved following
the same approach given k.

4. Bubble response to various driving pressures
Comparisons between the different models are presented to illustrate the effect

of elasticity on the bubble dynamics and verify the analysis in the previous section
using three problems in which the driving pressures and initial/equilibrium radii are
different, with relevance to biomedical applications. For all runs, c = 1500 m s−1,
pv = 2300 Pa, S= 0.05 N m−1, νL= 10−6 m2 s−1 and ρ = 1000 kg m−3. The ambient
pressure is p∞(0)= 1 bar. The linear shear modulus is η= 100 kPa, representative of
soft tissue (Madsen, Sathoff & Zagzebski 1983; Wells & Liang 2011). The Newtonian,
neo-Hookean, Yang & Church (2005) and linear models are considered. The initial
radius Ro= 10 µm is the radius at time t= 0, while the equilibrium radius Req is the
radius achieved as t→∞, which need not be Ro. These initial-value problems are
solved using a fifth-order accurate Runge–Kutta–Verner scheme (Verner 1978).

4.1. Step increase in pressure (Rayleigh collapse)
First, the traditional Rayleigh collapse problem (Rayleigh 1917) is considered, in
which the surrounding pressure p∞(0) is instantaneously increased to p∞(0) + 1p
for t > 0+, with 1p = 100 bar. This problem can be considered as an idealization
of shock-induced bubble collapse in which the sound speed in the surroundings is
infinite. In this problem, Ro = Req. The initial velocity is Ṙo = ( pv − p∞(0))/ρc∞
following Plesset & Prosperetti (1977).

Figures 7 and 8 show histories of the bubble radius and wall velocity. The
equilibrium radius is different for each model since the pressure increase 1p changes
the final elastic stress state (Hua & Johnsen 2013). Considering the neo-Hookean
model, the initial conditions prescribe pGo = ( p∞ − pv) + 2S/Ro. The equilibrium
radius Req is given implicitly by

−( p∞ +1p− pv)+ pGo

(
Ro

Req

)3k

− 2S
Req
+ η

2

[
4

Ro

Req
+
(

Ro

Req

)4

− 5

]
= 0. (4.1)

Since the elastic term is different for each model, different equilibrium radii are
achieved. As expected, the linear elastic model produces the smallest deviation from
the Newtonian case, followed by the Yang & Church (2005) and neo-Hookean models
respectively.

The minimum radius and maximum velocity are important because the shocks
emitted upon collapse, and thus the potential damage inflicted by cavitation, directly
depend on these quantities. The smallest minimum radius, highest velocity and
shortest collapse time are achieved in the Newtonian medium, followed in order by
the linear elastic, Yang & Church (2005) and neo-Hookean media, consistent with
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FIGURE 7. (Colour online) History of the bubble radius following a step increase in
pressure for different constitutive models (1p = 100 bar). Time is non-dimensionalized
by the Rayleigh collapse time tRC.
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FIGURE 8. (Colour online) Detailed view of the history of the bubble radius (a)
and velocity (b) following a step increase in pressure at the first collapse. Time is
non-dimensionalized by the Rayleigh collapse time tRC.

§ 3.1. For the more nonlinear elastic models, the violence of the collapse is reduced,
as exhibited by the increase in minimum radius and collapse time, and decrease
in velocity. At this specific value of 1p, the velocity at collapse is more than five
times smaller in the neo-Hookean medium than in a Newtonian liquid, thus reducing
potential damage due to shocks.

After the first collapse, the largest relative rebound is achieved in the neo-Hookean
material, followed by Yang & Church (2005), linear elastic and Newtonian. This
behaviour is inversely related to the minimum radius, as a collapse to a smaller
radius dissipates more energy by acoustic radiation (Johnsen & Colonius 2009). Thus,
the following rebounds are smaller and the oscillation period is shorter, consistent
with § 3.2. This observation has important implications for the biomedical field, since
larger oscillations lead to larger strains and higher strain rates.
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4.2. Bubble out of equilibrium
Next, the growth and collapse of a bubble whose initial radius is set out of equilibrium
keeping p∞ constant are considered (Flynn 1975). This problem is a simpler case
of cavitation-bubble growth/collapse and collapse/growth due to the passage of a
transient tension/compression, set up in such a way that the transient does not
affect the dynamics; the growth problem can be considered to model laser-induced
cavitation (Lauterborn & Kurz 2010). The initial state out of equilibrium corresponds
to an initial internal bubble pressure that is lower or higher than the ambient pressure,
i.e. Ro 6= Req, depending on the selected initial radius. For a prescribed equilibrium
radius and in the absence of elasticity, the partial pressure (or number of moles) of
non-condensible gas is given by pGeq = ( p∞ − pv)+ 2S/Req. In practice, this problem
is started by increasing or decreasing pGo corresponding to a change in the initial
radius Ro. Thus, collapse or growth follows.

