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1. Introduction

In [11], Gross and Prasad gave a remarkable conjecture on the non-vanishing of the
periods of automorphic forms on SO, x SO,,_; along the diagonal subgroup SO, _;
in terms of the non-vanishing of certain automorphic L-functions at the centre of the
critical strip. Their conjecture was refined in [21], where a conjectural formula relating
the periods to the central critical L-values was given. This refined conjecture follows from
a result of Waldspurger [55] for n = 3 and that of the second author [20] for n = 4.
The purpose of this paper is to establish the refined Gross—Prasad conjecture for certain
L-packets of automorphic representations in the case n = 5. The (candidate) L-packets
we consider were constructed by Roberts [49] and include all endoscopic L-packets of
SOs5 as well as some stable ones. Because of this, our result gives strong evidence that the
Gross—Prasad conjecture is related to the theory of endoscopy (see Remark 1.2). Special
cases of our result have been obtained earlier by Bocherer et al. [5] for the so-called
Yoshida lifts [57] (which are certain instances of endoscopic representations).

To state our main theorem, we need to introduce quite a lot of notation. Let F' be a
totally real number field with ring of adeles A = Ap and let E be a totally real étale
quadratic algebra over F'. Let Wy be a two-dimensional symplectic space over F, which
we may regard as a four-dimensional symplectic space W = Rg,p(Wy) over F. Set

G =GSp(W) = GSpy, G’ =Rpg/r(GSp(Wo)) = Rig/r(GLa),

https://doi.org/10.1017/51474748010000198 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748010000198

236 W. T Gan and A. Ichino

and

G'={g €G |v(g)eCpn},

where v : G’ — R /#(Gm) is the similitude character. Then we have a natural embedding
G' < G. Let V be a four-dimensional quadratic space over F' and set

H=GO(V).
The discriminant algebra of V' is the étale quadratic algebra K over F' defined by

I FxF if disc(V) € F*2,
| F(/dise(V) if disc(V) & F*2,

and we let wg/p be the quadratic character of A* /F* associated to K /I by class field
theory. Choose a quaternion algebra D over F' such that H is described by the short
exact sequence:

1= R p(Gm) = (Ri/p(D*) X Gyp) 3 (8) — H — 1

(see [49, §2]). Here i(z) = (2, Ng/p(2)7") for z € Rg/p(Gy,) and ¢ is an involution on
Ri/p(D*) x Gy, given by (g,A) — (g9°,A), where c is the non-trivial automorphism of
K over F.

Now let 0 = ), 0, be an irreducible unitary cuspidal automorphic representation of
H(A) on the space V, with central character w,. We assume the following.

e The Jacquet-Langlands transfer of o|px 4, to GL2(Ag) is cuspidal.
e 0, ®sgn = g, for some place v of F.

o If 0, ® sgn # o,, then o, & T0.v for any distinguished representation og, of
GSO(V)(F,) (see Definition 5.4).

Let 7 be the theta lift of o0 to G(A) on the space V. In §7, we will show that 7 is a
non-zero irreducible unitary cuspidal automorphic representation of G(A) with central
character w,. The representations 7 constructed in this way are precisely the ones which
occur in the L-packets of GSp, defined in the paper of Roberts [49] (though he assumed
that o and hence 7 is tempered). The automorphic representations of SO5(A) considered
in this paper are precisely those representations m with trivial central characters.

On the other hand, let 7’ be an irreducible unitary cuspidal automorphic representation
of G’(A) on the space Vv with central character w; . By [17, Theorem 4.13], there exists
an irreducible unitary cuspidal automorphic representation 7 of el (A) on the space V,
such that V., C V71|G/(A). Here V! is the subspace of V, on which the group

X, = {w € (Zg (A)G'(A)G'(F)\G'(A)P | T @ w =T}

acts trivially, and V| (a) is the restriction of V! to G'(A) as functions. We remark that
the cardinality of X is finite and does not depend on the choice of 7, i.e. it depends only
on 7'. We assume the following.
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e The base change 7% of 7 to G'(Ax) = GLy(Apgrk) is cuspidal.
e The Jacquet-Langlands transfer 72 of 7x to D* (Apg ) exists.

Let 6(7) be the theta lift of 7 to H(Ag). In §6, we will show that #(7) is a non-zero
irreducible unitary cuspidal automorphic representation of H(Ag).

We may now introduce certain automorphic L-functions which appear in the refined
Gross—Prasad conjecture under consideration:

L(s,m x7') = L(s,0 x 0(1)),
L(s,m,Ad) = L(s,0,std)L(s, o, Ad),
L(s,7',Ad) = L(s,7,Ad).

Here L(s,o x 6(7)) is the triple product L-function associated to o and 6(7) of degree
eight over K (see §3), L(s, o,std) is the standard L-function of o of degree four over F,
and L(s,o,Ad) (respectively L(s,7,Ad)) is the adjoint L-function of o (respectively )
of degree three over K (respectively E). Let S be a sufficiently large finite set of places

of F. By [45, Theorem 5.1], the partial L-function L¥(s, 7 x n’) is holomorphic at s = 1.

It is well known that the partial L-functions L°(s, 7, Ad) and L (s, 7', Ad) are holomor-
phic and non-zero at s = 1. (See also Lemma 7.1.) For each place v of F, we similarly

define L-factors L, (s, m, X 7)), Ly (s, my, Ad), and L, (s, 7, Ad) in terms of the Langlands

parameters of o, 7,, and 6(7,). By the Kim-Shahidi estimate [26,28], L,(s,m, X 7 ) is

holomorphic and non-zero at s = 1. It is well known that L, (s, T,, Ad) and L,(s, 7, Ad)

2 y s
are holomorphic and non-zero at s = 1.

Now let By : Vy ® V, — C and By : Vo @ Vir — C be the Petersson pairings given by

By (1, d2) = / 61(9)32(9) dg,
Za(A)G(F)\G(A)

Bor(f1, o) = / A1) F(@)dd .
Zgr (A)G'(F)\G'(A)

for ¢1, 2 € Vi and fi, fo € V. Here Vi and Vy are the complex conjugate represen-
tations of V; and V., Zg and Zg: are the identity components of the centres of G and
G’, and dg and dg¢’ are the Tamagawa measures on Zg(A)\G(A) and Zg (A)\G'(A),
respectively. We fix isomorphisms

/ /
ﬂ%®m and 7 %®ﬂ'v
v v

and decompositions

B, = HBM and Bp = HBW1’,)

where B, : 7, ® T, = C and By : 7, ® T, — C are local pairings. Moreover, we fix a
decomposition dg’ = [[, dg,,, where dg,, is a Haar measure on Zg ,\G,,.
Now define a G'(A) x G’(A)-invariant functional

P:(Vﬂ&‘?ﬂ)(@(vﬁ/‘zvﬁ/) —-C
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by
P(¢17¢2; flva)

= < / ¢1(g’)f1(9’)dg’) ( / <Z>2(g’)f2(g’)dg’)
Zer (B)G (F)\G' (A) Zer (A)G (F)\G' (A)

for ¢1, ¢2 € V: and f1, fo € V. We call P the global period integral. On the other hand,
for each place v of F, we define a G, x G -invariant functional

Ph: (B 7)) ® (n, ®W7al) = C

by

PE (¢1,v, ¢2,v; fl,m f2,v) = / Bm, ('/Tv (g'i;)d)l,va ¢2,U)Bﬂ{, (’/T:; (gi;)fl,va f2,v) dgi;

Zgrw\G,

for ¢1.4, 02, € Ty and fi 4, fo, € m,. In §9, we will show that this integral is absolutely
convergent. It was shown in [21, Theorem 1.2] that one has

Lv( !

/
5777'1) X 7TU)

L,(1,m,,Ad)L, (1, 7!, Ad)

s Moo

,P'E(d)l,'uv ¢2,v; fl,'ua f2,'u) = Cv(2)<v(4)

for unramified data satisfying the conditions (U1)—(U6) in [21, §1]. This suggests that
one normalizes the functional PJ by setting
1 Lo(1,m0, Ad) Ly (1,7, Ad
P1) = ( T 1 ) ( Iﬂ— )P5
C’U<2)C’U (4) LU(§77TU X 7T'u)
Then the product [], P, is another G'(A) x G'(A)-invariant functional on (V; X V;) ®
(Vpr ® V). Note that [, P, does not depend on the choices of the decompositions of
B, B, and dg’.
After this preparation, here is our main theorem.

Theorem 1.1. We have

p_ (@) Lz xm) TIm

201X, L(1,m, Ad)L(1, 7, Ad

as functionals on (V; ® V) ® (Vo ® Vyir). Here

3 if dise(V) € F*2,
2 if disc(V) ¢ F*2
Remark 1.2. Assume that w, is trivial. We regard 7 (respectively 7’) as an automor-

phic representation of SO5(A) (respectively SO4(A)). Then the refined Gross—Prasad
conjecture [21, Conjecture 1.5] for = and =’ follows from Theorem 1.1.
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Moreover, we let L be the hypothetical Langlands group of F' and Wr the Weil group
of F. Let

¢:Lp — 1S05 =Sp,(C) x Wr and ¢ : Lr — £S04 = SO4(C) x W

be the conjectural Arthur parameters of m and 7/, respectively (see [49]). Let Sy (respec-
tively Sy/) be the centralizer of the image of ¢ (respectively ¢’) in Sp,(C) (respec-
tively SO4(C)). Then the Arthur conjecture [2] asserts that

1S,] = 4 if dise(V) € F*2,
T2 if dise(V) g FX2,

and |S¢/| == 2‘.’*:-,—|

For the representations m and 7’ considered in this paper, the above expectations of
the Arthur conjecture are essentially verified in [49] for SO5 and in [17] for SO4. Hence
Theorem 1.1 is compatible with [21, Conjecture 2.1], in the sense that we have

2%|%7| = |Sp] |Sgr -
This power of 2 is the most subtle part of Theorem 1.1. It gives strong evidence that the
Gross—Prasad conjecture is related to the theory of endoscopy.

Remark 1.3. In the theorem, we have assumed that F' and E are totally real, so as
to use the Siegel-Weil formula by Kudla et al. [35]. This is the only place where this
assumption is necessary.

Let us describe the main ideas and inputs in the proof of Theorem 1.1. We have a
seesaw diagram of reductive dual pairs:

G = GSp(W) H' =Rg,p(GO(Vg))
G' = Rp/r(GSp(Wy))' H=GO(V)

Here
Ri/r(GSp(Wo))' = {g" € Re/r(GSp(Wo)) | v(g') € G},
Rp/r(GO(VE)) = {I' € Rg;r(GO(VR)) | v(K) € G},

and Vg = V ®p E. This gives rise to a global seesaw identity, which can be described as
a commutative diagram of equivariant maps:

(W)@ (e Xa)® (7' K7')
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Here
e w is the Weil representation,
e 7 and T’ are equivariant surjective maps induced by the global theta lifts,

e 7 is an invariant functional induced by the triple product period integral.

On the other hand, by integrating matrix coefficients, one has a local analogue (the
explicit local seesaw identity) of the above commutative diagram for each place v of F.
Because of some local multiplicity one theorems, we may compare the product of the
local diagrams with the global diagram. Indeed, one has

T~QT. T~QKT., I~]][. (1.1)

so that

P~ []P. (1.2)

Here ~ denotes equality up to a scalar. The main theorem amounts to an explicit deter-
mination of the constant of proportionality in (1.2). But by the commutativity of the
local and global diagrams above, it suffices to determine the three constants of propor-
tionality in (1.1). To determine the constants of proportionality for 7 and 7, we use the
Rallis inner product formula, whereas for Z, we use a formula for triple product period
integrals by the second author [20] (or rather its extension from GSO(V) to GO(V)).

