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1. Introduction

In [11], Gross and Prasad gave a remarkable conjecture on the non-vanishing of the
periods of automorphic forms on SOn × SOn−1 along the diagonal subgroup SOn−1

in terms of the non-vanishing of certain automorphic L-functions at the centre of the
critical strip. Their conjecture was refined in [21], where a conjectural formula relating
the periods to the central critical L-values was given. This refined conjecture follows from
a result of Waldspurger [55] for n = 3 and that of the second author [20] for n = 4.
The purpose of this paper is to establish the refined Gross–Prasad conjecture for certain
L-packets of automorphic representations in the case n = 5. The (candidate) L-packets
we consider were constructed by Roberts [49] and include all endoscopic L-packets of
SO5 as well as some stable ones. Because of this, our result gives strong evidence that the
Gross–Prasad conjecture is related to the theory of endoscopy (see Remark 1.2). Special
cases of our result have been obtained earlier by Böcherer et al . [5] for the so-called
Yoshida lifts [57] (which are certain instances of endoscopic representations).

To state our main theorem, we need to introduce quite a lot of notation. Let F be a
totally real number field with ring of adeles A = AF and let E be a totally real étale
quadratic algebra over F . Let W0 be a two-dimensional symplectic space over E, which
we may regard as a four-dimensional symplectic space W = RE/F (W0) over F . Set

G = GSp(W ) ∼= GSp4, G̃′ = RE/F (GSp(W0)) ∼= RE/F (GL2),
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and
G′ = {g′ ∈ G̃′ | ν(g′) ∈ Gm},

where ν : G̃′ → RE/F (Gm) is the similitude character. Then we have a natural embedding
G′ ↪→ G. Let V be a four-dimensional quadratic space over F and set

H = GO(V ).

The discriminant algebra of V is the étale quadratic algebra K over F defined by

K =

{
F × F if disc(V ) ∈ F×,2,

F (
√

disc(V )) if disc(V ) �∈ F×,2,

and we let ωK/F be the quadratic character of A×/F× associated to K/F by class field
theory. Choose a quaternion algebra D over F such that H is described by the short
exact sequence:

1 → RK/F (Gm) i−→ (RK/F (D×) × Gm) � 〈t〉 → H → 1

(see [49, § 2]). Here i(z) = (z,NK/F (z)−1) for z ∈ RK/F (Gm) and t is an involution on
RK/F (D×) × Gm given by (g, λ) �→ (gc, λ), where c is the non-trivial automorphism of
K over F .

Now let σ ∼=
⊗

v σv be an irreducible unitary cuspidal automorphic representation of
H(A) on the space Vσ with central character ωσ. We assume the following.

• The Jacquet–Langlands transfer of σ|D×(AK) to GL2(AK) is cuspidal.

• σv ⊗ sgn ∼= σv for some place v of F .

• If σv ⊗ sgn � σv, then σv � σ−
0,v for any distinguished representation σ0,v of

GSO(V )(Fv) (see Definition 5.4).

Let π be the theta lift of σ to G(A) on the space Vπ. In § 7, we will show that π is a
non-zero irreducible unitary cuspidal automorphic representation of G(A) with central
character ωσ. The representations π constructed in this way are precisely the ones which
occur in the L-packets of GSp4 defined in the paper of Roberts [49] (though he assumed
that σ and hence π is tempered). The automorphic representations of SO5(A) considered
in this paper are precisely those representations π with trivial central characters.

On the other hand, let π′ be an irreducible unitary cuspidal automorphic representation
of G′(A) on the space Vπ′ with central character ω−1

σ . By [17, Theorem 4.13], there exists
an irreducible unitary cuspidal automorphic representation τ of G̃′(A) on the space Vτ

such that Vπ′ ⊂ V 1
τ |G′(A). Here V 1

τ is the subspace of Vτ on which the group

Xτ = {ω ∈ (ZG̃′(A)G′(A)G̃′(F )\G̃′(A))D | τ ⊗ ω ∼= τ}

acts trivially, and V 1
τ |G′(A) is the restriction of V 1

τ to G′(A) as functions. We remark that
the cardinality of Xτ is finite and does not depend on the choice of τ , i.e. it depends only
on π′. We assume the following.
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• The base change τK of τ to G̃′(AK) ∼= GL2(AE⊗K) is cuspidal.

• The Jacquet–Langlands transfer τD
K of τK to D×(AE⊗K) exists.

Let θ(τ) be the theta lift of τ to H(AE). In § 6, we will show that θ(τ) is a non-zero
irreducible unitary cuspidal automorphic representation of H(AE).

We may now introduce certain automorphic L-functions which appear in the refined
Gross–Prasad conjecture under consideration:

L(s, π × π′) = L(s, σ × θ(τ)),
L(s, π,Ad) = L(s, σ, std)L(s, σ,Ad),

L(s, π′,Ad) = L(s, τ,Ad).

Here L(s, σ × θ(τ)) is the triple product L-function associated to σ and θ(τ) of degree
eight over K (see § 3), L(s, σ, std) is the standard L-function of σ of degree four over F ,
and L(s, σ,Ad) (respectively L(s, τ,Ad)) is the adjoint L-function of σ (respectively τ)
of degree three over K (respectively E). Let S be a sufficiently large finite set of places
of F . By [45, Theorem 5.1], the partial L-function LS(s, π×π′) is holomorphic at s = 1

2 .
It is well known that the partial L-functions LS(s, π,Ad) and LS(s, π′,Ad) are holomor-
phic and non-zero at s = 1. (See also Lemma 7.1.) For each place v of F , we similarly
define L-factors Lv(s, πv ×π′

v), Lv(s, πv,Ad), and Lv(s, π′
v,Ad) in terms of the Langlands

parameters of σv, τv, and θ(τv). By the Kim–Shahidi estimate [26,28], Lv(s, πv × π′
v) is

holomorphic and non-zero at s = 1
2 . It is well known that Lv(s, πv,Ad) and Lv(s, π′

v,Ad)
are holomorphic and non-zero at s = 1.

Now let Bπ : Vπ ⊗ V̄π → C and Bπ′ : Vπ′ ⊗ V̄π′ → C be the Petersson pairings given by

Bπ(φ1, φ2) =
∫

ZG(A)G(F )\G(A)
φ1(g)φ2(g) dg,

Bπ′(f1, f2) =
∫

ZG′ (A)G′(F )\G′(A)
f1(g′)f2(g′) dg′,

for φ1, φ2 ∈ Vπ and f1, f2 ∈ Vπ′ . Here V̄π and V̄π′ are the complex conjugate represen-
tations of Vπ and Vπ′ , ZG and ZG′ are the identity components of the centres of G and
G′, and dg and dg′ are the Tamagawa measures on ZG(A)\G(A) and ZG′(A)\G′(A),
respectively. We fix isomorphisms

π ∼=
⊗

v

πv and π′ ∼=
⊗

v

π′
v

and decompositions
Bπ =

∏
v

Bπv and Bπ′ =
∏
v

Bπ′
v
,

where Bπv : πv ⊗ π̄v → C and Bπ′
v

: π′
v ⊗ π̄′

v → C are local pairings. Moreover, we fix a
decomposition dg′ =

∏
v dg′

v, where dg′
v is a Haar measure on ZG′,v\G′

v.
Now define a G′(A) ×G′(A)-invariant functional

P : (Vπ � V̄π) ⊗ (Vπ′ � V̄π′) → C
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by

P(φ1, φ2; f1, f2)

=
(∫

ZG′ (A)G′(F )\G′(A)
φ1(g′)f1(g′) dg′

)(∫
ZG′ (A)G′(F )\G′(A)

φ2(g′)f2(g′) dg′
)

for φ1, φ2 ∈ Vπ and f1, f2 ∈ Vπ′ . We call P the global period integral. On the other hand,
for each place v of F , we define a G′

v ×G′
v-invariant functional

P�
v : (πv � π̄v) ⊗ (π′

v � π̄′
v) → C

by

P�
v(φ1,v, φ2,v; f1,v, f2,v) =

∫
ZG′,v\G′

v

Bπv (πv(g′
v)φ1,v, φ2,v)Bπ′

v
(π′

v(g′
v)f1,v, f2,v) dg′

v

for φ1,v, φ2,v ∈ πv and f1,v, f2,v ∈ π′
v. In § 9, we will show that this integral is absolutely

convergent. It was shown in [21, Theorem 1.2] that one has

P�
v(φ1,v, φ2,v; f1,v, f2,v) = ζv(2)ζv(4)

Lv( 1
2 , πv × π′

v)
Lv(1, πv,Ad)Lv(1, π′

v,Ad)

for unramified data satisfying the conditions (U1)–(U6) in [21, § 1]. This suggests that
one normalizes the functional P�

v by setting

Pv =
1

ζv(2)ζv(4)
Lv(1, πv,Ad)Lv(1, π′

v,Ad)
Lv( 1

2 , πv × π′
v)

P�
v.

Then the product
∏

v Pv is another G′(A) × G′(A)-invariant functional on (Vπ � V̄π) ⊗
(Vπ′ � V̄π′). Note that

∏
v Pv does not depend on the choices of the decompositions of

Bπ, Bπ′ , and dg′.
After this preparation, here is our main theorem.

Theorem 1.1. We have

P =
ζ(2)ζ(4)
2α|Xτ |

L( 1
2 , π × π′)

L(1, π,Ad)L(1, π′,Ad)

∏
v

Pv

as functionals on (Vπ � V̄π) ⊗ (Vπ′ � V̄π′). Here

α =

{
3 if disc(V ) ∈ F×,2,

2 if disc(V ) �∈ F×,2.

Remark 1.2. Assume that ωσ is trivial. We regard π (respectively π′) as an automor-
phic representation of SO5(A) (respectively SO4(A)). Then the refined Gross–Prasad
conjecture [21, Conjecture 1.5] for π and π′ follows from Theorem 1.1.

https://doi.org/10.1017/S1474748010000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000198


On endoscopy and the refined Gross–Prasad conjecture for (SO5,SO4) 239

Moreover, we let LF be the hypothetical Langlands group of F andWF the Weil group
of F . Let

φ : LF → LSO5 = Sp4(C) ×WF and φ′ : LF → LSO4 = SO4(C) �WF

be the conjectural Arthur parameters of π and π′, respectively (see [49]). Let Sφ (respec-
tively Sφ′) be the centralizer of the image of φ (respectively φ′) in Sp4(C) (respec-
tively SO4(C)). Then the Arthur conjecture [2] asserts that

|Sφ| =

{
4 if disc(V ) ∈ F×,2,

2 if disc(V ) �∈ F×,2,

and |Sφ′ | = 2|Xτ |.
For the representations π and π′ considered in this paper, the above expectations of

the Arthur conjecture are essentially verified in [49] for SO5 and in [17] for SO4. Hence
Theorem 1.1 is compatible with [21, Conjecture 2.1], in the sense that we have

2α|Xτ | = |Sφ| |Sφ′ |.

This power of 2 is the most subtle part of Theorem 1.1. It gives strong evidence that the
Gross–Prasad conjecture is related to the theory of endoscopy.

Remark 1.3. In the theorem, we have assumed that F and E are totally real, so as
to use the Siegel–Weil formula by Kudla et al . [35]. This is the only place where this
assumption is necessary.

Let us describe the main ideas and inputs in the proof of Theorem 1.1. We have a
seesaw diagram of reductive dual pairs:

G = GSp(W )

�����������������
H ′ = RE/F (GO(VE))′

����������������

G′ = RE/F (GSp(W0))′ H = GO(V )

Here

RE/F (GSp(W0))′ = {g′ ∈ RE/F (GSp(W0)) | ν(g′) ∈ Gm},
RE/F (GO(VE))′ = {h′ ∈ RE/F (GO(VE)) | ν(h′) ∈ Gm},

and VE = V ⊗F E. This gives rise to a global seesaw identity, which can be described as
a commutative diagram of equivariant maps:

(ω � ω̄) ⊗ (σ � σ̄) ⊗ (π′ � π̄′)
T

�������������������
T ′

�������������������

(θ(σ) � θ(σ)) ⊗ (π′ � π̄′)
P

�����������������������
(σ � σ̄) ⊗ (θ(π′) � θ(π′))

I

�����������������������

C
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Here

• ω is the Weil representation,

• T and T ′ are equivariant surjective maps induced by the global theta lifts,

• I is an invariant functional induced by the triple product period integral.

On the other hand, by integrating matrix coefficients, one has a local analogue (the
explicit local seesaw identity) of the above commutative diagram for each place v of F .
Because of some local multiplicity one theorems, we may compare the product of the
local diagrams with the global diagram. Indeed, one has

T ≈
⊗

v

Tv, T ′ ≈
⊗

v

T ′
v , I ≈

∏
v

Iv, (1.1)

so that
P ≈

∏
v

Pv. (1.2)

Here ≈ denotes equality up to a scalar. The main theorem amounts to an explicit deter-
mination of the constant of proportionality in (1.2). But by the commutativity of the
local and global diagrams above, it suffices to determine the three constants of propor-
tionality in (1.1). To determine the constants of proportionality for T and T ′, we use the
Rallis inner product formula, whereas for I, we use a formula for triple product period
integrals by the second author [20] (or rather its extension from GSO(V ) to GO(V )).

This paper is organized as follows. In § 2, we study the restriction of automorphic
forms on GO(V )(A) to GSO(V )(A). This is needed in § 3, where we extend the result
of the second author [20] and prove a formula for triple product period integrals for
GO(V ). In §§ 4 and 5, we study local theta lifts from GL2 to GO(V ) and those from
GO(V ) to GSp4, respectively. In §§ 6 and 7, we study global theta lifts from GL2 to
GO(V ) and those from GO(V ) to GSp4, respectively. In particular, we construct explicit
pairings on the local theta lifts, and using the Rallis inner product formula, we compare
the product of the local pairings with the Petersson pairing on the global theta lift. To
prove the Rallis inner product formula, we use the Siegel–Weil formula (the second term
identity) for (O(V ),Sp4) by Kudla and Rallis [31] and Kudla et al . [35], and prove a
certain spherical second term identity for (GSp4,GO8). After choosing Haar measures on
various groups in § 8, we prove in § 9 the explicit local seesaw identity with respect to these
measures. Finally, using the local and global seesaw identities and the formula for triple
product period integrals, we prove Theorem 1.1 in § 10. We also include two appendices:
the first one determines completely the local theta correspondence for GO(V ) × GSp4
and establishes certain properties of the correspondence we need, while the second one
proves the spherical second term identity for (GSp4,GO8).

2. Automorphic forms on GO(V )

Let F be a number field and V a four-dimensional quadratic space over F . Set

H = GO(V ), H0 = GSO(V ), µ2 = 〈t〉.
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Then we have a short exact sequence:

1 → H0 → H → µ2 → 1.

Let ZH be the identity component of the centre of H. We identify µ2 with {+,−}. For
each place v of F , let tv be the image of t in Hv.

Let dh and dh0 be the Tamagawa measures on ZH(A)\H(A) and ZH(A)\H0(A),
respectively. Let dεv be the Haar measure on µ2(Fv) such that vol(µ2(Fv)) = 1. Then
the product measure dε =

∏
v dεv is the Tamagawa measure on µ2(A). Moreover, we

have ∫
ZH(A)H(F )\H(A)

f(h) dh =
∫

µ2(F )\µ2(A)

∫
ZH(A)H0(F )\H0(A)

f(h0ε) dh0 dε

for f ∈ L1(ZH(A)H(F )\H(A)).
Let Π ∼=

⊗
vΠv be an irreducible unitary cuspidal automorphic representation of

H(A) on the space VΠ . Let S be the set of places v of F such that Πv ⊗ sgn ∼= Πv. Let
BΠ : VΠ ⊗ V̄Π → C be the Petersson pairing given by

BΠ(φ1, φ2) =
∫

ZH(A)H(F )\H(A)
φ1(h)φ2(h) dh

for φ1, φ2 ∈ VΠ . We have an H0(A)-equivariant surjective map

VΠ → VΠ |H0(A),

where VΠ |H0(A) is the restriction of VΠ to H0(A) as functions.

The case S = ∅

Let π be the automorphic representation of H0(A) on the space Vπ = VΠ |H0(A). Then
π is irreducible. The restriction to H0(A) as functions induces an isomorphism

VΠ
∼= Vπ

as representations of H0(A). Let Bπ : Vπ ⊗ V̄π → C be the Petersson pairing.

Lemma 2.1. We have

Bπ(φ1|H0(A), φ2|H0(A)) = 2BΠ(φ1, φ2)

for φ1, φ2 ∈ VΠ .

Proof. For each ε ∈ µ2(A), we define an H0(A)-invariant pairing Bε
π : Vπ ⊗ V̄π → C by

Bε
π(φ1|H0(A), φ2|H0(A)) = Bπ(Π(ε)φ1|H0(A), Π(ε)φ2|H0(A))
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for φ1, φ2 ∈ VΠ . Then we have Bε
π = CεBπ with some constant Cε. Hence we have

Bε
π(φ1|H0(A), φ2|H0(A)) = CεBπ(φ1|H0(A), φ2|H0(A))

= CεBε
π(Π(ε)φ1|H0(A), Π(ε)φ2|H0(A))

= C2
ε Bπ(Π(ε)φ1|H0(A), Π(ε)φ2|H0(A))

= C2
ε Bε

π(φ1|H0(A), φ2|H0(A)),

so that C2
ε = 1. Since Bε

π is positive definite, we have Cε = 1. Hence we have

BΠ(φ1, φ2) =
∫

µ2(F )\µ2(A)

∫
ZH(A)H0(F )\H0(A)

φ1(h0ε)φ2(h0ε) dh0 dε

=
∫

µ2(F )\µ2(A)
Bε

π(φ1|H0(A), φ2|H0(A)) dε

= vol(µ2(F )\µ2(A))Bπ(φ1|H0(A), φ2|H0(A)).

�

The case S �= ∅

We fix an isomorphism

VΠ
∼=
⊗

v

Vv = lim−→
S

(⊗
v∈S

Vv

)
⊗
(⊗

v �∈S

φv

)
(2.1)

as representations of H(A), where Vv is the space of Πv, S is a sufficiently large finite
set of places of F , and φv is an H(ov)-invariant element of Vv for v �∈ S.

If v ∈ S, then we can write Πv|H0
v

= π+
v ⊕ π−

v , where π±
v is an irreducible admissible

representation of H0
v . Note that π+

v � π−
v and π+

v ◦Ad(tv) ∼= π−
v . We have Vv = V+

v ⊕V−
v ,

where V±
v is the space of π±

v and V−
v = Πv(tv)(V+

v ). We have φv = φ+
v + φ−

v for almost all
v ∈ S, where φ±

v is an H0(ov)-invariant element of V±
v and φ−

v = Πv(tv)(φ+
v ). If v �∈ S,

then πv = Πv|H0
v

is an irreducible admissible representation of H0
v on the space Vv.

Let S be a sufficiently large finite set of places of F . For ε = (εv) ∈ µ2(FS∩S), let V ε
Π,S

be the inverse image of( ⊗
v∈S∩S

Vεv
v

)
⊗
( ⊗

v∈S, v �∈S

Vv

)
⊗
(⊗

v �∈S

φv

)
in VΠ by (2.1). Then H0(FS)µ2(AS∩S) acts on V ε

Π,S and the representation of H0(FS)
on V ε

Π,S is given by

πε
S =
( ⊗

v∈S∩S

πεv
v

)
⊗
( ⊗

v∈S, v �∈S

πv

)
.

Hence we have

Π|H0(A)
∼= lim−→

S

⊕
ε∈µ2(FS∩S)

πε
S , VΠ = lim−→

S

⊕
ε∈µ2(FS∩S)

V ε
Π,S ,

as representations of H0(A).
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By [15, § 1], there exists an irreducible unitary cuspidal automorphic representation π
of H0(A) on the space Vπ such that

VΠ |H0(A) = Vπ ⊕ Vπ◦Ad(t). (2.2)

We may assume that

π ∼=
(⊗

v∈S

π+
v

)
⊗
(⊗

v �∈S

πv

)
,

Vπ
∼= lim−→

S

( ⊗
v∈S∩S

V+
v

)
⊗
( ⊗

v∈S, v �∈S

Vv

)
⊗
( ⊗

v �∈S, v∈S

φ+
v

)
⊗
( ⊗

v �∈S, v �∈S

φv

)
.

Then we have

π ◦ Ad(t) ∼=
(⊗

v∈S

π−
v

)
⊗
(⊗

v �∈S

πv

)
,

Vπ◦Ad(t)
∼= lim−→

S

( ⊗
v∈S∩S

V−
v

)
⊗
( ⊗

v∈S, v �∈S

Vv

)
⊗
( ⊗

v �∈S, v∈S

φ−
v

)
⊗
( ⊗

v �∈S, v �∈S

φv

)
.

Lemma 2.2. For φ ∈ V 1
Π,S , the support of φ is contained in

H0(A)µ2(AS∩S) ∪H0(A)µ2(AS∩S)t.

Proof. Let ε ∈ µ2(FS∩S). By (2.2), we have V ε
Π,S |H0(A) = 0 unless ε ∈ µ2(F ). Since

V ε
Π,S = {Π(ε)φ | φ ∈ V 1

Π,S} and

H(A) =
⋃

ε∈µ2(FS∩S)

H0(A)µ2(AS∩S)ε,

the assertion follows. �

Let Bπ : Vπ ⊗ V̄π → C be the Petersson pairing. We fix a decomposition

Bπ =
∏
v∈S

B+
v

∏
v �∈S

Bv,

where

• B+
v : V+

v ⊗ V̄+
v → C is an H0

v -invariant pairing if v ∈ S,

• Bv : Vv ⊗ V̄v → C is an Hv-invariant pairing if v �∈ S,

• B+
v (φ+

v ,φ
+
v ) = Bv(φv,φv) = 1 for almost all v.

For each v ∈ S, we define an H0
v -invariant pairing B−

v : V−
v ⊗ V̄−

v → C by

B−
v (φ1, φ2) = B+

v (Πv(tv)φ1, Πv(tv)φ2)

for φ1, φ2 ∈ V−
v . Then B−

v (φ−
v ,φ

−
v ) = 1 for almost all v ∈ S. For each place v of F , we

define an Hv-invariant pairing B�
Πv

: Vv ⊗ V̄v → C as follows.
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• If v ∈ S, let B�
Πv

(φ+
1 + φ−

1 , φ
+
2 + φ−

2 ) = 1
2 (B+

v (φ+
1 , φ

+
2 ) + B−

v (φ−
1 , φ

−
2 )) for φ+

1 , φ
+
2 ∈

V+
v and φ−

1 , φ
−
2 ∈ V−

v .

• If v �∈ S, let B�
Πv

= Bv.

Then B�
Πv

(φv,φv) = 1 for almost all v.

Lemma 2.3. We have
BΠ =

∏
v

B�
Πv
.

Proof. Fix a sufficiently large finite set S of places of F . Put

S′ = S � (S ∩ S), s = |S ∩ S|, s′ = |S′|.

Let

φ1 =
(⊗

v∈S

φ1,v

)
⊗
(⊗

v �∈S

φv

)
, φ2 =

(⊗
v∈S

φ2,v

)
⊗
(⊗

v �∈S

φv

)
∈ V 1

Π,S ,

where φ1,v, φ2,v ∈ V+
v (respectively φ1,v, φ2,v ∈ Vv) if v ∈ S ∩ S (respectively if v ∈ S′).

Then BΠ(φ1, φ2) is equal to∫
µ2(F )\µ2(A)

∫
ZH(A)H0(F )\H0(A)

φ1(h0ε)φ2(h0ε) dh0 dε

= 1
2

∫
µ2(A)

∫
ZH(A)H0(F )\H0(A)

φ1(h0ε)φ2(h0ε) dh0 dε

=
1

2s+s′+1

∑
ε∈µ2(FS)

∫
ZH(A)H0(F )\H0(A)

φ1(h0ε)φ2(h0ε) dh0.

By Lemma 2.2, this integral is equal to

1
2s+s′+1

∑
ε∈µ2(FS′ )

∫
ZH(A)H0(F )\H0(A)

(φ1(h0ε)φ2(h0ε) + φ1(h0εt)φ2(h0εt)) dh0.

We have∫
ZH(A)H0(F )\H0(A)

φ1(h0εt)φ2(h0εt) dh0

=
∫

ZH(A)H0(F )\H0(A)
φ1(Ad(t)(h0)ε)φ2(Ad(t)(h0)ε) dh0

=
∫

ZH(A)H0(F )\H0(A)
φ1(h0ε)φ2(h0ε) dh0.

Hence we have

BΠ(φ1, φ2) =
1

2s+s′

∑
ε∈µ2(FS′ )

∫
ZH(A)H0(F )\H0(A)

φ1(h0ε)φ2(h0ε) dh0.
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Since Π(ε)φ1, Π(ε)φ2 ∈ V 1
Π,S for ε ∈ µ2(FS′), BΠ(φ1, φ2) is equal to

1
2s+s′

∑
ε∈µ2(FS′ )

Bπ(Π(ε)φ1|H0(A), Π(ε)φ2|H0(A))

=
1

2s+s′

∑
ε∈µ2(FS′ )

∏
v∈S∩S

B+
v (φ1,v, φ2,v)

∏
v∈S′

Bv(Πv(εv)φ1,v, Πv(εv)φ2,v)

=
1
2s

∏
v∈S∩S

B+
v (φ1,v, φ2,v)

∏
v∈S′

Bv(φ1,v, φ2,v)

=
∏

v∈S∩S

B�
Πv

(φ1,v, φ2,v)
∏

v∈S′

B�
Πv

(φ1,v, φ2,v).

This completes the proof. �

3. Triple product period integrals for GO(V )

Let F be a number field and let E be an étale quadratic algebra over F . Let V be a
four-dimensional quadratic space over F . Set

H = GO(V ), H0 = GSO(V ).

Let K be the discriminant algebra of V and choose a quaternion algebra D over F
associated to V as in § 1.

Let Π ∼=
⊗

vΠv (respectively Π ′ ∼=
⊗

vΠ
′
v) be an irreducible unitary cuspidal auto-

morphic representation of H(A) (respectively H(AE)) on the space VΠ (respectively VΠ′)
with central character ωΠ (respectively ωΠ′). We assume the following:

• ωΠωΠ′ is trivial on ZH(A);

• Πv ⊗ sgn ∼= Πv for some place v of F ;

• Π ′
v ⊗ sgn � Π ′

v for all places v of F .

Let π (respectively π′) be an irreducible unitary cuspidal automorphic representa-
tion of H0(A) (respectively H0(AE)) on the space Vπ (respectively Vπ′) such that
VΠ |H0(A) = Vπ ⊕Vπ◦Ad(t) (respectively VΠ′ |H0(AE) = Vπ′). Let π̇ (respectively π̇′) be the
Jacquet–Langlands transfer of π|D×(AK) (respectively π′|D×(AE⊗K)) to GL2(AK) (respec-
tively GL2(AE⊗K)). We define the adjoint L-functions of Π and Π ′ by

L(s,Π,Ad) = L(s, π̇,Ad) and L(s,Π ′,Ad) = L(s, π̇′,Ad),

respectively. Note that L(s,Π,Ad) does not depend on the choice of π. We define an
L-function L(s,Π ×Π ′) of degree eight over K by

L(s,Π ×Π ′) =
∏
v

Lv(s, π̇v × π̇′
v),
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where Lv(s, π̇v×π̇′
v) is the triple product L-factor associated to the Langlands parameters

of π̇v and π̇′
v and the eight-dimensional representation of LR(K×E⊗K)/K(GL2) defined

in [45, § 0]. We remark that there is another definition of this L-factor à la Garrett [10],
Piatetski-Shapiro and Rallis [45], and Ikeda [22] using local zeta integrals and these
two definitions agree if v is non-archimedean and π̇v and π̇′

v are unramified, but we do
not assume that they agree for all v in this paper. The following lemma asserts that
L(s,Π ×Π ′) does not depend on the choice of π.

Lemma 3.1. We have

Lv(s, (π̇v ◦ c) × π̇′
v) = Lv(s, π̇v × π̇′

v),

where c is the non-trivial automorphism of K over F .

Proof. We fix a place v of F and suppress it from the notation. Let WF be the Weil
group of F and LF the Langlands group of F given by

LF =

{
WF × SL2(C) if F is non-archimedean,

WF if F is archimedean.