Figures 9 and 10 show the history of the bubble radius for different ratios of the
initial radius to the equilibrium radius, corresponding to Ro > RN

eq (initial collapse)
and Ro < RN

eq (initial growth) respectively, where RN
eq stands for the equilibrium radius

obtained in the Newtonian case; 1p is the initial pressure difference between the
bubble and the surroundings.

For Ro > RN
eq (initial collapse), elasticity significantly inhibits collapse, more so

than in the Rayleigh collapse of § 4.1. The linear model exhibits the highest force
in this regime, such that the oscillation amplitude is smallest; the amplitude in the
neo-Hookean medium is very close. For Ro < RN

eq (initial growth), elasticity inhibits
growth, with the Yang & Church (2005) model exhibiting the strongest effect. The
oscillations amplitude in the neo-Hookean medium are very close. These results are
consistent with the analysis in § 3.1. Based on the inertial cavitation threshold criterion
by Flynn (1975), it is evident that, despite satisfying Ro/Req & 2, the oscillations in
viscoelastic media are not highly nonlinear.

4.3. Harmonic forcing
The response of a bubble to a sinusoidally varying pressure waveform is relevant to
acoustic cavitation in biomedical applications. For this problem, Ro = Req. Figure 11
shows the response of a bubble to pressure waveforms of different driving frequencies
f . The driving frequencies are in the range f = 0.1–3 MHz with an amplitude of
1 MPa, for clinical relevance and comparisons with Yang & Church (2005). Overall,
as the frequency is increased, smaller maximum radii are achieved, consistent with
figure 4. The results strongly depend on the frequency.

(i) For f < 200 kHz, the bubble oscillates with the waveform at high amplitude.
Elasticity restrains the bubble oscillations (e.g. maximum radius), and sub-
harmonics are observed in the neo-Hookean medium.

(ii) For 200 kHz . f . 1000 kHz, different behaviours are observed depending on
the model, particularly with increasing frequency. As explained in § 3.2, elasticity
modifies the bubble natural frequency. For instance, the natural frequency with
no elasticity is fn = 282 kHz, compared with fn = 425 kHz for a shear modulus
of 100 kPa. Thus, a bubble subjected to harmonic forcing of the order of these
frequencies may undergo large oscillations, with a behaviour different for each
constitutive model.

(iii) For f > 1000 kHz, all models exhibit the same behaviour over the course of
the first collapse, at which point the Newtonian solution departs from the elastic
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FIGURE 9. (Colour online) History of the bubble radius for the bubble initially out of
equilibrium for different constitutive models (Ro/RN

eq = 2 corresponds to 1p=−0.83 bar).
Time is non-dimensionalized by the Rayleigh collapse time tRC.
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FIGURE 10. (Colour online) History of the bubble radius for the bubble initially out of
equilibrium for different constitutive models (Ro/RN

eq = 0.5 corresponds to 1p= 7.24 bar).
Time is non-dimensionalized by the Rayleigh collapse time tRC.

solutions due to the action of the elastic force. All elastic models reduce to the
same solution, as oscillations about the time-varying steady state are small. This
behaviour is expected, since the strains achieved remain small.

5. Conclusions
A theoretical framework to simulate spherical bubble dynamics in a viscoelastic

medium with nonlinear elasticity (e.g. soft tissue) is presented. To account for the fact
that tissue usually relaxes to an original configuration after loading, a Kelvin–Voigt
viscoelastic model is chosen, with a nonlinear spring. Based on modern continuum
mechanics formalism, different strain-energy functions are included to describe the
nonlinear elastic component, which can then be inserted appropriately into a Rayleigh–
Plesset/Keller–Miksis equation. One of the main contributions of this article lies in
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FIGURE 11. (Colour online) History of the bubble radius under harmonic forcing with
f = 100, 282, 425, 1000 and 3000 kHz (a–e) and η= 100 kPa.

the derivation of these terms for several models: nonlinear neo-Hookean and Mooney–
Rivlin, and linear elasticity. The model used previously by Yang & Church (2005)
was recovered using this approach. The response of each model is different for the
problems of interest; these differences can be explained analytically by examining the
elastic force. The following observations are made concerning the physics.
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(i) In agreement with previous work on cavitation in viscoelastic media, elasticity
overall acts to reduce the violence of collapse and growth, compared with the
behaviour in a Newtonian medium. The elastic terms depend on the departure
from the original configuration, with different coefficients and exponents
depending on the constitutive model. These terms represent an elastic restoring
force, i.e. a spring, as expected.

(ii) The bubble response may vary significantly depending on the constitutive model.
(iii) For large departures from the original configuration, models with stronger

nonlinearity produce stronger forces, particularly at collapse. This force increases
with decreasing radius. As a result, larger minimum radii and lower velocities
are obtained at collapse. These quantities are important with regard to potential
damage inflicted to the surrounding medium.