This paper is organized as follows. In §2, we study the restriction of automorphic
forms on GO(V)(A) to GSO(V)(A). This is needed in §3, where we extend the result
of the second author [20] and prove a formula for triple product period integrals for
GO(V). In §§4 and 5, we study local theta lifts from GL2 to GO(V) and those from
GO(V) to GSpy, respectively. In §§6 and 7, we study global theta lifts from GLy to
GO(V) and those from GO(V') to GSp,, respectively. In particular, we construct explicit
pairings on the local theta lifts, and using the Rallis inner product formula, we compare
the product of the local pairings with the Petersson pairing on the global theta lift. To
prove the Rallis inner product formula, we use the Siegel-Weil formula (the second term
identity) for (O(V),Sp,) by Kudla and Rallis [31] and Kudla et al. [35], and prove a
certain spherical second term identity for (GSp,, GOg). After choosing Haar measures on
various groups in § 8, we prove in § 9 the explicit local seesaw identity with respect to these
measures. Finally, using the local and global seesaw identities and the formula for triple
product period integrals, we prove Theorem 1.1 in §10. We also include two appendices:
the first one determines completely the local theta correspondence for GO(V') x GSp,
and establishes certain properties of the correspondence we need, while the second one
proves the spherical second term identity for (GSp,, GOs).

2. Automorphic forms on GO(V)
Let F' be a number field and V' a four-dimensional quadratic space over F'. Set

H = GO(V), HY = GSO(V), po = (t).
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Then we have a short exact sequence:
15 H" 5 H— py— 1.

Let Zy be the identity component of the centre of H. We identify po with {4, —}. For
each place v of F', let t,, be the image of ¢t in H,.

Let dh and dhg be the Tamagawa measures on Zg(A)\H(A) and Zy(A)\H°(A),
respectively. Let de, be the Haar measure on ps(F,) such that vol(pa(F,)) = 1. Then
the product measure de = [], de, is the Tamagawa measure on po(A). Moreover, we
have

/ F(h) dh = / / F(hoe) dho de
Zp (A)H(F)\H(A) 2 (F)\p2(A) J Zy (A)HO(F)\HO(A)

for f € LY(Zy(A)H(F)\H(A)).

Let IT = @, II, be an irreducible unitary cuspidal automorphic representation of
H(A) on the space V7. Let & be the set of places v of F such that IT, ® sgn = IT,,. Let
B : Vit ® Vi — C be the Petersson pairing given by

B (¢, ¢2) = / ¢1(h)p2(h) dh

Zu (A)H(F)\H (&)

for ¢1, ¢ € Viz. We have an H(A)-equivariant surjective map
Vir — VH|H0(A)7

where Viz|po(a) is the restriction of Vi to H(A) as functions.

The case © = @

Let 7 be the automorphic representation of HY(A) on the space V; = Viz|go(a). Then
7 is irreducible. The restriction to H°(A) as functions induces an isomorphism

Vi = Vx

as representations of H(A). Let B, : V; ® Vi — C be the Petersson pairing.

Lemma 2.1. We have
By (1] moay, d2|mon)) = 2B (d1, $2)
for ¢1,¢2 € Vi1,

Proof. For each € € uy(A), we define an H°(A)-invariant pairing BS : V, ® V; — C by

B (@1lmo(a), P2lmom)) = Br(I1(€) 1l moay, I1(€) 2| ro(a))
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for ¢1, 2 € V7. Then we have B = C B, with some constant C.. Hence we have

B (@1lmo(a), P2lmon)) = CBr (1] moa), P2|mo(a))
= C B - (LL(€) 1] moay, II(€)d2|mo(a))
= C2Br(I1(€)1| o), I (€)pal o))
= C?BL(¢1]mo(a), b2l moa))

so that C? = 1. Since B¢ is positive definite, we have C. = 1. Hence we have

BH(¢17¢2) = / / ¢1(h06)¢2(h06) dhg de
2 (F)\piz (A) J Za1 () HO(F)\ HO ()

:/ B (1| mo(a), d2|roay) de
p2(F)\p2(A)

= vol(pa (F)\p2(A)) B (d1]mo(a), P2l Ho(a))-

The case G # @

We fix an isomorphism

e @nem(@)o(2)

veS vgS

as representations of H(A), where V, is the space of II,, S is a sufficiently large finite

set of places of F', and ¢, is an H (ov)—invariant element of V,, for v € S.
If v € &, then we can write I1, |H0 =7mF @7, , where 7.

is an irreducible admissible

representation of HY. Note that 77 2 7, and 7} oAd( v) =27, . Wehave V, = ViaV,,
where VF is the space of 7 and V= IT,,(t )(V;L ). We have ¢, = ¢ + ¢, for almost all
v € &, where ¢F is an H%(0,)-invariant element of V¥ and ¢, = IT,(t,) (7). If v & &,

then 7, = II,|go is an irreducible admissible representation of HY? on the space V.

Let S be a sufficiently large finite set of places of F'. For € = (€,) € pa(Fsns), let Virs

be the inverse image of

( X vf,v)@( & vv>®(®¢v)

veSNG vES, vgS vES

in V7 by (2.1). Then H®(Fs)uo(A5"S) acts on Vi s and the representation of H(Fy)

on Vf ¢ is given by

w@:( X miv)@( (09) m).

veSNG VES, vES
Hence we have

II| oa) lg @ TG, Vir = hg @ Vs

S ecpa(Fsne) S ecpa(Fsne)

as representations of HY(A).
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By [15, § 1], there exists an irreducible unitary cuspidal automorphic representation =
of H°(A) on the space V, such that

Virlgos) = Vi © Vioad(t)- (2.2)
We may assume that

= (Q@n)e(Q@m),

veES vES
vt (( @ vi)e( @ w)e( ® #f)o( @ )
S veESNG vES, vES vgS,vES vES, vE¢S
Then we have

mo Ad(t) = <®wv)®<®m),

veES vgS

(@) (@ 7)e( @)+ ©.%)

S vESNG vES, vES vgS,veES vgS, VeSS

Lemma 2.2. For ¢ € VIILS, the support of ¢ is contained in
HO(A) s (A7) U HO(A) s (A7)t

Proof. Let € € pu2(Fsne). By (2.2), we have Vg g|moa) = 0 unless € € po(F). Since
Viis = {I(e)p | ¢ € Vllr,s} and

HE) = | HOWm(a ),

e€p2(Fsne)

the assertion follows. O

Let By : Vz ® V;z — C be the Petersson pairing. We fix a decomposition

B. =[] Bf [] B

veS  vgS
where
e Bf : VI ®@V}f — Cis an Hl-invariant pairing if v € &,
e B,:V,®V, — Cis an H,-invariant pairing if v ¢ &,
e B (¢, o) = By(¢pu, @) =1 for almost all v.
For each v € &, we define an H{-invariant pairing B, : V, ® V,; — C by
By (61, 62) = B (I (£,)61, 1, (£,)6)

for ¢1,¢p2 € V, . Then B, (¢, , ¢, ) = 1 for almost all v € &. For each place v of F, we
define an H,-invariant pairing B%v VYV, ®V, — C as follows.
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o Ifve G, let BY (6] + 01,05 +¢5) = S(BF (6, 03) + By (61, ¢7)) for ¢ , ¢35 €
V| and ¢ ,¢; €V, .

o Ifu¢ &, let By, =B,
Then B%U (¢v, ) = 1 for almost all v.

Lemma 2.3. We have
B =[] B,

Proof. Fix a sufficiently large finite set S of places of F. Put
S =5\(SNG), s=|SN6&|, s =9
Let

¢1 = <®¢1,U) ® (®¢U>7 2 = (®¢Q,U) ® (®¢v) € Virss

veS vgS veS vegS

where ¢1 4, 2, € VI (respectively ¢4, ¢2,0 € Vo) if v € SN S (respectively if v € ).
Then By (¢1, ¢2) is equal to

/ / b1 (ho€)d2(hoe) dho de
p2(F)\p2(A) J Zy (A)HO(F)\HO(A)

1 -
- 7/ / &1 (hoe)p2(hoe) dhg de
uz(A) Zg (A)HO(F)\HO(A)

28+s+1 Z /Z ¢1(hoe)pa(hoe) dhy.

cEpa(Fg) 2 (B)HO(F)\HO(A)

By Lemma 2.2, this integral is equal to

23+1S — > /Z (¢1(ho€)a(hoe) + 1 (hoet)da(hoet)) dhg.

e€pa(Fgr) H(A)HO(F)\HO(A)

We have

/ ¢1 (hoGt)¢2 (hoGt) dho
Za (A)HO(F)\HO(A)

_ / 61 (Ad(8) (ho)€) b2 (AA(E) (7ro)e) dho
Zg(A)HO(F)\HO(A)

¢1(h06)mdho.

/ZH(A)HO(F)\HO(A)
Hence we have

B (o1, ¢2) = 2515

ecpa(Fgr)

/ ¢1(hoe)p2(hoe) dhg.
Zia () HO(F)\HO(4)
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Since I1(e)¢1, I (€)pa € Vi g for € € pa(Fs:), Bir(é1, ¢2) is equal to

1

o5 ts’ Z B (I(€) 1| mo(ay, 1I(€)$2|moay)
e€p2(Fgr)
1
= W Z H Bg_((bl,vad)Z,v) H Bv(Hv(ev)¢1,vaHv(ev)¢2,v)
ecps(Fgr)veESNG veSs’
1
= ; H Bj((bl,va(é&v) H Bv(¢1,v7¢2,v)
veSNG veSs’
= [I B (d10620) [] B, (61,0, 62.0).
veESNS veSs’
This completes the proof. O

3. Triple product period integrals for GO(V)

Let F' be a number field and let E' be an étale quadratic algebra over F. Let V be a
four-dimensional quadratic space over F'. Set

H=GO(V), H”=GSO(V).

Let K be the discriminant algebra of V' and choose a quaternion algebra D over F
associated to V as in §1.

Let IT = @, II,, (respectively II' = @), II))) be an irreducible unitary cuspidal auto-
morphic representation of H(A) (respectively H(Ag)) on the space Vi (respectively Vi)
with central character wy (respectively wy). We assume the following:

e wrhwyp is trivial on Zgy(A);
e [I, ®sgn = [I, for some place v of F
o II! ®sgn 2 II for all places v of F.

Let 7 (respectively 7') be an irreducible unitary cuspidal automorphic representa-
tion of HY(A) (respectively H°(Ag)) on the space V, (respectively V,.) such that
Vir|lgoa) = Vi @ Vioaaq) (vespectively Vips|goa,) = Var). Let 7 (respectively #’) be the
Jacquet-Langlands transfer of 7|px (a,) (respectively 7| px (4 g ) to GLa(Ax) (respec-
tively GL2(Aggk)). We define the adjoint L-functions of IT and I’ by

L(s,I1,Ad) = L(s,7,Ad) and L(s,II',Ad) = L(s,7’,Ad),

respectively. Note that L(s, II, Ad) does not depend on the choice of 7. We define an
L-function L(s, II x II") of degree eight over K by

L(s, I x II') = [ [ Lu(s, 70 x 7}),
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where L, (s, 7, X ,) is the triple product L-factor associated to the Langlands parameters
of 7, and 7 and the eight-dimensional representation of LR( Kk xEokK)/ Kk (GL2) defined
in [45, §0]. We remark that there is another definition of this L-factor & la Garrett [10],
Piatetski-Shapiro and Rallis [45], and Tkeda [22] using local zeta integrals and these
two definitions agree if v is non-archimedean and 7, and 7, are unramified, but we do
not assume that they agree for all v in this paper. The following lemma asserts that
L(s,IT x II") does not depend on the choice of 7.

Lemma 3.1. We have
Ly(s, (7, 0¢) x 7)) = Ly(s, 7ty X 7)),
where c is the non-trivial automorphism of K over F'.

Proof. We fix a place v of F' and suppress it from the notation. Let Wr be the Weil
group of F' and L the Langlands group of F' given by

{WF x SLy(C) if F is non-archimedean,

Wg if F'is archimedean.