We only consider the case where E and K are quadratic extensions of F and E �= K;
the other cases are similar. Then EK ∼= E ⊗K is a quartic extension of F . Let

BCK/F : LGL4 → LRK/F (GL4) and BCEK/E : LRE/F (GL2) → LREK/F (GL2)

be the base change L-homomorphisms. We define an L-homomorphism

AsaiE/F : LRE/F (GL2) → LGL4

by

AsaiE/F ((g1, g2), 1) = (g1 ⊗ g2, 1),

AsaiE/F ((1, 1), w) =

{
(id, w) if w ∈ WE ,

(sw, w) if w �∈ WE ,

for g1, g2 ∈ GL2(C) and w ∈ WF , where sw : C2 ⊗ C2 → C2 ⊗ C2 is an isomorphism
given by sw(x⊗ y) = y ⊗ x. Similarly, we define an L-homomorphism

AsaiEK/K : LREK/F (GL2) → LRK/F (GL4).

Then we have
AsaiEK/K ◦ BCEK/E = BCK/F ◦ AsaiE/F .

Let φ : LF → LRK/F (GL2) and φ′ : LF → LREK/F (GL2) be the Langlands parameters
of π̇ and π̇′, respectively. We identify φ and AsaiEK/K◦φ′ with homomorphisms φ : LK →
GL2(C) and AsaiEK/K ◦ φ′ : LK → GL4(C), respectively. By definition, we have

L(s, π̇ × π̇′) = L(s, φ⊗ (AsaiEK/K ◦ φ′)).
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By assumption on Π ′, there exists a Langlands parameter φ′′ : LF → LRE/F (GL2) such
that φ′ = BCEK/E ◦ φ′′. Hence we have

L(s, φ⊗ (AsaiEK/K ◦ φ′)) = L(s, φ⊗ (AsaiEK/K ◦ BCEK/E ◦ φ′′))

= L(s, φ⊗ (BCK/F ◦ AsaiE/F ◦ φ′′)).

This completes the proof. �

Let BΠ : VΠ ⊗ V̄Π → C and BΠ′ : VΠ′ ⊗ V̄Π′ → C be the Petersson pairings. We
fix decompositions BΠ =

∏
v BΠv and BΠ′ =

∏
v BΠ′

v
, where BΠv

: Πv ⊗ Π̄v → C and
BΠ′

v
: Π ′

v ⊗ Π̄ ′
v → C are pairings. Let dh be the Tamagawa measure on ZH(A)\H(A).

We fix a decomposition dh =
∏

v dhv, where dhv is a Haar measure on ZH,v\Hv. We
define an H(A) ×H(A)-invariant functional

I : (VΠ � V̄Π) ⊗ (VΠ′ � V̄Π′) → C

by

I(φ1, φ2;φ′
1, φ

′
2) =

(∫
ZH(A)H(F )\H(A)

φ1(h)φ′
1(h) dh

)(∫
ZH(A)H(F )\H(A)

φ2(h)φ′
2(h) dh

)
for φ1, φ2 ∈ VΠ and φ′

1, φ
′
2 ∈ VΠ′ . For each place v of F , we define an Hv ×Hv-invariant

functional
I�

v : (Πv � Π̄v) ⊗ (Π ′
v � Π̄ ′

v) → C

by

I�
v(φ1,v, φ2,v;φ′

1,v, φ
′
2,v) =

∫
ZH,v\Hv

BΠv
(Πv(hv)φ1,v, φ2,v)BΠ′

v
(Π ′

v(hv)φ′
1,v, φ

′
2,v) dhv

for φ1,v, φ2,v ∈ Πv and φ′
1,v, φ

′
2,v ∈ Π ′

v. By [20, Lemma 2.1], this integral is absolutely
convergent.

Proposition 3.2. We have

I = 2cζE⊗K(2)
L( 1

2 , Π ×Π ′)
L(1, Π,Ad)L(1, Π ′,Ad)

∏
v

Iv

as functionals on (VΠ � V̄Π) ⊗ (VΠ′ � V̄Π′). Here

c =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−4 if E = K = F × F,
−1 if E = F × F and K is a quadratic extension of F ,

−3 if E is a quadratic extension of F and K = F × F ,
−2 if E and K are quadratic extensions of F and E = K,

−1 if E and K are quadratic extensions of F and E �= K,

and

Iv =
1

ζEv⊗Kv (2)
Lv(1, Πv,Ad)Lv(1, Π ′

v,Ad)
Lv( 1

2 , Πv ×Π ′
v)

I�
v.
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The rest of this section is devoted to the proof of Proposition 3.2. Let S be the set of
places v of F such that Πv ⊗ sgn ∼= Πv. Fix a sufficiently large finite set S of places of
F . Put

S′ = S � (S ∩ S), s = |S ∩ S|, s′ = |S′|.

We may assume that φ1, φ2 ∈ V 1
Π,S and φ′

1, φ
′
2 ∈ VΠ′,S . Here V 1

Π,S is the subspace of
VΠ given in § 2 and VΠ′,S is the subspace of VΠ′ consisting of

∏
v �∈S H(oEv )-invariant

elements.

Lemma 3.3. We have∫
ZH(A)H(F )\H(A)

φ(h)φ′(h) dh =
1

2s+s′

∑
ε∈µ2(FS′ )

∫
ZH(A)H0(F )\H0(A)

φ(h0ε)φ′(h0ε) dh0

for φ ∈ V 1
Π,S and φ′ ∈ VΠ′,S , where dh0 is the Tamagawa measure on ZH(A)\H0(A).

Proof. As in the proof of Lemma 2.3, we have∫
ZH(A)H(F )\H(A)

φ(h)φ′(h) dh =
1

2s+s′+1

∑
ε∈µ2(FS)

∫
ZH(A)H0(F )\H0(A)

φ(h0ε)φ′(h0ε) dh0.

By Lemma 2.2, this integral is equal to

1
2s+s′+1

∑
ε∈µ2(FS′ )

∫
ZH(A)H0(F )\H0(A)

(φ(h0ε)φ′(h0ε) + φ(h0εt)φ′(h0εt)) dh0.

This completes the proof. �

We fix an isomorphism

π ∼=
(⊗

v∈S

π+
v

)
⊗
(⊗

v �∈S

πv

)

and a decomposition
Bπ =

∏
v∈S

B+
v ·
∏
v �∈S

Bv

as in § 2. By Lemma 2.3, we may assume that BΠv = B�
Πv

, where B�
Πv

: Πv ⊗ Π̄v → C is
the pairing given in § 2. We fix an isomorphism π′ ∼=

⊗
v π

′
v. Let B	

π′
v

: π′
v ⊗ π̄′

v → C be
the pairing given by B	

π′
v

= BΠ′
v
|π′

v⊗π̄′
v
. By Lemma 2.1, we have

Bπ′ = 2β
∏
v

B	
π′

v
.

Here

β =

{
2 if E = F × F,
1 if E is a quadratic extension of F .
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Let dh0,v be the Haar measure on ZH,v\H0
v such that∫

ZH,v\Hv

f(hv) dhv = 1
2

∑
εv∈µ2(Fv)

∫
ZH,v\H0

v

f(h0,vεv) dh0,v

for f ∈ L1(ZH,v\Hv). Then the product measure
∏

v dh0,v is the Tamagawa measure on
ZH(A)\H0(A). We define an H0

v ×H0
v -invariant functional

Jv : (π•
v � π̄•

v) ⊗ (π′
v � π̄′

v) → C

by

Jv(φ1,v, φ2,v;φ′
1,v, φ

′
2,v) =

∫
ZH,v\H0

v

B•
v(π•

v(h0,v)φ1,v, φ2,v)B	
π′

v
(π′

v(h0,v)φ′
1,v, φ

′
2,v) dh0,v

for φ1,v, φ2,v ∈ π•
v and φ′

1,v, φ
′
2,v ∈ π′

v, where

• =

{
+ if v ∈ S,

∅ if v �∈ S.

By [20, Theorem 1.1] and Lemma 3.3, I(φ1, φ2;φ′
1, φ

′
2) is equal to

2β+c0 · ζS
E⊗K(2) ·

LS( 1
2 , π̇ × π̇′)

LS(1, π̇,Ad)LS(1, π̇′,Ad)
1

22s+2s′

×
∑

ε∈µ2(FS′ )

∑
ε′∈µ2(FS′ )

∏
v∈S

Jv(Πv(εv)φ1,v, Πv(ε′v)φ2,v;Π ′
v(εv)φ′

1,v, Π
′
v(ε′v)φ′

2,v)

for φ1 =
⊗

v φ1,v, φ2 =
⊗

v φ2,v ∈ V 1
Π,S and φ′

1 =
⊗

v φ
′
1,v, φ′

2 =
⊗

v φ
′
2,v ∈ VΠ′,S . Here

c0 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−6 if E = K = F × F,
−3 if E = F × F and K is a quadratic extension of F ,

−4 if E is a quadratic extension of F and K = F × F ,
−3 if E and K are quadratic extensions of F and E = K,

−2 if E and K are quadratic extensions of F and E �= K.

To finish the proof of Proposition 3.2, it remains to show the following lemma.

Lemma 3.4. We have

1
22s+2s′

∑
ε∈µ2(FS′ )

∑
ε′∈µ2(FS′ )

∏
v∈S

Jv(Πv(εv)φ1,v, Πv(ε′v)φ2,v;Π ′
v(εv)φ′

1,v, Π
′
v(ε′v)φ′

2,v)

=
∏
v∈S

I�
v(φ1,v, φ2,v;φ′

1,v, φ
′
2,v)

for φ1 =
⊗

v φ1,v, φ2 =
⊗

v φ2,v ∈ V 1
Π,S and φ′

1 =
⊗

v φ
′
1,v, φ′

2 =
⊗

v φ
′
2,v ∈ VΠ′,S .
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Proof. If v ∈ S, then

1
22 Jv(φ1,v, φ2,v;φ′

1,v, φ
′
2,v)

= 1
2

∫
ZH,v\H0

v

B�
Πv

(Πv(h0,v)φ1,v, φ2,v)BΠ′
v
(Π ′

v(h0,v)φ′
1,v, φ

′
2,v) dh0,v

= 1
2

∑
εv∈µ2(Fv)

∫
ZH,v\H0

v

B�
Πv

(Πv(h0,vεv)φ1,v, φ2,v)BΠ′
v
(Π ′

v(h0,vεv)φ′
1,v, φ

′
2,v) dh0,v

= I�
v(φ1,v, φ2,v;φ′

1,v, φ
′
2,v).

If v �∈ S, then

1
22

∑
εv∈µ2(Fv)

∑
ε′

v∈µ2(Fv)

Jv(Πv(εv)φ1,v, Πv(ε′v)φ2,v;Π ′
v(εv)φ′

1,v, Π
′
v(ε′v)φ′

2,v)

=
1
22

∑
εv∈µ2(Fv)

∑
ε′

v∈µ2(Fv)

×
∫

ZH,v\H0
v

B�
Πv

(Πv(h0,vεv)φ1,v, Πv(ε′v)φ2,v)BΠ′
v
(Π ′

v(h0,vεv)φ′
1,v, Π

′
v(ε′v)φ′

2,v) dh0,v

= 1
2

∑
εv∈µ2(Fv)

∫
ZH,v\H0

v

B�
Πv

(Πv(h0,vεv)φ1,v, φ2,v)BΠ′
v
(Π ′

v(h0,vεv)φ′
1,v, φ

′
2,v) dh0,v

= I�
v(φ1,v, φ2,v;φ′

1,v, φ
′
2,v).

This completes the proof. �

This completes the proof of Proposition 3.2.

4. Local theta lifts from GL2 to GO(V )

Let F be a local field of characteristic zero. Let W be a two-dimensional symplectic space
over F and V a four-dimensional quadratic space over F . Set

G = GSp(W )(F ) ∼= GL2(F ), G1 = Sp(W )(F ) ∼= SL2(F ),

H = GO(V )(F ), H1 = O(V )(F ).

Let
R = G(Sp(W ) × O(V ))(F ) = {(g, h) ∈ G×H | ν(g) = ν(h)},

where ν : G → F× and ν : H → F× are the similitude characters.
Fix a non-trivial additive character ψ of F . Let ω denote the Weil representation of

G1 ×H1 with respect to ψ. As in [13, § 5.1] and [47], we extend ω to a representation of
R. Let

Ω = c-indG+×H
R (ω),
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where G+ = {g ∈ G | ν(g) ∈ ν(H)}. The induced Weil representation Ω depends only on
the orbit of ψ under the natural action of ν(H) ⊂ F×. Let π+ be an infinite-dimensional
irreducible admissible representation of G+. Then the maximal (π+)∨-isotypic quotient
of Ω is of the form

(π+)∨ �Θ(π+),

where (π+)∨ is the contragredient representation of π+ andΘ(π+) is a smooth representa-
tion of H. If the residual characteristic of F is not two, then the Howe duality conjecture,
which is a theorem of Howe [18] and Waldspurger [56], and a result of Roberts [47] assert
that Θ(π+) has a unique irreducible quotient θ(π+). Even if the residual characteristic
of F is two, the same assertion follows from [8, Lemmas 4.1 and 5.4]. Thus, we obtain a
unique (up to a scalar) R-equivariant surjective map

θ : ω ⊗ π+ → θ(π+).

Lemma 4.1. Assume that G+ �= G. Let π be an infinite-dimensional irreducible admissi-
ble representation of G such that π|G+ is reducible. Then we can write π|G+ = π+ ⊕ π−,
where π± is an irreducible admissible representation of G+ such that

θ(π+) �= 0, θ(π−) = 0.

Proof. If F is a non-archimedean local field, then the assertion follows from [8, § 5]. If
F = R, see [43]. �

Let π be an infinite-dimensional irreducible admissible representation of G. If G+ �= G,
let

θ(π) =

{
θ(π|G+) if π|G+ is irreducible,

θ(π+) if π|G+ is reducible,

where π+ is an irreducible subrepresentation of π|G+ as in Lemma 4.1. Thus, we obtain
a unique (up to a scalar) R-equivariant surjective map

θ : ω ⊗ π → θ(π).

5. Local theta lifts from GO(V ) to GSp4

Let F be a local field of characteristic zero. Let V be a four-dimensional quadratic space
over F and W a four-dimensional symplectic space over F . Set

H = GO(V )(F ), H1 = O(V )(F ),

G = GSp(W )(F ) ∼= GSp4(F ), G1 = Sp(W )(F ) ∼= Sp4(F ).

Let
R = G(O(V ) × Sp(W ))(F ) = {(h, g) ∈ H ×G | ν(h) = ν(g)},

where ν : H → F× and ν : G → F× are the similitude characters. Let K be the
discriminant algebra of V and choose a quaternion algebra D over F associated to V as
in § 1.
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Fix a non-trivial additive character ψ of F . Let ω denote the Weil representation of
H1 ×G1 with respect to ψ. As in [13, § 5.1] and [47], we extend ω to a representation of
R. Let

Ω = c-indH×G+

R (ω),

where G+ = {g ∈ G | ν(g) ∈ ν(H)}. The induced Weil representation Ω depends only
on the orbit of ψ under the natural action of ν(H) ⊂ F×.

Lemma 5.1. Assume that G+ �= G. Let g0 ∈ G � G+. Let σ and π+ be irreducible
admissible representations of H and G+, respectively. If HomH×G+(Ω, σ � π+) �= 0, then
π+ ◦ Ad(g0) � π+.

Proof. The assertion follows from [49, Lemmas 1.4 and 1.5] and the proof of [49, The-
orem 1.8]. We remark that [49, Lemma 1.5] follows from [43] even if disc(V ) �∈ F×,2. �

Let σ be an irreducible unitary admissible representation of H. Then the maximal
σ̄-isotypic quotient of Ω is of the form

σ̄ �Θ(σ),

where σ̄ is the complex conjugate representation of σ and Θ(σ) is a smooth representation
of G+. We call Θ(σ) the big theta lift of σ to G+. If the residual characteristic of F
is not two, then the Howe duality conjecture, which is a theorem of Howe [18] and
Waldspurger [56], and a result of Roberts [47] assert that Θ(σ) has a unique irreducible
quotient θ(σ). Even if the residual characteristic of F is two, the same assertion follows
from Theorem A.1 in Appendix A. We call θ(σ) the theta lift of σ to G+. Thus, we obtain
a unique (up to a scalar) R-equivariant surjective map

θ : ω ⊗ σ → θ(σ).

By Lemma 5.1, we obtain the following lemma.

Lemma 5.2. Assume that θ(σ) is non-zero and unitary. Let π = indG
G+(θ(σ)). Then π

is irreducible. Moreover, we have

Bπ(π(g)φ1, φ2) = 0

for g ∈ G�G+ and φ1, φ2 ∈ θ(σ). Here Bπ : π ⊗ π̄ → C is a pairing and we regard θ(σ)
as a subrepresentation of π|G+ .

Lemma 5.3. Assume that σ ⊗ sgn � σ and the theta lift of σ to GL2(F )+ is non-zero.
Then we have

θ(σ ⊗ sgn) = 0.

Proof. By [46, p. 399], the theta lift of the sign character of O(V )(F ) to Sp2n(F ) is
zero unless n � 4. As in [1, Proposition 1.7], this yields the lemma. �
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Definition 5.4. Set H0 = GSO(V )(F ). Let σ0 be an irreducible admissible representa-
tion of H0. We say that σ0 is distinguished if

σ0 ∼= ςDK � ωςωK/F

as representations of D×(K) × F× for some irreducible admissible representation ς of
GL2(F ) with central character ως . Here ςK is the base change of ς to GL2(K) and ςDK is the
Jacquet–Langlands transfer of ςK to D×(K). Then we can write indH

H0(σ0) = σ+
0 ⊕ σ−

0 ,
where σ±

0 is an irreducible admissible representation of H such that the theta lift of σ+
0

to GL2(F )+ is non-zero (and hence θ(σ−
0 ) = 0 by Lemma 5.3).

Let σ be an irreducible unitary admissible representation of H. We assume that σ
is a local component of an irreducible unitary cuspidal automorphic representation as
in § 7.2. In particular, if σ ⊗ sgn � σ, then σ � σ−

0 for any distinguished representation
σ0 of GSO(V )(F ). In § 7 below, we will show that θ(σ) is non-zero and unitary. By
Theorem A.1 in Appendix A, we obtain the following proposition.

Proposition 5.5. If F is a non-archimedean local field, then the multiplicity of θ(σ) in
Θ(σ) is one.

Let Ω̄ be the complex conjugate representation of Ω. Then we have

Θ̄(σ̄) ∼= Θ(σ), θ̄(σ̄) ∼= θ(σ),

where Θ̄(σ̄) (respectively θ̄(σ̄)) is the big theta lift (respectively the theta lift) of σ̄ to
G+ with respect to Ω̄. Let

θ : ω ⊗ σ → θ(σ), θ̄ : ω̄ ⊗ σ̄ → θ(σ)

be the unique (up to a scalar) R-equivariant surjective maps.
Let

H = {h = (h1, h2) ∈ H ×H | ν(h1) = ν(h2)},
R = {(h, g) ∈ H ×G | ν(h) = ν(g)}.

We define an R-equivariant map

Z : (ω � ω̄) ⊗ (σ � σ̄) → C

by

Z(ϕ1, ϕ2; f1, f2) =
∫

H1

Bω(ω(h1)ϕ1, ϕ2)Bσ(σ(h1)f1, f2) dh1

for ϕ1, ϕ2 ∈ ω and f1, f2 ∈ σ. Here Bω : ω ⊗ ω̄ → C and Bσ : σ ⊗ σ̄ → C are pairings.
In § 7, we will show that this integral is absolutely convergent and Z �= 0.

Lemma 5.6. If F is a non-archimedean local field, then there exists a pairing Bθ(σ) :
θ(σ) ⊗ θ(σ) → C such that

Z = Bθ(σ) ◦ (θ ⊗ θ̄).
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Proof. It suffices to show that

dimC HomR((ω � ω̄) ⊗ (σ � σ̄),C) = 1.

We have

HomR((ω � ω̄) ⊗ (σ � σ̄),C) ∼= HomH×H×G+((Ω � Ω̄) ⊗ (σ � σ̄),C)
∼= HomG+(Θ(σ) ⊗Θ(σ),C)

∼= HomG+(Θ(σ), Θ(σ)
∨
).

Let l : Θ(σ) → Θ(σ)
∨

be a non-zero G+-equivariant map. Then the image of l contains
the unique irreducible subrepresentation θ(σ)

∨ ∼= θ(σ) of Θ(σ)
∨
. By Proposition 5.5, l

factors through the quotient Θ(σ) → θ(σ). This yields the lemma. �

Lemma 5.7. If F is an archimedean local field, then there exists a pairing Bθ(σ) :
θ(σ) ⊗ θ(σ) → C such that

Z = Bθ(σ) ◦ (θ ⊗ θ̄).

Proof. We can write σ|H1 =
⊕n

i=1σi, where n � 2 and σi is an irreducible unitary
admissible representation of H1. As in [8, Lemma 3.1], we have

Θ(σ)|G1 =
n⊕

i=1

Θ(σi) and θ(σ)|G1 =
n⊕

i=1

θ(σi).

Here Θ(σi) (respectively θ(σi)) is the big theta lift (respectively the theta lift) of σi to
G1. If n = 2, then σ1 � σ2 and hence θ(σ1) � θ(σ2). We have

(ω � ω̄) ⊗ (σ � σ̄)|H1×H1×G1×G1 =
n⊕

i=1

n⊕
j=1

(ω � ω̄) ⊗ (σi � σ̄j),

Θ(σ) �Θ(σ)|G1×G1 =
n⊕

i=1

n⊕
j=1

Θ(σi) �Θ(σj),

θ(σ) � θ(σ)|G1×G1 =
n⊕

i=1

n⊕
j=1

θ(σi) � θ(σj).

Let

t : (ω � ω̄) ⊗ (σ � σ̄) → Θ(σ) �Θ(σ), p : Θ(σ) �Θ(σ) → θ(σ) � θ(σ),

tij : (ω � ω̄) ⊗ (σi � σ̄j) → Θ(σi) �Θ(σj), pij : Θ(σi) �Θ(σj) → θ(σi) � θ(σj),

be equivariant surjective maps. We may assume that

t =
n⊕

i=1

n⊕
j=1

tij and p =
n⊕

i=1

n⊕
j=1

pij .
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In particular, we have

ker(p) =
n⊕

i=1

n⊕
j=1

ker(pij).

Since Z is an R-equivariant map, there exists a G+-invariant functional l : Θ(σ) ⊗
Θ(σ) → C such that Z = l ◦ t. It remains to show that ker(p) ⊂ ker(l). Let Zij (respec-
tively lij) be the restriction of Z (respectively l) to (ω � ω̄) ⊗ (σi � σ̄j) (respectively
Θ(σi) ⊗ Θ(σj)). It follows from the definition of Z that Zij = 0 if i �= j, so that lij = 0
if i �= j and

Z =
n∑

i=1

Zii =
n∑

i=1

lii ◦ tii.

By a result of He [16], the G1-invariant functional lii : Θ(σi)⊗Θ(σi) → C factors through
pii, so that ker(pii) ⊂ ker(lii). Hence we have( n⊕

i=1

ker(pii)
)

⊕
(⊕

i �=j

Θ(σi) ⊗Θ(σj)
)

⊂ ker(l).

This yields the lemma. �

6. Global theta lifts from GL2 to GO(V )

Let F be a totally real number field. Let W be a two-dimensional symplectic space over
F and V a four-dimensional quadratic space over F . Let W̃ = W ⊕ (−W ). Set

G = GSp(W ) ∼= GL2, G1 = Sp(W ) ∼= SL2,

G̃ = GSp(W̃ ) ∼= GSp4, G̃1 = Sp(W̃ ) ∼= Sp4,

H = GO(V ), H1 = O(V ).

Let
G = {g = (g1, g2) ∈ G×G | ν(g1) = ν(g2)},

where ν : G → Gm is the similitude character. Let ι : G ↪→ G̃ be the natural embedding.
Let K be the discriminant algebra of V and choose a quaternion algebra D over F
associated to V as in § 1.

6.1. Weil representations

Fix a non-trivial additive character ψ =
⊗

v ψv of A/F . Let W = X⊕Y be a complete
polarization and set

W = V ⊗W, X = V ⊗X, Y = V ⊗ Y.

Then W is a symplectic space over F and W = X ⊕ Y is a complete polarization. Let
Mp(W(A)) denote the metaplectic extension of Sp(W)(A). Let ω be the Weil representa-
tion of Mp(W(A)) on the space Vω = S(X(A)) with respect to ψ and Bω : Vω ⊗ V̄ω → C
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the canonical pairing given by

Bω(ϕ1, ϕ2) =
∫

X(A)
ϕ1(x)ϕ2(x) dx

for ϕ1, ϕ2 ∈ Vω. Here dx is the Tamagawa measure on X(A). For each place v of F , let
Mp(Wv) denote the metaplectic extension of Sp(W)(Fv). Let ωv be the Weil represen-
tation of Mp(Wv) on the space S(Xv) with respect to ψv and Bωv

: ωv ⊗ ω̄v → C the
canonical pairing given by

Bωv
(ϕ1,v, ϕ2,v) =

∫
Xv

ϕ1,v(xv)ϕ2,v(xv) dxv

for ϕ1,v, ϕ2,v ∈ S(Xv). Here dxv is the self-dual measure on Xv with respect to the Fourier
transform determined by ψv. Then we have ω =

⊗
v ωv and Bω =

∏
v Bωv . By [30], there

exists a splitting
G1(A) ×H1(A) → Mp(W(A)).

By [13, § 5.1] and [47], we can extend it to a splitting

G(Sp(W ) × O(V ))(A) → Mp(W(A)).

We regard ω as a representation of G(Sp(W )×O(V ))(A) via this splitting. Similarly, we
may regard ωv as a representation of G(Sp(W ) × O(V ))(Fv).

Let
W̃ = V ⊗ W̃ , X̃ = V ⊗ (X ⊕ (−X)), Ỹ = V ⊗ (Y ⊕ (−Y )).

Then W̃ is a symplectic space over F and W̃ = X̃ ⊕ Ỹ is a complete polarization. Let ω̃
be the Weil representation of Mp(W̃(A)) on S(X̃(A)) with respect to ψ. We may regard
ω̃ as a representation of G(Sp(W̃ ) × O(V ))(A). We have a natural isomorphism

S(X̃(A)) ∼= Vω ⊗ V̄ω

as representations of Mp(W(A)) × Mp(W(A)). Let

W∆ = {(x, x) | x ∈ W}, W∆ = V ⊗W∆,

W∇ = {(x,−x) | x ∈ W}, W∇ = V ⊗W∇.

Then W̃ = W∇ ⊕ W∆ is a complete polarization. Hence we can realize the Weil repre-
sentation ω̃ on S(W∇(A)). By [40, § 2], there exists an isomorphism

δ : S(X̃(A)) → S(W∇(A))

as representations of Mp(W̃(A)) such that

δ(ϕ1 ⊗ ϕ̄2)(0) = Bω(ϕ1, ϕ2)

for ϕ1, ϕ2 ∈ Vω.
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6.2. Theta lifts

Let π ∼=
⊗

v πv be an irreducible unitary cuspidal automorphic representation of G(A)
on the space Vπ with central character ωπ. We assume the following.

• The base change πK of π to G(AK) ∼= GL2(AK) is cuspidal.

• The Jacquet–Langlands transfer πD
K of πK to D×(AK) exists.

Lemma 6.1. The partial L-function LS(s, π,Ad ⊗ ωK/F ) is holomorphic and non-zero
at s = 1.

Proof. It is well known that LS(s, π,Ad) is holomorphic and non-zero at s = 1. If K is
a quadratic extension of F , then

LS(s, πK ,Ad) = LS(s, π,Ad)LS(s, π,Ad ⊗ ωK/F )

is also holomorphic and non-zero at s = 1 since πK is cuspidal. This yields the lemma. �

Let ϕ ∈ Vω. The theta function associated to ϕ is given by

θ(g, h;ϕ) =
∑

x∈X(F )

ω(g, h)ϕ(x)

for (g, h) ∈ G(Sp(W )×O(V ))(A). Let f ∈ Vπ. For h ∈ H(A), choose g ∈ G(A) such that
ν(g) = ν(h), and put

θ(h;ϕ, f) =
∫

G1(F )\G1(A)
θ(g1g, h;ϕ)f(g1g) dg1.