(iv) For small departures from the original configuration, all models reduce to the
same response, as expected. For such cases, elasticity modifies the oscillation
properties: the peak and natural frequencies increase, thus shifting the frequency
response, and the amplitude is reduced, especially for the more nonlinear models.
Furthermore, smaller stable nuclei are expected to be found in such media.

The proposed approach can readily be extended to other strain-energy functions.
The findings of the present work have potentially important implications for
cavitation research in biomedical applications, as several experimentally measurable
quantities (frequency response, minimum radius) are reported. Overall, elasticity is
expected to reduce typical cavitation damage due to shocks produced during violent
collapse. Furthermore, the resulting bubble dynamics equation could be used for
characterization of viscoelastic media (rheometry), e.g. determination of an appropriate
model through fits, and measurement of viscoelastic properties, e.g. viscosity and shear
modulus, even for complex constitutive models and high frequencies. At this time,
several factors limit direct application of the model, e.g. constitutive modelling of
tissue, inhomogeneities, compressibility, thermal and mass transport. To address these
issues, development of numerical methods and models for cavitation and shock waves
in tissue-like media, and single-bubble experiments in tissue phantoms are currently
underway.
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Appendix A. Different constitutive models
The same approach as that used for the neo-Hookean model can be followed to

derive the elastic terms for other constitutive models relevant for cavitation in tissue.
Here, we show how to obtain the elastic term E in (2.17) and (2.19) for the Mooney–
Rivlin strain-energy function and linear elastic models.

A.1. Nonlinear elasticity: Mooney–Rivlin model
The Mooney–Rivlin model (Mooney 1940; Rivlin 1948), the simplest two-parameter
nonlinear elastic model, is considered. The corresponding strain-energy function is

Ŵ = η1

2
(I1 − 3)+ η2

2
(I2 − 3), η= η1 + η2, η1, η2 > 0, (A 1a,b)
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where η is the linear shear modulus and I2 is the second strain invariant. The Cauchy
stress tensor is then given by

Te =



η1
( ro

r

)4 − 2η2
( ro

r

)2 −P 0 0

0 η1

(
r

ro

)2
− η2

[(
r

ro

)4
−
( ro

r

)2
]
−P 0

0 0 η1

(
r

ro

)2
− η2

[(
r

ro

)4
−
( ro

r

)2
]
−P


,

(A 2)

and the relation between the actual pressure and the pseudo-pressure is

P = p+ η1

3

[(ro

r

)4 + 2
(

r
ro

)2
]
− 2η2

3

[(
r
ro

)4

+ 2
(ro

r

)2
]
. (A 3)

The elastic terms for a Mooney–Rivlin strain-energy function are given by

EMR(t)= η1

2

[
5− 4

(
Ro

R

)
−
(

Ro

R

)4
]
− η2

[
2
(

R
Ro

)
−
(

Ro

R

)2

− 1

]
. (A 4)

If η2= 0, the neo-Hookean model is recovered, thus verifying that the Mooney–Rivlin
model is a refinement of the neo-Hookean model.

A.2. Linear elasticity: generalized Hooke’s law
The large strains expected in the problems of interest motivate the use of nonlinear
elastic models. However, it is useful to consider the limiting case of infinitesimal
strains, i.e. linear elasticity. The same assumptions as those made until now hold,
except that the generalized Hooke’s law (Hoger & Johnson 1995) is used for the
elastic stress:

T e = 2ηE −P I, (A 5)

where E is the linear strain tensor, η is the shear modulus and P(r, t) is a pseudo-
pressure. The linear strain can be expressed in terms of the displacement gradient H=
(H +HT)/2= E , since H is diagonal. Since F = I +H, the Cauchy stress tensor for a
linear elastic medium is given by

T =




2η
[(ro

r

)2 − 1
]
−P 0 0

0 2η
[(

r
ro

)
− 1
]
−P 0

0 0 2η
[(

r
ro

)
− 1
]
−P



, (A 6)

and the relation between the actual pressure and the pseudo-pressure is

P = p+ 2η
3

tr(E)= p+ 2η
3

[(ro

r

)2 + 2
(

r
ro

)
− 3
]
. (A 7)

The elastic terms for the generalized Hooke’s law are given by

EL = 2η

[
1−

(
Ro

R

)2
]
. (A 8)
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A.3. Linear elasticity: infinitesimal strains (Yang & Church 2005)
In Yang & Church (2005), an equation similar to that obtained in § A.2 is derived, but
with different coefficients and powers. We show here how to recover this result. By
retaining the first-order terms in the Taylor series expansions of (r/ro)

n from (2.15),
and assuming small strains (i.e. |(R3 − R3

o)/r
3|� 1), the rr component of the Cauchy

stress is given by

−4η
3

R3 − R3
o

r3
−P. (A 9)

The elastic contribution is then obtained by evaluating

EYC =−3
∫ ∞

R

τrr

r
dr= 4η

3

[
1−

(
Ro

R

)3
]
. (A 10)
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