We only consider the case where F and K are quadratic extensions of F' and F # K;
the other cases are similar. Then FK = F ® K is a quartic extension of F'. Let

BCk/r : “GLs — "R r(GLs) and BCpg,p : "Rp/r(GL2) — "Rpr/r(GLs)
be the base change L-homomorphisms. We define an L-homomorphism
Asaip/p : LRE/F(GLQ) — QL
by
Asaig/r((91,92),1) = (91 ® g2,1),

(id,w) if we Wg,

Asaig,p((1,1),w) = {(sw w) ifwdgWg

for g1,g2 € GLy(C) and w € Wy, where sw : C> ® C?> — C? ® C? is an isomorphism
given by sw(z ® y) = y ® x. Similarly, we define an L-homomorphism

Asaipg i : "Rpk/r(GL2) = "Ry p(GLy).

Then we have
AsaiEK/K ] BCEK/E = BCK/F o AsaiE/F.

Let¢: Lp — LRK/F(GLQ) and ¢’ : Lp — LREK/F(GLQ) be the Langlands parameters
of 7 and 7', respectively. We identify ¢ and Asaig g, g o¢’ with homomorphisms ¢ : Lx —
GL2(C) and Asaigg/k 0 ¢’ : Lx — GL4(C), respectively. By definition, we have

L(s, 7 x 7'") = L(s,¢ @ (Asaigg/k o ¢')).
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By assumption on II’, there exists a Langlands parameter ¢ : Lp — LRE/F(GLQ) such
that ¢’ = BCgk g o ¢”. Hence we have

L(s, ¢ ® (Asaipg/k 0 ¢')) = L(s,¢ ® (Asaipg/kx 0o BCpr/p o ¢"))
= L(s,¢ ® (BCk/p o Asaig,p 0 ¢")).

This completes the proof. O

Let Brr : Vi @ Vi — C and B : Vir ® Vi — C be the Petersson pairings. We
fix decompositions By = [[, Bn, and By = [], Bn;, where By, : IT, ® I, —» C and
By, : II,® IT) — C are pairings. Let dh be the Tamagawa measure on Zg (A)\H(A).
We fix a decomposition dh = Hv dh,, where dh, is a Haar measure on Zy ,\H,. We
define an H(A) x H(A)-invariant functional

T: (VU &VH) ® (VH/ &VH/) —C
by

(61, 655 8, 6) — ( / 61(R)} (1) dh) ( / PROTAD) dh)
Zy(A)H(F)\H(A) Zu(A)H(F)\H(A)

for ¢1, d2 € Vi and ¢/, ¢4 € Vipr. For each place v of F', we define an H, x H,-invariant
functional
T8 (I, ¥ IT,) @ (I ¥ IT) — C

by
IE(¢1,U,¢2,1);¢/1’U7¢I27U) - / \ BHU (Hv(hv)¢l,va¢2,v)BH1’} (H{;(hv)géll,md)éyv)dhu
Zg,o\Hy

for 1,0, ¢2., € I, and ¢} ,, 95, € II,. By [20, Lemma 2.1], this integral is absolutely

1,00
convergent.

Proposition 3.2. We have
L(L, 01T < I
(Qa X ) HIv
(1, II,Ad)L(1,IT", Ad) .

= 26CE®K(2)L

as functionals on (Vi ® V7)) @ (Vi ® Vigr). Here

—4 IfFE=K=FXF,

—1 if E=F x F and K is a quadratic extension of F,
c= < —3 if F is a quadratic extension of F' and K = F x I,

—2 if F and K are quadratic extensions of F' and E = K,

—1 if E and K are quadratic extensions of F' and E # K,

and
1 Lq,(l,IL,,Ad)LU(l,H{},Ad)zt1

B CEv®K‘U (2) Lv(%7ﬂv X Hzl)) !

1,
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The rest of this section is devoted to the proof of Proposition 3.2. Let G be the set of
places v of F' such that IT, ® sgn = II,,. Fix a sufficiently large finite set S of places of
F. Put

§'=8~(SNG), s=[Sne|, =9

We may assume that ¢1, ¢ € Vﬁ,s and ¢, ¢, € Vi 5. Here V}} ¢ is the subspace of
Vi given in §2 and Vi s is the subspace of Vi consisting of [],,¢ H(0p, )-invariant
elements.

Lemma 3.3. We have

B (W dh = o 3 H(hoe)8 (hoe) dho

/ZH(A)H(F)\H(A) cCpz(Fgr) Y Zr(B)HO(F)\HO(A)

for ¢ € Vﬁ,s and ¢ € Vipr.s, where dhg is the Tamagawa measure on Zg(A)\H"(A).

Proof. As in the proof of Lemma 2.3, we have

o(h)¢! () dh = - / 6(hoe)) (hoe) dh.
/ZH<A>H(F>\H(A> 254741 EGEFS) Z11 (A)HO(F)\HO (A)
By Lemma 2.2, this integral is equal to
]‘ / / /
(¢(ho€)¢'(hoe) + d(hoet)d’ (hoet)) dho.
29+9 +1 Eeﬂ;'s, ZH(A)HO F)\HO )
This completes the proof. (I

We fix an isomorphism

= (@) e (@)

4G}

and a decomposition

:HB;L'HBU

vES Vg S

as in §2. By Lemma 2.3, we may assume that BHU = 357 , where ZS’h I, ® I, — C is
the pairing given in §2. We fix an isomorphism 7’ = @), 7. Let B'b s, @7, — C be
the pairing given by B?, = B |7 @r . By Lemma 2.1, we have

B =2° HBE%.

Here
2 ifE=FXF,
B={

1 if E is a quadratic extension of F'.
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Let dhg,, be the Haar measure on ZHJ,\HLJ such that
1
f(hv dhv =3 / f hO;uev) dhO,v
/ZH,U\Hu ) 2 Z ZH,U\Hg (

€vEp2(Fy)

for f € L'(Zy,,\Hy). Then the product measure [], dho,, is the Tamagawa measure on
Z(A)\H°(A). We define an H? x H-invariant functional

Ty (my RT3 @ (m, ®7,) = C

by
To(P1,05 D2,05 B 45 P2.0) =/ B3 (78 (ho,0) 81,0, $2,0) Bary (70, (ho,0) @' s 05.) dho o
Z,»\HY

for ¢1 .4, ¢2,» € Ty and ¢ ,, ¢5,, € m,, where

+ ifve6,
o —
g ifvg6.

By [20, Theorem 1.1] and Lemma 3.3, Z(¢1, ¢2; ¢}, ¢5) is equal to

@) LS (3,7 x 7o) 1
KA LS, 7, Ad)LS (1, 7/, Ad) 225+2¢
X Z Z H To (I, (e ¢1 vs v( )¢2 v (61))¢1 1)7H1/)( )¢/2,v)
e€pa(Fgr) € Epa(Fgr) vES

for ¢1 = ®1) ¢1,7j7 ¢2 = ®U ¢2,U € VIII,S and ¢/1 = ®v 1,0 ¢2 ® ¢2 U € VH’ S Here

—6 fEF=K=FXF,
-3 if F=F x F and K is a quadratic extension of F,

co = § —4 if F is a quadratic extension of F' and K = F X F,
—3 if F and K are quadratic extensions of F' and F = K,
—2 if F and K are quadratic extensions of F' and E # K.

2[3+00 . C}%@

To finish the proof of Proposition 3.2, it remains to show the following lemma.

Lemma 3.4. We have

ﬁ Z Z va (€ ¢1va ( )¢2va (Ev)d)lmnz/;( )QS/27’L))

e€p(Fgr) € €Epa(Fgr) vES

= H I,E(¢1,u, ¢2,v§ d)/l,qn ¢/2,'u)

veS

for ¢1 = @, d1,0, 02 = &, $2,0 € Vij 5 and ) = Q, ¢ ., 2 = &, b5, € Vi s
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Proof. If v € G, then

1 , /
jv (¢1,'u, ¢2,v; d)l,va ¢2,v)

1
= 5/ BEYU (11 (ho,v) P10+ D2,0) B (1T}, (ho o) #Y y» D5.) dho o
Zm,o\HY
1
— 5 Z / (hO,vev)¢1,va¢2,v)BH{) (qu;(ho,vev)(b/],vaqsé,v) dhO,'u
ex€pa(Fy) ZH, “\HO
v CH2
= v((bl,m ¢2,’U; ¢1,'u7 ¢2,v)'
If v ¢ G, then

1
2 Z Z jv( (€U)¢1 v 1( ;)‘152,11?H{;(ev)ﬁsll,vvné(d;)ﬁﬁé,v)

€vEpa(Fy) € epa(Fy)

- XX

evEpa(Fy) € €pa(Fy)
X / o B%v (Hu(ho,v%)%,m e (GL)QSQ,U)BH% (H;(h07v€”)¢11»”’ Hl/’ (6;)(;5/2’”) dho’v
ZH v\H

= % / BH ( (hO uﬁv)¢1 v ¢2 U)BH’( (ho vev)¢1 ik ¢2 'U) dho v
Zu,\H)

v
€y Ep2(Fy)

U(d)l,?n ¢2,1}; d),l,va d)/2,v)'
This completes the proof. O

This completes the proof of Proposition 3.2.

4. Local theta lifts from GL; to GO(V)

Let F be alocal field of characteristic zero. Let W be a two-dimensional symplectic space
over F' and V a four-dimensional quadratic space over F. Set

G = GSp(W)(F) = GLo(F), Gy = Sp(W)(F) = SLy(F),
H = GO(V)(F), Hy = O(V)(F).

Let
R=G(Sp(W) x O(V))(F) ={(g9,h) € G x H | v(g) = v(h)},

where v : G — F* and v : H — F* are the similitude characters.

Fix a non-trivial additive character ¢ of F. Let w denote the Weil representation of
G1 x Hy with respect to ¢. As in [13, §5.1] and [47], we extend w to a representation of
R. Let

- Gt xH
2 = c-ind} 7 (w),
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where GT = {g € G | v(g) € v(H)}. The induced Weil representation {2 depends only on
the orbit of ¢ under the natural action of v(H) C F*. Let 7 be an infinite-dimensional
irreducible admissible representation of G*. Then the maximal (71)V-isotypic quotient
of §2 is of the form

(7)Y RO(nT),
where (7)Y is the contragredient representation of 7 and © (7 1) is a smooth representa-
tion of H. If the residual characteristic of F' is not two, then the Howe duality conjecture,
which is a theorem of Howe [18] and Waldspurger [56], and a result of Roberts [47] assert
that ©(7") has a unique irreducible quotient #(7). Even if the residual characteristic
of F is two, the same assertion follows from [8, Lemmas 4.1 and 5.4]. Thus, we obtain a
unique (up to a scalar) R-equivariant surjective map

O:wnt —0(xt).

Lemma 4.1. Assume that GT # G. Let 7 be an infinite-dimensional irreducible admissi-
ble representation of G such that m|g+ is reducible. Then we can write w|g+ =T @7,

where m is an irreducible admissible representation of Gt such that

O(mt) #£0, O(r7)=0.

Proof. If F is a non-archimedean local field, then the assertion follows from [8, §5]. If
F =R, see [43]. O

Let 7 be an infinite-dimensional irreducible admissible representation of G. If G+ # G,
let
{9(7r|g+) if m|g+ is irreducible,
O(r) =

O(n+)  if m|g+ is reducible,

where 7 is an irreducible subrepresentation of 7|g+ as in Lemma 4.1. Thus, we obtain
a unique (up to a scalar) R-equivariant surjective map

0:wm— 0(m).