Here dg1 =
∏

v dg1,v is the Tamagawa measure on G1(A). Note that vol(G1(F )\G1(A)) =
1 and we may assume that the volume of a hyperspecial maximal compact subgroup of
G1,v with respect to dg1,v is 1 for almost all v. This integral defines an automorphic form
θ(ϕ, f) on H(A). Let θ(π) be the automorphic representation of H(A) on the space Vθ(π)

generated by θ(ϕ, f) for all ϕ ∈ Vω and f ∈ Vπ. By assumption on π, θ(π) is cuspidal. In
Lemma 6.9 below, we will show that Vθ(π) �= 0. In particular, θ(πv) �= 0 for all v. Hence
θ(π) is irreducible,

θ(π) ∼=
⊗

v

θ(πv),

and θ(πv) is unitary for all v. Thus, we obtain a G(Sp(W ) × O(V ))(A)-equivariant sur-
jective map

θ : Vω ⊗ Vπ → Vθ(π)

and G(Sp(W ) × O(V ))(Fv)-equivariant surjective maps

θv : ωv ⊗ πv → θ(πv)

such that θ =
⊗

v θv. As in [52], we have

θ(π)|D×(AK)×A× ∼= πD
K � ωπωK/F

by the local unramified theta correspondence and the strong multiplicity one theorem.
We should remark that the local theta correspondence for GL2 × GO(V ) has also been
studied by Cognet [6,7] and Roberts [48].
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6.3. Eisenstein series

Let P be the parabolic subgroup of G̃ stabilizing W∆ with modulus character δP . We
regard ωK/F as a character of P (A) via the natural homomorphism

P → GL(W∇) det−−→ Gm.

For ν ∈ Gm, we define an element d(ν) of P by

d(ν)|W ∇ = id, d(ν)|W∆ = ν · id.

We fix a maximal compact subgroup K of G̃(A) such that G̃(A) = P (A)K.
Let I(s) denote the degenerate principal series representation of G̃(A) given by

I(s) = IndG̃(A)
P (A)(ωK/F δ

s/3
P ),

where Ind denotes the normalized induction. Given a holomorphic section Φ of I(s), we
define an Eisenstein series E(s, Φ) on G̃(A) by

E(g; s, Φ) =
∑

γ∈P (F )\G̃(F )

Φ(γg, s)

for Re(s) � 0. By [34, Theorem 1.1], E(s, Φ) has at most a simple pole at s = 1
2 . Let

P1 = P ∩ G̃1. Let I1(s) denote the degenerate principal series representation of G̃1(A)
given by

I1(s) = IndG̃1(A)
P1(A) (ωK/F δ

s/3
P1

).

If Φ1 is a holomorphic section of I1(s), we similarly define an Eisenstein series E(s, Φ1)
on G̃1(A). If Φ is a holomorphic section of I(s), then Φ|G̃1(A) is a holomorphic section of
I1(s) and

E(s, Φ)|G̃1(A) = E(s, Φ|G̃1(A)).

We define a G(Sp(W̃ ) × O(V ))(A)-equivariant map

[·] : S(W∇(A)) → I( 1
2 )

by
[ϕ](g, 1

2 ) = |ν(g)|−2ω̃(d(ν(g)−1)g)ϕ(0)

for g ∈ G̃(A). Here G(Sp(W̃ ) × O(V ))(A) acts on I( 1
2 ) via the projection G(Sp(W̃ ) ×

O(V ))(A) → G̃(A)+. We extend [ϕ] to a holomorphic section of I(s) such that its restric-
tion to K is independent of s. Let

E(s, [ϕ]) =
∞∑

d=−1

(s− 1
2 )dAd(ϕ)

be the Laurent expansion of E(s, [ϕ]) at s = 1
2 .
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6.4. Theta integrals

Let r be the Witt index of V and V = X ′ ⊕ V0 ⊕ Y ′ a Witt decomposition, where V0

is an anisotropic quadratic space over F of dimension 4 − 2r. Let dh1 be the Tamagawa
measure on H1(A) and note that vol(H1(F )\H1(A)) = 1. Let ϕ ∈ S(W∇(A)). The theta
function associated to ϕ is given by

θ(g, h;ϕ) =
∑

x∈W∇(F )

ω̃(g, h)ϕ(x)

for (g, h) ∈ G(Sp(W̃ ) × O(V ))(A). If r = 0, then the theta integral I(ϕ) is given by

I(g1;ϕ) =
∫

H1(F )\H1(A)
θ(g1, h1;ϕ) dh1

for g1 ∈ G̃1(A).
Assume that r > 0. Let P ′ be the parabolic subgroup ofH1 stabilizing Y ′ with modulus

character δP ′ . We fix a maximal compact subgroup K ′ of H1(A) such that H1(A) =
P ′(A)K ′. Let dlp

′ be the left-invariant Tamagawa measure on P ′(A) and dk′ the Haar
measure on K ′ such that vol(K ′) = 1. There exists a constant κ such that∫

H1(A)
f(h1) dh1 = κ

∫
P ′(A)

∫
K′
f(p′k′) dlp

′ dk′

for f ∈ L1(H1(A)).
Put �′ = 1

2 (3 − r). Let Φ′ be the holomorphic section of IndH1(A)
P ′(A) (δs/(3−r)

P ′ ) such that
Φ′(k′, s) = 1 for all k′ ∈ K ′. We define an Eisenstein series E(s) on H1(A) by

E(h1; s) =
∑

γ∈P ′(F )\H1(F )

Φ′(γh1, s)

for Re(s) > �′. By [36, § 5] and [23, § 9], we have

Ress=�′ E(h1; s) = κ

for h1 ∈ H1(A).
Let z ∈ z(g̃1,v) be the regularizing differential operator as in [35, § 3.2] and [34, § 5],

where v is a real place of F . There exists a self-adjoint differential operator z′ ∈ z(h1,v)
such that ω̃(z) = ω̃(z′). Then we have z′E(s) = p(s)E(s) with some p(s) ∈ C[s]. Following
Kudla and Rallis [34, § 5], we define the regularized theta integral I(s, ϕ) by

I(g1; s, ϕ) =
1

κp(s)

∫
H1(F )\H1(A)

θ(g1, h1; zϕ)E(h1; s) dh1

for g1 ∈ G̃1(A). By [34, Lemma 5.5.6], I(s, ϕ) has at most a double pole at s = �′. Let

I(s, ϕ) =
∞∑

d=−2

(s− �′)dBd(ϕ)

be the Laurent expansion of I(s, ϕ) at s = �′.
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6.5. The Siegel–Weil formula

Let A(G̃1) denote the space of automorphic forms on G̃1(A) and R(G̃1) the subspace
of A(G̃1) generated by Ress=1/2E(s, Φ1) for all holomorphic sections Φ1 of I1(s).

Let ϕ ∈ S(W∇(A)). If r = 0, then the Siegel–Weil formula by Kudla and Rallis [31]
asserts that

I(ϕ) = A0(ϕ)|G̃1(A).

If r > 0, then the Siegel–Weil formula (the second term identity) by Kudla et al . [35, § 6]
asserts that

B−1(ϕ) ≡ A0(ϕ)|G̃1(A) mod R(G̃1). (6.1)

Remark 6.2. In [35, § 6], Kudla et al . proved (6.1) up to a scalar. Computing Fourier
coefficients as in [35, Proposition 6.2], [54, Proposition 5.1.1] and [19, Proposition 6.2],
we can determine the constant of proportionality.

6.6. The doubling method

Let A(G̃) denote the space of automorphic forms on G̃(A) and R(G̃) the subspace of
A(G̃) generated by Ress=1/2E(s, Φ) for all holomorphic sections Φ of I(s). If F ∈ R(G̃),
then F|G̃1(A) ∈ R(G̃1).

Let Bπ : Vπ ⊗ V̄π → C be the Petersson pairing given by

Bπ(f1, f2) =
∫

ZG(A)G(F )\G(A)
f1(g)f2(g) dg

for f1, f2 ∈ Vπ. Here ZG is the identity component of the centre of G and dg is the
Tamagawa measure on ZG(A)\G(A). Note that vol(ZG(A)G(F )\G(A)) = 2. We fix a
decomposition Bπ =

∏
v Bπv , where Bπv : πv ⊗ π̄v → C is a pairing. Let

G(A)+ = {g ∈ G(A) | ν(g) ∈ ν(H(A))}

and G(F )+ = G(F ) ∩G(A)+. Put

v = vol(ZG(A)G(F )+\G(A)+) =

{
2 if K = F × F,
1 if K is a quadratic extension of F .

Lemma 6.3. We have∫
ZG(A)G(F )+\G(A)+

f1(g)f2(g) dg = 1
2vBπ(f1, f2)

for f1, f2 ∈ Vπ.

Proof. We may assume that K is a quadratic extension of F . Let

G = ZG(A)G(A)+G(F ).

Note that |G\G(A)| = 2. By assumption on π, the group

{ω ∈ (G\G(A))D | π ⊗ ω ∼= π}
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is trivial and hence π|G is irreducible. The restriction to G as functions induces an iso-
morphism

Vπ
∼= Vπ|G

as representations of G.
We define a G-invariant pairing B+

π : Vπ|G ⊗ V̄π|G → C by

B+
π (f1|G , f2|G) =

∫
ZG(A)G(F )+\G(A)+

f1(g)f2(g) dg

for f1, f2 ∈ Vπ. As in the proof of Lemma 2.1, we have

B+
π (π(g0)f1|G , π(g0)f2|G) = B+

π (f1|G , f2|G)

for g0 ∈ G(A) � G. Hence we have

Bπ(f1, f2) =
∑

g0∈G\G(A)

B+
π (π(g0)f1|G , π(g0)f2|G) = 2B+

π (f1|G , f2|G).

�

Let

G(A)+ = {g ∈ G(A) | ν(g) ∈ ν(H(A))}

and G(F )+ = G(F ) ∩ G(A)+. For a holomorphic section Φ of I(s) and f1, f2 ∈ Vπ, the
zeta integral of Piatetski-Shapiro and Rallis [44] and [12, § 6.2] is given by

Z(s, Φ, f1, f2) =
∫

ZG̃(A)G(F )+\G(A)+
E(ι(g1, g2); s, Φ)f1(g1)f2(g2) dg.

Here ZG̃ is the identity component of the centre of G̃ and dg is the Tamagawa measure
on ZG̃(A)\G(A). Note that vol(ZG̃(A)G(F )+\G(A)+) = v. For each place v of F , let

Zv(s, Φv, f1,v, f2,v) =
∫

G1,v

Φv(ι(g1,v, 1), s)Bπv (πv(g1,v)f1,v, f2,v) dg1,v.

Lemma 6.4. For a holomorphic section Φ =
⊗

v Φv of I(s) and f1 =
⊗

v f1,v, f2 =⊗
v f2,v ∈ Vπ, we have

Z(s, Φ, f1, f2) =
v

2
·
LS(s+ 1

2 , π,Ad ⊗ ωK/F )
LS(s+ 3

2 , ωK/F )ζS(2s+ 1)

∏
v∈S

Zv(s, Φv, f1,v, f2,v).

Proof. The assertion follows from the doubling method of [44] and [12, § 6.2] and from
Lemma 6.3. �
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6.7. Local zeta integrals

Let Iv(s) = IndG̃v

Pv
(ωKv/Fv

δ
s/3
Pv

) denote the degenerate principal series representation
of G̃v.

Lemma 6.5. For a holomorphic section Φv of Iv(s) and f1,v, f2,v ∈ πv, the integral
Zv(s, Φv, f1,v, f2,v) is absolutely convergent at s = 1

2 .

Proof. By [44, Proposition 6.4], the function g1,v �→ Φv(ι(g1,v, 1), 1
2 ) belongs to

L1+ε(G1,v) for any ε > 0. This yields the lemma. �

For ϕ1,v, ϕ2,v ∈ S(Xv), we have

Zv( 1
2 , [δ(ϕ1,v ⊗ ϕ̄2,v)], f1,v, f2,v)

=
∫

G1,v

Bωv
(ωv(g1,v)ϕ1,v, ϕ2,v)Bπv

(πv(g1,v)f1,v, f2,v) dg1,v.

Lemma 6.6. There exist ϕv ∈ S(W∇
v ) and f1,v, f2,v ∈ πv such that

Zv( 1
2 , [ϕv], f1,v, f2,v) �= 0.

Proof. We fix a place v of F and suppress it from the notation. By [34, Proposi-
tion 7.2.1], there exist Φ ∈ I( 1

2 ) and f1, f2 ∈ π such that Z( 1
2 , Φ, f1, f2) �= 0. Let R be

the image of the equivariant map S(W∇) → I( 1
2 ), where W∇ = V ⊗W∇. It suffices to

show that there exist Φ ∈ R and f1, f2 ∈ π such that Z( 1
2 , Φ, f1, f2) �= 0.

We first consider the case K = F × F . If D is split, then I( 1
2 ) = R by [33,37] and

the assertion is obvious. We assume that D is division and Z( 1
2 , Φ, f1, f2) = 0 for all

Φ ∈ R and f1, f2 ∈ π. If F is archimedean, let R− be the image of the equivariant
map S(W∇

−) → I( 1
2 ), where W∇

− = (−V ) ⊗ W∇. Let V0 be the two-dimensional split
quadratic space over F . Let R0 be the image of the equivariant map S(W∇

0 ) → I(− 1
2 ),

where W∇
0 = V0 ⊗W∇. By [33,37], we have

I( 1
2 )/R ∼= R0 if F is non-archimedean,

I( 1
2 )/(R+R−) ∼= R0 if F is archimedean.

Since π ◦ Ad(g0) ∼= π for g0 ∈ G � G+, we have Z( 1
2 , Φ, f1, f2) = 0 for all Φ ∈ R− and

f1, f2 ∈ π if F is archimedean. Hence Z( 1
2 , Φ, f1, f2) defines a non-zero equivariant map

R0 ⊗ (π � π̄) → C.

As in [14, Proposition 3.1], this shows that the theta lift of π to GO(V0)(F ) is non-zero.
Hence π is a principal series representation of G. This contradicts the assumption that
the Jacquet–Langlands transfer πD of π to D× exists.

We next consider the case where K is a quadratic extension of F . We assume that
Z( 1

2 , Φ, f1, f2) = 0 for all Φ ∈ R and f1, f2 ∈ π. Let V− be the four-dimensional quadratic
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space over F such that disc(V−) = disc(V ) and V− � V . Let R− be the image of the
equivariant map S(W∇

−) → I( 1
2 ), where W∇

− = V− ⊗W∇. By [33,37], we have

I( 1
2 ) = R+R−.

Since π ◦ Ad(g0) ∼= π for g0 ∈ G � G+, we have Z( 1
2 , Φ, f1, f2) = 0 for all Φ ∈ R− and

f1, f2 ∈ π and hence a contradiction. �

6.8. The Rallis inner product formula

Lemma 6.7. For F ∈ R(G̃1) and f1, f2 ∈ Vπ, we have∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

F(ι(g1, g2))f1(g1)f2(g2) dg1 dg2 = 0.

Proof. The assertion follows from Lemmas 6.1, 6.4, and 6.5. Here we have used the
version of Lemma 6.4 for isometry groups. �

Let A×,+ = ν(H(A)), F×,+ = F× ∩ A×,+, and C = A×,2F×,+\A×,+. The similitude
characters induce isomorphisms

ZG(A)G1(A)G(F )+\G(A)+ ∼= C, ZH(A)H1(A)H(F )\H(A) ∼= C.

Fix cross-sections c �→ gc and c �→ hc of G(A)+ → C and H(A) → C, respectively. Let dh
be the Tamagawa measure on ZH(A)\H(A) and note that vol(ZH(A)H(F )\H(A)) = v.

Lemma 6.8. Let ϕ1 =
⊗

v ϕ1,v, ϕ2 =
⊗

v ϕ2,v ∈ Vω and f1 =
⊗

v f1,v, f2 =
⊗

v f2,v ∈
Vπ. Then we have∫

ZH(A)H(F )\H(A)
θ(h;ϕ1, f1)θ(h;ϕ2, f2) dh

=
v

2
·
LS(1, π,Ad ⊗ ωK/F )

ζS
K(2)

∏
v∈S

Zv( 1
2 , [δ(ϕ1,v ⊗ ϕ̄2,v)], f1,v, f2,v).

Proof. Let Φ ∈ I( 1
2 ). We extend Φ to a holomorphic section of I(s) such that its

restriction to K is independent of s. Let

E(s, Φ) =
∞∑

d=−1

(s− 1
2 )dEd( 1

2 , Φ)

be the Laurent expansion of E(s, Φ) at s = 1
2 . Then the map Φ �→ E0( 1

2 , Φ) induces a
G̃(A)-equivariant map

I( 1
2 ) → A(G̃)/R(G̃).

We only consider the case r > 0. We have

Z(s, [ϕ], f1, f2) = v

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

E(ι(g1, g2)ι(gc, gc); s, [ϕ])

× f1(g1gc)f2(g2gc) dg1 dg2 dc.
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Here dc is the Haar measure on C such that vol(C) = 1 and dg1, dg2 are the Tamagawa
measures on G1(A). By Lemma 6.7, Z(s, [ϕ], f1, f2) is holomorphic at s = 1

2 . We have

[ϕ](gι(gc, gc), 1
2 ) = [ω̃(ι(gc, gc), hc)ϕ](g, 1

2 )

for g ∈ G̃(A) and c ∈ C. For each c ∈ C, there exists Fc ∈ R(G̃) such that

A0(gι(gc, gc);ϕ) = A0(g; ω̃(ι(gc, gc), hc)ϕ) + Fc(g)

for g ∈ G̃(A). By Lemma 6.7, Z( 1
2 , [ϕ], f1, f2) is equal to

v

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

A0(ι(g1, g2)ι(gc, gc);ϕ) · f1(g1gc)f2(g2gc) dg1 dg2 dc

= v

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

A0(ι(g1, g2); ω̃(ι(gc, gc), hc)ϕ)

× f1(g1gc)f2(g2gc) dg1 dg2 dc.

For each c ∈ C, there exists F ′
c ∈ R(G̃1) such that

A0(g1; ω̃(ι(gc, gc), hc)ϕ) = B−1(g1; ω̃(ι(gc, gc), hc)ϕ) + F ′
c(g1)

for g1 ∈ G̃1(A) by (6.1). By Lemma 6.7, Z( 1
2 , [ϕ], f1, f2) is equal to

v

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

B−1(ι(g1, g2); ω̃(ι(gc, gc), hc)ϕ)·f1(g1gc)f2(g2gc) dg1 dg2 dc.

This integral is equal to the residue at s = �′ of

v

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

I(ι(g1, g2); s, ω̃(ι(gc, gc), hc)ϕ) · f1(g1gc)f2(g2gc) dg1 dg2 dc

=
v

κp(s)

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

∫
H1(F )\H1(A)

θ(ι(g1, g2), h1; zω̃(ι(gc, gc), hc)ϕ)

× E(h1; s)f1(g1gc)f2(g2gc) dh1 dg1 dg2 dc

=
v

κ

∫
C

∫
H1(F )\H1(A)

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

θ(ι(g1, g2), h1; ω̃(ι(gc, gc), hc)ϕ)

× E(h1; s)f1(g1gc)f2(g2gc) dg1 dg2 dh1 dc.

Hence Z( 1
2 , [ϕ], f1, f2) is equal to

v

∫
C

∫
H1(F )\H1(A)

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

θ(g1gc, h1hc;ϕ1) · θ(g2gc, h1hc;ϕ2)

× f1(g1gc)f2(g2gc) dg1 dg2 dh1 dc

=
∫

ZH(A)H(F )\H(A)
θ(h;ϕ1, f1)θ(h;ϕ2, f2) dh.

�
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By Lemmas 6.1, 6.6, and 6.8, we obtain the following lemma.

Lemma 6.9. We have
Vθ(π) �= 0.

Let Bθ(π) : Vθ(π) ⊗ V̄θ(π) → C be the Petersson pairing given by

Bθ(π)(φ1, φ2) =
∫

ZH(A)H(F )\H(A)
φ1(h)φ2(h) dh

for φ1, φ2 ∈ Vθ(π). For each place v of F , we define an equivariant map

Z�
v : (ωv � ω̄v) ⊗ (πv � π̄v) → C

by

Z�
v(ϕ1,v, ϕ2,v; f1,v, f2,v) = ζKv (2)Lv(1, πv,Ad⊗ωKv/Fv

)−1Zv( 1
2 , [δ(ϕ1,v ⊗ϕ̄2,v)], f1,v, f2,v)

for ϕ1,v, ϕ2,v ∈ S(Xv) and f1,v, f2,v ∈ πv. By Lemma 6.6, Z�
v �= 0. By Lemma 6.8, there

exists a pairing B�
θ(πv) : θ(πv) ⊗ θ(πv) → C such that

Z�
v = B�

θ(πv) ◦ (θv ⊗ θ̄v).

By Lemma 6.8, we obtain the following proposition.

Proposition 6.10. We have

Bθ(π) = 2β L(1, π,Ad ⊗ ωK/F )
ζK(2)

∏
v

B�
θ(πv).

Here

β =

{
0 if K = F × F,
−1 if K is a quadratic extension of F .

7. Global theta lifts from GO(V ) to GSp4

Let F be a number field. Let V be a four-dimensional quadratic space over F and W a
four-dimensional symplectic space over F . Let Ṽ = V ⊕ (−V ). Set

H = GO(V ), H1 = O(V ),

H̃ = GO(Ṽ ) ∼= GO8, H̃1 = O(Ṽ ) ∼= O8,

G = GSp(W ) ∼= GSp4, G1 = Sp(W ) ∼= Sp4.

Let
H = {h = (h1, h2) ∈ H ×H | ν(h1) = ν(h2)},

where ν : H → Gm is the similitude character. Let ι : H ↪→ H̃ be the natural embedding.
Let K be the discriminant algebra of V and choose a quaternion algebra D over F
associated to V as in § 1.
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7.1. Weil representations

Fix a non-trivial additive character ψ =
⊗

v ψv of A/F . We may assume that ψv(x) =
exp(2π

√
−1 trFv/R(x)) for x ∈ Fv if v is archimedean (see [49, Lemma 5.1]). Let W =

X ⊕ Y be a complete polarization and set

W = W ⊗ V, X = X ⊗ V, Y = Y ⊗ V.

Then W is a symplectic space over F and W = X ⊕ Y is a complete polarization. Let ω
be the Weil representation of Mp(W(A)) on the space Vω = S(X(A)) with respect to ψ
and Bω : Vω ⊗ V̄ω → C the canonical pairing. For each place v of F , let ωv be the Weil
representation of Mp(Wv) on the space S(Xv) with respect to ψv and Bωv

: ωv ⊗ ω̄v → C

the canonical pairing. Then we have ω =
⊗

v ωv and Bω =
∏

v Bωv
. By [30], [13, § 5.1],

and [47], we may regard ω (respectively ωv) as a representation of G(O(V )×Sp(W ))(A)
(respectively G(O(V ) × Sp(W ))(Fv)).

Let
W̃ = W ⊗ Ṽ , X̃ = X ⊗ Ṽ , Ỹ = Y ⊗ Ṽ .

Then W̃ is a symplectic space over F and W̃ = X̃ ⊕ Ỹ is a complete polarization. Let ω̃
be the Weil representation of Mp(W̃(A)) on S(X̃(A)) with respect to ψ. We may regard
ω̃ as a representation of G(O(Ṽ ) × Sp(W ))(A). We have a natural isomorphism

S(X̃(A)) ∼= Vω ⊗ V̄ω

as representations of Mp(W(A)) × Mp(W(A)). Let

V ∆ = {(x, x) | x ∈ V }, W∆ = W ⊗ V ∆,

V ∇ = {(x,−x) | x ∈ V }, W∇ = W ⊗ V ∇.

Then W̃ = W∇ ⊕ W∆ is a complete polarization. Hence we can realize the Weil repre-
sentation ω̃ on S(W∇(A)). By [40, § 2], there exists an isomorphism

δ : S(X̃(A)) → S(W∇(A))

as representations of Mp(W̃(A)) such that

δ(ϕ1 ⊗ ϕ̄2)(0) = Bω(ϕ1, ϕ2)

for ϕ1, ϕ2 ∈ Vω.
More generally, let V = F 2n be the space of row vectors equipped with a non-degenerate

symmetric bilinear form (x, y) = xJ ty for x, y ∈ V, where

J =

(
0 1n

1n 0

)
.

We identify GO(V) with

GO2n = {h ∈ GL2n | hJ th = ν(h)J, ν(h) ∈ Gm}.
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Let W = F 2r be the space of column vectors equipped with a non-degenerate antisym-
metric bilinear form 〈x, y〉 = txJ ′y for x, y ∈ W, where

J ′ =

(
0 1r

−1r 0

)
.

We identify GSp(W) with

GSp2r = {g ∈ GL2r | tgJ ′g = ν(g)J ′, ν(g) ∈ Gm}.

Let W = W ⊗ V,

X = {(x, 0) ∈ F 2n | x ∈ Fn}, X = W ⊗ X ,
Y = {(0, y) ∈ F 2n | y ∈ Fn}, Y = W ⊗ Y.

Then W is a symplectic space over F and W = X ⊕ Y is a complete polariza-
tion. We identify X with M2r,n(F ). Let ω be the Weil representation of Mp(W (A))
on the space S(M2r,n(A)) with respect to ψ. We may regard ω as a representation of
G(O2n × Sp2r)(A).

Choosing bases, we fix an isomorphism

S(W∇(A)) ∼= S(M4,4(A))

as representations of G(O(Ṽ ) × Sp(W ))(A) ∼= G(O8 × Sp4)(A).

7.2. Theta lifts

Let σ ∼=
⊗

v σv be an irreducible unitary cuspidal automorphic representation of H(A)
on the space Vσ. We assume the following.

• The Jacquet–Langlands transfer of σ|D×(AK) to GL2(AK) is cuspidal.

• σv ⊗ sgn ∼= σv for some place v of F .

• If σv ⊗ sgn � σv, then σv � σ−
0,v for any distinguished representation σ0,v of

GSO(V )(Fv).

Lemma 7.1. The partial L-function LS(s, σ, std) is holomorphic and non-zero at s = 1.

Proof. We first consider the case K = F × F . We have σ|D×(AK)
∼= τD

1 � τD
2 with an

irreducible unitary cuspidal automorphic representation τi of GL2(A) such that τ1 � τ2
and ωτ1 = ωτ2 . Here τD

i is the Jacquet–Langlands transfer of τi to D×(A). Then we have

LS(s, σ, std) = LS(s, τ1 × τ∨
2 )

and the assertion is well known.
We next consider the case where K is a quadratic extension of F . We have

σ|D×(AK)×A× ∼= τD � χ
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with an irreducible unitary cuspidal automorphic representation τ of GL2(AK) and a
Hecke character χ of A× such that τ c � τ and ωτ = χ ◦ NK/F . Here τD is the
Jacquet–Langlands transfer of τ to D×(AK). Let µ be a Hecke character of A×

K such
that µ|A× = χ−1. Then we have

LS(s, σ, std) = LS(s, τ ⊗ µ,Asai).

Since (τ c ⊗ µc)∨ � τ ⊗ µ and Lv(s, τv ⊗ µv,Asai) is holomorphic and non-zero at s = 1
for all v, the assertion follows from [27, Proposition 5.3]. �

Let
G(A)+ = {g ∈ G(A) | ν(g) ∈ ν(H(A))}

and G(F )+ = G(F )∩G(A)+. Let ϕ ∈ Vω. The theta function associated to ϕ is given by

θ(h, g;ϕ) =
∑

x∈X(F )

ω(h, g)ϕ(x)

for (h, g) ∈ G(O(V ) × Sp(W ))(A). Let f ∈ Vσ. For g ∈ G(A)+, choose h ∈ H(A) such
that ν(h) = ν(g), and put

θ(g;ϕ, f) =
∫

H1(F )\H1(A)
θ(h1h, g;ϕ)f(h1h) dh1.