5. Local theta lifts from GO(V) to GSp,

Let F be a local field of characteristic zero. Let V' be a four-dimensional quadratic space
over F' and W a four-dimensional symplectic space over F. Set

G = GSp(W)(F) = GSp,(F), G1 = Sp(W)(F) = Sp,(F).
Let

R=G(O(V) x Sp(W))(F) = {(h,g) € H x G | v(h) =v(g)},

where v : H — F* and v : G — F* are the similitude characters. Let K be the
discriminant algebra of V' and choose a quaternion algebra D over F' associated to V as
in §1.
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Fix a non-trivial additive character ¥ of F. Let w denote the Weil representation of
H, x G with respect to . As in [13, §5.1] and [47], we extend w to a representation of
R. Let

Q2 = c-ind2*" (w),

where GT = {g € G | v(g9) € v(H)}. The induced Weil representation {2 depends only
on the orbit of ¢ under the natural action of v(H) C F*.

Lemma 5.1. Assume that G # G. Let go € G ~ GT. Let o and ©% be irreducible
admissible representations of H and G, respectively. If Homp y g+ (2,0 K 7)) £ 0, then
7t o Ad(gg) Z 7.

Proof. The assertion follows from [49, Lemmas 1.4 and 1.5] and the proof of [49, The-
orem 1.8]. We remark that [49, Lemma 1.5] follows from [43] even if disc(V) ¢ F*2. O

Let o be an irreducible unitary admissible representation of H. Then the maximal
o-isotypic quotient of {2 is of the form

X O(0),

where 7 is the complex conjugate representation of o and ©(c) is a smooth representation
of GT. We call ©(c) the big theta lift of o to G*. If the residual characteristic of F
is not two, then the Howe duality conjecture, which is a theorem of Howe [18] and
Waldspurger [56], and a result of Roberts [47] assert that ©(o) has a unique irreducible
quotient 0(c). Even if the residual characteristic of F' is two, the same assertion follows
from Theorem A.1 in Appendix A. We call () the theta lift of o to GT. Thus, we obtain
a unique (up to a scalar) R-equivariant surjective map

0:w®0o—0(0).

By Lemma 5.1, we obtain the following lemma.

Lemma 5.2. Assume that (o) is non-zero and unitary. Let m = ind&+ (8(c)). Then
is irreducible. Moreover, we have

Br(m(g)$1,¢2) =0

for g € G\ GT and ¢1,¢s € 0(0). Here B, : @ 7 — C is a pairing and we regard 6(c)
as a subrepresentation of T|g+.

Lemma 5.3. Assume that o ® sgn % o and the theta lift of o to GLy(F)" is non-zero.
Then we have
6(c @ sgn) = 0.

Proof. By [46, p. 399], the theta lift of the sign character of O(V)(F) to Sps,, (F) is
zero unless n > 4. As in [1, Proposition 1.7], this yields the lemma. O
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Definition 5.4. Set H? = GSO(V)(F). Let o be an irreducible admissible representa-
tion of H°. We say that o is distinguished if

D
o0 = g Rwewg,/r

as representations of D*(K) x F* for some irreducible admissible representation ¢ of
GLy(F) with central character w.. Here ¢k is the base change of ¢ to GL2(K) and ¢Z is the
Jacquet-Langlands transfer of ¢x to D*(K). Then we can write indo(00) = of @ 0y,
where o is an irreducible admissible representation of H such that the theta lift of o
to GLo(F)* is non-zero (and hence 6(o; ) = 0 by Lemma 5.3).

Let o be an irreducible unitary admissible representation of H. We assume that o
is a local component of an irreducible unitary cuspidal automorphic representation as
in §7.2. In particular, if o ® sgn 2 o, then o 2 o for any distinguished representation
oo of GSO(V)(F). In §7 below, we will show that (o) is non-zero and unitary. By
Theorem A.1 in Appendix A, we obtain the following proposition.

Proposition 5.5. If F' is a non-archimedean local field, then the multiplicity of 8(c) in
O(o) is one.

Let £2 be the complex conjugate representation of 2. Then we have

8(a) = 6(0),  0(s)=0(0),

where 6(&) (respectively 6(7)) is the big theta lift (respectively the theta lift) of & to
Gt with respect to £2. Let

0:w®ac—0(o0), f:02ac— 0(o)

be the unique (up to a scalar) R-equivariant surjective maps.
Let

H=1{h=(hi,hs) € HxH|v(h)=v(hs)},
R={(h,9) € HxG|v(h)=v(g)}.

We define an R-equivariant map
Z: (wKRo)®(cXa) = C

by
Z(p1, 025 f1, f2) = / B, (w(h1)e1,02)By(a(h1) f1, f2) dhy
H,
for v1,p2 € w and f1,fo € 0. Here B, : w® w — C and B, : 0 ® ¢ — C are pairings.
In §7, we will show that this integral is absolutely convergent and Z # 0.

Lemma 5.6. If I is a non-archimedean local field, then there exists a pairing By, :

0(0) ® (o) — C such that )
Z = B@(g) o(0®80).
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Proof. It suffices to show that

dim¢ Homp(wX o) ® (6 ®5),C) = 1.
We have

Hompg((w R o) ® (6 X5),C) 2 Hompgygxa+ (2K 2) ® (0 K5),C)

= Homg+ (0(0) © ©(0),C)

vV

= Homg+ (O(a),0(0) ).

Let [ : O(0) — @(a)v be a non-zero G“‘-equivvariant map. Thenvthe image of | contains
the unique irreducible subrepresentation 6(c) = (o) of ©(c) . By Proposition 5.5,
factors through the quotient ©(c) — (o). This yields the lemma. O

Lemma 5.7. If F' is an archimedean local field, then there exists a pairing By(o)
0(0) ® (o) — C such that
Z = Bg(g) (] (9 ® 9)

Proof. We can write o|g, = @,_,0;, where n < 2 and o; is an irreducible unitary
admissible representation of H;. As in [8, Lemma 3.1], we have

o)le, = EB@az and  0(0)|q, = @901

Here ©(o;) (respectively 6(o;)) is the big theta lift (respectively the theta lift) of o; to
G;. If n =2, then 01 2 02 and hence 6(o1) 2 6(02). We have

(W) ® (0 XRG)| o, xH xG1 %G, = @@(wﬁ@) ® (0, X 7;),

O(0) K O(0)|6,xr = @@9(01) X O(o;),
0(0) ®@|Gl xG1 — @ @9(01) gm
Let
t: (wRo)® (e ®a) = O(c) XO(0), p:O(0)XO(0) = 0(c) K (o),

tij (WHW)®(0; X a;) = O(0) XO(0;),  pij : Ooi) KO(0;) = 0(0;) K (0;),

be equivariant surjective maps. We may assume that

t:®@t” and P:@@Pm

i=1 j=1 i=1 j=1
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In particular, we have
ker(p) = ) €P ker(pi)-
i=1 j=1

Since Z is an R-equivariant map, there exists a G -invariant functional | : ©(c) ®

O(0) — C such that Z = ot. It remains to show that ker(p) C ker(l). Let Z;; (respec-
tively l;;) be the restriction of Z (respectively {) to (w K@) ® (0; ® ;) (respectively
O(0;) ® O(0;)). It follows from the definition of Z that Z;; = 0 if ¢ # j, so that ;; =0

if 1 # j and
Z= Zzn‘ = Zlii o .
i=1 i=1

By a result of He [16], the G;-invariant functional ;; : ©(0;)®6O(0;) — C factors through
Dii, so that ker(p;;) C ker(l;;). Hence we have

(ékef(mO < (@9(%) ®@(Uj)) C ker(l).

i#]

This yields the lemma. O

6. Global theta lifts from GL2 to GO(V)

Let F' be a totally real number field. Let W be a two-dimensional symplectic space over
F and V a four-dimensional quadratic space over F. Let W = W @& (—W). Set

G = GSp(W) = GLo, G =Sp(W) = SLs,
G =GSp(W)=2GSp,,  Gi=Sp(W) = Sp,,
H = GO(V), Hy =O(V).

Let
G={9=1(91,92) € GxG|v(g)=r(92)},

where v : G — G,, is the similitude character. Let ¢ : G < G be the natural embedding.
Let K be the discriminant algebra of V' and choose a quaternion algebra D over F
associated to V as in § 1.

6.1. Weil representations

Fix a non-trivial additive character ¢ = @), 1, of A/F. Let W = X @Y be a complete
polarization and set

W=VeW, X=VoX, Y=VaY.

Then W is a symplectic space over F' and W = X @ Y is a complete polarization. Let
Mp(W(A)) denote the metaplectic extension of Sp(W)(A). Let w be the Weil representa-
tion of Mp(W(A)) on the space V,, = S(X(A)) with respect to ¢ and B, : V, ® V, — C
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the canonical pairing given by

Bu(gr,02) = / @R

for ¢1,p2 € V,,. Here dz is the Tamagawa measure on X(A). For each place v of F, let
Mp(W,) denote the metaplectic extension of Sp(W)(F,). Let w, be the Weil represen-
tation of Mp(W,) on the space S(X,) with respect to ¢, and B, : w, ® @, — C the
canonical pairing given by

Bo, (1.0s 02) = / o10(@0) P2 () iy
Xu

for ¢1,4, P2, € S(Xy). Here dz,, is the self-dual measure on X,, with respect to the Fourier
transform determined by 1,,. Then we have w = @), w, and B, =[], B., - By [30], there

exists a splitting

By [13, §5.1] and [47], we can extend it to a splitting
G(Sp(W) x O(V))(A) — Mp(W(A)).

We regard w as a representation of G(Sp(W) x O(V))(A) via this splitting. Similarly, we
may regard w, as a representation of G(Sp(W) x O(V))(F,).
Let ~ 5 B ~
W=VeW, X=VeoXa(-X), Y=Vl a(-Y)).
Then W is a symplectic space over F and W = X &Y is a complete polarization. Let @

be the Weil representation of M~p(W(A)) on S(X(A)) with respect to 1. We may regard
@ as a representation of G(Sp(W) x O(V))(A). We have a natural isomorphism

S(X(A) =V, ®V,
as representations of Mp(W(A)) x Mp(W(A)). Let

WA ={(z,z) |z € W}, WA =V W2,
WY = {(z,—x) |z € W}, WY =VeWwV.

Then W = WY @ WA is a complete polarization. Hence we can realize the Weil repre-
sentation @ on S(WV(A)). By [40, §2], there exists an isomorphism

§:S(X(A) = S(WY(A))

as representations of Mp(W(A)) such that

6(p1 @ 92)(0) = Bu (1, 92)

for v1, 2 € V.
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6.2. Theta lifts

Let m = @), m, be an irreducible unitary cuspidal automorphic representation of G(A)
on the space V, with central character w,. We assume the following.

e The base change 7 of 7 to G(Ag) = GLa(Ak) is cuspidal.

e The Jacquet-Langlands transfer 72 of mx to D*(Ag) exists.
Lemma 6.1. The partial L-function L(s,7,Ad ® wg/F) is holomorphic and non-zero

at s = 1.

Proof. It is well known that L(s,m, Ad) is holomorphic and non-zero at s = 1. If K is
a quadratic extension of I, then

L(s,mx, Ad) = L% (s, m, Ad) L (s, m, Ad ® WK/F)
is also holomorphic and non-zero at s = 1 since 7 is cuspidal. This yields the lemma. O

Let ¢ € V,,. The theta function associated to ¢ is given by
0(g.hs0) = > wig, ()
zeX(F)

for (g, h) € G(Sp(W) x O(V))(A). Let f € V. For h € H(A), choose g € G(A) such that
v(g) = v(h), and put

O(h; o, f) = / 0(g19,h; ) f(g919) dg1.
G1(F)\G1(A)

Here dgi = [], dg1,, is the Tamagawa measure on G (A). Note that vol(G1(F)\G1(A)) =
1 and we may assume that the volume of a hyperspecial maximal compact subgroup of
G, with respect to dg; ,, is 1 for almost all v. This integral defines an automorphic form
0(, f) on H(A). Let 6(m) be the automorphic representation of H(A) on the space Vi)
generated by 6(p, f) for all ¢ € V, and f € V. By assumption on 7, 8(r) is cuspidal. In
Lemma, 6.9 below, we will show that Vy() # 0. In particular, 6(m,) # 0 for all v. Hence
0(r) is irreducible,

0(m) = Q) O(r),

and 6(m,) is unitary for all v. Thus, we obtain a G(Sp(W) x O(V))(A)-equivariant sur-
jective map
0:V, 2V, — Vg(w)

and G(Sp(W) x O(V))(F,)-equivariant surjective maps
Oy wy @ Ty — O(my)
such that 0 = @), 6,. As in [52], we have
O(7) | Dx (A )xax = 7T}D< N wrwi/p

by the local unramified theta correspondence and the strong multiplicity one theorem.
We should remark that the local theta correspondence for GLy x GO(V') has also been
studied by Cognet [6,7] and Roberts [48].
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6.3. Eisenstein series

Let P be the parabolic subgroup of G stabilizing W2 with modulus character ép. We
regard wg,p as a character of P(A) via the natural homomorphism

det
= Gy

P — GL(WVY)
For v € G,,, we define an element d(v) of P by
dW)lwv =id,  d@)|lwa = v-id.
We fix a maximal compact subgroup K of G(A) such that G(A) = P(A)K

A
Let I(s) denote the degenerate principal series representation of é(A) given by

el s/
I(S) = Indpgig ((J.)K/F(SP/J)7

where Ind denotes the normalized induction. Given a holomorphic section ¢ of I (s), we
define an Eisenstein series E(s, ®) on G(A) by

E(gis,®)= Y  ®(yg,9)
YEP(F)\G(F)
for Re(s) > 0. By [34, Theorem 1.1}, E(s,®) has at most a simple pole at s = i Let
P, = PN Gy. Let I1(s) denote the degenerate principal series representation of G1(A)
given by )
Iy(s) = Ind§ &)

s/3
Pi(A) (WK/FéP{ )
If @, is a holomorphic section of I (s), we similarly define an Eisenstein series E(s, ®1)
I,(s) and

on G1(A). If @ is a holomorphic section of I(s), then D¢, (a) is a holomorphic section of

E(Sagp”é’l(A) = E(Sa®|é1(A))'
We define a G(Sp(W) x O(V))(A)-equivariant map

[]: S(WY(A)) = I(3)
by

)9, 3) = Iv(9)| *@(d(v(9) ") g)(0)

for g € G(A).~Here G(Sp(W) x O(V))(A) acts on I(3}) via the projection G(Sp(W) x
O(V))(A) — G(A)*. We extend [¢] to a holomorphic section of I(s) such that its restric-
tion to K is independent of s. Let

o0

E(s,[¢]) = Y (s — 3)"Aa(p)

d=—1
be the Laurent expansion of E(s, [¢]) at s =

1
2
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6.4. Theta integrals

Let 7 be the Witt index of V and V = X' ® Vp @ Y’ a Witt decomposition, where Vj
is an anisotropic quadratic space over F' of dimension 4 — 2r. Let dh; be the Tamagawa
measure on Hi(A) and note that vol(Hy(F)\H1(A)) = 1. Let ¢ € S(WY(A)). The theta
function associated to ¢ is given by

(g, i) = > @(g,h)e)

TEWY (F)

for (g,h) € G(Sp(W) x O(V))(A). If » = 0, then the theta integral I(¢) is given by
I(g1;¢) = / (g1, hi; ) dhy
Hi(F)\Hi(h)

for g1 € G1(A).

Assume that r > 0. Let P’ be the parabolic subgroup of H; stabilizing Y/ with modulus
character dp. We fix a maximal compact subgroup K’ of H;(A) such that Hy(A) =
P'(A)K'. Let d;p’ be the left-invariant Tamagawa measure on P’(A) and dk’ the Haar
measure on K’ such that vol(K’) = 1. There exists a constant k such that

/ F(hy)dhy = & / SR dup! K
Hy(A) '(A) JK’

for f € LY(Hy(A)).
P ;1 ’ : : Hy(A)¢s/(3—T)
ut o' = 5(3 —r). Let @' be the holomorphic section of Indp) iy (0 ) such that
&' (k',s) =1 for all ¥’ € K'. We define an Eisenstein series £(s) on Hy(A) by

Ehss) = Y ¥(yh,s)
YEP(F)\H1(F)
for Re(s) > ¢'. By [36, §5] and [23, §9], we have
Ress=p E(M1;8) =K

for hy € Hl(A)

Let z € 3(1,5) be the regularizing differential operator as in [35, §3.2] and [34, §5],
where v is a real place of F. There exists a self-adjoint differential operator 2z’ € 3(h1.4)
such that @(z) = @(z’). Then we have z’E(s) = p(s)E(s) with some p(s) € Cls]. Following
Kudla and Rallis [34, § 5], we define the regularized theta integral I(s, ) by

1
(g3, 0) = 7/ 0(g1, hi; 2p)€ (ha; ) dhy
kp(s) Hy(F)\H,(A)
for g1 € G1(A). By [34, Lemma 5.5.6], I(s, ) has at most a double pole at s = ¢'. Let
I(s,0) = Y (s— &) Baly)
d=—2

be the Laurent expansion of I(s, ) at s = ¢'.
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6.5. The Siegel-Weil formula

Let A(G1) denote the space of automorphic forms on G4 (A) and R(G) the subspace
of A(G1) generated by Res,—1/2 E(s,®1) for all holomorphic sections @1 of I(s).

Let ¢ € S(WY(A)). If r = 0, then the Siegel-Weil formula by Kudla and Rallis [31]
asserts that

I(p) = A0(¢)|61(A)-
If r > 0, then the Siegel-Weil formula (the second term identity) by Kudla et al. [35, § 6]

asserts that 3
B_1(p) = Ao(9)|g, a) mod R(G1). (6.1)

Remark 6.2. In [35, §6], Kudla et al. proved (6.1) up to a scalar. Computing Fourier
coefficients as in [35, Proposition 6.2], [54, Proposition 5.1.1] and [19, Proposition 6.2],
we can determine the constant of proportionality.

6.6. The doubling method
Let A(G) denote the space of automorphic forms on G(A) and R(G) the subspace of

A(G) generated by Res,=1/2 E(s,®) for all holomorphic sections @ of I(s). If F € R(G),
then Fla, (4) € R(G1).

Let B, : V; ® V; — C be the Petersson pairing given by

Bo(fu. f2) = / 110V Fa(9) dg

Za(M)G(F\G(A)

for f1, fo € V. Here Zg is the identity component of the centre of G and dg is the
Tamagawa measure on Zg(A)\G(A). Note that vol(Zg(A)G(F)\G(A)) = 2. We fix a
decomposition B, =[], Bx,, where B, : 7, ® T, — C is a pairing. Let

GA)T ={geG(A)|v(g) € v(H(A))}
and G(F)* = G(F) N G(A)*. Put

2 ifK=FxF,

1 if K is a quadratic extension of F'.

b = vol(Zg(A)G(F)"\G(A)T) = {

Lemma 6.3. We have

/ )f2(9) dg = 30Bx(f1, f2)
Za(A)G(F)T\G(A)*

for fi, fo € Vr.

Proof. We may assume that K is a quadratic extension of F'. Let
G = Zc(A)GA)TG(F).

Note that |G\G(A)| = 2. By assumption on 7, the group

{we (G\GA) | Tow =}
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is trivial and hence 7|g is irreducible. The restriction to G as functions induces an iso-
morphism

V. gvﬂ|g

as representations of G.
We define a G-invariant pairing B : Vi|g ® Vi|g — C by

B (filg. f2lg) = / £1(9)Ta(9) dg

Za(M)GF)T\G(A)T

for f1, fo € V. As in the proof of Lemma 2.1, we have

B:(W(go)fl\ga 7(g90) f2lg) = B:(f1|g7 falg)

for go € G(A) \ G. Hence we have

Ba(f1,f2)= >, Bf(r(90)filg:w(g90)f2lg) = 2B (filg, falg).

go€G\G(A)

Let
G(A) T ={geG(A)|v(g) e v(H(A))}

and G(F)™ = G(F) N G(A)*. For a holomorphic section @ of I(s) and fi, fo € Vi, the
zeta integral of Piatetski-Shapiro and Rallis [44] and [12, §6.2] is given by

Z(5,, 1, f2) = / Eu(g1.92): 5. ) 1(91) T2 g2) dg.

Za(M)G(F)T\GA)T

Here Z is the identity component of the centre of G and dg is the Tamagawa measure
on Z(A)\G(A). Note that vol(Z5(A)G(F)T\G(A)*) = v. For each place v of F, let

Zv(sa stv fl,vv f2,v) = / QSU(L(QLM 1)a S)Bﬂ'v (ﬂ-v(gl,v)fl,va fZ,U) dgl,v-
G0

Lemma 6.4. For a holomorphic section & = @, P, of I(s) and fi = @, fi,0,f2 =
), f2,0 € Vi, we have

Z(S,@,fl,fg) =

0 LS(3+%771,Ad®wK/F)
—. | | A 1) v)-
2 LS(S %7 / )CS(2S 1) L U(Sv val,vva,u)

Proof. The assertion follows from the doubling method of [44] and [12, §6.2] and from
Lemma 6.3. g
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6.7. Local zeta integrals

Let I,(s) = Ind%’ (wk, /P, 51531 %) denote the degenerate principal series representation
of év.

Lemma 6.5. For a holomorphic section ¢, of I,(s) and fi14, f2» € Ty, the integral
Zy(8, Py, f1.0, f2) Is absolutely convergent at s = %

Proof. By [44, Proposition 6.4], the function g1, — P,(¢(g14,1), %) belongs to
L'*¢(G4 ) for any € > 0. This yields the lemma. O

For 14,92 € S(X,), we have

Z'U(%) [5(901,1; ® @2,1})]; fl,va f2,v)

== G Bw“ (Wv (gl,v)@l,vy 802,1))8711, (’/Tv(gl.,v)fl,va f2,v) dgl,v'
1,0

Lemma 6.6. There exist o, € S(WY) and fi ., fa,, € T, such that

Zo(3,[00)s Froos f2,0) # 0.

Proof. We fix a place v of F and suppress it from the notation. By [34, Proposi-
tion 7.2.1], there exist ® € I(3) and fi, fo € m such that Z(1,®, f, fo) # 0. Let R be
the image of the equivariant map S(WV) — I(1), where WY =V @ WV. It suffices to
show that there exist & € R and f1, fo € 7 such that Z(%,@, fi, f2) #0.

We first consider the case K = F x F. If D is split, then I(3) = R by [33,37] and
the assertion is obvious. We assume that D is division and Z (%,@, fi,f2) = 0 for all
® € R and fy,fo € w. If F is archimedean, let R_ be the image of the equivariant
map S(WY) — I(3), where WY = (—V) ® WV. Let V; be the two-dimensional split
quadratic space over F. Let Ry be the image of the equivariant map S(Wg') — I (f%),
where WY =V ® WV. By [33,37], we have

I(3)/R= Ry if F is non-archimedean,
I(3)/(R+R_)= Ry if F is archimedean.

Since 7 o Ad(go) = 7 for go € G~ G, we have Z(%,@, fi,f2) =0 for all ® € R_ and
f1, fo € mif F is archimedean. Hence Z (%, &, f1, f2) defines a non-zero equivariant map

Ry® (nX7) — C.

As in [14, Proposition 3.1], this shows that the theta lift of 7 to GO(Vp)(F) is non-zero.
Hence 7 is a principal series representation of G. This contradicts the assumption that
the Jacquet-Langlands transfer 72 of © to D* exists.

We next consider the case where K is a quadratic extension of F'. We assume that
Z(%, D, f1,f2) =0forall ® € Rand fi, fo € 7. Let V_ be the four-dimensional quadratic
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space over F' such that disc(V ) = disc(V) and V_ 2 V. Let R_ be the image of the
equivariant map S(WY) — I(1), where WY = V_ @ WV. By [33,37], we have

I3)=R+R_.