Here
dh1 =

∏
v

dh1,v

is the Tamagawa measure on H1(A). Note that vol(H1(F )\H1(A)) = 1 and we may
assume that the volume of a hyperspecial maximal compact subgroup ofH1,v with respect
to dh1,v is 1 for almost all v. This integral defines an automorphic form θ(ϕ, f) on G(A)+.
We extend θ(ϕ, f) to an automorphic form on G(A) by the natural embedding

G(F )+\G(A)+ ↪→ G(F )\G(A)

and extension by zero. Let θ(σ) be the automorphic representation of G(A)+ on the
space Vθ(σ) generated by θ(ϕ, f) for all ϕ ∈ Vω and f ∈ Vσ. By assumption on σ, θ(σ) is
cuspidal. In Lemma 7.12 below, we will show that Vθ(σ) �= 0. In particular, θ(σv) �= 0 for
all v. Hence θ(σ) is irreducible,

θ(σ) ∼=
⊗

v

θ(σv),

and θ(σv) is unitary for all v. Thus, we obtain a G(O(V ) × Sp(W ))(A)-equivariant sur-
jective map

θ : Vω ⊗ Vσ → Vθ(σ)

and G(O(V ) × Sp(W ))(Fv)-equivariant surjective maps

θv : ωv ⊗ σv → θ(σv)

such that θ =
⊗

v θv.
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Let π be the automorphic representation of G(A) on the space Vπ generated by Vθ(σ).
For each place v of F , let πv = indGv

G+
v
(θ(σv)). By Lemma 5.2, πv is irreducible.

Lemma 7.2. We have
π ∼=
⊗

v

πv.

Proof. Since G(A)+ is an open subgroup of G(A), we have a natural G(A)-equivariant
map

c-indG(A)
G(A)+(Vθ(σ)) → Vπ. (7.1)

By definition, (7.1) is surjective. Since

c-indG(A)
G(A)+(θ(σ)) ∼=

⊗
v

πv

is irreducible, (7.1) is injective. �

7.3. Eisenstein series

For each r ∈ N with r � n, we define a parabolic subgroup Pn,r of GO2n by

Pn,r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎜⎜⎝
a ∗ ∗ ∗
0 a′ ∗ b′

0 0 ν(h′)ta−1 0
0 c′ ∗ d′

⎞⎟⎟⎟⎠ ∈ GO2n

∣∣∣∣∣∣∣∣∣ a ∈ GLr, h
′ =

(
a′ b′

c′ d′

)
∈ GO2n−2r

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Let δPn,r be the modulus character of Pn,r(A). For ν ∈ Gm, let

d(ν) =

(
1n 0
0 ν1n

)
.

We define a maximal compact subgroup K =
∏

v Kv of GO2n(A) by

Kv =

⎧⎪⎨⎪⎩
GO2n(ov) if v is non-archimedean,

GO2n(Fv) ∩ O(2n) if v is real,

GO2n(Fv) ∩ U(2n) if v is complex.

Then we have GO2n(A) = Pn,r(A)K.
Let I(n,r)(s) denote the degenerate principal series representation of GO2n(A) given

by
I(n,r)(s) = IndGO2n(A)

Pn,r(A) (δs/(2n−r−1)
Pn,r

),

where Ind denotes the normalized induction. Given a holomorphic section Φ of I(n,r)(s),
we define an Eisenstein series E(n,r)(s, Φ) on GO2n(A) by

E(n,r)(h; s, Φ) =
∑

γ∈Pn,r(F )\GO2n(F )

Φ(γh, s)
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for Re(s) � 0. If Φo is the holomorphic section of I(n,r)(s) such that Φo(k, s) = 1 for all
k ∈ K, we write E(n,r)(s) = E(n,r)(s, Φo). For each s0 ∈ C, let

E(n,r)(s) =
∑

d
−∞
(s− s0)dE

(n,r)
d (s0)

be the Laurent expansion of E(n,r)(s) at s = s0.
We define a G(O2n × Sp2r)(A)-equivariant map

[·] : S(M2r,n(A)) → I(n,n)(r − 1
2 (n− 1))

by
[ϕ](h, r − 1

2 (n− 1)) = |ν(h)|−nr/2ω(d(ν(h)−1)h)ϕ(0)

for h ∈ GO2n(A). Here G(O2n ×Sp2r)(A) acts on I(n,n)(r − 1
2 (n− 1)) via the projection

G(O2n ×Sp2r)(A) → GO2n(A). We extend [ϕ] to a holomorphic section of I(n,n)(s) such
that its restriction to K is independent of s.

7.4. Theta integrals

We define a parabolic subgroup P ′ of GSp2r by

P ′ =

{(
a ∗
0 ν ta−1

)
∈ GSp2r

∣∣∣∣∣ a ∈ GLr, ν ∈ Gm

}
.

Let δP ′ be the modulus character of P ′(A). For ν ∈ Gm, let

d(ν) =

(
1r 0
0 ν1r

)
.

We define a maximal compact subgroup K ′ =
∏

v K ′
v of GSp2r(A) by

K ′
v =

⎧⎪⎨⎪⎩
Ad(d(�cv

v ))(GSp2r(ov)) if v is non-archimedean,

GSp2r(Fv) ∩ O(2r) if v is real,

GSp2r(Fv) ∩ U(2r) if v is complex.

Here �v is a uniformizer of Fv and cv is the largest integer such that ψv is trivial on
�−cv

v ov. Then we have GSp2r(A) = P ′(A)K ′. Let P ′
1 = P ′∩Sp2r and K ′

1 = K ′∩Sp2r(A)
so that Sp2r(A) = P ′

1(A)K ′
1. Let dg1 be the Tamagawa measure on Sp2r(A) and note

that vol(Sp2r(F )\Sp2r(A)) = 1. Let dlp
′ be the left-invariant Tamagawa measure on

P ′
1(A) and dk′ the Haar measure on K ′

1 such that vol(K ′
1) = 1. There exists a constant

κ such that ∫
Sp2r(A)

f(g1) dg1 = κ

∫
P ′

1(A)

∫
K′

1

f(p′k′) dlp
′ dk′

for f ∈ L1(Sp2r(A)).

https://doi.org/10.1017/S1474748010000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000198


On endoscopy and the refined Gross–Prasad conjecture for (SO5,SO4) 271

Put �′ = 1
2 (r+1). Let Φ′ be the holomorphic section of IndGSp2r(A)

P ′(A) (δs/(r+1)
P ′ ) such that

Φ′(k′, s) = 1 for all k′ ∈ K ′. We define an Eisenstein series E(s) on GSp2r(A) by

E(g; s) =
∑

γ∈P ′(F )\GSp2r(F )

Φ′(γg, s)

for Re(s) > �′. By [36, § 5] and [19, Lemma 9.1], we have

Ress=�′ E(g; s) = κ

for g ∈ GSp2r(A).
Let ϕ ∈ S(M2r,n(A)). The theta function associated to ϕ is given by

θ(h, g;ϕ) =
∑

x∈M2r,n(F )

ω(h, g)ϕ(x)

for (h, g) ∈ G(O2n ×Sp2r)(A). Let z ∈ C∞
c (O2n(Fv)//O2n(ov)) be the regularizing Hecke

operator as in [34, § 5] and [25, § 2.3], where v is a certain non-archimedean place of F
depending on ϕ. There exists a self-adjoint Hecke operator z′ ∈ C∞

c (Sp2r(Fv)//Sp2r(ov))
such that ω(z) = ω(z′). Then we have z′E(s) = p(s)E(s) with some p(s) ∈ C[qs

v, q
−s
v ].

Here qv is the cardinality of ov/�vov. Following Kudla and Rallis [34, § 5], we define the
regularized theta integral I(n,r)(s, ϕ) by

I(n,r)(h; s, ϕ) =
1

κp(s)

∫
Sp2r(F )\Sp2r(A)

θ(h, g1g; zϕ)E(g1g; s) dg1

for h ∈ GO2n(A), where g ∈ GSp2r(A) such that ν(g) = ν(h). By [34, Lemma 5.5.6],
I(n,r)(s, ϕ) has at most a double (respectively simple) pole at s = �′ if r � n − 1 < 2r
(respectively 2r � n− 1).

Let ϕ̂ ∈ S(Mr,2n(A)) be the partial Fourier transform of ϕ ∈ S(M2r,n(A)) defined by

ϕ̂(u, v) =
∫

Mr,n(A)
ϕ

(
x

u

)
ψ(tr(v tx)) dx

for u, v ∈ Mr,n(A), where dx is the Tamagawa measure on Mr,n(A). For h ∈ GO2n(A),
choose g ∈ GSp2r(A) such that ν(g) = ν(h), and put

Ψ(ϕ)(h, s) =
∫

GLr(A)

∫
K′

1

(ω(h, k′g)ϕ)̂(0r,n,
ta,0r,n−r)Φ′(k′g, s)|det(a)|s+n−�′

dk′ d×a.

Here d×a is the Tamagawa measure on GLr(A). By [34, Lemma 5.5.2], Ψ(ϕ) is a mero-
morphic section of I(n,r)(s) and is holomorphic for Re(s) > − 1

2 (2n−3r−1). By [34, § 5.5],
we have

I(n,r)(s, ϕ) = E(n,r)(s, Ψ(ϕ)).

We now consider the spherical case. Let ξ(s) = Ds/2ζ(s), where D is the absolute value
of the discriminant of F and ζ(s) is the zeta function of F including archimedean factors.
Put ρ = Ress=1 ξ(s). We define ϕr =

⊗
v ϕr,v ∈ S(Mr,r(A)) as follows.
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• If v is non-archimedean, then ϕr,v is the characteristic function of Mr,r(ov).

• If v is real, then ϕr,v(x) = exp(−π tr(txx)) for x ∈ Mr,r(Fv).

• If v is complex, then ϕr,v(x) = exp(−2π tr(tx̄x)) for x ∈ Mr,r(Fv).

Put
Ξr(s) =

∫
GLr(A)

ϕr(a)|det(a)|s d×a,

where d×a is the Tamagawa measure on GLr(A).

Lemma 7.3. We have

Ξr(s) = D
−rs/2ρ−1

r∏
i=2

ξ(i)−1 ·
r−1∏
j=0

ξ(s− j).

Here we omit
∏r

i=2 ξ(i)
−1 if r = 1.

Proof. If r = 1, then we have Ξ1(s) = ρ−1ζ(s) = D−s/2ρ−1ξ(s). Assume that r � 2. Let
T (respectively U) be the subgroup of GLr consisting of diagonal matrices (respectively
unipotent upper triangular matrices). We define a maximal compact subgroup K =∏

v Kv of GLr(A) by

Kv =

⎧⎪⎨⎪⎩
GLr(ov) if v is non-archimedean,

GLr(Fv) ∩ O(r) if v is real,

GLr(Fv) ∩ U(r) if v is complex.

Let d×t (respectively du) be the Tamagawa measure on T (A) (respectively U(A)) and
dk the Haar measure on K such that vol(K ) = 1. By [36, § 5], we have∫

GLr(A)
f(a) d×a = κ

∫
T (A)

∫
U(A)

∫
K

f(tuk) d×tdu dk

for f ∈ L1(GLr(A)), where κ = ρr−1∏r
i=2 ξ(i)

−1. Hence we have

Ξr(s) = κ

∫
T (A)

∫
U(A)

ϕr(tu)|det(t)|s d×tdu.

Changing variables, we have

Ξr(s) = κ

r−1∏
j=0

Ξ1(s− j) ·
(∫

A

ϕ1(x) dx
)r(r−1)/2

,

where dx is the Tamagawa measure on A. Since∫
A

ϕ1(x) dx = D
−1/2,

the assertion follows. �
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We define the spherical Schwartz function ϕo =
⊗

v ϕ
o
v ∈ S(M2r,n(A)) as follows.

• If v is non-archimedean, then

ϕo
v

(
x

y

)
=

{
q

−cvnr/2
v if x ∈ Mr,n(�−cv

v ov) and y ∈ Mr,n(ov),

0 otherwise.

• If v is real, then ϕo
v(x) = exp(−π tr(txx)) for x ∈ M2r,n(Fv).

• If v is complex, then ϕo
v(x) = exp(−2π tr(tx̄x)) for x ∈ M2r,n(Fv).

Here qv is the cardinality of ov/�vov and cv is the largest integer such that ψv is trivial
on �−cv

v ov. Then we have ϕ̂o =
⊗

v ϕ̂
o
v, where

• ϕ̂o
v is the characteristic function of Mr,2n(ov) if v is non-archimedean,

• ϕ̂o
v(x) = exp(−π tr(txx)) for x ∈ Mr,2n(Fv) if v is real,

• ϕ̂o
v(x) = exp(−2π tr(tx̄x)) for x ∈ Mr,2n(Fv) if v is complex.

Moreover, we have
ω(k, k′)ϕo = ϕo

for (k, k′) ∈ (K × K ′) ∩ G(O2n × Sp2r)(A). Hence we have

E(n,n)(s, [ϕo]) = D
−nr/2E(n,n)(s). (7.2)

Lemma 7.4.

I(n,r)(s, ϕo) = D
−r(s+n−�′)/2ρ−1

n∏
i=2

ξ(i)−1 ·
r−1∏
j=0

ξ(s+ n− �′ − j) · E(n,r)(s).

Proof. By Lemma 7.3, we have

Ψ(ϕo)(1, s) = D
−r(s+n−�′)/2ρ−1

n∏
i=2

ξ(i)−1 ·
r−1∏
j=0

ξ(s+ n− �′ − j).

Since Ψ(ϕo) is K-invariant, the assertion follows. �

7.5. The Siegel–Weil formula

We identify GO8 and P4,4 with H̃ and the parabolic subgroup of H̃ stabilizing V ∆,
respectively. Let A(H̃) denote the space of automorphic forms on H̃(A) and R(H̃) the
subspace of A(H̃) generated by Ress=1/2E

(4,4)(s, Φ) for all holomorphic sections Φ of
I(4,4)(s). We remark that E(4,4)(s, Φ) has at most a simple pole at s = 1

2 by [32, Theo-
rem 1.0.1].
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Let ϕo ∈ S(M4,4(A)) be the spherical Schwartz function as defined on p. 273. Let
S(M4,4(A))o be the subspace of S(M4,4(A)) generated by ω(h1)ϕo for all h1 ∈ H̃1(A).
Let

A0 : S(M4,4(A)) → A(H̃)/R(H̃),

B−1 : S(M4,4(A)) → A(H̃),

C0 : S(M4,4(A)) → A(H̃),

be the H̃1(A)-equivariant maps defined by

E(4,4)(s, [ϕ]) =
∞∑

d=−1

(s− 1
2 )dAd(ϕ),

I(4,2)(s, ϕ) =
∞∑

d=−2

(s− 3
2 )dBd(ϕ),

I(4,1)(s,pr(ϕ)) =
∞∑

d=−1

(s− 1)dCd(ϕ),

for ϕ ∈ S(M4,4(A)). Here pr : S(M4,4(A)) → S(M2,4(A)) is the H̃1(A)-equivariant map
defined by

pr(ϕ)

(
x

y

)
=
∫

A4
ϕ

⎛⎜⎜⎜⎝
u

x

0
y

⎞⎟⎟⎟⎠du

for x, y ∈ A4, where du is the Tamagawa measure on A4.

Proposition 7.5. We have

B−1(ϕ) ≡ A0(ϕ) + D
−2ρξ(4)−1C0(ϕ) mod R(H̃)

for ϕ ∈ S(M4,4(A))o.

Proof. Let ϕo ∈ S(M4,4(A)) be the spherical Schwartz function. Then pr(ϕo) ∈
S(M2,4(A)) is also the spherical Schwartz function. By (7.2), we have

A0(ϕo) = D
−4E

(4,4)
0 ( 1

2 ).

By Lemma 7.4 and Lemma B.6 in Appendix B, we have

B−1(ϕo) ≡ D
−4ρ−1ξ(2)−1ξ(3)ξ(4)E(4,2)

−1 ( 3
2 ) mod R(H̃).

By Lemma 7.4 and Lemma B.7 in Appendix B, we have

C0(ϕo) ≡ D
−2ρ−1ξ(4)E(4,1)

0 (1) mod R(H̃).

Hence we have

D
4B−1(ϕo) ≡ D

4A0(ϕo) + D
2ρξ(4)−1C0(ϕo) mod R(H̃)

by Proposition B.8 in Appendix B. This completes the proof. �
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7.6. The doubling method

Let Bσ : Vσ ⊗ V̄σ → C be the Petersson pairing given by

Bσ(f1, f2) =
∫

ZH(A)H(F )\H(A)
f1(h)f2(h) dh

for f1, f2 ∈ Vσ. Here ZH is the identity component of the centre of H and dh is the
Tamagawa measure on ZH(A)\H(A). Put

v = vol(ZH(A)H(F )\H(A)) =

{
2 if K = F × F,
1 if K is a quadratic extension of F .

We fix a decomposition Bσ =
∏

v Bσv , where Bσv : σv ⊗ σ̄v → C is a pairing.
For a holomorphic section Φ of I(4,4)(s) and f1, f2 ∈ Vσ, the zeta integral of Piatetski-

Shapiro and Rallis [44] and [12, § 6.2] is given by

Z(s, Φ, f1, f2) =
∫

ZH̃(A)H(F )\H(A)
E(4,4)(ι(h1, h2); s, Φ)f1(h1)f2(h2) dh.

Here ZH̃ is the identity component of the centre of H̃ and dh is the Tamagawa measure
on ZH̃(A)\H(A). Note that vol(ZH̃(A)H(F )\H(A)) = v. For each place v of F , let

Zv(s, Φv, f1,v, f2,v) =
∫

H1,v

Φv(ι(h1,v, 1), s)Bσv
(σv(h1,v)f1,v, f2,v) dh1,v.

Lemma 7.6. For a holomorphic section Φ =
⊗

v Φv of I(4,4)(s) and f1 =
⊗

v f1,v, f2 =⊗
v f2,v ∈ Vσ, we have

Z(s, Φ, f1, f2) =
LS(s+ 1

2 , σ, std)
ζS(2s+ 1)ζS(2s+ 3)

∏
v∈S

Zv(s, Φv, f1,v, f2,v).

Proof. The assertion follows from the doubling method of [44] and [12, § 6.2]. �

7.7. Local zeta integrals

Let I
(4,4)
v (s) = IndH̃v

P4,4,v
(δs/3

P4,4,v
) denote the degenerate principal series representation

of H̃v.

Lemma 7.7. For a holomorphic section Φv of I
(4,4)
v (s) and f1,v, f2,v ∈ σv, the integral

Zv(s, Φv, f1,v, f2,v) is absolutely convergent at s = 1
2 .

Proof. By [3, Proposition 3.3], [41, Appendix], and [38], there exist ϕv, ϕ
′
v ∈

S(M4,4(Fv)) such that

Φv(hv,
1
2 ) = [ϕv](hv,

1
2 ) + [ϕ′

v](hv,
1
2 ) sgn(hv)

for hv ∈ H̃v. Hence we may assume that Φv = [δ(ϕ1,v ⊗ ϕ̄2,v)] with ϕ1,v, ϕ2,v ∈ S(Xv).
But then we have

Φv(ι(h1,v, 1), 1
2 ) = Bωv (ωv(h1,v)ϕ1,v, ϕ2,v)

for h1,v ∈ H1,v. By [39, Theorem 3.2], the function h1,v �→ Bωv (ωv(h1,v)ϕ1,v, ϕ2,v)
belongs to L1+ε(H1,v) for any ε > 0. This yields the lemma. �
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For ϕ1,v, ϕ2,v ∈ S(Xv), we have

Zv( 1
2 , [δ(ϕ1,v ⊗ ϕ̄2,v)], f1,v, f2,v)

=
∫

H1,v

Bωv (ωv(h1,v)ϕ1,v, ϕ2,v)Bσv (σv(h1,v)f1,v, f2,v) dh1,v.

Let S(M4,4(Fv))o be the subspace of S(M4,4(Fv)) generated by ω(h1,v)ϕo
v for all h1,v ∈

H̃1,v.

Lemma 7.8. There exist ϕv ∈ S(M4,4(Fv))o and f1,v, f2,v ∈ σv such that

Zv( 1
2 , [ϕv], f1,v, f2,v) �= 0.

Proof. We fix a place v of F and suppress it from the notation. By [32], there exist Φ ∈
I(4,4)( 1

2 ) and f1, f2 ∈ σ such that Z( 1
2 , Φ, f1, f2) �= 0. LetR (respectivelyR0) be the image

of the equivariant map S(M4,4(F )) → I(4,4)( 1
2 ) (respectively S(M2,4(F )) → I(4,4)(− 1

2 )).
By [3, Proposition 3.3], [41, Appendix], and [38], we have

I(4,4)( 1
2 ) = R+R⊗ sgn, I(4,4)( 1

2 )/R ∼= R0 ⊗ sgn.

Moreover, R is generated by a K-invariant element of I(4,4)( 1
2 ). It suffices to show that

there exist Φ ∈ R and f1, f2 ∈ σ such that Z( 1
2 , Φ, f1, f2) �= 0.

We assume that Z( 1
2 , Φ, f1, f2) = 0 for all Φ ∈ R and f1, f2 ∈ σ. If σ ⊗ sgn ∼= σ, then

we have Z( 1
2 , Φ, f1, f2) = 0 for all Φ ∈ R⊗ sgn and f1, f2 ∈ σ and hence a contradiction.

If σ ⊗ sgn � σ, then Z( 1
2 , Φ, f1, f2) defines a non-zero equivariant map

(R0 ⊗ sgn) ⊗ (σ � σ̄) → C.

As in [14, Proposition 3.1], this shows that the theta lift of σ ⊗ sgn to GL2(F )+ is
non-zero. By [8, Lemmas 4.1 and 5.4], [43], and [1], we have

σ|D×(K)×F × ∼= (σ ⊗ sgn)|D×(K)×F × ∼= ςDK � ωςωK/F

for some irreducible admissible representation ς of GL2(F ) with central character ως .
Thus, σ ∼= (ςDK�ωςωK/F )− for a distinguished representation ςDK�ωςωK/F of GSO(V )(F ).
This contradicts the assumption on σ. �

7.8. The Rallis inner product formula

Lemma 7.9. For F ∈ R(H̃) and f1, f2 ∈ Vσ, we have∫
ZH̃(A)H(F )\H(A)

F(ι(h1, h2))f1(h1)f2(h2) dh = 0.

Proof. The assertion follows from Lemmas 7.1, 7.6, and 7.7. �

Lemma 7.10. For ϕ ∈ S(M4,4(A)) and f1, f2 ∈ Vσ, we have∫
ZH̃(A)H(F )\H(A)

C0(ι(h1, h2);ϕ)f1(h1)f2(h2) dh = 0.
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Proof. Let W ′ be a two-dimensional symplectic space over F and set G′ = GSp(W ′) ∼=
GL2. Let W ′ = X ′ ⊕ Y ′ be a complete polarization and set

W′ = W ′ ⊗ V, X′ = X ′ ⊗ V, Y′ = Y ′ ⊗ V.

Then W′ is a symplectic space over F and W′ = X′ ⊕ Y′ is a complete polarization. Let
ω′ be the Weil representation of Mp(W′(A)) on the space Vω′ = S(X′(A)) with respect
to ψ. We may regard ω′ as a representation of G(O(V ) × Sp(W ′))(A). By [40, § 2], there
exists a natural isomorphism

δ′ : Vω′ ⊗ V̄ω′ → S(M2,4(A)).

Let ϑ(σ) be the theta lift of σ to G′(A). Then ϑ(σ) = 0. Indeed, it is easy to see that
ϑ(σ) is cuspidal, and if ϑ(σ) �= 0, then σv⊗sgn � σv for all v by the local unramified theta
correspondence and the strong multiplicity one theorem. This contradicts the assumption
on σ. For ϕ′

1, ϕ
′
2 ∈ Vω′ and f1, f2 ∈ Vσ, we have∫

ZH̃(A)H(F )\H(A)
I(4,1)(ι(h1, h2); s, δ′(ϕ′

1 ⊗ ϕ̄′
2)) · f1(h1)f2(h2) dh

=
1
κ

∫
ZG′ (A)G′(F )+\G′(A)+

θ(g′;ϕ′
1, f1)θ(g′;ϕ′

2, f2)E(g′; s) dg′.

(See also the proof of Lemma 7.11 below.) Since ϑ(σ) = 0, this integral is zero. This
completes the proof. �

Let A×,+ = ν(H(A)), F×,+ = F× ∩ A×,+ and C = A×,2F×,+\A×,+. The similitude
characters induce isomorphisms

ZG(A)G1(A)G(F )+\G(A)+ ∼= C, ZH(A)H1(A)H(F )\H(A) ∼= C.

Fix cross-sections c �→ gc and c �→ hc of G(A)+ → C and H(A) → C, respectively. Let dg
be the Tamagawa measure on ZG(A)\G(A) and note that vol(ZG(A)G(F )\G(A)) = 2.

Lemma 7.11. Let ϕ =
⊗

v ϕv ∈ S(M4,4(A))o and f1 =
⊗

v f1,v, f2 =
⊗

v f2,v ∈ Vσ. We
write ϕ =

∑
i δ(ϕ1,i ⊗ ϕ̄2,i), where ϕ1,i, ϕ2,i ∈ Vω. Then we have

∑
i

∫
ZG(A)G(F )\G(A)

θ(g;ϕ1,i, f1)θ(g;ϕ2,i, f2) dg =
LS(1, σ, std)
ζS(2)ζS(4)

∏
v∈S

Zv( 1
2 , [ϕv], f1,v, f2,v).

Proof. By Lemma 7.9, Z(s, [ϕ], f1, f2) is holomorphic at s = 1
2 . By Proposition 7.5 and

Lemmas 7.9 and 7.10, we have

Z( 1
2 , [ϕ], f1, f2) =

∫
ZH̃(A)H(F )\H(A)

B−1(ι(h1, h2);ϕ)f1(h1)f2(h2) dh.
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This integral is equal to the residue at s = 3
2 of

v

∫
C

∫
H1(F )\H1(A)

∫
H1(F )\H1(A)

I(4,2)(ι(h1hc, h2hc); s, ϕ) · f1(h1hc)f2(h2hc) dh1 dh2 dc

=
v

κp(s)

∫
C

∫
H1(F )\H1(A)

∫
H1(F )\H1(A)

∫
G1(F )\G1(A)

θ(ι(h1hc, h2hc), g1gc; zϕ)

× E(g1gc; s)f1(h1hc)f2(h2hc) dg1 dh1 dh2 dc

=
v

κ

∫
C

∫
G1(F )\G1(A)

∫
H1(F )\H1(A)

∫
H1(F )\H1(A)

θ(ι(h1hc, h2hc), g1gc;ϕ)

× E(g1gc; s)f1(h1hc)f2(h2hc) dh1 dh2 dg1 dc.

Here dc is the Haar measure on C such that vol(C) = 1 and dh1, dh2 are the Tamagawa
measures on H1(A). Hence Z( 1

2 , [ϕ], f1, f2) is equal to

v
∑

i

∫
C

∫
G1(F )\G1(A)

∫
H1(F )\H1(A)

∫
H1(F )\H1(A)

θ(h1hc, g1gc;ϕ1,i) · θ(h2hc, g1gc;ϕ2,i)

× f1(h1hc)f2(h2hc) dh1 dh2 dg1 dc

=
∑

i

∫
ZG(A)G(F )+\G(A)+

θ(g;ϕ1,i, f1)θ(g;ϕ2,i, f2) dg.

Note that vol(ZG(A)G(F )+\G(A)+) = v. Since the supports of θ(ϕ1,i, f1) and θ(ϕ2,i, f2)
are contained in G(F )G(A)+, we have∫

ZG(A)G(F )+\G(A)+
θ(g;ϕ1,i, f1)θ(g;ϕ2,i, f2) dg

=
∫

ZG(A)G(F )\G(A)
θ(g;ϕ1,i, f1)θ(g;ϕ2,i, f2) dg.

This completes the proof. �

By Lemmas 7.1, 7.8, and 7.11, we obtain the following lemma.

Lemma 7.12. We have
Vθ(σ) �= 0.

Let Bπ : Vπ ⊗ V̄π → C be the Petersson pairing given by

Bπ(φ1, φ2) =
∫

ZG(A)G(F )\G(A)
φ1(g)φ2(g) dg

for φ1, φ2 ∈ Vπ. For each place v of F , we define an equivariant map

Z�
v : (ωv � ω̄v) ⊗ (σv � σ̄v) → C

by

Z�
v(ϕ1,v, ϕ2,v; f1,v, f2,v) = ζv(2)ζv(4)Lv(1, σv, std)−1Zv( 1

2 , [δ(ϕ1,v ⊗ ϕ̄2,v)], f1,v, f2,v)
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for ϕ1,v, ϕ2,v ∈ S(Xv) and f1,v, f2,v ∈ σv. By Lemma 7.8, Z�
v �= 0. By Lemmas 5.6 and 5.7,

there exists a non-zero G+
v -invariant pairing B�

θ(σv) : θ(σv) ⊗ θ(σv) → C such that

Z�
v = B�

θ(σv) ◦ (θv ⊗ θ̄v).