Since 7o Ad(gg) & 7 for go € G~ GT, we have Z(%,@,fl,fg) =0 for all ® € R_ and
f1, fo € ™ and hence a contradiction. O

6.8. The Rallis inner product formula
Lemma 6.7. For F € R(él) and f1, fo € V, we have

/ / F(u(g1,92)) 1 (1) Falg2) dgi dga = 0.
G1(F)\G1(A) JG1(F)\G1(A)

Proof. The assertion follows from Lemmas 6.1, 6.4, and 6.5. Here we have used the
version of Lemma 6.4 for isometry groups. (]

Let AXF = v(H(A)), F>*T = F* N AT and C = AX2F>F\A>X T, The similitude

characters induce isomorphisms
Za(A)GLA)G(F)N\GA)YT =C,  Zg(A)H((A)H(F)\H(A) =C.

Fix cross-sections ¢ + g. and ¢ — h, of G(A)T — C and H(A) — C, respectively. Let dh
be the Tamagawa measure on Zy(A)\H(A) and note that vol(Zy (A)H (F)\H(A)) = v.

Lemma 6.8. Let o1 = Q, ¥1,0,92 = ®, Y20 € Vo and f1 = Q,, f1v, fo = Q, fow €
V.. Then we have
0(h7 @17f1)9(h7<)02af2)dh

- o] L (1 ™ Ad®wK/F
2 <K

Proof. Let ¢ € I(3). We extend @ to a holomorphic section of I(s) such that its
restriction to K is independent of s. Let

/ZH (AYH(F)\H(A)

H Z 27 @1,v®§52,v)]7f1,v7f2,v)~

veS

oo

E(s, ) = Z (s — %)dEd(%’QS)

d=—1

be the Laurent expansion of E(s,®) at s = 1. Then the map @ — Ey(%,®) induces a
G(A)-equivariant map . .
I(3) = AG)/R(G).

We only consider the case r > 0. We have

Z = E cyrJdc 7 )
(s, ], f1, f2) U/C/Gl(F)\Gl(A) /Gl(F)\Gl(A) (¢(g1,92)t(g gﬂ
X f1(919¢) f2(g929.) dg1 dga de.
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Here dc is the Haar measure on C such that vol(C) = 1 and dg;, dgs are the Tamagawa
measures on G1(A). By Lemma 6.7, Z(s, [¢], f1, f2) is holomorphic at s = 1. We have

[el(gt(ge: 9e) 3) = [@(e(ge: 9e), he)l (9, 3)
for g € G(A) and ¢ € C. For each ¢ € C, there exists F, € R(G) such that

Ao(ge(ge; ge); 0) = Aolg; 0(1(ge, ge), he)p) + Felg)

for g € G(A). By Lemma 6.7, Z(L, 4], f1, f2) is equal to

U// / Ao(e(g1,92)1(ge, 9¢); @) - f1(919¢) f2(929c) dgr dgo de
C JG1(F)\G1(A) JG1(F)\G1(A)

:U.// / AO(L(gl’gz);Jj(L(gcvgc);hc)SD)
CJGL(F)\G1(A) JG1(F)\G1(A)

X f1(g919¢) f2(929.) dg1 dga de.

For each ¢ € C, there exists F/, € R(G) such that

Ao(g1;@(1(ges 9e) s he)p) = B-1(91;0(t(ges ge), he) ) + Filgr)

for g1 € G1(A) by (6.1). By Lemma 6.7, Z(%,1¢], f1, f2) is equal to

0// / B_1(e(g1, 92); @(t(ges ge), he) ) f1(g19¢) f2(929:) dgr dga de.
CJGL(FI\G1(A) JG1(F)\G1(A)
This integral is equal to the residue at s = o’ of

U// / I(L(gl,gg);S,@(b(‘gcagc)ahcyp)'fl(glgc)mdgldg2dc
C JGL(F)\G1(A) JG1(F)\G1(A)

o] ~
-0 / / / / 0(u(g1, 92), ho; 25(t(ger ge) he o)
£p(8) Je Jay (G (a) Jan (P\Gr (a) JHy (F)\HL (A)

x E(h1;8) f1(919¢) f2(929.) dhy1 dgr dga de

v ~
) / / 0(u(g1. 92): b D((ger 90): b))
K Je JH, (F)\H1(8) JG1(F)\G1(A) JG1(F)\G1(A)

x E(h1;8) f1(919¢) f2(929¢) dg1 dga dhy de.

Hence Z(3, [¢], f1, f2) is equal to

U// / / 0(g19c, hihe; 1) - 0(g2gc, hihe; ©2)
C JHy(F)\H1(A) JG1(F)\G1(A) JG1(F)\G1(A)

% f1(919¢) f2(g29.) dg1 dga dhy de

0(h; o1, [1)0(h; 2. f2) dh.

/ZH(A)H(F)\H(A)
O
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By Lemmas 6.1, 6.6, and 6.8, we obtain the following lemma.

Lemma 6.9. We have

Vo(xy # 0.
Let Bory : Vo(r) ® Vg(ﬂ) — C be the Petersson pairing given by
By(xy (91, $2) =/ ¢1(h)p2(h)dh
Zu(A)H(F)\H(A)

for ¢1, ¢2 € Vy(r). For each place v of F', we define an equivariant map

zh. (wy R@,) ® (7, K7T,) = C

by
ZE(P1,0, 92,03 1,0, fow) = iy (2) Lo (L, 1y, Ad@wic, 1) T Zu (3, 16(01,0 ©P2,0)], Fr,o0 f2,0)

for p1,4, 92,0 € S(X,) and fi 4, fo,, € Ty. By Lemma 6.6, Zﬁ # 0. By Lemma 6.8, there
exists a pairing Bg(m) : 0(m,) ® O(m,) — C such that

Zzﬁ) = Bg(ﬂ'u) ° (01) ® év)
By Lemma 6.8, we obtain the following proposition.
Proposition 6.10. We have

L(l,ﬂ',Ad ®wK/F) ]:[Bﬁ

—_ 9B
B =20 o)

v

Here
0 ifK=FxF,
ﬁ:{

—1 if K is a quadratic extension of F.

7. Global theta lifts from GO(V) to GSp,

Let F be a number field. Let V' be a four—dimegsional quadratic space over F' and W a
four-dimensional symplectic space over F'. Let V.=V @ (=V). Set
H=GO(V), H, =0(V),
H = GO(V) = GOg, H; = O(V) = Og,
G =GSp(W)=GSp,, Gy =Sp(IW) = Sp,.
Let
H ={h = (hi,hs) € Hx H |v(h1) =v(ha)},

where v : H — G, is the similitude character. Let ¢ : H < H be the natural embedding.
Let K be the discriminant algebra of V' and choose a quaternion algebra D over F
associated to V' as in §1.
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7.1. Weil representations

Fix a non-trivial additive character ) = @), 1, of A/F. We may assume that ¢, (z) =
exp(2my/—1trp, r(x)) for x € F, if v is archimedean (see [49, Lemma 5.1]). Let W =
X @Y be a complete polarization and set

W=WaoV, X=XV, Y=YV

Then W is a symplectic space over F' and W = X @ Y is a complete polarization. Let w
be the Weil representation of Mp(W(A)) on the space V,, = S(X(A)) with respect to v
and B, : V,, ® V,, — C the canonical pairing. For each place v of F, let w, be the Weil
representation of Mp(W,) on the space S(X,) with respect to ¢, and B, : w, ® 0, — C
the canonical pairing. Then we have w = @, w, and B, =[], B.,,. By [30], [13, §5.1],
and [47], we may regard w (respectively w,) as a representation of G(O(V') x Sp(W))(A)
(respectively G(O(V) x Sp(W))(Fy)).
Let
W=weV, X=XV, Y=YaV.

Then W is a symplectic space over I and W :~§§ ®Yisa complete polarization. Let w
be the Weil representation of Mp(W(A)) on S(X(A)) with respect to 1. We may regard

@ as a representation of G(O(V') x Sp(W))(A). We have a natural isomorphism
S(X(A) =V, 0V,

as representations of Mp(W(A)) x Mp(W(A)). Let

(
{(z,x) |z € V}, WA =W VA,
{

VA
vy ((ﬂ,*l’) |$€V}, WY =WaoVY.

Then W = WY @ W2 is a complete polarization. Hence we can realize the Weil repre-
sentation @ on S(WV(A)). By [40, §2], there exists an isomorphism

§:S(X(A) = S(WY(A))

as representations of Mp(W(A)) such that

5(p1 ® 92)(0) = B, (¢1, p2)

for 1,2 € V.
More generally, let V = F?" be the space of row vectors equipped with a non-degenerate
symmetric bilinear form (z,y) = xJ % for z,y € V, where

0 1,
(0 m)

GOy = {h € GLay, | hJ'h = v(h)J, v(h) € Gp,}.

We identify GO(V) with
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Let W = F2" be the space of column vectors equipped with a non-degenerate antisym-
metric bilinear form (z,y) = ‘&J'y for x,y € W, where

0 1
J = "
(17‘ 0)

GSpy, = {g € GLa, | 'gJ'g =v(9)J’, v(g) € Gn}.

We identify GSp(W) with

Let W =WV,
X={(x,00€e F" |z F"}, X=WaAX,
Y={(0,y) € F*" |y c F"}, Y=Wa).

Then W is a symplectic space over F' and W = X @Y is a complete polariza-
tion. We identify X with Ma, ,(F). Let w be the Weil representation of Mp(W (A))
on the space S(My, ,(A)) with respect to . We may regard w as a representation of
GOz  Spy,)(A),

Choosing bases, we fix an isomorphism

S(WY(A)) = S(My4(A))

as representations of G(O(V) x Sp(W))(A) = G(Og x Sp,)(A).

7.2. Theta lifts

Let 0 = ), 0, be an irreducible unitary cuspidal automorphic representation of H(A)
on the space V,. We assume the following.

e The Jacquet-Langlands transfer of o|px 4,y to GL2(Ag) is cuspidal.
e 0, ®sgn = g, for some place v of F.

o If 0, ® sgn Z o, then o, Z T0.p for any distinguished representation og, of

GSO(V)(Fy).
Lemma 7.1. The partial L-function L°(s,,std) is holomorphic and non-zero at s = 1.

Proof. We first consider the case K = F' x F. We have o|px 4 ,) = P ® 7P with an
irreducible unitary cuspidal automorphic representation 7; of GLa(A) such that 71 2 7
and w,, = w,,. Here 7 is the Jacquet-Langlands transfer of 7; to D*(A). Then we have

L3(s,0,std) = L¥(s, 71 x 1)

and the assertion is well known.
We next consider the case where K is a quadratic extension of F'. We have

OlDx (ar)xax = PR x
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with an irreducible unitary cuspidal automorphic representation 7 of GLo(Ak) and a
Hecke character x of A* such that 7¢ 2 7 and w, = x o Ng,p. Here 7P is the
Jacquet-Langlands transfer of 7 to D*(Ag). Let u be a Hecke character of Ay such
that u|sx = x~'. Then we have

L3(s,0,std) = L¥(s, 7 ® p, Asai).
Since (7¢®@ u¢)Y 27 @ p and Ly (s, Ty @ py, Asai) is holomorphic and non-zero at s = 1

for all v, the assertion follows from [27, Proposition 5.3]. O

Let
G(A)T ={g€ G(A) | v(9) € v(H(A))}

and G(F)t = G(F)NG(A)*. Let ¢ € V. The theta function associated to ¢ is given by
0(h,g;0) = > w(h,g)p()
zeX(F)

for (h,g) € G(O(V) x Sp(W))(A). Let f € V,. For g € G(A)T, choose h € H(A) such
that v(h) = v(g), and put

0(g; 0, f) = / 0(hih, g; ) f(hih)dhy.
Hy(F)\H1(A)

Here
dhy = [[ dha.o

is the Tamagawa measure on H;(A). Note that vol(H;(F)\H1(A)) = 1 and we may
assume that the volume of a hyperspecial maximal compact subgroup of H; , with respect
to dhy , is 1 for almost all v. This integral defines an automorphic form 6(¢p, f) on G(A)*.
We extend (¢, f) to an automorphic form on G(A) by the natural embedding

G(E)\G(A)T = G(F)\G(A)

and extension by zero. Let 6(c) be the automorphic representation of G(A)™ on the
space Vy(,) generated by 0(¢p, f) for all ¢ € V,, and f € V. By assumption on o, (o) is
cuspidal. In Lemma 7.12 below, we will show that Vj,) # 0. In particular, (o) # 0 for
all v. Hence 6(o) is irreducible,

0(c) = Q) 0(0),

and 6(o,) is unitary for all v. Thus, we obtain a G(O(V) x Sp(W))(A)-equivariant sur-
jective map
0:V, 2V, — Vg(g)

and G(O(V) x Sp(W))(F,)-equivariant surjective maps
0y :wy @ 0y — B(0y)

such that 0 = @), 6,.
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Let m be the automorphic representation of G(A) on the space V. generated by Vy(,).
For each place v of F, let 7, = indgi (0(0y)). By Lemma 5.2, 7, is irreducible.

@
v

Proof. Since G(A)" is an open subgroup of G(A), we have a natural G(A)-equivariant
map

Lemma 7.2. We have

c-indG ) (Vo)) = Vi (7.1)

By definition, (7.1) is surjective. Since
. G(A ~
c—deEA;+ (6(0)) = ® Ty
is irreducible, (7.1) is injective. O

7.3. Eisenstein series

For each r € N with r < n, we define a parabolic subgroup P, , of GO3, by

a * * *
0 o * b a v
P,,= GOy, GL,, h' = GOgy—2r
’ 0 0 wvh)at 0 € &P @ e (c’ d’) € B2
0 ¢ * d
Let dp, , be the modulus character of P, ,.(A). For v € G,,, let

1 0
dv)y="" .
¥) ( 0 u1n>
We define a maximal compact subgroup K =[], K, of GO2,(A) by

GO2y,(0,) if v is non-archimedean,
K, = { GO, (F,) N O(2n) if v is real,
GOg2, (F,)NU(2n) if v is complex.

Then we have GO, (A) = P, »(A)K.
Let I(™")(s) denote the degenerate principal series representation of GOs, (A) given

by
- GO2n (A) g5/ (2n—r—1
107 (s) = IndSO% () (53 1),

where Ind denotes the normalized induction. Given a holomorphic section @ of I(™7)(s),
we define an Eisenstein series E(™")(s,®) on GOs, (A) by

E™ (h; s,8) = > B(yh, s)
YEPn » (F)\GO2n (F)

https://doi.org/10.1017/51474748010000198 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748010000198

270 W. T Gan and A. Ichino

for Re(s) > 0. If ®° is the holomorphic section of T(™")(s) such that ®°(k,s) = 1 for all
ke K, we write E(™7")(s) = E(™")(s,®°). For each sy € C, let

B0 = s s B (s0)
d>—o00

be the Laurent expansion of E(™7)(s) at s = sq.
We define a G(Oa;,, X Sps,.)(A)-equivariant map

[]: S(Mapn(A)) = I (r — F(n — 1))
by
[l (h,r = 3(n —1)) = [u(h)| """ 2w (d(v(h)~")h)p(0)

for h € GOgy(A). Here G(Og, x Sp,,.)(A) acts on I (r — 3(n — 1)) via the projection
G(O2y, X Spy,)(A) = GOg,(A). We extend [¢] to a holomorphic section of I(™ (s) such
that its restriction to K is independent of s.

7.4. Theta integrals
We define a parabolic subgroup P’ of GSp,, by

a *
Pl = { (O Vta_1> S GSpQT

Let 0ps be the modulus character of P’'(A). For v € G,,, let

d(v) = (10 V‘i) .

We define a maximal compact subgroup K’ =[], K, of GSp,,.(A) by

a€GL,, ve Gm}.

Ad(d(wf))(GSp,y,(0,)) if v is non-archimedean,
K, =< GSp,,.(F,) N O(2r) if v is real,
GSp,,.(F,) NU(2r) if v is complex.
Here w, is a uniformizer of F,, and ¢, is the largest integer such that ), is trivial on
w, v 0,. Then we have GSp,,.(A) = P'(A)K'. Let P{ = P'NSp,, and K| = K'NSp,,(A)
so that Sp,,.(A) = P{(A)K]. Let dg; be the Tamagawa measure on Sp,,.(A) and note

that vol(Sps, (F)\Sps,(A)) = 1. Let d;p’ be the left-invariant Tamagawa measure on
P{(A) and dk’ the Haar measure on K/ such that vol(K{) = 1. There exists a constant

K such that
[ sedn=x [ SR dil K’
Spa,.(A) 1(A) J K]

for f € L'(Spy,.(A)).
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Put ¢’ = L(r+1). Let & be the holomorphic section of ITnd P2 ®) (53 ("1 guch that
2 Pr () P

&' (k',s) =1 for all k¥ € K’'. We define an Eisenstein series £(s) on GSp,,.(A) by

E(gss) = > P'(vg,s)

YEP' (F)\GSpy,.(F)
for Re(s) > ¢'. By [36, §5] and [19, Lemma 9.1], we have
Ress=p £(g;8) = K

for g € GSp,,.(A).
Let ¢ € S(May(A)). The theta function associated to ¢ is given by

0(h,g;i0) = >,  wlhg)e)

TEMay n (F)

for (h,g) € G(Ogy, X Spsy,.)(A). Let z € C°(02,(F,)//O2,(0,)) be the regularizing Hecke
operator as in [34, §5] and [25, §2.3], where v is a certain non-archimedean place of F
depending on ¢. There exists a self-adjoint Hecke operator 2’ € C°(Spa,.(Fy)//Spa,(04))
such that w(z) = w(z’). Then we have z’E(s) = p(s)E(s) with some p(s) € Clg, q; ]
Here g, is the cardinality of o, /w,0,. Following Kudla and Rallis [34, § 5], we define the
regularized theta integral I(™") (s, ¢) by

1

107 (h; 5,) = /
( ) KP(S) Jsp,, (F)\Spa, (A)

0(h, 919; 2¢)E(919; 5) dg1

for h € GOg,,(A), where g € GSp,,.(A) such that v(g) = v(h). By [34, Lemma 5.5.6],
I(™7) (s, ) has at most a double (respectively simple) pole at s = ¢’ if r <n —1 < 2r
(respectively 2r < n —1).

Let ¢ € S(M; 2,(A)) be the partial Fourier transform of ¢ € S(Ma,.,(A)) defined by

s = [ o <u> Y(ix(v'e)) do

for u,v € M, ,,(A), where dx is the Tamagawa measure on M, ,,(A). For h € GOa,(A),
choose g € GSp,,.(A) such that v(g) = v(h), and put

VA0 = [ [ (@K 00 00 ) (g9 det(a) T O %
GL-(A) 1

Here d*a is the Tamagawa measure on GL,(A). By [34, Lemma 5.5.2], ¥(y) is a mero-
morphic section of I(™™)(s) and is holomorphic for Re(s) > —3(2n—3r—1). By [34, §5.5],
we have

107 (s,0) = BT (s, W ().

We now consider the spherical case. Let £(s) = D*/2((s), where D is the absolute value
of the discriminant of F' and {(s) is the zeta function of F' including archimedean factors.
Put p = Res,—1 £(s). We define ¢, = @, ¢rv € S(M,-(A)) as follows.
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e If v is non-archimedean, then ¢, , is the characteristic function of M, ,(0,).
e If v is real, then ¢, ,(z) = exp(—7 tr(*zxz)) for x € M,.,.(F,).

e If v is complex, then ¢, ,(z) = exp(—27 tr(*zx)) for z € M, ,.(F,).

Z.(s) :/Gw (@)l det(a)]* d”a,

where d*a is the Tamagawa measure on GL,.(A).

Lemma 7.3. We have

Put

r—1

Z(s) =27/ ‘IHS I RCET))

7=0
Here we omit [[;_, £(i)~ ! if r = 1.

Proof. If r = 1, then we have 51(s) = p~'((s) = ®*/2p~1¢(s). Assume that r > 2. Let
T (respectively U) be the subgroup of GL, consisting of diagonal matrices (respectively
unipotent upper triangular matrices). We define a maximal compact subgroup ¢ =

[1, # of GL,(A) by

GL,(0,) if v is non-archimedean,
Hy = § GL.(F,) N O(r) if v is real,
GL,.(F,)NnU(r) if v is complex.

Let d*t (respectively du) be the Tamagawa measure on T(A) (respectively U(A)) and
dk the Haar measure on % such that vol(.#") = 1. By [36, § 5], we have

/ f(a)dxa:%/ / / f(tuk) d*t dudk
QL. (A) T Juay Jo

for f € L'(GL,(A)), where 3 = p" ' [[;_, £(i)~'. Hence we have

s) = %/ / or (tu)|det(t)|® d*t du.
) Jua)

Changing variables, we have

=.(s) = %r_[:< i+ [ dx)T(”)/Z,

where dz is the Tamagawa measure on A. Since

/ p1(x)de = 5‘371/2,
A

the assertion follows. O
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We define the spherical Schwartz function ¢° = @), ¢ € S(Ma, »(A)) as follows.

e If v is non-archimedean, then

otherwise.

o (I) B {qvcvnr/2 ifxe Mr’n(wv—iugv) and (VRS Mr,n(ov)7
v y - 0

e If v is real, then p?(z) = exp(—mtr(*zz)) for & € My, »(F,).
e If v is complex, then ¢ (x) = exp(—27 tr(*zz)) for & € My, ,,(F).

Here g, is the cardinality of 0, /w,0, and ¢, is the largest integer such that v, is trivial
on w, “0,. Then we have ¢° = ), ¢, where

e 9 is the characteristic function of M, 2, (0,) if v is non-archimedean,
o 09(z) = exp(—mtr(‘zx)) for z € M, 9, (F,) if v is real,
o 0%(x) = exp(—2m tr(*zx)) for & € M, 2, (F,) if v is complex.

Moreover, we have
w(k, K )e” = ¢°

for (k, k') € (K x K') N G(Oz2y, X Sps,.)(A). Hence we have

EM™ (s, [¢°]) =D 2EMM (s). (7.2)
Lemma 7.4.
n r—1
107 (s,67) = D=2 [T (i) T 65 +n = o = j) - B0 ().
i=2 j=0

Proof. By Lemma 7.3, we have

n r—1
W(p)(1,5) =Dt 2p  TTe(i) - [ &(s +n— o — 5.
i=2 5=0
Since ¥(¢°) is K-invariant, the assertion follows. O

7.5. The Siegel-Weil formula

We identify GOg and P, 4 with H and the parabolic subgroup of H stabilizing V2,
respectively. Let A(H) denote the space of automorphic forms on H(A) and R(H) the
subspace of A(H) generated by Res;_; /o B9 (s,®) for all holomorphic sections & of
T4 (s). We remark that E(+4) (s, ) has at most a simple pole at s = 3 by [32, Theo-
rem 1.0.1].
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Let ¢° € S(My,4(A)) be the spherical Schwartz function as defined on p. 273. Let
S(My4,4(A))° be the subspace of S(My 4(A)) generated by w(hq)p® for all hy € Hi(A).

Let
Ao+ S(Ma.a(A)) — A(H)/R(H),
B_y: 5(My4(A)) — A(H),
Co: S(Mya(A)) — A(H),
be the H(A)-equivariant maps defined by
EY (s, [pl) = > (5 — 5)"Aalp),
d=—1
1(4’2)(3,<p) = Z (s — %)dBd(Sﬁ)’
d=—2
199 (s, pr(g) = 3 (s - 1*Cale),
d=—1

for o € S(My4(A)). Here pr: S(My4(A)) — S(Ma4(A)) is the H;(A)-equivariant map

defined by
x
br -/
() (y) L f

for z,y € A%, where du is the Tamagawa measure on A,

du

< o K8 2

Proposition 7.5. We have
B_1(p) = Ao(p) + D ?pE(4) " Col) mod R(H)
for p € S(My4(A))°.