We extend B�
θ(σv) uniquely to a Gv-invariant pairing B�

πv
: πv ⊗ π̄v → C such that

B�
πv

|θ(σv)⊗θ(σv) = B�
θ(σv). By Lemma 7.11, we obtain the following proposition.

Proposition 7.13. We have

Bπ =
L(1, σ, std)
ζ(2)ζ(4)

∏
v

B�
πv
.

8. Tamagawa measures

Let F be a totally real number field and E a totally real étale quadratic algebra over F .
LetW0 be a two-dimensional symplectic space over E and V a four-dimensional quadratic
space over F . Set

G′ = {g′ ∈ RE/F (GSp(W0)) | ν(g′) ∈ Gm}, G′
1 = RE/F (Sp(W0)) ∼= RE/F (SL2),

H = GO(V ), H1 = O(V ).

Let ZG′ and ZH be the identity component of the centre of G′ and H, respectively. We
have isogenies

pr : G′
1 → ZG′\G′, pr : H1 → ZH\H.

Let ωG′ and ωH be non-zero invariant differential forms of top degree on ZG′\G′ and
ZH\H over F , respectively. Then ωG′

1
= pr∗(ωG′) and ωH1 = pr∗(ωH) are also non-

zero invariant differential forms of top degree on G′
1 and H1 over F , respectively. Fix a

non-trivial additive character ψ =
⊗

v ψv of A/F . For each place v of F , let dxv be the
self-dual Haar measure on Fv with respect to ψv. Let dg′

1,v, dg′
v, dh0

1,v, dh0
v be the Haar

measures on
G′

1,v, ZG′,v\G′
v, H1,v, ZH,v\Hv,

determined by dxv and ωG′
1
, ωG′ , ωH1 , ωH , respectively. Let dh1,v = 1

2 dh0
1,v and

dhv = 1
2 dh0

v. Let F×,+
v = ν(Hv). Then we have∫

ZG′,v\G′
v

f(g′
v) dg′

v = 1
2

∑
c∈F ×,2

v \F ×
v

∫
G′

1,v

f(g′
1,vg

′
c) dg′

1,v,∫
ZH,v\Hv

φ(hv) dhv = 1
2

∑
c∈F ×,2

v \F ×,+
v

∫
H1,v

φ(h1,vhc) dh1,v,

for f ∈ L1(ZG′,v\G′
v) and φ ∈ L1(ZH,v\Hv). Here g′

c ∈ ZG′,v\G′
v with ν(g′

c) = c and
hc ∈ ZH,v\Hv with ν(hc) = c. By definition, the product measures∏

v

dg′
1,v,

∏
v

dg′
v,

∏
v

dh1,v,
∏
v

dhv
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are the Tamagawa measures on

G′
1(A), ZG′(A)\G′(A), H1(A), ZH(A)\H(A),

respectively. We remark that the products of these measures are convergent, although
the volumes of hyperspecial maximal compact subgroups are not 1 for almost all v.

9. The explicit local seesaw identity

We retain the notation of §§ 1 and 8. We fix a place v of F and suppress it from the
notation. Let W = V ⊗F W = RE/F (W0 ⊗E VE), where VE = V ⊗F E. Let ω be the
Weil representation of Mp(W) with respect to ψ. We may regard ω as a representation of
G(O(V )×Sp(W ))(F ) or that of G(Sp(W0)×O(VE))(E). In particular, we have a seesaw
diagram:

G = GSp(W )(F )

���������������
H ′ = GO(VE)(E)′

���������������

G′ = GSp(W0)(E)′ H = GO(V )(F )

The goal of this section is to establish an explicit seesaw identity for this seesaw diagram.
Recall that σ is an irreducible unitary admissible representation of H and τ is an

irreducible unitary admissible representation of GSp(W0)(E) containing an irreducible
subrepresentation π′ of G′. Let Bσ : σ ⊗ σ̄ → C and Bτ : τ ⊗ τ̄ → C be pairings. Let
B	

π′ : π′ ⊗ π̄′ → C be the pairing given by B	
π′ = Bτ |π′⊗π̄′ . Let C = F×,2\F×,+. Put

Q(ϕ1, ϕ2;φ1, φ2; f1, f2)

=
∑
c∈C

∫
G′

1

∫
H1

Bω(ω(g′
1g

′
c, h1hc)ϕ1, ϕ2)Bσ(σ(h1hc)φ1, φ2)Bτ (τ(g′

1g
′
c)f1, f2) dh1 dg′

1

for ϕ1, ϕ2 ∈ ω, φ1, φ2 ∈ σ, and f1, f2 ∈ π′. Here dh1 and dg′
1 are the Haar measures on

H1 and G′
1 given in § 8, respectively.

Lemma 9.1. The integral Q(ϕ1, ϕ2;φ1, φ2; f1, f2) is absolutely convergent.

Proof. We only consider the case E = K = F × F and D = M2,2(F ); the other cases
are similar. It suffices to show that the integral∫

(F+)4
Bω(ω(t(a1, a2), t(a3, a4))ϕ1, ϕ2)Bσ(σ(t(a3, a4))φ1, φ2)

× Bτ (τ(t(a1, a2))f1, f2)|a−2
1 a−2

2 a−2
3 a−2

4 | d×a1 d×a2 d×a3 d×a4

is absolutely convergent. Here F+ = {a ∈ F× | |a| � 1},

t(a, a′) =

((
a 0
0 a−1

)
,

(
a′ 0
0 a′−1

))
,
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and we regard t(a, a′) as an element of G′ or that of H. By the Kim–Shahidi estimate
[26,28], there exist 7

9 < λ1, λ2, λ3, λ4 � 1 such that

|Bτ (τ(t(a1, a2))f1, f2)| � C|a1|λ1 |a2|λ2 ,

|Bσ(σ(t(a3, a4))φ1, φ2)| � C|a3|λ3 |a4|λ4 ,

for a1, a2, a3, a4 ∈ F+ with some constant C. We define a function Υ on F× by

Υ (a) =

{
1 if a ∈ F+,

|a|−1 otherwise.

For φ, φ′ ∈ S(F ), we have ∣∣∣∣ ∫
F

φ(ax)φ′(x) dx
∣∣∣∣ � C ′Υ (a)

for a ∈ F× with some constant C ′. Realizing the Weil representation ω on S(M2,2(F )2),
we have

ω(t(a1, a2), t(a3, a4))ϕ1(x, y)

= |a2
1a

2
2|ϕ1

((
a1a

−1
3 a4x1 a1a

−1
3 a−1

4 x2

a1a3a4x3 a1a3a
−1
4 x4

)
,

(
a2a

−1
3 a4y1 a2a

−1
3 a−1

4 y2
a2a3a4y3 a2a3a

−1
4 y4

))

for

x =

(
x1 x2

x3 x4

)
, y =

(
y1 y2
y3 y4

)
.

Hence we have

|Bω(ω(t(a1, a2), t(a3, a4))ϕ1, ϕ2)|
� C ′′|a2

1a
2
2|Υ (a1a

−1
3 a4)Υ (a1a

−1
3 a−1

4 )Υ (a1a3a4)Υ (a1a3a
−1
4 )

× Υ (a2a
−1
3 a4)Υ (a2a

−1
3 a−1

4 )Υ (a2a3a4)Υ (a2a3a
−1
4 )

with some constant C ′′. By symmetry, it suffices to show that the integral∫
|a1|�|a2|�1

∫
|a3|�|a4|�1

Υ (a1a
−1
3 a4)Υ (a1a

−1
3 a−1

4 )Υ (a2a
−1
3 a4)Υ (a2a

−1
3 a−1

4 )

× |aλ1
1 a

λ2
2 a

λ3−2
3 aλ4−2

4 |d×a1 d×a2 d×a3 d×a4

is convergent. We change variables b1 = a3a4 and b2 = a3a
−1
4 . Let µ1 = 1

2 (λ3 + λ4) and
µ2 = 1

2 (λ3 −λ4). Note that 7
9 < µ1 � 1 and |µ2| < 1

9 . It remains to show that the integral∫
|a1|�|a2|�1

∫
|b1|�|b2|�1

Υ (a1b
−1
1 )Υ (a1b

−1
2 )Υ (a2b

−1
1 )Υ (a2b

−1
2 )

× |aλ1
1 a

λ2
2 b

µ1−2
1 bµ2

2 |d×a1 d×a2 d×b1 d×b2
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is convergent. The integrand is equal to

|aλ1
1 a

λ2
2 b

µ1−2
1 bµ2

2 | if |a1| � |a2| � |b1| � |b2| � 1,

|aλ1
1 a

λ2−1
2 bµ1−1

1 bµ2
2 | if |a1| � |b1| � |a2| � |b2| � 1,

|aλ1
1 a

λ2−2
2 bµ1−1

1 bµ2+1
2 | if |a1| � |b1| � |b2| � |a2| � 1,

|aλ1−1
1 aλ2−1

2 bµ1
1 b

µ2
2 | if |b1| � |a1| � |a2| � |b2| � 1,

|aλ1−1
1 aλ2−2

2 bµ1
1 b

µ2+1
2 | if |b1| � |a1| � |b2| � |a2| � 1,

|aλ1−2
1 aλ2−2

2 bµ1
1 b

µ2+2
2 | if |b1| � |b2| � |a1| � |a2| � 1.

We change variables:

a1 = t1t2t3t4, a2 = t1t2t3, b1 = t1t2, b2 = t1 if |a1| � |a2| � |b1| � |b2| � 1,

a1 = t1t2t3t4, b1 = t1t2t3, a2 = t1t2, b2 = t1 if |a1| � |b1| � |a2| � |b2| � 1,

a1 = t1t2t3t4, b1 = t1t2t3, b2 = t1t2, a2 = t1 if |a1| � |b1| � |b2| � |a2| � 1,

b1 = t1t2t3t4, a1 = t1t2t3, a2 = t1t2, b2 = t1 if |b1| � |a1| � |a2| � |b2| � 1,

b1 = t1t2t3t4, a1 = t1t2t3, b2 = t1t2, a2 = t1 if |b1| � |a1| � |b2| � |a2| � 1,

b1 = t1t2t3t4, b2 = t1t2t3, a1 = t1t2, a2 = t1 if |b1| � |b2| � |a1| � |a2| � 1,

where t1, t2, t3, t4 ∈ F+. Then the integrand is equal to

|tλ1+λ2+µ1+µ2−2
1 tλ1+λ2+µ1−2

2 tλ1+λ2
3 tλ1

4 | if |a1| � |a2| � |b1| � |b2| � 1,

|tλ1+λ2+µ1+µ2−2
1 tλ1+λ2+µ1−2

2 tλ1+µ1−1
3 tλ1

4 | if |a1| � |b1| � |a2| � |b2| � 1,

|tλ1+λ2+µ1+µ2−2
1 tλ1+µ1+µ2

2 tλ1+µ1−1
3 tλ1

4 | if |a1| � |b1| � |b2| � |a2| � 1,

|tλ1+λ2+µ1+µ2−2
1 tλ1+λ2+µ1−2

2 tλ1+µ1−1
3 tµ1

4 | if |b1| � |a1| � |a2| � |b2| � 1,

|tλ1+λ2+µ1+µ2−2
1 tλ1+µ1+µ2

2 tλ1+µ1−1
3 tµ1

4 | if |b1| � |a1| � |b2| � |a2| � 1,

|tλ1+λ2+µ1+µ2−2
1 tλ1+µ1+µ2

2 tµ1+µ2+2
3 tµ1

4 | if |b1| � |b2| � |a1| � |a2| � 1.

It is easy to check that the integral in each of the six ranges is convergent. This completes
the proof of the lemma. �

Let θ(τ) be the theta lift of τ to H(E). Let θ : ω⊗τ → θ(τ) be an equivariant surjective
map. Let θ(π′) be the image of ω ⊗ π′ in θ(τ). Let

T : (ω � ω̄) ⊗ (σ � σ̄) ⊗ (π′ � π̄′) → (θ(σ) � θ(σ)) ⊗ (π′ � π̄′),

T ′ : (ω � ω̄) ⊗ (σ � σ̄) ⊗ (π′ � π̄′) → (σ � σ̄) ⊗ (θ(π′) � θ(π′))

be equivariant surjective maps induced by

θ ⊗ θ̄ : (ω � ω̄) ⊗ (σ � σ̄) → θ(σ) � θ(σ),

θ ⊗ θ̄ : (ω � ω̄) ⊗ (π′ � π̄′) → θ(π′) � θ(π′),
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respectively. Let B�
π : π ⊗ π̄ → C and B�

θ(τ) : θ(τ) ⊗ θ(τ) → C be the pairings given by

B�
π(θ(ϕ1, φ1), θ(ϕ2, φ2))

=
ζE⊗K(2)

L(1, τ,Ad ⊗ ωE⊗K/E)

∫
H1

Bω(ω(h1)ϕ1, ϕ2)Bσ(σ(h1)φ1, φ2) dh1 (9.1)

and

B�
θ(τ)(θ(ϕ1, f1), θ(ϕ2, f2)) =

ζ(2)ζ(4)
L(1, σ, std)

∫
G′

1

Bω(ω(g′
1)ϕ1, ϕ2)Bτ (τ(g′

1)f1, f2) dg′
1 (9.2)

for ϕ1, ϕ2 ∈ ω, φ1, φ2 ∈ σ, and f1, f2 ∈ τ , respectively. Here dh1 and dg′
1 are the

Haar measures on H1 and G′
1 given in § 8, respectively. We remark that the normalizing

factors in the front of the integrals are introduced to ensure that (9.1) and (9.2) are 1 for
unramified data if we take Haar measures such that the volumes of hyperspecial maximal
compact subgroups are 1. (Notice that such measures do not agree with the measures
given in § 8.) We define a G′ ×G′-invariant functional

P� : (π � π̄) ⊗ (π′ � π̄′) → C

by

P�(φ1, φ2; f1, f2) =
1

ζ(2)ζ(4)
L(1, σ, std)L(1, σ,Ad)L(1, τ,Ad)

L( 1
2 , σ × θ(τ))

×
∫

ZG′ \G′
B�

π(π(g′)φ1, φ2)B	
π′(π′(g′)f1, f2) dg′ (9.3)

for φ1, φ2 ∈ π and f1, f2 ∈ π′. Here dg′ is the Haar measure on ZG′\G′ given in § 8.
By Lemma 9.1, this integral is absolutely convergent. We define an H × H-invariant
functional

I� : (σ � σ̄) ⊗ (θ(τ) � θ(τ)) → C

by

I�(φ1, φ2; f1, f2) =
1

ζE⊗K(2)
L(1, σ,Ad)L(1, τK ,Ad)

L( 1
2 , σ × θ(τ))

×
∫

ZH\H

Bσ(σ(h)φ1, φ2)B�
θ(τ)(θ(τ)(h)f1, f2) dh (9.4)

for φ1, φ2 ∈ σ and f1, f2 ∈ θ(τ). Here dh is the Haar measure on ZH\H given in § 8.
Now we have the following lemma, which should be thought of as an explicit local

seesaw identity.

Lemma 9.2. We have
P� ◦ T = I� ◦ T ′
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as functionals on (ω � ω̄) ⊗ (σ � σ̄) ⊗ (π′ � π̄′). Namely, the diagram

(ω � ω̄) ⊗ (σ � σ̄) ⊗ (π′ � π̄′)
T

�������������������
T ′

�������������������

(θ(σ) � θ(σ)) ⊗ (π′ � π̄′)
P�

�����������������������
(σ � σ̄) ⊗ (θ(π′) � θ(π′))

I�

�����������������������

C

is commutative.

Proof. Given the absolute convergence of Lemma 9.1, the commutativity of the diagram
is essentially a consequence of Fubini’s theorem. More precisely, we have

ζE⊗K(2)L(1, τ,Ad ⊗ ωE⊗K/E)−1Q(ϕ1, ϕ2;φ1, φ2; f1, f2)

=
∑
c∈C

∫
H1

Bσ(σ(h1hc)φ1, φ2)B�
θ(τ)(θ(τ)(h1hc)θ(ϕ1, f1), θ(ϕ2, f2)) dh1

= 2
∫

ZH\H

Bσ(σ(h)φ1, φ2)B�
θ(τ)(θ(τ)(h)θ(ϕ1, f1), θ(ϕ2, f2)) dh.

Also, we have

ζ(2)ζ(4)L(1, σ, std)−1Q(ϕ1, ϕ2;φ1, φ2; f1, f2)

=
∑
c∈C

∫
G′

1

B�
π(π(g′

1g
′
c)θ(ϕ1, φ1), θ(ϕ2, φ2))B	

π′(π′(g′
1g

′
c)f1, f2) dg′

1

= 2
∫

ZG′ \G′+
B�

π(π(g′)θ(ϕ1, φ1), θ(ϕ2, φ2))B	
π′(π′(g′)f1, f2) dg′,

where G′+ = {g′ ∈ G′ | ν(g′) ∈ ν(H)}. By Lemma 5.2, this integral is equal to

2
∫

ZG′ \G′
B�

π(π(g′)θ(ϕ1, φ1), θ(ϕ2, φ2))B	
π′(π′(g′)f1, f2) dg′.

This completes the proof. �

10. Proof of Theorem 1.1

We retain the notation of §§ 1 and 8. Let W = V ⊗F W = RE/F (W0 ⊗E VE), where
VE = V ⊗F E. Let ω be the Weil representation of Mp(W(A)) on the space Vω with
respect to ψ. We may regard ω as a representation of G(O(V ) × Sp(W ))(A) or that of
G(Sp(W0) × O(VE))(AE).

We fix a subspace Ṽπ′ of V 1
τ such that the restriction to G′(A) as functions induces an

isomorphism
Ṽπ′ ∼= Vπ′
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as representations of G′(A). Let Bτ : Vτ ⊗ V̄τ → C and Bπ′ : Vπ′ ⊗ V̄π′ → C be the
Petersson pairings. We fix a decomposition Bτ =

∏
v Bτv

, where Bτv
: τv ⊗ τ̄v → C is a

pairing. Let B	
π′

v
: π′

v ⊗ π̄′
v → C be the pairing given by B	

π′
v

= Bτv
|π′

v⊗π̄′
v
.

Lemma 10.1. We have
Bπ′ = 2β′ |Xτ |

∏
v

B	
π′

v
.

Here

β′ =

{
−1 if E = F × F,
0 if E is a quadratic extension of F .

Proof. By [17, Remark 4.20], we have

Bπ′(f̃1|G′(A), f̃2|G′(A)) = |Xτ |vol(ZG′(A)G′(F )\G′(A))
vol(ZG̃′(A)G̃′(F )\G̃′(A))

Bτ (f̃1, f̃2)

for f̃1, f̃2 ∈ Ṽπ′ . Here ZG′ and ZG̃′ are the identity components of the centres of G′ and
G̃′, respectively. Since vol(ZG′(A)G′(F )\G′(A)) = 2 and

vol(ZG̃′(A)G̃′(F )\G̃′(A)) =

{
4 if E = F × F,
2 if E is a quadratic extension of F ,

the assertion follows. �

Let θ(τ) be the theta lift of τ to H(AE) on the space Vθ(τ). Let

θ : Vω ⊗ Vτ → Vθ(τ)

and

θv : ωv ⊗ τv → θ(τv)

be equivariant surjective maps such that θ =
⊗

v θv. Let Vθ(π′) and θ(π′
v) be the images

of Vω ⊗ Ṽπ′ and ωv ⊗ π′
v in Vθ(τ) and θ(τv), respectively. Let

T : (Vω � V̄ω) ⊗ (Vσ � V̄σ) ⊗ (Ṽπ′ � ¯̃Vπ′) → (Vθ(σ) � V̄θ(σ)) ⊗ (Ṽπ′ � ¯̃Vπ′)

→ (Vθ(σ) � V̄θ(σ)) ⊗ (Vπ′ � V̄π′),

T ′ : (Vω � V̄ω) ⊗ (Vσ � V̄σ) ⊗ (Ṽπ′ � ¯̃Vπ′) → (Vσ � V̄σ) ⊗ (Vθ(π′) � V̄θ(π′)),

be equivariant surjective maps induced by

θ ⊗ θ̄ : (Vω � V̄ω) ⊗ (Vσ � V̄σ) → Vθ(σ) � V̄θ(σ),

θ ⊗ θ̄ : (Vω � V̄ω) ⊗ (Ṽπ′ � ¯̃Vπ′) → Vθ(π′) � V̄θ(π′),

respectively. Let

Tv : (ωv � ω̄v) ⊗ (σv � σ̄v) ⊗ (π′
v � π̄′

v) → (θ(σv) � θ(σv)) ⊗ (π′
v � π̄′

v),

T ′
v : (ωv � ω̄v) ⊗ (σv � σ̄v) ⊗ (π′

v � π̄′
v) → (σv � σ̄v) ⊗ (θ(π′

v) � θ(π′
v)),
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be equivariant surjective maps such that T =
⊗

v Tv and T ′ =
⊗

v T ′
v . We define an

H(A) ×H(A)-invariant functional

I : (Vσ � V̄σ) ⊗ (Vθ(τ) � V̄θ(τ)) → C

by

I(φ1, φ2; f1, f2) =
(∫

ZH(A)H(F )\H(A)
φ1(h)f1(h) dh

)(∫
ZH(A)H(F )\H(A)

φ2(h)f2(h) dh
)

for φ1, φ2 ∈ Vσ and f1, f2 ∈ Vθ(τ). Here dh =
∏

v dhv is the Tamagawa measure on
ZH(A)\H(A). Put

v = vol(ZH(A)H(F )\H(A)) =

{
2 if K = F × F,
1 if K is a quadratic extension of F .

Now we have the global seesaw identity.

Lemma 10.2. We have
P ◦ T = I ◦ T ′

as functionals on (Vω � V̄ω) ⊗ (Vσ � V̄σ) ⊗ (Ṽπ′ � ¯̃Vπ′).

Proof. Let C = A×,2F×,+\A×,+. Put

Q(ϕ, φ, f̃) =
∫

C

∫
G′

1(F )\G′
1(A)

∫
H1(F )\H1(A)

θ(g′
1g

′
c, h1hc;ϕ)φ(h1hc)f̃(g′

1g
′
c) dh1 dg′

1 dc

for ϕ ∈ Vω, φ ∈ Vσ, and f̃ ∈ Ṽπ′ . Here dc is the Haar measure on C such that vol(C) = 1,
dg′

1 is the Tamagawa measure on G′
1(A), and dh1 is the Tamagawa measure on H1(A).

We have

Q(ϕ, φ, f̃) =
∫

C

∫
H1(F )\H1(A)

θ(h1hc;ϕ, f̃)φ(h1hc) dh1 dc

=
1
v

∫
ZH(A)H(F )\H(A)

θ(h;ϕ, f̃)φ(h) dh.

Also, we have

Q(ϕ, φ, f̃) =
∫

C

∫
G′

1(F )\G′
1(A)

θ(g′
1g

′
c;ϕ, φ)f(g

′
1g

′
c) dg′

1 dc

=
1
v

∫
ZG′ (A)G′(F )+\G′(A)+

θ(g′;ϕ, φ)f(g′) dg′,

where f = f̃ |G′(A). Note that vol(ZG′(A)G′(F )+\G′(A)+) = v. Since the support of
θ(ϕ, φ) is contained in G(F )G(A)+, we have∫

ZG′ (A)G′(F )+\G′(A)+
θ(g′;ϕ, φ)f(g′) dg′ =

∫
ZG′ (A)G′(F )\G′(A)

θ(g′;ϕ, φ)f(g′) dg′.

This completes the proof. �
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Let
Bσ : Vσ ⊗ V̄σ → C and Bθ(τ) : Vθ(τ) ⊗ V̄θ(τ) → C

be the Petersson pairings. We fix decompositions Bσ =
∏

v Bσv
and Bθ(τ) =

∏
v Bθ(τv),

where Bσv : σv ⊗ σ̄v → C and Bθ(τv) : θ(τv) ⊗ θ(τv) → C are pairings. For each place v of
F , we define an Hv ×Hv-invariant functional

I�
v : (σv � σ̄v) ⊗ (θ(τv) � θ(τv)) → C

by

I�
v(φ1,v, φ2,v; f1,v, f2,v) =

∫
ZH,v\Hv

Bσv (σv(hv)φ1,v, φ2,v)Bθ(τv)(θ(τv)(hv)f1,v, f2,v) dhv

for φ1,v, φ2,v ∈ σv and f1,v, f2,v ∈ θ(τv). By Proposition 3.2, we have

I = 2cζE⊗K(2)
L( 1

2 , σ × θ(τ))
L(1, σ,Ad)L(1, τK ,Ad)

∏
v

Iv.

Here

c =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−4 if E = K = F × F,
−1 if E = F × F and K is a quadratic extension of F ,

−3 if E is a quadratic extension of F and K = F × F ,
−2 if E and K are quadratic extensions of F and E = K,

−1 if E and K are quadratic extensions of F and E �= K

and

Iv =
1

ζEv⊗Kv (2)
Lv(1, σv,Ad)Lv(1, τK,v,Ad)

Lv( 1
2 , σv × θ(τv))

I�
v.

By Lemma 10.2, we have

P ◦ T = 2cζE⊗K(2)
L( 1

2 , σ × θ(τ))
L(1, σ,Ad)L(1, τK ,Ad)

∏
v

Iv ◦ T ′
v .

Let B�
θ(τv) : θ(τv) ⊗ θ(τv) → C be the pairing defined by (9.2) and

I�
v : (σv � σ̄v) ⊗ (θ(τv) � θ(τv)) → C

the Hv ×Hv-invariant functional defined by (9.4). By Proposition 6.10, we have

Bθ(τ) = 2β′′ L(1, τ,Ad ⊗ ωE⊗K/E)
ζE⊗K(2)

∏
v

B�
θ(τv).

Here

β′′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if E = K = F × F,
−2 if E = F × F and K is a quadratic extension of F ,

0 if E is a quadratic extension of F and K = F × F ,
0 if E and K are quadratic extensions of F and E = K,

−1 if E and K are quadratic extensions of F and E �= K.
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Hence we have

P ◦ T = 2β′′+c L( 1
2 , σ × θ(τ))

L(1, σ,Ad)L(1, τ,Ad)

∏
v

I�
v ◦ T ′

v .

Let B�
πv

: πv ⊗ π̄v → C be the pairing defined by (9.1) and let

P�
v : (πv � π̄v) ⊗ (π′

v � π̄′
v) → C

be the G′
v ×G′

v-invariant functional defined by (9.3). By Lemma 9.2, we have

P ◦ T = 2β′′+c L( 1
2 , σ × θ(τ))

L(1, σ,Ad)L(1, τ,Ad)

∏
v

P�
v ◦ Tv.

By Proposition 7.13 and Lemma 10.1, we have

P ◦ T =
2β′′+c

2β′ |Xτ |
L( 1

2 , σ × θ(τ))
L(1, σ,Ad)L(1, τ,Ad)

ζ(2)ζ(4)
L(1, σ, std)

∏
v

Pv ◦ Tv.

This shows the desired identity of invariant functionals on the image of T , which
is the subspace (Vθ(σ) � V̄θ(σ)) ⊗ (Vπ′ � V̄π′) of (Vπ � V̄π) ⊗ (Vπ′ � V̄π′). Since G(A) =
G′(A)G(A)+ and Vπ is generated by Vθ(σ), we have

P =
ζ(2)ζ(4)

2β′−β′′−c|Xτ |
L( 1

2 , σ × θ(τ))
L(1, σ, std)L(1, σ,Ad)L(1, τ,Ad)

∏
v

Pv.

This completes the proof of Theorem 1.1.

Appendix A. Explicit local theta correspondence for GO(V ) × GSp4

In this appendix, let F be a non-archimedean local field of characteristic zero and resid-
ual characteristic p. We consider an arbitrary four-dimensional quadratic space V and a
four-dimensional symplectic space W over F . The discriminant algebra of V is an étale
quadratic F -algebra K. Let νV and νW denote the similitude characters of the corre-
sponding similitude groups GO(V ) and GSp(W ), respectively. The image of νV is the
subgroup NK/F (K×) ⊂ F× and we set

GSp(W )+ = {g ∈ GSp(W ) | νW (g) ∈ NK/F (K×)}.

For a non-trivial additive character ψ of F , one has an induced Weil representation Ωψ

of the similitude dual pair GO(V )×GSp(W )+. If K is split, then Ωψ is independent of ψ,
and in general, Ωψ depends only on the orbit of ψ under the natural action of NK/F (K×).
Thus, when K is a field, there are two such induced Weil representations. Henceforth,
we shall fix an orbit of ψ and write Ω for Ωψ, suppressing ψ from the notation. However,
because we shall be dealing with various different dual pairs, we shall sometimes write
ΩV,W to indicate the particular dual pair we are considering.

If σ is an irreducible representation of GO(V ), then the maximal σ-isotypic quotient
of Ω is of the form σ�Θ(σ) for some smooth representation Θ(σ) (the big theta lift of σ)
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of GSp(W )+. One knows that Θ(σ) is a representation of finite length. We let θ(σ) (the
small theta lift of σ) denote the maximal semisimple quotient of Θ(σ). Moreover, we set

Θ̃(σ) = indGSp(W )
GSp(W )+(Θ(σ)) and θ̃(σ) = indGSp(W )

GSp(W )+(θ(σ)).

Again, we shall sometimes write ΘV,W (σ), θV,W (σ) and so on if there is a need to be
specific about the dual pair we are considering.

We should remark that the definition of the induced Weil representation Ω used in this
appendix is as given in [9], which is slightly different from that given in [47] (and used in
the main body of this paper). Moreover, our definition of Θ(σ) is slightly different from
that given in the main body of this paper. The upshot is that these two changes cancel
each other, so that the local theta correspondence defined in this appendix agrees with
that defined in the main body of this paper. In particular, the local theta correspondence
preserves central characters.

The main result of this appendix is the following.

Theorem A.1. Let σ be an irreducible representation of GO(V ).

(i) Θ(σ) is multiplicity free (possibly zero) and has a unique irreducible quotient θ(σ).

(ii) θ(σ) can be precisely determined in terms of σ (in terms of the local Langlands
correspondence for GSp4 established in [9]).

For the purpose of this paper, we really only need part (i) of the theorem, but we
find it useful to include part (ii) as well. Part (ii) of the theorem will be stated in full
details in the respective cases later on. In order to do that, we first need to introduce
some notation for representations of GO(V ) and GSp(W )+.

A.1. Principal series representations of GSp4

We have a Witt decomposition W = Y ∗ ⊕ Y with a two-dimensional isotropic space
Y . We can write

Y ∗ = Fe1 ⊕ Fe2 and Y = Ff1 ⊕ Ff2
with 〈ei, fj〉 = δij and consider the decomposition W = Fe1 ⊕W ′ ⊕ Ff1, where W ′ =
Fe2 ⊕ Ff2. Let Q(Z) = L(Z)U(Z) be the parabolic subgroup stabilizing Z = Ff1, so
that

L(Z) ∼= GL(Z) × GSp(W ′)

and U(Z) is a Heisenberg group:

1 → Sym2 Z → U(Z) → Hom(W ′, Z) → 1.

This is typically called the Klingen or Heisenberg parabolic subgroup. An irreducible
representation of L(Z) is thus of the form χ�τ with a character χ of F× and an irreducible
representation τ of GSp(W ′) ∼= GL2. We denote the corresponding normalized induced
representation by IQ(Z)(χ, τ). If IQ(Z)(χ, τ) is a standard module, then it has a unique
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irreducible quotient (the Langlands quotient), which we shall denote by JQ(Z)(χ, τ). The
same notation applies to other principal series representations to be introduced later.

The module structure of IQ(Z)(χ, τ) is known by Sally and Tadić [51] and a convenient
reference is [50]. In particular, we note the following.

Lemma A.2.

(a) Suppose that τ is a supercuspidal representation of GL2. Then IQ(Z)(χ, τ) is
reducible if and only if one of the following holds:

(i) χ = 1;

(ii) χ = χ0| · |±1 with a non-trivial quadratic character χ0 such that τχ0 = τ .

In case (i), IQ(Z)(1, τ) is the direct sum of two irreducible quasi-tempered repre-
sentations, exactly one of which is generic. In case (ii), assuming without loss of
generality that χ = χ0| · |, one has a non-split short exact sequence:

0 → St(χ0, τ0) → IQ(Z)(χ0| · |, τ0| · |−1/2) → Sp(χ0, τ0) → 0.

Here St(χ0, τ0) is a generic discrete series representation and the Langlands quotient
Sp(χ0, τ0) is non-generic.

(b) Suppose that τ is a twisted Steinberg representation of GL2. Then IQ(Z)(χ, τ) is
reducible if and only if one of the following holds:

(i) χ = 1;

(ii) χ = | · |±2.

In case (i), IQ(Z)(1, stµ) is the direct sum of two irreducible quasi-tempered repre-
sentations, exactly one of which is generic. In case (ii), IQ(Z)(| · |2, stµ| · |−1) has the
twisted Steinberg representation StPGSp4

· µ as its unique irreducible submodule.

(c) There is a standard intertwining operator

IQ(Z)(χ−1, τχ) → IQ(Z)(χ, τ),

which is an isomorphism if IQ(Z)(χ, τ) is irreducible. If IQ(Z)(χ−1, τχ) is a stan-
dard module, then the image of this operator is the unique irreducible submodule
of IQ(Z)(χ, τ).

Let P (Y ) = M(Y )N(Y ) be the Siegel parabolic subgroup stabilizing Y , so that

M(Y ) ∼= GL(Y ) × Gm and N(Y ) ∼= Sym2 Y.

An irreducible representation of M(Y ) is thus of the form τ � µ with an irreducible
representation τ of GL(Y ) ∼= GL2 and a character µ of F×. We denote the corresponding
normalized induced representation by IP (Y )(τ, µ). As before, the module structure of
IP (Y )(τ, µ) is completely known by [51] and a convenient reference is [50]. In particular,
we note the following.
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Lemma A.3.

(a) Suppose that τ is a supercuspidal representation of GL2. Then IP (Y )(τ, µ) is
reducible if and only if τ = τ0| · |±1/2 with τ0 having trivial central character.
In this case, one has a non-split short exact sequence:

0 → St(τ0, µ0) → IP (Y )(τ0| · |1/2, µ0| · |−1/2) → Sp(τ0, µ0) → 0.

Here St(τ0, µ0) is a generic discrete series representation and the Langlands quotient
Sp(τ0, µ0) is non-generic.

(b) Suppose that τ is a twisted Steinberg representation of GL2. Then IP (Y )(τ, µ) is
reducible if and only if one of the following holds.

(i) τ = st | · |±1/2; in this case, IP (Y )(st | · |1/2, µ| · |−1/2) has a unique irreducible
Langlands quotient and a unique irreducible quasi-tempered submodule, which
is the unique generic constituent of IQ(Z)(1, stµ).

(ii) τ = stχ| · |±1/2 with a non-trivial quadratic character χ; in this case,
IP (Y )(stχ| · |1/2, µ0| · |−1/2) has a unique irreducible Langlands quotient and a
unique irreducible submodule, which is a generic discrete series representation
St(stχ, µ0). Moreover, St(stχ, χµ0) = St(stχ, µ0).

(iii) τ = st | · |±3/2; in this case, IP (Y )(st | · |3/2, µ| · |−3/2) has the twisted Steinberg
representation StPGSp4

µ as its unique irreducible submodule.

(c) There is a standard intertwining operator

IP (Y )(τ, µ) → IP (Y )(τ∨, µωτ ),

which is an isomorphism if IP (Y )(τ, µ) is irreducible. If IP (Y )(τ, µ) is a standard
module, then the image of this operator is the unique irreducible submodule of
IP (Y )(τ∨, µωτ ).

Finally, let B = P (Y ) ∩Q(Z) = TU be a Borel subgroup of GSp(W ), so that

T ∼= (GL(Ff1) × GL(Ff2)) × Gm.

In particular, for characters χ1, χ2, and χ of F×, we let IB(χ1, χ2;χ) denote the nor-
malized induced representation. Again, we refer the reader to [50] for the reducibility
points and module structure of IB(χ1, χ2;χ). We simply note here that IB(χ1, χ2;χ) is
multiplicity free, and if χ1 and χ2 are unitary, then IB(χ1, χ2;χ) is irreducible.

A.2. Representations of GO(V )

Now we come to representations of GO(V ). We consider the various cases separately.
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K is split

In this case, we have
V = (D,−ND),

where D is a quaternion F -algebra (possibly split) with reduced norm ND. We have the
identification

GSO(V ) ∼= (D× ×D×)/{(z, z−1) | z ∈ F×}

via
(g1, g2) : x �→ g1xḡ2.

Moreover, the main involution x �→ x̄ on D gives an order two element t of O(V ) with
determinant −1, so that GO(V ) = GSO(V ) � 〈t〉. The conjugation of t on GSO(V ) is
given by (g1, g2) �→ (g2, g1). Thus, an irreducible representation of GSO(V ) is of the form
τ1 � τ2 with an irreducible representation τi of D× such that ωτ1 = ωτ2 . Moreover, the
action of t sends τ1 � τ2 to τ2 � τ1.

In particular, if τ1 = τ2 = τ , then there are two extensions of τ � τ to GO(V ), which
we denote by (τ � τ)±. To distinguish these two extensions, we note that exactly one of
them participates in the theta correspondence with GSp(W ′) ∼= GL2, and we denote this
distinguished extension by (τ � τ)+.

On the other hand, if τ1 �= τ2, then

indGO(V )
GSO(V )(τ1 � τ2) = indGO(V )

GSO(V )(τ2 � τ1)

is irreducible, in which case we denote this irreducible representation by (τ1 � τ2)+ =
(τ1 � τ2)−.

When D is split, the quadratic space V is split and we have a Witt decomposition
V = X ⊕X∗ with a two-dimensional isotropic space X. Let P (X) = M(X)N(X) be the
parabolic subgroup stabilizing X, so that

M(X) ∼= GL(X) × Gm and N(X) ∼= ∧2X.

For an irreducible representation τ � χ of GL(X) × Gm
∼= GL2 × F×, we let IP (X)(τ, χ)

denote the normalized induced representation. The following lemma is easy to check.

Lemma A.4. Under the identification GSO(V ) ∼= (GL2 × GL2)/F×, we have

π(χ1, χ2) � τ = IP (X)(τ∨χ1, χ2) = IP (X)(τχ−1
2 , χ2).

K is a field

In this case, we have two quadratic spaces

V + = H ⊕ V +
K and V − = H ⊕ V −

K ,

where H is the hyperbolic plane and

V +
K = (K,NK/F ) and V −

K = (K, δNK/F )
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with δ ∈ F× � NK/F (K×). One can realize these quadratic spaces on the space V of
2 × 2 Hermitian matrices with entries in K. The determinant map defines a quadratic
form on V and we have

V + = (V,− det) and V − = (V,−δ det).

The similitude groups of V = V ± are isomorphic:

GO(V ) = GSO(V ) � 〈t〉

with
GSO(V ) ∼= (GL2(K) × F×)/{(z,NK/F (z)−1) | z ∈ K×}

acting via
(g, λ) : x �→ λgx tgc,

and t ∈ O(V ) with determinant −1 acting via

t : x �→ xc,

where c is the non-trivial element of Gal(K/F ). Without loss of generality, we shall
henceforth fix

V = V +.

The conjugation of t on GSO(V ) is given by (g, λ) �→ (gc, λ). Moreover, we let

sgn : GO(V ) → {±1}

be the unique non-trivial quadratic character of GO(V ) trivial on GSO(V ).
Thus, an irreducible representation of GSO(V ) is of the form τ �χ with an irreducible

representation τ of GL2(K) and a character χ of F× such that ωτ = χ ◦ NK/F . Such
a representation is invariant under the action of t if and only if τ is obtained by base
change from GL2(F ), in which case there are two extensions of τ � χ to GO(V ), which
we denote by (τ � χ)±. How can one distinguish between these two extensions of τ � χ?
As we now explain, one can do this using the Whittaker model when τ is generic.

More precisely, if U0 is the unipotent radical of a t-stable Borel subgroup of GSO(V ),
let ψ0 be a generic character of U0 which is fixed by the action of the outer automorphism
t. Then, if τ is invariant and generic, t acts on the one-dimensional space HomU0((τ �
χ)±,Cψ0) with t2 = 1. Then (τ � χ)+ is the extension of τ � χ such that t acts by +1
on HomU0((τ � χ)+,Cψ0). Note that this characterization is independent of the choice
of the generic character ψ0 which is fixed by t.

There is another way of specifying the two extensions of τ�χ in the invariant case, using
their behaviour under the theta correspondence. Following Roberts [49], we distinguish
two mutually exclusive scenarios in the invariant case.

Invariant and distinguished representations: these are the representations τ � χ,
where τ is the base change of an irreducible representation τF of GL2(F ) with central
character χωK/F . In this case, by [49, Theorem 3.4], one of the extensions (τ �χ)+ of

https://doi.org/10.1017/S1474748010000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000198


294 W. T Gan and A. Ichino

τ �χ to GO(V ) participates in the theta correspondence with GSp(W ′)+ ∼= GL+
2 (and

hence with GSp+
4 ), whereas the other extension (τ � χ)− does not participate in the

theta correspondence with GSp+
4 . When τ is generic, it follows from Corollary A.17

below that the extension (τ � χ)+ is the same as the one defined above using the
Whittaker model.

Invariant but not distinguished representations: these are the remaining invari-
ant representations τ � χ. In this case, [49, Theorem 3.4] says that neither of the two
extensions (τ � χ)± participates in the theta correspondence with GSp(W ′)+ ∼= GL+

2 ,
but both participate in the theta correspondence with GSp+

4 . Thus, the theta corre-
spondence does not allow one to distinguish between the two extensions. When τ is
generic, it follows from Corollary A.17 below that the theta lift of exactly one of the
extensions, namely the extension (τ � χ)+ defined above, is a generic representation
of GSp+

4 .

We should remark that Roberts’s definition of distinguished representations uses the
existence of SO(2, 1)-invariant functionals. In [48], he showed that his definition agrees
with the one above when the residual characteristic of F is p �= 2. It is not difficult to prove
the same assertion for all p by computing the theta correspondence for GL+

2 × GSO(V )
and the Whittaker modules of the induced Weil representations.

On the other hand, if τ � χ is not invariant, then

indGO(V )
GSO(V )(τ � χ) = indGO(V )

GSO(V )(τ
c � χ)

is irreducible, in which case we denote this irreducible representation by (τ � χ)+ =
(τ � χ)−.

Now we describe principal series representations of GO(V ). We have a Witt decompo-
sition V = J ⊕ VK ⊕ J∗ with an isotropic line J . Let Q(J) = L(J)U(J) be the parabolic
subgroup stabilizing J , so that

L(J) ∼= GL(J) × GO(VK) and U(J) ∼= Hom(VK , J).

We set Q(J)+ = Q(J) ∩ GSO(V ).
Let χ � µ be an irreducible representation of GL(J) × GSO(VK) ∼= F× ×K×. If µ is

invariant under the Galois action, then µ has two extensions µ± to GO(VK), whereas if
µ is not invariant under the Galois action, then we set

µ+ = µ− = indGO(VK)
GSO(VK)(µ).

We consider the normalized induced representations IQ(J)(χ, µ±) and IQ(J)+(χ, µ) of
GO(V ) and GSO(V ), respectively. If we take J to be the isotropic line spanned by the
matrix diag(1, 0) ∈ V , then the following lemma is easy to check.

Lemma A.5. Under the identification GSO(V ) ∼= (GL2(K) × F×)/K×, we have

IQ(J)(χ, µ±) = (π((χ ◦ NK/F )µ, µc) � (χ · µ|F ×))±.
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From this lemma, it is not difficult to deduce the following.

Lemma A.6.

(i) IQ(J)(χ, µ±) is reducible if and only if one of the following holds:

• χ ◦ NK/F = µc/µ · | · |±1
K ; in this case, IQ(J)+(χ, µ) is reducible;

• µc �= µ and χ = 1 or ωK/F ; in this case, IQ(J)+(χ, µ) is irreducible, but

IQ(J)(χ, µ±) = σ ⊕ σ · sgn

for some irreducible representation σ of GO(V ).

(ii) IQ(J)+(χ, µ) is invariant if and only if one of the following mutually exclusive con-
ditions holds:

• µc = µ;

• µc �= µ and χ = 1 or ωK/F .

In this case, it is distinguished unless µc �= µ and χ = ωK/F .

A.3. Theta lifts from GO(VK)

Before coming to our main results, let us recall the theta lifts from GO(VK) to
GSp(W ′) ∼= GL2 and GSp(W ) ∼= GSp4. The following proposition is well known.

Proposition A.7. Let µ be an irreducible representation of GSO(VK) ∼= K×.

(i) If µ is not Galois invariant (so that µ+ = µ−), then

Θ(µ±) = θ(µ±)

is a non-zero irreducible supercuspidal representation of GL+
2 such that

π(µ) := indGL2

GL+
2
(Θ(µ±))

is irreducible supercuspidal. These are precisely the supercuspidal representations
of GL2 which are dihedral with respect to K.

(ii) If µ is Galois invariant so that µ = µF ◦ NK/F for some µF , then

Θ(µ+) = θ(µ+)

is a non-zero irreducible representation of GL+
2 such that

π(µ) := indGL2

GL+
2
(Θ(µ+)) = π(µF , µFωK/F ).

Moreover,
Θ(µ−) = 0.
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Proposition A.8. Let µ be an irreducible representation of GSO(VK) ∼= K×.

(i) If µ is not Galois invariant (so that µ+ = µ−), then

Θ(µ±) = θ(µ±)

is a non-zero irreducible representation of GSp+
4 such that

Θ̃(µ±) := indGSp4

GSp+
4
(Θ(µ±)) = JQ(Z)(ωK/F | · |, π(µ)| · |−1/2).

(ii) If µ is Galois invariant so that µ = µF ◦ NK/F for some µF , then

Θ(µ+) = θ(µ+)

is a non-zero irreducible representation of GSp+
4 such that

Θ̃(µ+) := indGSp4

GSp+
4
(Θ(µ+))

is the unique irreducible quotient of

IQ(Z)(ωK/F | · |, π(µ)| · |−1/2) = IB(ωK/F | · |, ωK/F ;µF | · |−1/2).

On the other hand,
Θ(µ−) = θ(µ−)

is a non-zero irreducible representation of GSp+
4 such that Θ̃(µ−) is the irreducible

non-generic supercuspidal representation of GSp4 with L-parameter (µF � S2) ⊕
(µFωK/F � S2) and similitude character µ2

F . Note that the L-parameter is a rep-
resentation of the Weil–Deligne group WF × SL2(C) and S2 is the irreducible two-
dimensional representation of SL2(C).

Proof. We shall only give a sketch of the proof. Applying the normalized Jacquet module
functor RQ(Z) to the induced Weil representation ΩVK ,W of GO(VK) × GSp(W )+, one
sees that there is a GL(Z) × (GO(VK) × GSp(W ′)+)-equivariant surjective map

RQ(Z)(ΩVK ,W ) → ωK/F | · |−1 � (ΩVK ,W ′ |detW ′ |1/2).

By the previous proposition, one has a GO(VK)×GSp(W ′)+-equivariant surjective map

ΩVK ,W ′ |detW ′ |1/2 → µ+ � (ΘVK ,W ′(µ+)| · |1/2).

Frobenius reciprocity shows that there is a non-zero equivariant map

ΩVK ,W → µ+ � IQ(Z)+(ωK/F | · |−1, ΘVK ,W ′(µ+)| · |1/2).

Since ΘVK ,W (µ+) is an irreducible representation (as O(VK) is anisotropic), we have

ΘVK ,W (µ+) ↪→ IQ(Z)+(ωK/F | · |−1, ΘVK ,W ′(µ+)| · |1/2),
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so that
Θ̃VK ,W (µ+) ↪→ IQ(Z)(ωK/F | · |−1, π(µ)| · |1/2).

The latter representation has JQ(Z)(ωK/F | · |, π(µ)| · |−1/2) as its unique irreducible sub-
module and this proves the proposition for µ+.

To complete the proof of the proposition, we need to show the claim in (ii) that Θ̃(µ−)
is the irreducible non-generic supercuspidal representation with the desired L-parameter.
Proposition A.7 shows that Θ̃(µ−) is supercuspidal and it is non-zero since we are in the
stable range. Moreover, it is not difficult to show that the Whittaker module of ΩVK ,W

is zero, so that Θ̃(µ−) is non-generic. Now by [9], Θ̃(µ−) has a non-zero theta lift to
the anisotropic group GSO(D,−ND), where D is the quaternion division F -algebra. We
need to show that its theta lift to GSO(D,−ND) is µF � µFωK/F .

For this, we resort to a global argument.

• Choose number fields F ⊂ K such that for some place v of F, one has Kv/Fv = K/F .

• Choose a quaternion F-algebra D such that Dv = D and K ⊂ D.

• Let Ξ be a Hecke character of A×
F

such that Ξv = µF .

• One has the automorphic representation Ξ �ΞωK/F of GSO(D,−ND)(AF) and one
may consider its theta lift Θ(Ξ �ΞωK/F) to GSp4.

We claim that this global theta lift is non-zero. To see this, one computes a Fourier
coefficient of this theta lift along the Siegel parabolic subgroup P (Y ). More precisely, the
generic M(Y )-orbits of Fourier coefficients are naturally parametrized by étale quadratic
F-algebras. If one takes a character Ψ of N(Y ) corresponding to K, then the identity
component of the stabilizer of Ψ in M(Y ) is isomorphic to GSO(VK) ∼= K×. One can
then compute the Bessel period of the theta lift defined by the character Ψ of N(Y )(AF)
and the character Ξ ◦ NK/F of A×

K
. By a standard computation, one sees that this Bessel

period is non-zero precisely when both the representations Ξ and ΞωK/F have non-zero
period integrals over the torus A×

K
against the character Ξ−1 ◦ NK/F. Since this last

condition evidently holds, we conclude that Θ(Ξ �ΞωK/F) is non-zero.
In addition, we know that the theta lift Θ(Ξ � ΞωK/F) is irreducible, and its local

component at v is non-generic supercuspidal with L-parameter (µF �S2)⊕(µFωK/F �S2).
Moreover, Θ(Ξ � ΞωK/F) is nearly equivalent to the global theta lift Θ(Ξ ◦ NK/F) of
Ξ ◦ NK/F from GSO(VK) to GSp+

4 . In particular, it is CAP with respect to the Borel
subgroup of GSp4.

According to a result of Soudry [53], all such CAP representations are obtained by
theta lifts from GO(VK) and so one concludes that Θ(Ξ � ΞωK/F) is an irreducible
constituent of Θ(Ξ ◦ NK/F). By extracting the local component at v, one concludes that

ΘD,W (µF � µFωK/F ) = Θ̃VK ,W (µ+) or Θ̃VK ,W (µ−).

Since we have already seen that Θ̃VK ,W (µ+) is non-supercuspidal, we must have

ΘD,W (µF � µFωK/F ) = Θ̃VK ,W (µ−).

This completes the proof of the proposition. �
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A.4. Explicit determination of local theta lifts

Now we can state the main results of this appendix. These are contained in the following
three theorems. Together, they imply Theorem A.1.

Theorem A.9. Let V be the anisotropic quadratic space and let τ1�τ2 be an irreducible
representation of GSO(V ) = GSO(4).

• Θ((τ1 � τ2)±) is either zero or an irreducible representation of GSp4.

• If τ1 = τ2 = τ , then
Θ((τ � τ)+) = πng(JL(τ)),

which is the unique non-generic constituent of IQ(Z)(1, JL(τ)), whereas

Θ((τ � τ)−) = 0.

• If τ1 �= τ2, then
Θ((τ1 � τ2)±) = Θ((τ2 � τ1)±)

is the irreducible non-generic supercuspidal representation of GSp4 with L-param-
eter φτ1 ⊕ φτ2 and similitude character ωτ1 = ωτ2 .

Theorem A.10. Let V be the split quadratic space and let τ1 � τ2 be an irreducible
representation of GSO(V ) = GSO(2, 2).

• If τ1 = τ2 = τ is a discrete series representation, then

Θ((τ � τ)+) = θ((τ � τ)+) = πgen(τ),

which is the unique generic constituent of IQ(Z)(1, τ), whereas

Θ((τ � τ)−) = 0.

• If τ1 �= τ2 are both supercuspidal, then Θ((τ1 � τ2)±) = θ((τ1 � τ2)±) is the irre-
ducible generic supercuspidal representation of GSp4 with L-parameter φτ1 ⊕ φτ2

and similitude character ωτ1 = ωτ2 .

• If τ1 is supercuspidal and τ2 = stχ, then

Θ((τ1 � τ2)+) = θ((τ1 � τ2)+) = St(τ1χ−1, χ).

• Suppose that τ1 = stχ1 and τ2 = stχ2 with χ1 �= χ2 but χ2
1 = χ2

2. Then

Θ((τ1 � τ2)+) = θ((τ1 � τ2)+) = St(stχ1/χ2 , χ2) = St(stχ2/χ1 , χ1).

• Suppose that τ1 is a discrete series representation and τ2 ↪→ π(χ, χ′) with |χ/χ′| =
| · |−s0 and s0 � 0, so that τ2 is a non-discrete series representation. Then

IP (Y )(τ1χ−1, χ) � Θ((τ1 � τ2)+),

so that the latter representation is multiplicity free and

θ((τ1 � τ2)+) = JP (Y )(τ1χ−1, χ).
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• Suppose that
τ1 ↪→ π(χ1, χ

′
1) and τ2 ↪→ π(χ2, χ

′
2)

with |χi/χ
′
i| = | · |−si and s1 � s2 � 0. Then

IP (Y )(π(χ′
2, χ2)χ−1

1 , χ1) = IB(χ′
2/χ1, χ2/χ1;χ1) � Θ((τ1 � τ2)+),

so that the latter representation is multiplicity free and

θ((τ1 � τ2)+) = JB(χ′
2/χ1, χ2/χ1;χ1).

If τ1 = τ2 = τ , then
Θ((τ � τ)−) = 0.

Theorem A.11. Suppose that the discriminant algebra K of V is a field. Let τ � χ be
an irreducible representation of

GSO(V ) = GSO(3, 1) ∼= (GL2(K) × F×)/K×,

so that ωτ = χ ◦ NK/F .

(i) If σ is an irreducible representation of GO(V ), then Θ(σ) = 0 if and only if σ =
(τ � χ)− for an invariant and distinguished τ � χ; we shall say that such a σ
is of forbidden type. If σ is not of forbidden type, then θ(σ) is an irreducible
representation of GSp+

4 such that θ̃(σ) is irreducible.

(ii) Suppose that τ is supercuspidal. Then we have the following situations.

• (Non-invariant case.) If τ c �= τ , then Θ((τ � χ)+) = θ((τ � χ)+) is generic
supercuspidal.

• (Invariant and distinguished case.) Suppose that τ c = τ and τ is obtained
by base change of some supercuspidal representation τF of GL2(F ) and χ =
ωτF

ωK/F . Then

Θ̃((τ � χ)+) = θ̃((τ � χ)+) = IQ(Z)(ωE/F , τF )

with L-parameter φτF
⊕ φτF

ωK/F and similitude character ωτF
ωK/F .

• (Invariant but not distinguished case.) Suppose that τ c = τ and τ is obtained
by base change of some supercuspidal representation τF of GL2(F ) but
χ = ωτF

. Then
Θ̃((τ � χ)+) and Θ̃((τ � χ)−)

are both irreducible supercuspidal with L-parameter φτF
⊕ φτF

ωK/F and
similitude character ωτF

. Exactly one of them, namely Θ̃((τ � χ)+), is generic.
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(iii) Suppose that τ = Stµ is a twisted Steinberg representation so that µ2 = χ ◦ NK/F .
Then there is a quadratic character η (possibly trivial) of F× such that µc/µ =
η ◦ NK/F and χ = η · µ|F × , so that

Stµ � χ ↪→ IQ(J)+(η| · |, µc| · |−1/2
K ).

Then we have the following situations.

• (Non-invariant case.) If µc �= µ, then η �= 1 or ωK/F , and

Θ̃((τ � χ)+) = θ̃((τ � χ)+) = St(ηωK/F , π(µ)).

• (Invariant and distinguished case.) In this case, we have η = ωK/F , µ =
µF ◦ NK/F , and χ = µ2

FωK/F . Then

Stµ � χ ↪→ IQ(J)+(ωK/F | · |, µ| · |−1/2
K )

and
Θ̃((τ � χ)+) = θ̃((τ � χ)+) = IQ(Z)(ωK/F , stµF

).

• (Invariant but not distinguished case.) In this case, we have η = 1, µ =
µF ◦ NK/F , and χ = µ2

F . Then

Θ̃((τ � χ)+) and Θ̃((τ � χ)−)

are both irreducible discrete series representations of GSp4 with L-parameter
(µF � S2) ⊕ (µFωK/F � S2) and similitude character µ2

F . In particular,

Θ̃((τ � χ)+) = St(stωK/F
, µF )

is generic, whereas Θ̃((τ � χ)−) is non-generic supercuspidal.

(iv) Suppose that σ is a non-discrete series representation of GO(V ) which is not of
forbidden type, so that

σ ↪→ IQ(J)(χ, µ+)

with |χ| = | · |−s0 and s0 � 0. Then we have the following situations.

• (Non-invariant or invariant and distinguished case.) In this case, we have

IQ(Z)(χ−1ωK/F , π(µ)χ) � Θ̃(σ),

where π(µ) is as given in Proposition A.7. In particular, Θ̃(σ) is multiplicity
free and has a unique irreducible quotient.

• (Invariant but not distinguished case.) In this case,

Θ̃(σ) and Θ̃(σ · sgn)

are the two irreducible constituents of IQ(Z)(1, π(µ)).
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A.5. Jacquet and Whittaker modules

Because Theorem A.11 is the most subtle part of the three theorems, we shall give
its proof in detail here and then give a sketch of the proof of Theorem A.10 later.
(Theorem A.9 is the easiest part and its proof will be omitted.) Hence we shall assume
that K is a field until § A.7. A key step in the proof of Theorem A.11 is the computation
of normalized Jacquet modules of the induced Weil representation Ω with respect to
Q(J) and Q(Z). This is a by-now-standard computation, following the lines of [29], and
we shall simply state the results below.

Proposition A.12. Let RQ(J)(Ω) denote the normalized Jacquet module of Ω along
Q(J). Then we have a short exact sequence of L(J) × GSp(W )+-modules:

0 → A → RQ(J)(Ω) → B → 0.

Here, as GL(J) × (GO(VK) × GSp(W )+)-modules,

B ∼= |detJ | � (ΩVK ,W ⊗ |νVK
|−1/2),

where ΩVK ,W is the induced Weil representation of GO(VK) × GSp(W )+, and

A ∼= IQ(Z)+(S(F×) ⊗ΩVK ,W ′ ⊗ |detJ | · |detZ |−1(ωK/F ◦ detZ)|νVK
|−1),

where the action of (GL(J) × GO(VK)) × (GL(Z) × GSp(W ′)+) on S(F×) is given by

(((a, h), (b, g))f)(x) = f(b−1xaνW ′(g))

and ΩVK ,W ′ is the induced Weil representation of GO(VK) × GSp(W ′)+.

Corollary A.13. Let χ� µ be an irreducible representation of GL(J) × GSO(VK).

(i) We have
HomGL(J)×GO(VK)(B,χ� µ±) �= 0

if and only if χ = | · |, in which case

HomGL(J)×GO(VK)(B,χ� µε) = (ΘVK ,W (µε)|νW |1/2)∗.

In particular,

HomGL(J)×GO(VK)(B,χ� µ+) = JQ(Z)+(ωK/F | · |, ΘVK ,W ′(µ+))∗.

(ii) We have
HomGL(J)×GO(VK)(A,χ� µε) = 0

if and only if µ is invariant and ε = −. Outside of this case, we have

HomGL(J)×GO(VK)(A,χ� µ+) = IQ(Z)+(χ−1ωK/F , ΘVK ,W ′(µ+) · χ)∗.
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(iii) In particular, if χ �= | · |, then

HomGO(V )(Ω, IQ(J)(χ, µ+)) = IQ(Z)+(χ−1ωK/F , ΘVK ,W ′(µ+) · χ)∗.

Proposition A.14. Let RQ(Z)+(Ω) denote the normalized Jacquet module of Ω along
Q(Z)+. Then we have a short exact sequence of GO(V ) × L(Z)+-modules:

0 → A′ → RQ(Z)+(Ω) → B′ → 0.

Here, as GL(Z) × (GO(V ) × GSp(W ′)+)-modules,

B′ ∼= (ωK/F ◦ detZ) �ΩV,W ′

where ΩV,W ′ is the induced Weil representation of GO(V ) × GSp(W ′)+, and

A′ ∼= IQ(J)(S(F×) ⊗ΩVK ,W ′ ⊗ (ωK/F ◦ detZ)|νVK
|−1|νW ′ |−1),

where the action of (GL(J) × GO(VK)) × (GL(Z) × GSp(W ′)+) on S(F×) is given by

(((a, h), (b, g))f)(x) = f(a−1νW ′(g)−1xb)

and ΩVK ,W ′ is the induced Weil representation of GO(VK) × GSp(W ′)+.

Corollary A.15.

(i) Suppose that τ � χ is an irreducible representation of GSO(V ) ∼= (GL2(K) ×
F×)/K× which is invariant and distinguished, so that (τ �χ)+ participates in the
theta correspondence with GSp(W ′)+ ∼= GL+

2 . If the small theta lift of (τ �χ)+ to
GL+

2 is denoted by τ+
F , then

HomGO(V )×GSp(W )+(Ω, (τ � χ)+ � IQ(Z)+(ωK/F , τ
+
F )) �= 0.

(ii) We have

HomGL(Z)×GSp(W ′)+(A′, χ� θVK ,W ′(µ+)) = IQ(J)(χ−1ωK/F , µ
+(χ ◦ νVK

))∗.

We also need the computation of the Whittaker module of the induced Weil represen-
tation Ω. This is given by the following.

Proposition A.16. Let U be the unipotent radical of the Borel subgroup B = P (Y ) ∩
Q(Z) of GSp4. Let ψ and ψ′ be representatives of the two orbits of generic characters of
U under the action of B+. Similarly, let U0 be the unipotent radical of a t-stable Borel
subgroup of GO(V ) and ψ0 a generic character of U0 which is fixed by t. Then (perhaps
after relabelling ψ and ψ′)

(ΩV,W )U,ψ
∼= c-indGO(V )

U0�〈t〉(ψ0 � 1),

whereas
(ΩV,W )U,ψ′ = 0.

Corollary A.17. Let τ � χ be an irreducible representation of GSO(V ) for a generic
τ . Then ΘV,W ((τ � χ)+) is ψ-generic, whereas in the invariant case, ΘV,W ((τ � χ)−) is
non-generic with respect to any generic character.
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A.6. Proof of Theorem A.11

We are now ready to give the proof of Theorem A.11. Suppose that σ is an irreducible
representation of GO(V ). We first note the following.

• If σ is infinite dimensional, then [49, Theorem 3.4] says that Θ(σ) = 0 if and only
if σ = (τ �χ)− for an invariant and distinguished τ �χ. The case where σ is finite
dimensional can be established in the course of the proof below, but since it is not
relevant to the application to this paper, we shall omit the details.

• By a result of Muić [42, Theorem 6.2], Θ(σ) is irreducible or zero if σ is a discrete
series representation, at least when the residual characteristic of F is p �= 2. The
reason for this restriction on p in [42] is that the Howe duality conjecture on the
irreducibility of θ(σ) is known to hold in general for p �= 2 but not for p = 2.
However, our proof below actually verifies the Howe duality conjecture for all p,
so that [42, Theorem 6.2] holds without restriction on residual characteristic, at
least for the dual pair considered here. Note, however, that this information is not
necessary for Theorem A.1.

In view of the above, we may assume henceforth that σ is not of forbidden type. We
now consider the various cases in Theorem A.11 in turn.

Non-discrete series representations

Let σ be a non-discrete series representation of GO(V ) which is not of forbidden type.
Then, as in Theorem A.11 (iv), we have

σ ↪→ IQ(J)(χ, µ+)

with |χ| = | · |−s0 and s0 � 0. By Frobenius reciprocity, one has

Θ(σ)∗ = HomGO(V )(Ω, σ) ↪→ HomGO(V )(Ω, IQ(J)(χ, µ+))

= HomGL(J)×GO(VK)(RQ(J)(Ω), χ� µ+).

By Corollary A.13, we see that

HomGL(J)×GO(VK)(RQ(J)(Ω), χ� µ+) = IQ(Z)+(χ−1ωK/F , θVK ,W ′(µ+)χ)∗

and hence
IQ(Z)+(χ−1ωK/F , θVK ,W ′(µ+)χ) � Θ(σ),

so that
IQ(Z)(χ−1ωK/F , π(µ)χ) � Θ̃(σ).

We now examine the various cases in Theorem A.11 (iv).

• (Non-invariant case.) In this case, µc �= µ and χ �= 1 or ωK/F and θVK ,W ′(µ+) is
supercuspidal. By Lemma A.2, IQ(Z)(χ−1ωK/F , π(µ)χ) is either irreducible or of
length two with a unique irreducible quotient. This shows that Θ̃(σ) is multiplicity
free and θ̃(σ) is irreducible, as desired.
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• (Invariant and distinguished case.) In this case, either µc = µ or µc �= µ and χ = 1.
When µc = µ so that µ = µF ◦ NK/F , we have π(µ) = π(µF , µFωK/F ) and

IQ(Z)(χ−1ωK/F , π(µF , µFωK/F )χ) � Θ̃(σ).

Moreover,

IQ(Z)(χ−1ωK/F , π(µF , µFωK/F )χ) = IB(χ−1ωK/F , ωK/F ;χµF ).

This is irreducible unless χ = | · |−1 or ωK/F | · |−1. In any case, it is multiplicity
free and has a unique irreducible quotient (see [50, Table A.1, Type V, p. 270]).

When µc �= µ and χ = 1, we have

IQ(J)(1, µ+) = σ ⊕ σ · sgn.

Hence we have

Θ(σ) ⊕Θ(σ · sgn) = IQ(Z)+(ωK/F , θVK ,W ′(µ+)),

so that
Θ̃(σ) ⊕ Θ̃(σ · sgn) = IQ(Z)(ωK/F , π(µ)),

where π(µ) is supercuspidal. By Lemma A.2, IQ(Z)(ωK/F , π(µ)) is irreducible.
Moreover, σ · sgn is of forbidden type, so that Θ(σ · sgn) = 0. Hence we conclude
that

Θ̃(σ) = IQ(Z)(ωK/F , π(µ)).

• (Invariant but not distinguished case.) In this case, µc �= µ but χ = ωK/F . Then

IQ(J)(ωK/F , µ
+) = σ ⊕ σ · sgn.

Hence we have
Θ(σ) ⊕Θ(σ · sgn) = IQ(Z)+(1, θVK ,W ′(µ+)),

so that
Θ̃(σ) ⊕ Θ̃(σ · sgn) = IQ(Z)(1, π(µ)),

where π(µ) is supercuspidal. By Lemma A.2, IQ(Z)(1, π(µ)) is the direct sum of a
generic representation and a non-generic one, which constitute an L-packet of size
two.

Twisted Steinberg representations

Let τ = Stµ be a twisted Steinberg representation so that µ2 = χ ◦ NK/F and σ =
(Stµ � χ)±. It is easy to see that there is a quadratic character η (possibly trivial) of
F× such that µc/µ = η ◦NK/F and χ = η · µ|F × . The representation Stµ �χ is invariant
but not distinguished if and only if η is trivial. We now examine the various cases in
Theorem A.11 (iii).
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• (Non-invariant or invariant and distinguished case.) In this case, η is non-trivial
and we have

σ ↪→ IQ(J)(η| · |, µ+|νVK
|−1/2).

By Corollary A.13, we have

IQ(Z)+(ηωK/F | · |−1, θVK ,W ′(µ+)| · |1/2) � Θ(σ),

so that
IQ(Z)(ηωK/F | · |−1, π(µ)| · |1/2) � Θ̃(σ).

By Lemma A.2 and [50, Table A.1, Type III, p. 270], IQ(Z)(ηωK/F | · |−1, π(µ)| · |1/2)
is multiplicity free with a unique irreducible quotient

St(ηωK/F , π(µ)) if η �= ωK/F (non-invariant),

IQ(Z)(ωK/F , stµF
) if η = ωK/F (invariant and distinguished),

where µF is a character of F× such that µ = µF ◦ NK/F in the invariant and
distinguished case. This verifies Theorem A.1 in this case. It does not quite show
that Θ(σ) is irreducible, but as we explained above, this follows from a result of
Muić [42, Theorem 6.2].

• (Invariant but not distinguished case.) To a certain extent, this is the most non-
trivial case of Theorem A.11. If σ = (Stµ � µ2

F )−, then

σ ↪→ IQ(J)(| · |, µ−|νVK
|−1/2).

By Corollary A.13 (i), (ii) and Proposition A.8 (ii) we deduce that

Θ̃(σ) = Θ̃VK ,W (µ−)

is the non-generic supercuspidal representation with the desired L-parameter. On
the other hand, if σ = (Stµ � µ2

F )+, then

σ ↪→ IQ(J)(| · |, µ+|νVK
|−1/2).

In this case, Corollary A.13 implies that one has an exact sequence:

0 → JQ(Z)+(ωK/F | · |, θVK ,W ′(µ+)| · |−1/2)∗

→ HomGO(V )(Ω, IQ(J)(| · |, µ+|νVK
|−1/2))

δ−→ IQ(Z)+(ωK/F | · |−1, θVK ,W ′(µ+)| · |1/2)∗.

Since
i : Θ(σ)∗ ↪→ HomGO(V )(Ω, IQ(J)(| · |, µ+|νVK

|−1/2)),

we obtain by composition with δ a map

δ ◦ i : Θ(σ)∗ → IQ(Z)+(ωK/F | · |−1, θVK ,W ′(µ+)| · |1/2)∗.
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We claim that this map is still injective; this will be sufficient to establish the
desired result in this case. Indeed, it will give

IQ(Z)(ωK/F | · |−1, π(µ)| · |1/2) � Θ̃(σ),

and one knows by [51] (see also [50, Table A.1, Type V, p. 270]) that

IQ(Z)(ωK/F | · |−1, π(µ)| · |1/2) = IB(ωK/F | · |−1, ωK/F ;µF | · |1/2)

is multiplicity free with a unique irreducible quotient St(stωK/F
, µF ). This verifies

Theorem A.1 in this case, and together with [42, Theorem 6.2], one has

Θ̃(σ) = St(stωK/F
, µF ).

It remains to show that δ ◦ i is injective. Suppose on the contrary that it is not.
Then we would have a non-zero equivariant map

Ω → σ � JQ(Z)+(ωK/F | · |, θVK ,W ′(µ+)| · |−1/2),

so that

σ∗ ↪→ HomGSp+
4
(Ω, JQ(Z)+(ωK/F | · |, θVK ,W ′(µ+)| · |−1/2))

↪→ HomGSp+
4
(Ω, IQ(Z)+(ωK/F | · |−1, θVK ,W ′(µ+)| · |1/2)).

Now we compute the latter Hom space using Corollary A.15 (ii). We conclude that

HomGSp+
4
(Ω, IQ(Z)+(ωK/F | · |−1, θVK ,W ′(µ+)| · |1/2)) = IQ(J)(| · |, µ+|νVK

|−1/2)∗,

so that
IQ(J)(| · |, µ+|νVK

|−1/2) � σ.

This is a contradiction, since IQ(J)(| · |, µ+|νVK
|−1/2) has σ as a submodule but not

a quotient.

Supercuspidal representations

Let τ�χ be a supercuspidal representation of GSO(V ). Finally, we examine the various
cases in Theorem A.11 (ii).

• (Non-invariant case.) In this case, one knows by [49, Theorem 3.4] that Θ((τ �
χ)+) is non-zero and irreducible supercuspidal. Moreover, the L-parameter of
Θ̃((τ � χ)+) is identified in [9, § 11].

• (Invariant and distinguished case.) In this case, τ is the base change of some
supercuspidal representation τF of GL2(F ) and χ = ωτF

ωK/F . Moreover, one
knows that the extension (τ � χ)+ participates in the theta correspondence with
GSp(W ′)+ ∼= GL+

2 and its theta lift to GL+
2 is a constituent τ+

F of τF |GL+
2
. By

Corollary A.15, we deduce that

Θ((τ � χ)+) = IQ(Z)+(ωK/F , τ
+
F ),
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and hence
Θ̃((τ � χ)+) = IQ(Z)(ωK/F , τF ),

which is irreducible.

• (Invariant but not distinguished case.) In this case, τ is the base change of some
supercuspidal representation τF of GL2(F ) but χ = ωτF

. One knows by [49, The-
orem 3.4] that both extensions (τ � χ)± have non-zero big theta lifts to GSp+

4
and Θ̃((τ � χ)±) is irreducible supercuspidal. It remains to show that these two
supercuspidal representations of GSp4 make up an L-packet with L-parameter
φτF

⊕ φτF
ωK/F and similitude character ωτF

. Note that τF is necessarily non-
dihedral with respect to K, so that τFωK/F �= τF .

For this, we consider the representations

τF � τFωK/F of GSO(2, 2),

JL(τF ) � JL(τF )ωK/F of GSO(4)

and their theta lifts to GSp4. Then we are required to show that

Θ̃((τ � χ)+) = Θ(τF � τFωK/F ),

Θ̃((τ � χ)−) = Θ(JL(τF ) � JL(τF )ωK/F ).

We achieve this by using a global argument.

• Choose a totally real number field F such that for two places v and v′ of F,
one has Fv = Fv′ = F .

• Choose a totally real quadratic extension K of F such that Kv = Kv′ = K.

• Let Σ be a cuspidal representation of GL2(AF) such that Σv = Σv′ = τF and
the archimedean component Σ∞ of Σ is a discrete series representation. This
can be achieved by using a simple trace formula. By [4], such a Σ is tempered.
Then Σ �ΣωK/F is a tempered cuspidal representation of GSO(2, 2)(AF).

• Consider the global theta lift

Π := Θ(Σ �ΣωK/F)

of Σ �ΣωK/F to GSp4. It is an irreducible globally generic cuspidal represen-
tation.

On the other hand, we may consider the base change BC(Σ) of Σ to GL2(AK),
so that BC(Σ) � ωΣ is a globally generic tempered cuspidal representation of
GSO(V)(AF) ∼= (GL2(AK)×A×

F
)/A×

K
, where V is the quadratic space H⊕(K,NK/F).

Observe that BC(Σ) � ωΣ is a globally invariant representation and almost all of
its local components are distinguished, but its local components at v and v′ are
isomorphic to τ � χ which is not distinguished.
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Because BC(Σ) � ωΣ is globally invariant, it can be abstractly extended to an
irreducible representation of GO(V)(AF) in infinitely many ways; more precisely,
at each place of F, one has two possible extensions. One knows that at least half of
these extensions occur in the space of cusp forms on GO(V)(AF). This is because
at least one of these extensions is automorphic, and one can twist an automorphic
extension by an automorphic sign character of GO(V)(AF). In particular, one can
find an automorphic extension of BC(Σ) � ωΣ whose local component at v is any
one of the two extensions (τ �χ)±. We denote one such automorphic extension by
(BC(Σ) �ωΣ)±. By using the place v′, one can further ensure that at any place w
such that BC(Σw) � ωΣw

is distinguished, the local component of (BC(Σ) �ωΣ)±

is the +-extension
(BC(Σw) � ωΣw

)+.

Thus, we may ensure that all the local components of (BC(Σ)�ωΣ)± have non-zero
local theta lifts to GSp+

4 .

Now by [49, Theorem 8.3], the global theta lift of (BC(Σ) � ωΣ)± to GSp4 is
non-zero and irreducible cuspidal. Thus, we obtain an irreducible cuspidal repre-
sentation

Π± := Θ̃((BC(Σ) � ωΣ)±)

of GSp4(AF). By the local unramified theta correspondence, one sees that Π± is
nearly equivalent to Π, so that the partial standard L-function LS(s,Π±, std) of
degree five has a pole at s = 1. By a result of Kudla and Rallis [34], this implies that
Π± has a non-zero global theta lift to an inner form of GSO(2, 2). Such an inner
form is associated to a quaternion F-algebra D± (possibly split) and is isomorphic
to (D×

± × D×
±)/F×. If we denote the theta lift of Π± to such an inner form by

ΘD±(Π±), then ΘD±(Π±) is a cuspidal representation which is nearly equivalent to
Σ�ΣωK/F. Thus, Σ�ΣωK/F must be the Jacquet–Langlands transfer of ΘD±(Π±).
Note that at the place v, we necessarily have (D+)v �= (D−)v. By extracting the
local component at v, we conclude that

{Θ̃((τ � χ)+), Θ̃((τ � χ)−)} = {Θ(τF � τFωK/F ), Θ(JL(τF ) � JL(τF )ωK/F )}.

Since we know that Θ̃((τ � χ)+) and Θ(τF � τFωK/F ) are generic and the other
two representations are not, we obtain the desired result.

This completes the proof of Theorem A.11.

A.7. Proof of Theorem A.10

For the sake of completeness, we shall give a sketch of the proof of Theorem A.10. As
before, a key step is the computation of normalized Jacquet modules of the induced Weil
representation ΩV,W , where V is now the split four-dimensional quadratic space. Before
coming to this computation, we first introduce some more notation.

Recall that V = X ⊕X∗, where X is a two-dimensional isotropic space. We can write

X = Fu1 ⊕ Fu2 and X∗ = Fv1 ⊕ Fv2
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with (ui, vj) = δij . Let P (X) be the parabolic subgroup of GSO(V ) stabilizing X with
Levi factor

M(X) ∼= GL(X) × Gm.

Let J = Fu1 be the isotropic line spanned by u1 in X and let B(J) be the stabilizer
of J in M(X); it is also the stabilizer of the isotropic line spanned by v2 in X∗. With
respect to the basis {u1, u2} of X, B(J) is the group of upper triangular matrices in
M(X) ∼= GL(X) × Gm. We write

(t(a, b), λ) =

((
a 0
0 b

)
, λ

)
∈ B(J) ⊂ M(X).

Similarly, recall that W = Y ∗ ⊕ Y ,

Y ∗ = Fe1 ⊕ Fe2 and Y = Ff1 ⊕ Ff2

with 〈ei, fj〉 = δij . The stabilizer of Y in GSp(W ) is the Siegel parabolic subgroup P (Y )
with Levi factor

M(Y ) ∼= GL(Y ) × Gm

and the stabilizer of Z = Ff1 in GSp(W ) is the Klingen parabolic subgroup Q(Z) with
Levi factor

L(Z) ∼= GL(Z) × GSp(W ′),

where W ′ = Fe2 ⊕ Ff2.
With the above notation, we have the following.

Proposition A.18. The normalized Jacquet module RP (X)(ΩV,W ) of ΩV,W along P (X)
has a natural three step filtration as an M(X) × GSp(W )-module whose successive quo-
tients are described as follows.

(i) The top quotient is
C ∼= S(F×).

Here the action of (m,λ) ∈ M(X) ∼= GL(X) × Gm on S(F×) is given by

((m,λ)f)(t) = |detX(m)|3/2|λ|−3/2f(λt).

(ii) The middle subquotient is

B ∼= IB(J)×Q(Z)(S(F×) ⊗ S(F×v2 ⊗ f1)).

Here the action of (t(a, b), λ) ∈ B(J) on S(F×) ⊗ S(F×v2 ⊗ f1) is given by

((t(a, b), λ)f)(t, x) = |a| |b|2|λ|−3/2f(λt, bx),

whereas the action of (α, g) ∈ L(Z) ∼= GL(Z) × GSp(W ′) is given by

((α, g)f)(t, x) = |α|−2|νW ′(g)|f(νW ′(g)t, α−1νW ′(g)x).
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(iii) Finally, the submodule is

A ∼= IP (Y )(S(F×) ⊗ S(Isom(X,Y ))),

where Isom(X,Y ) is the set of isomorphisms from X to Y as vector spaces (which
is a torsor for GL(X) as well as for GL(Y )). Here the action of (m,λ) ∈ M(X) ∼=
GL(X) × Gm on S(F×) ⊗ S(Isom(X,Y )) is given by

((m,λ)f)(t, h) = |detX(m)|3/2|λ|−3/2f(λt, h ◦m),

whereas the action of (m′, λ′) ∈ M(Y ) ∼= GL(Y ) × Gm is given by

((m′, λ′)f)(t, h) = |λ′|3/2|detY (m′)|−3/2f(λ′t, λ′m′−1 ◦ h).

Corollary A.19. Let σ = π(χ1, χ2) � τ be a representation of GSO(V ) ∼= (GL2 ×
GL2)/F× such that τ is irreducible but π(χ1, χ2) may be reducible, so that ωτ = χ1χ2

and
σ = IP (X)(τ∨χ1, χ2).

Then
HomGSO(V )(Ω, σ) = HomM(X)(RP (X)(Ω), τ∨χ1 � χ2).

(i) If χ1/χ2 �= | · |3, then
HomM(X)(C, τ∨χ1 � χ2) = 0.

(ii) If RB(τ) does not have χ1| · |−1 � η as a subquotient for any character η, then

HomM(X)(B, τ∨χ1 � χ2) = 0.

(iii) If the conditions in (i) and (ii) hold, then

HomM(X)(RP (X)(Ω), τ∨χ1 � χ2) ⊂ HomM(X)(A, τ∨χ1 � χ2) = IP (Y )(τχ−1
1 , χ1)∗.

Proposition A.20. Let U be the unipotent radical of the Borel subgroup P (Y )∩Q(Z)
of GSp4 and ψ a generic character of U . Similarly, let U0 be the unipotent radical of a
Borel subgroup of GSO(V ) and ψ0 a generic character of U0. Then

(ΩV,W )U,ψ
∼= c-indGSO(V )

U0
(ψ0).

In particular, if σ is an irreducible generic representation of GSO(V ), then its big theta
lift Θ(σ) to GSp4 is generic and hence non-zero.

We are now ready to give the proof of Theorem A.10. Let τ1 � τ2 be an irreducible
representation of GSO(V ) ∼= (GL2 × GL2)/F×. Then one knows by results of Roberts
that

Θ(τ1 � τ2) = Θ(τ2 � τ1) �= 0.

We now consider the various cases in Theorem A.10 in turn.
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Supercuspidal representations

Suppose that τ1 � τ2 is supercuspidal. Then one knows that Θ(τ1 � τ2) = θ(τ1 � τ2) is
non-zero and irreducible. Moreover, if τ1 �= τ2, then the theta lift of τ1�τ2 to GSp(W ′) ∼=
GL2 is zero and hence θ(τ1 � τ2) is supercuspidal. By definition, the L-parameter of
θ(τ1 � τ2) is φτ1 ⊕ φτ2 with similitude character ωτ1 = ωτ2 .

On the other hand, if τ1 = τ2 = τ , then τ � τ participates in the theta correspondence
with GSp(W ′) ∼= GL2 and its big theta lift to GL2 is τ . By an analogue of Proposi-
tion A.14 for the split V , there is a GSO(V ) × L(Z)-equivariant surjective map

RQ(Z)(ΩV,W ) → ΩV,W ′ .

By Frobenius reciprocity, one has a non-zero GSO(V ) × GSp(W )-equivariant map

ΩV,W → (τ � τ) � IQ(Z)(1, τ).

Thus, we see that
Θ(τ � τ) ↪→ IQ(Z)(1, τ).

We know that IQ(Z)(1, τ) is the direct sum of two irreducible constituents with a unique
generic constituent πgen(τ). It follows from Proposition A.20 that

Θ(τ � τ) = πgen(τ).

Discrete series representations

Suppose that σ = stχ � τ , where stχ is a twisted Steinberg representation and τ is
a discrete series representation so that ωτ = χ2. Note that τ is either supercuspidal or
equal to stµ. Then

σ ↪→ π(χ| · |1/2, χ| · |−1/2) � τ = IP (X)(τ∨χ| · |1/2, χ| · |−1/2).

We would like to apply Corollary A.19 (iii) and so we need to verify that the conditions
in Corollary A.19 (i), (ii) hold. The condition in Corollary A.19 (i) obviously holds, and
that in Corollary A.19 (ii) holds when τ is supercuspidal. If τ = stµ is a twisted Steinberg
representation (so that χ2 = µ2), then

RB(τ) = µ| · |1/2 � µ| · |−1/2 �= χ| · |−1/2 � η

for any character η. Hence the condition in Corollary A.19 (ii) also holds when τ is a
twisted Steinberg representation. In particular, we conclude by Corollary A.19 (iii) that

IP (Y )(τχ−1| · |−1/2, χ| · |1/2) � Θ(σ).

By Lemma A.3, the above induced representation is multiplicity free and of length two
with a unique irreducible quotient, so that Θ(σ) is multiplicity free and θ(σ) is irreducible.
Moreover,

θ(σ) =

{
St(τχ−1, χ) if τ �= stχ,

πgen(τ) if τ = stχ.
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There remains the issue of whether Θ(σ) = θ(σ). This follows from a result of
Muić [42], but we can also give a brief sketch of the proof. Suppose on the contrary
that Θ(σ) = IP (Y )(τχ−1| · |−1/2, χ| · |1/2). Then we would have

σ∗ ↪→ HomGSp(W )(ΩV,W , IP (Y )(τχ−1| · |−1/2, χ| · |1/2)).

Now one compute the latter Hom space, which amounts to the computation of the nor-
malized Jacquet module RP (Y )(ΩV,W ). A short computation shows that

HomGSp(W )(ΩV,W , IP (Y )(τχ−1| · |−1/2, χ| · |1/2)) = IP (X)(τ∨χ| · |1/2, χ| · |−1/2)∗,

so that

IP (X)(τ∨χ| · |1/2, χ| · |−1/2) � σ.

This is a contradiction, since IP (X)(τ∨χ| · |1/2, χ| · |−1/2) has σ as a submodule but not
a quotient. Thus, we conclude that Θ(σ) = θ(σ) is irreducible.

Non-discrete series representations. I

Suppose that

σ ↪→ π(χ1, χ2) � τ = IP (X)(τ∨χ1, χ2),

where τ is a discrete series representation with ωτ = χ1χ2, |χ1/χ2| = | · |−s0 , and s0 � 0.
Again, we would like to apply Corollary A.19 (iii) and so we need to verify the conditions
there. As before, the only issue is the condition in Corollary A.19 (ii) when τ = stχ is a
twisted Steinberg representation, in which case

RB(τ) = χ| · |1/2 � χ| · |−1/2

and we need to show that this is different from χ1| · |−1 � η for any character η. In other
words, we need to show that χ/χ1 �= | · |−3/2. But observe that

|χ|2 = |χ1χ2| = |χ1|2|χ2/χ1| = |χ1|2| · |s0 ,

so that

|χ/χ1| = | · |s0/2 �= | · |−3/2.

This verifies that the conditions in Corollary A.19 (i), (ii) hold, so that we conclude that

IP (Y )(τχ−1
1 , χ1) � Θ(σ).

Since the above induced representation is multiplicity free with a unique irreducible
quotient, we conclude that Θ(σ) is multiplicity free and θ(σ) = JP (Y )(τχ−1

1 , χ1) is irre-
ducible.
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Non-discrete series representations. II

Finally, we consider the case where

σ ↪→ π(χ1, χ
′
1) � π(χ2, χ

′
2)

with χ1χ
′
1 = χ2χ

′
2, |χi/χ

′
i| = | · |−si , and s1 � s2 � 0. We consider two subcases.

(a) χ2/χ
′
2 �= | · |−1; in this case π(χ2, χ

′
2) = π(χ′

2, χ2) is irreducible and

σ ↪→ IP (X)(π(χ2, χ
′
2)

∨χ1, χ
′
1).

Again, to apply Corollary A.19 (iii), we need to verify the conditions there, and in
particular the condition in Corollary A.19 (ii). We have

RB(π(χ2, χ
′
2)) = (χ2 � χ′

2) ⊕ (χ′
2 � χ2)

up to semisimplification and so we need to verify that χ2 �= χ1| · |−1 and χ′
2 �=

χ1| · |−1. To see these, we argue by contradiction. If χ2 = χ1| · |−1, then χ′
2 = χ′

1| · |,
so that

| · |−s2 = |χ2/χ
′
2| = |χ1/χ

′
1| | · |−2 = | · |−s1−2.

This would give s2 = s1 + 2, which contradicts s1 � s2. On the other hand, if
χ′

2 = χ1| · |−1, then χ2 = χ′
1| · |, so that

| · |s2 = |χ′
2/χ2| = |χ1/χ

′
1| | · |−2 = | · |−s1−2.

This would give s2 = −s1 − 2 < 0, which is a contradiction. Thus, we may apply
Corollary A.19 (iii) to conclude that

IP (Y )(π(χ′
2, χ2)χ−1

1 , χ1) = IB(χ′
2/χ1, χ2/χ1;χ1) � Θ(σ).

This shows that Θ(σ) is multiplicity free with a unique irreducible quotient

θ(σ) = JB(χ′
2/χ1, χ2/χ1;χ1).

(b) χ2/χ
′
2 = | · |−1; in this case, π(χ2, χ

′
2) is reducible and has the one-dimensional

representation χ2| · |1/2 as its unique irreducible submodule. Then

σ ↪→ π(χ1, χ
′
1) � χ2| · |1/2 = IP (X)(χ1χ

−1
2 | · |−1/2, χ′

1).

Applying Corollary A.19 (iii) (we leave the verification of the conditions there to
the reader), we conclude that

IP (Y )(χ−1
1 χ2| · |1/2, χ1) � Θ(σ).

Observe that

IB(χ′
2/χ1, χ2/χ1;χ1) � IP (Y )(χ−1

1 χ2| · |1/2, χ1)

and the former induced representation is a standard module. This shows that Θ(σ)
is multiplicity free with a unique irreducible quotient

θ(σ) = JB(χ′
2/χ1, χ2/χ1;χ1).

This completes the proof of Theorem A.10.
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Appendix B. Spherical Eisenstein series on GO2n

Let F be a number field. Let ξ(s) = Ds/2ζ(s), where D is the absolute value of the
discriminant of F and ζ(s) is the zeta function of F including archimedean factors. Then
the functional equation ξ(1 − s) = ξ(s) holds. We write

ξ(s) =
ρ

s− 1
+ γ +O(s− 1).

For each s ∈ C, let
[s](a) = |a|s, [s]′(a) = |a|s log |a|,

for a ∈ A×. For an automorphic form φ on GO2n(A), let

φ[s](h) = φ(h)[s](ν(h)), φ[s]′(h) = φ(h)[s]′(ν(h)),

for h ∈ GO2n(A). Let 1 denote the constant function on GO2n(A).
For each r ∈ N with r � n, let Pn,r be the parabolic subgroup of GO2n and E(n,r)(s)

the spherical Eisenstein series given in § 7.3. Note that E(n,0)(s) = 1. For each s0 ∈ C,
let

E(n,r)(s) =
∑

d
−∞
(s− s0)dE

(n,r)
d (s0)

be the Laurent expansion of E(n,r)(s) at s = s0.
Let Q = Pn,1. For an automorphic form φ on GO2n(A), let φQ denote the constant

term of φ along Q. We regard φQ as an automorphic form on A× × GO2n−2(A) via the
embedding

(a, h′) �→

⎛⎜⎜⎜⎝
a 0 0 0
0 a′ 0 b′

0 0 ν(h′)a−1 0
0 c′ 0 d′

⎞⎟⎟⎟⎠ ,
where

h′ =

(
a′ b′

c′ d′

)
.

Lemma B.1. Let φ be a K-invariant automorphic form on GO2n(A). Assume that φ is
concentrated on the Borel subgroup. If φQ = 0, then

φ = 0.

Proof. The assertion follows from the Langlands lemma (see [24, Corollary 3.1]). �

We have a double coset decomposition

GO2n =

{
Pn,rQ ∪ Pn,rw

(n,r)
1 Q ∪ Pn,rw

(n,r)
2 Q if 1 � r < n,

Pn,rQ ∪ Pn,rw
(n,r)
2 Q if r = n,
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where

w
(n,r)
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 1r−1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1n−r−1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1r−1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1n−r−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

w
(n,r)
2 =

⎛⎜⎜⎜⎝
0 0 1 0
0 1n−1 0 0
1 0 0 0
0 0 0 1n−1

⎞⎟⎟⎟⎠ .
As in [24, Proposition 2.6], a routine calculation shows the following proposition.

Proposition B.2. If 1 � r < n, then E(n,r)(s)Q is equal to

[s+ 1
2 (2n− r − 1)] ⊗ E(n−1,r−1)(s+ 1

2 )[− 1
2s− 1

4 (2n− r − 1)]

+
ξ(s+ 1

2 (2n− 3r − 1))
ξ(s+ 1

2 (2n− r − 1))
[r] ⊗ E(n−1,r)(s)[− 1

2r]

+
ξ(s+ 1

2 (r − 1))ξ(s− 1
2 (2n− 3r − 1))ξ(2s)

ξ(s+ 1
2 (r + 1))ξ(s+ 1

2 (2n− r − 1))ξ(2s+ r − 1)
× [−s+ 1

2 (2n− r − 1)] ⊗ E(n−1,r−1)(s− 1
2 )[ 12s− 1

4 (2n− r − 1)].

If r = n, then E(n,n)(s)Q is equal to

[s+ 1
2 (n− 1)] ⊗ E(n−1,n−1)(s+ 1

2 )[− 1
2s− 1

4 (n− 1)]

+
ξ(2s)

ξ(2s+ n− 1)
[−s+ 1

2 (n− 1)] ⊗ E(n−1,n−1)(s− 1
2 )[ 12s− 1

4 (n− 1)].

The case n = 1

Obviously, E(1,1)(s) is entire. We have

E
(1,1)
0 (0) = 2 · 1, E

(1,1)
1 (0) = 0.

The case n = 2

Let r = 2. By Proposition B.2, we have

E(2,2)(s)Q = [s+ 1
2 ] ⊗ E(1,1)(s+ 1

2 )[− 1
2s− 1

4 ]

+
ξ(2s)

ξ(2s+ 1)
[−s+ 1

2 ] ⊗ E(1,1)(s− 1
2 )[ 12s− 1

4 ].
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Hence E(2,2)(s) has a simple pole at s = 1
2 and is holomorphic at s = 3

2 . Also, the
functional equation

ξ(2s)E(2,2)(−s) = ξ(2s+ 1)E(2,2)(s)

holds. We have

E
(2,2)
−1 ( 1

2 ) =
ρ

ξ(2)
1.

Let r = 1. By Proposition B.2, we have

E(2,1)(s)Q = [s+ 1] ⊗ 1[− 1
2s− 1

2 ] +
ξ(s)

ξ(s+ 1)
[1] ⊗ E(1,1)(s)[− 1

2 ]

+
ξ(s)2

ξ(s+ 1)2
[−s+ 1] ⊗ 1[ 12s− 1

2 ].

Hence E(2,1)(s) has a double pole at s = 1 and is holomorphic at s = 2. We have

E
(2,1)
−2 (1) =

ρ2

ξ(2)2
1.

Lemma B.3.

E
(2,1)
−1 (1) =

ρ

ξ(2)
E

(2,2)
0 ( 1

2 ).

Proof. We have

E
(2,2)
0 ( 1

2 )Q = [1] ⊗ E(1,1)
0 (1)[− 1

2 ]

+
ρ

2ξ(2)
(−[0]′ ⊗ E(1,1)

0 (0)[0] + 1
2 [0] ⊗ E(1,1)

0 (0)[0]′ + [0] ⊗ E(1,1)
1 (0)[0])

+
ρ

ξ(2)

(
γ

ρ
− ξ′(2)
ξ(2)

)
[0] ⊗ E(1,1)

0 (0)[0]

= [1] ⊗ E(1,1)
0 (1)[− 1

2 ] − ρ

ξ(2)
([0]′ ⊗ 1[0] − 1

2 [0] ⊗ 1[0]′)

+
2ρ
ξ(2)

(
γ

ρ
− ξ′(2)
ξ(2)

)
[0] ⊗ 1[0].

On the other hand,

E
(2,1)
−1 (1)Q =

ρ

ξ(2)
[1] ⊗ E(1,1)

0 (1)[− 1
2 ]

+
ρ2

ξ(2)2
(−[0]′ ⊗ 1[0] + 1

2 [0] ⊗ 1[0]′) +
2ρ2

ξ(2)2

(
γ

ρ
− ξ′(2)
ξ(2)

)
[0] ⊗ 1[0].

By Lemma B.1, this yields the lemma. �
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The case n = 3

Let r = 3. By Proposition B.2, we have

E(3,3)(s)Q = [s+ 1] ⊗ E(2,2)(s+ 1
2 )[− 1

2s− 1
2 ]

+
ξ(2s)

ξ(2s+ 2)
[−s+ 1] ⊗ E(2,2)(s− 1

2 )[ 12s− 1
2 ]

= [s+ 1] ⊗ E(2,2)(s+ 1
2 )[− 1

2s− 1
2 ]

+
ξ(2s− 1)
ξ(2s+ 2)

[−s+ 1] ⊗ E(2,2)(−s+ 1
2 )[ 12s− 1

2 ].

Hence E(3,3)(s) has a simple pole at s = 1 and is holomorphic at s = 0. Also, the
functional equation

ξ(2s− 1)E(3,3)(−s) = ξ(2s+ 2)E(3,3)(s)

holds. We have

E
(3,3)
1 (0) = −2ξ′(2)

ξ(2)
E

(3,3)
0 (0), E

(3,3)
−1 (1) =

ρ

ξ(4)
1.

Let r = 2. By Proposition B.2, we have

E(3,2)(s)Q = [s+ 3
2 ] ⊗ E(2,1)(s+ 1

2 )[− 1
2s− 3

4 ] +
ξ(s− 1

2 )
ξ(s+ 3

2 )
[2] ⊗ E(2,2)(s)[1]

+
ξ(s+ 1

2 )2ξ(2s)
ξ(s+ 3

2 )2ξ(2s+ 1)
[−s+ 3

2 ] ⊗ E(2,1)(s− 1
2 )[ 12s− 3

4 ].

Hence E(3,2)(s) has a double pole at s = 3
2 . We have

E
(3,2)
−2 ( 3

2 ) =
ρ2

ξ(3)ξ(4)
1.

Let r = 1. By Proposition B.2, we have

E(3,1)(s)Q = [s+ 2] ⊗ 1[− 1
2s− 1] +

ξ(s+ 1)
ξ(s+ 2)

[1] ⊗ E(2,1)(s)[− 1
2 ]

+
ξ(s)ξ(s− 1)

ξ(s+ 1)ξ(s+ 2)
[−s+ 2] ⊗ 1[ 12s− 1].

Hence E(3,1)(s) has a simple pole at s = 2 and has a simple pole at s = 1. We have

E
(3,1)
−1 (2) =

ρξ(2)
ξ(3)ξ(4)

1.

Lemma B.4.
E

(3,2)
−1 ( 3

2 ) =
ρ

ξ(3)
E

(3,3)
0 (1).
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Proof. We have

E
(3,3)
0 (1)Q = [2] ⊗ E(2,2)

0 ( 3
2 )[1]

+
ξ(2)
ξ(4)

(−[0]′ ⊗ E(2,2)
−1 ( 1

2 )[0] + 1
2 [0] ⊗ E(2,2)

−1 ( 1
2 )[0]′ + [0] ⊗ E(2,2)

0 ( 1
2 )[0])

+
2ξ(2)
ξ(4)

(
ξ′(2)
ξ(2)

− ξ′(4)
ξ(4)

)
[0] ⊗ E(2,2)

−1 ( 1
2 )[0]

= [2] ⊗ E(2,2)
0 ( 3

2 )[1] − ρ

ξ(4)
([0]′ ⊗ 1[0] − 1

2 [0] ⊗ 1[0]′)

+
ξ(2)
ξ(4)

[0] ⊗ E(2,2)
0 ( 1

2 )[0] +
2ρ
ξ(4)

(
ξ′(2)
ξ(2)

− ξ′(4)
ξ(4)

)
[0] ⊗ 1[0].

On the other hand,

E
(3,2)
−1 ( 3

2 )Q =
ρ

ξ(3)
[2] ⊗ E(2,2)

0 ( 3
2 )[1]

+
ξ(2)2

ξ(3)ξ(4)
(−[0]′ ⊗ E(2,1)

−2 (1)[0] + 1
2 [0] ⊗ E(2,1)

−2 (1)[0]′ + [0] ⊗ E(2,1)
−1 (1)[0])

+
2ξ(2)2

ξ(3)ξ(4)

(
ξ′(2)
ξ(2)

− ξ′(4)
ξ(4)

)
[0] ⊗ E(2,1)

−2 (1)[0]

=
ρ

ξ(3)
[2] ⊗ E(2,2)

0 ( 3
2 )[1] − ρ2

ξ(3)ξ(4)
([0]′ ⊗ 1[0] − 1

2 [0] ⊗ 1[0]′)

+
ξ(2)2

ξ(3)ξ(4)
[0] ⊗ E(2,1)

−1 (1)[0] +
2ρ2

ξ(3)ξ(4)

(
ξ′(2)
ξ(2)

− ξ′(4)
ξ(4)

)
[0] ⊗ 1[0].

Hence the assertion follows from Lemmas B.1 and B.3. �

Lemma B.5.

E
(3,1)
−1 (1) =

ρ

2ξ(3)
E

(3,3)
0 (0).

Proof. We have

E
(3,3)
0 (0)Q = [1]′ ⊗ E(2,2)

−1 ( 1
2 )[− 1

2 ] − 1
2 [1] ⊗ E(2,2)

−1 ( 1
2 )[− 1

2 ]′ + [1] ⊗ E(2,2)
0 ( 1

2 )[− 1
2 ]

+ [1]′ ⊗ E(2,2)
−1 ( 1

2 )[− 1
2 ] − 1

2 [1] ⊗ E(2,2)
−1 ( 1

2 )[− 1
2 ]′ + [1] ⊗ E(2,2)

0 ( 1
2 )[− 1

2 ]

+
4ξ′(2)
ξ(2)

[1] ⊗ E(2,2)
−1 ( 1

2 )[− 1
2 ]

=
2ρ
ξ(2)

([1]′ ⊗ 1[− 1
2 ] − 1

2 [1] ⊗ 1[− 1
2 ]′) + 2[1] ⊗ E(2,2)

0 ( 1
2 )[− 1

2 ]

+
4ρξ′(2)
ξ(2)2

[1] ⊗ 1[− 1
2 ].
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On the other hand,

E
(3,1)
−1 (1)Q =

ξ(2)
ξ(3)

[1] ⊗ E(2,1)
−1 (1)[− 1

2 ] +
ξ(2)
ξ(3)

(
ξ′(2)
ξ(2)

− ξ′(3)
ξ(3)

)
[1] ⊗ E(2,1)

−2 (1)[− 1
2 ]

− ρ2

ξ(2)ξ(3)
(−[1]′ ⊗ 1[− 1

2 ] + 1
2 [1] ⊗ 1[− 1

2 ]′)

+
ρ2

ξ(2)ξ(3)

(
ξ′(2)
ξ(2)

+
ξ′(3)
ξ(3)

)
[1] ⊗ 1[− 1

2 ]

=
ξ(2)
ξ(3)

[1] ⊗ E(2,1)
−1 (1)[− 1

2 ] +
2ρ2ξ′(2)
ξ(2)2ξ(3)

[1] ⊗ 1[− 1
2 ]

+
ρ2

ξ(2)ξ(3)
([1]′ ⊗ 1[− 1

2 ] − 1
2 [1] ⊗ 1[− 1

2 ]′).

Hence the assertion follows from Lemmas B.1 and B.3. �

The case n = 4

Let r = 4. By Proposition B.2, we have

E(4,4)(s)Q = [s+ 3
2 ] ⊗ E(3,3)(s+ 1

2 )[− 1
2s− 3

4 ]

+
ξ(2s)

ξ(2s+ 3)
[−s+ 3

2 ] ⊗ E(3,3)(s− 1
2 )[ 12s− 3

4 ].

Hence E(4,4)(s) has a simple pole at s = 1
2 .

Let r = 2. By Proposition B.2, we have

E(4,2)(s)Q = [s+ 5
2 ] ⊗ E(3,1)(s+ 1

2 )[− 1
2s− 5

4 ] +
ξ(s+ 1

2 )
ξ(s+ 5

2 )
[2] ⊗ E(3,2)(s)[−1]

+
ξ(s+ 1

2 )ξ(s− 1
2 )ξ(2s)

ξ(s+ 5
2 )ξ(s+ 3

2 )ξ(2s+ 1)
[−s+ 5

2 ] ⊗ E(3,1)(s− 1
2 )[ 12s− 5

4 ].

Hence E(4,2)(s) has a double pole at s = 3
2 .

Let r = 1. By Proposition B.2, we have

E(4,1)(s)Q = [s+ 3] ⊗ 1[− 1
2s− 3

2 ] +
ξ(s+ 2)
ξ(s+ 3)

[1] ⊗ E(3,1)(s)[− 1
2 ]

+
ξ(s)ξ(s− 2)

ξ(s+ 1)ξ(s+ 3)
[−s+ 3] ⊗ 1[ 12s− 3

2 ].

Hence E(4,1)(s) has a simple pole at s = 1.

Lemma B.6.

E
(4,2)
−2 ( 3

2 ) =
ρξ(2)
ξ(3)ξ(4)

E
(4,4)
−1 ( 1

2 ).
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Proof. We have

E
(4,4)
−1 ( 1

2 )Q = [2] ⊗ E(3,3)
−1 (1)[−1] +

ρ

2ξ(4)
[1] ⊗ E(3,3)

0 (0)[− 1
2 ]

=
ρ

ξ(4)
[2] ⊗ 1[−1] +

ρ

2ξ(4)
[1] ⊗ E(3,3)

0 (0)[− 1
2 ].

On the other hand,

E
(4,2)
−2 ( 3

2 )Q =
ξ(2)
ξ(4)

[2] ⊗ E(3,2)
−2 ( 3

2 )[−1] +
ρξ(2)
ξ(4)2

[1] ⊗ E(3,1)
−1 (1)[− 1

2 ]

=
ρ2ξ(2)
ξ(3)ξ(4)2

[2] ⊗ 1[−1] +
ρξ(2)
ξ(4)2

[1] ⊗ E(3,1)
−1 (1)[− 1

2 ].

Hence the assertion follows from Lemmas B.1 and B.5. �

Lemma B.7.

E
(4,1)
−1 (1) = E

(4,4)
−1 ( 1

2 ).

Proof. We have

E
(4,1)
−1 (1)Q =

ξ(3)
ξ(4)

[1] ⊗ E(3,1)
−1 (1)[− 1

2 ] +
ρ

ξ(4)
[2] ⊗ 1[−1].

Hence the assertion follows from Lemmas B.1 and B.5. �

Proposition B.8.(
ρξ(2)
ξ(3)ξ(4)

)−1

E
(4,2)
−1 ( 3

2 ) = E
(4,4)
0 ( 1

2 ) + E(4,1)
0 (1) +

(
− γ

ρ
+

3ξ′(2)
ξ(2)

)
E

(4,4)
−1 ( 1

2 ).

Proof. We have

E
(4,4)
0 ( 1

2 )Q = [2]′ ⊗ E(3,3)
−1 (1)[−1] − 1

2 [2] ⊗ E(3,3)
−1 (1)[−1]′ + [2] ⊗ E(3,3)

0 (1)[−1]

+
ρ

2ξ(4)
(−[1]′ ⊗E(3,3)

0 (0)[− 1
2 ] + 1

2 [1] ⊗E(3,3)
0 (0)[− 1

2 ]′ + [1] ⊗E(3,3)
1 (0)[− 1

2 ])

+
ρ

ξ(4)

(
γ

ρ
− ξ′(4)
ξ(4)

)
[1] ⊗ E(3,3)

0 (0)[− 1
2 ]

=
ρ

ξ(4)
([2]′ ⊗ 1[−1] − 1

2 [2] ⊗ 1[−1]′) + [2] ⊗ E(3,3)
0 (1)[−1]

− ρ

2ξ(4)
([1]′ ⊗ E(3,3)

0 (0)[− 1
2 ] − 1

2 [1] ⊗ E(3,3)
0 (0)[− 1

2 ]′)

+
ρ

ξ(4)

(
γ

ρ
− ξ′(2)
ξ(2)

− ξ′(4)
ξ(4)

)
[1] ⊗ E(3,3)

0 (0)[− 1
2 ].
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By Lemmas B.4 and B.5, we have

E
(4,2)
−1 ( 3

2 )Q = [4] ⊗ E(3,1)
−1 (2)[−2]

+
ξ(2)
ξ(4)

[2] ⊗ E(3,2)
−1 ( 3

2 )[−1]

+
ξ(2)
ξ(4)

(
ξ′(2)
ξ(2)

− ξ′(4)
ξ(4)

)
[2] ⊗ E(3,2)

−2 ( 3
2 )[−1]

+
ρξ(2)
ξ(4)2

(−[1]′ ⊗E(3,1)
−1 (1)[− 1

2 ] + 1
2 [1] ⊗E(3,1)

−1 (1)[− 1
2 ]′ + [1] ⊗E(3,1)

0 (1)[− 1
2 ])

+
ρξ(2)
ξ(4)2

(
γ

ρ
+
ξ′(2)
ξ(2)

+
ξ′(3)
ξ(3)

− 3ξ′(4)
ξ(4)

)
[1] ⊗ E(3,1)

−1 (1)[− 1
2 ]

=
ρξ(2)
ξ(3)ξ(4)

[4] ⊗ 1[−2] +
ρξ(2)
ξ(3)ξ(4)

[2] ⊗ E(3,3)
0 (1)[−1]

+
ρ2ξ(2)
ξ(3)ξ(4)2

(
ξ′(2)
ξ(2)

− ξ′(4)
ξ(4)

)
[2] ⊗ 1[−1]

− ρ2ξ(2)
2ξ(3)ξ(4)2

([1]′ ⊗ E(3,3)
0 (0)[− 1

2 ] − 1
2 [1] ⊗ E(3,3)

0 (0)[− 1
2 ]′)

+
ρξ(2)
ξ(4)2

[1] ⊗ E(3,1)
0 (1)[− 1

2 ]

+
ρ2ξ(2)

2ξ(3)ξ(4)2

(
γ

ρ
+
ξ′(2)
ξ(2)

+
ξ′(3)
ξ(3)

− 3ξ′(4)
ξ(4)

)
[1] ⊗ E(3,3)

0 (0)[− 1
2 ]

and

E
(4,1)
0 (1)Q = [4] ⊗ 1[−2]

+
ξ(3)
ξ(4)

[1] ⊗ E(3,1)
0 (1)[− 1

2 ]

+
ξ(3)
ξ(4)

(
ξ′(3)
ξ(3)

− ξ′(4)
ξ(4)

)
[1] ⊗ E(3,1)

−1 (1)[− 1
2 ]

+
ρ

ξ(4)
(−[2]′ ⊗ 1[−1] + 1

2 [2] ⊗ 1[−1]′)

+
ρ

ξ(4)

(
γ

ρ
− 2ξ′(2)

ξ(2)
− ξ′(4)
ξ(4)

)
[2] ⊗ 1[−1]

= [4] ⊗ 1[−2] +
ξ(3)
ξ(4)

[1] ⊗ E(3,1)
0 (1)[− 1

2 ]

+
ρ

2ξ(4)

(
ξ′(3)
ξ(3)

− ξ′(4)
ξ(4)

)
[1] ⊗ E(3,3)

0 (0)[− 1
2 ]

− ρ

ξ(4)
([2]′ ⊗ 1[−1] − 1

2 [2] ⊗ 1[−1]′)

+
ρ

ξ(4)

(
γ

ρ
− 2ξ′(2)

ξ(2)
− ξ′(4)
ξ(4)

)
[2] ⊗ 1[−1].
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Hence we have(
ρξ(2)
ξ(3)ξ(4)

)−1

E
(4,2)
−1 ( 3

2 )Q − E(4,4)
0 ( 1

2 )Q − E(4,1)
0 (1)Q

=
ρ

ξ(4)

(
− γ

ρ
+

3ξ′(2)
ξ(2)

)
[2] ⊗ 1[−1] +

ρ

2ξ(4)

(
− γ

ρ
+

3ξ′(2)
ξ(2)

)
[1] ⊗ E(3,3)

0 (0)[− 1
2 ]

=
(

− γ

ρ
+

3ξ′(2)
ξ(2)

)
E

(4,4)
−1 ( 1

2 )Q.

By Lemma B.1, this yields the proposition. �
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