Proof. Let ¢° € S(My4(A)) be the spherical Schwartz function. Then pr(y°) €
S(Mz,4(A)) is also the spherical Schwartz function. By (7.2), we have

Ao(?) =D ESM (D).
By Lemma 7.4 and Lemma B.6 in Appendix B, we have
B_1(¢°) =074 e(2) T (3)EWEYP (3)  mod R(H).
By Lemma 7.4 and Lemma B.7 in Appendix B, we have
Co(p?) =D 2p (W ES (1) mod R(H).
Hence we have
D'B_1(¢°) = D" Ao(¢°) + DpE(4) ' Co(¢°) mod R(H)

by Proposition B.8 in Appendix B. This completes the proof. O
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7.6. The doubling method
Let B, : V, ® V, — C be the Petersson pairing given by

Bg(fl,fz)Z/ fi(h) f2(h) dh
Zu (A)H(F)\H(A)

for f1, fo € V,. Here Zp is the identity component of the centre of H and dh is the
Tamagawa measure on Zg(A)\H(A). Put

2 if K=FXF,

1 if K is a quadratic extension of F'.

o = vol(Z (A H(F)\H(4)) = {

We fix a decomposition B, =[], Bo,, where B, : 0, ® 6, = C is a pairing.
For a holomorphic section @ of I*%)(s) and fi, fo € V,, the zeta integral of Piatetski-
Shapiro and Rallis [44] and [12, §6.2] is given by

Z(s, P, f1, f2) = / EUY (u(hy, ha); 5,P) f1(h1) f2(h2) dh
Zg(AH(F)\H(A)

Here Z 5 is the identity component of the centre of H and dh is the Tamagawa measure
on Zgz(A)\H(A). Note that vol(Z(A)H (F)\H (A)) = v. For each place v of F, let

ZU(S7 ¢v7 fl,va f2,'u) = / dsv(b(hl,v» 1)7 S)Bav (Uv(hl,v)fl,v7 f2,v) dhl,'u-
Hl,v

Lemma 7.6. For a holomorphic section = ), ¢, of I¢4(s) and f; = X, [, f2 =
&, f2,0 € V,, we have

L3(s+ 1, 0,std)
o 2 Zy(8,Pus f1,0, 2,0
2081112 = G5 T 5 @s 1 3) H (5., fron f20).
Proof. The assertion follows from the doubling method of [44] and [12, §6.2]. O

7.7. Local zeta integrals

Let 154’4)( s) = Indg:4 i (5;{1 34 _) denote the degenerate principal series representation
of H,.
Lemma 7.7. For a holomorphic section ®,, of I1(,4’4)(s) and fi y, fo.» € 0y, the integral
Zy(8, Dy, f1,0, f2,0) Is absolutely convergent at s = %
Proof. By [3, Proposition 3.3], [41, Appendix],
S(My 4(Fy)) such that

Dy (ho, 5) = [@ol(ho, 3) + [£3] (ho, 3) sgn(h)

for h, € H,. Hence we may assume that &, = [0(p1,0 ® P2,0)] With @1 4, 2., € S(X,).
But then we have

and [38], there exist ¢,, ) €

( (hl vy )7 2) Bwv (wv(h1,11)<ﬂ1,v7 @2,1})
for h1, € Hi,. By [39, Theorem 3.2], the function hy, +— By, (we(h1,0)91.0, P2.0)
belongs to L'*¢(H; ,) for any € > 0. This yields the lemma. O
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For ¢1 4, p2., € S(X,), we have

Z'U(%) [5<901,1; ® @2,1})]; fl,va fZ,U)

- Bwv (Wv(hl,v)wl,va @2,1})80‘1, (O—U(hl,v)fl,va f2,v) dhl,v~
Hiy

Let S(My,4(Fy))° be the subspace of S(My 4(F),)) generated by w(h,,)eg for all hy , €
Hi,.

Lemma 7.8. There exist ¢, € S(My 4(F,))° and f1 4, f2,0 € 0y such that

Zo(3,[00)s Fros f2,0) # 0.

Proof. We fix a place v of F' and suppress it from the notation. By [32], there exist ¢ €
I(4’4)(%) and f1, fo € o such that Z(%, D, f1, f2) # 0. Let R (respectively Ry) be the image
of the equivariant map S(My4(F)) = T4 (1) (respectively S(Ma4(F)) — I+ (—1)).
By [3, Proposition 3.3], [41, Appendix], and [38], we have

I(4’4)(%) = R+ R®sgn, I(4’4)(%)/R%Ro®sgn.

Moreover, R is generated by a K-invariant element of I (4’4)(%). It suffices to show that
there exist @ € R and fy, f € o such that Z(3,9, f1, f2) # 0.

We assume that Z(3,9, f1, f) =0 for all @ € R and fi, fo € 0. If 0 ® sgn = o, then
we have Z(%, D, f1,f2) =0 for all ® € R®sgn and fi, fo € o and hence a contradiction.
If 0 ® sgn 2 o, then Z (%, &, f1, f2) defines a non-zero equivariant map

(Ro®sgn) ® (cXa) — C.
As in [14, Proposition 3.1], this shows that the theta lift of o ® sgn to GLo(F)™ is
non-zero. By [8, Lemmas 4.1 and 5.4], [43], and [1], we have
U‘DX(K)XFX = (U@Sgn)'Dx(K)XFx = C[lg |X|OJ§OJK/F

for some irreducible admissible representation ¢ of GLy(F') with central character w;.
Thus, o 22 (¢2 Nw.wg/r)~ for a distinguished representation gg@wng/p of GSO(V)(F).
This contradicts the assumption on o. O

7.8. The Rallis inner product formula

Lemma 7.9. For F € R(f[) and f1, fo € V,, we have

/ F(t(hi, b)) fi(h1) f2(h2) dh = 0.
Zz(A)H(F)\H(A)

Proof. The assertion follows from Lemmas 7.1, 7.6, and 7.7. [

Lemma 7.10. For ¢ € S(My4(A)) and fi1, f2 € V,,, we have

/ Co(e(h1, h2); @) f1(h1) f2(h2) dh = 0.
Zg(A)H(F)\H(A)
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Proof. Let W’ be a two-dimensional symplectic space over F' and set G’ = GSp(W') &
GL5. Let W/ = X’ @Y’ be a complete polarization and set

W=WwaoV, X =X'®YV, Y=Y V.

Then W’ is a symplectic space over F and W' = X’ @ Y’ is a complete polarization. Let
w’ be the Weil representation of Mp(W’(A)) on the space V,,, = S(X'(A)) with respect
to 1. We may regard w’ as a representation of G(O(V') x Sp(W'))(A). By [40, § 2], there
exists a natural isomorphism

§ Vi @V — S(Ma4(A)).

Let ¥(o) be the theta lift of o to G'(A). Then ¥(o) = 0. Indeed, it is easy to see that
Y¥(o) is cuspidal, and if ¥(o) # 0, then o, ®sgn Z o, for all v by the local unramified theta
correspondence and the strong multiplicity one theorem. This contradicts the assumption
on o. For ¢}, ¢h €V, and f1, fo € V,, we have

/ T9D (4, o) 5,8, @ B4) - f1 () Falia) dhe
Z g (A)H(F)\H(A)

1

k /ZG/<A>G'<F>+\G'(A>+

0(g'; 01, 11)0(9'; b, f2)E(g's 5) g’

(See also the proof of Lemma 7.11 below.) Since (o) = 0, this integral is zero. This
completes the proof. O

Let A+ = y(H(A)), F*F = F* N A>T and C = AX2FT\AXF, The similitude
characters induce isomorphisms

Za(A)GL(A)G(F)\G(A)T =C,  Zy(A)Hi(A)H(F)\H(A) =C.

Fix cross-sections ¢ — g. and ¢ — h, of G(A)T — C and H(A) — C, respectively. Let dg
be the Tamagawa measure on Zg(A)\G(A) and note that vol(Zg(A)G(F)\G(A)) =

Lemma 7.11. Let ¢ = Q, ¢» € S(My4(A))° and f1 = Q, fiv, fo = Q, fo,n € V. We
write p = >, 0(p1,; ® @2,5), where @15, p2; € V,,. Then we have

- 1 o, Std
0(g; 1,:, f1)0(g <P2uf2)dg* HZu% ool fru, f2,0)-

- /Zc;(A)G(F)\G(A) veSs

Proof. By Lemma 7.9, Z(s, [¢], f1, f2) is holomorphic at s = % By Proposition 7.5 and
Lemmas 7.9 and 7.10, we have

23], i fo) = / By (u(hr, ha): ) fa (hn) Fo(ha) dhn
Z g (A)H(F)\H(A)
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This integral is equal to the residue at s = % of

v / / / T2 (y(hyhe, hohe); s,0) - f1(hihe) fa(hahe) dhy dho de
¢ JH(F)\H1(A) JH1(F)\H1(A)

b
:7// / / G(Z’(hth7h2hC)7glgc;Z‘P)
HP(S) C JH(F)\H1(A) JH(F)\H1(A) JG1(F)\G1(A)

X g(glgc, S)fl(hlhc)fg(hghc) dgl dh1 dhg dC

o
Z*// / / 0(t(h1he, hahe), g19c; @)
K Je Ja(F)\G1(A) J Hi(F)\Hi(A) J Hi (F)\Hi (A)

X g(glgc; 8)f1 (hlhc)fg(hghc) dh1 dhg dgl de.

Here dc is the Haar measure on C such that vol(C) =1 and dhq, dhs are the Tamagawa
measures on Hi(A). Hence Z(3, ], f1, f2) is equal to

UZ// / / 0(hihe, 919c; ¢1,4) - O(h2he, g19c; 2,i)
7 JCJGLUP)\Gi() JHi(F)\Hi(A) J Hi(F)\H1(4)

X fl(hl hc)fg(hghc) dhl dhg dgl dc
= Z/ 0(g: 1,6, [1)0(g; P2, f2) dg.
i Y Zc(A)G(F)T\G(A)*T

Note that vol(Zg(A)G(F)T\G(A)T) = v. Since the supports of 8(p1.;, f1) and 6(p2.;, f2)
are contained in G(F)G(A)T, we have

/ 0(g; ¢1,i, f1)0(g; 2,i, f2) dg
Zg(A)G(F)T\GA)*

- / 0(g: 1.0, [1)0(g: Pan o) dg.
Za(A)G(F)\G(A)

This completes the proof. O

By Lemmas 7.1, 7.8, and 7.11, we obtain the following lemma.
Lemma 7.12. We have

‘/0(0') 7& 0.
Let By : Vx @ V;z — C be the Petersson pairing given by
Bu(or.62) = [ 61(9)52(0) dg
Za(A)G(F)\G(A)

for ¢1, ¢2 € V. For each place v of F, we define an equivariant map
Zg D (wy R wy) ® (0, ¥G,) = C
by

Zg(sal,va P25 fl,m f2,v) = C’U(2)C’U (4)Lv(]—7 Oy, Std)ilzv(%a [6(901,1) & @2,1})]’ fl,va fQ,v)
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for 1.4, 02 € S(X,) and f1 4, f2., € 0. By Lemma 7.8, Z¢ # 0. By Lemmas 5.6 and 5.7,
there exists a non-zero G} -invariant pairing Bg(g ) 0(oy) ® 0(0,) — C such that

Zg = Bg(ov) o (00 ®0y).

We extend Bg(gv) uniquely to a G,-invariant pairing BEFU s my, @, — C such that
Bfm |9(Uv)®m = Bg(%). By Lemma 7.11, we obtain the following proposition.

Proposition 7.13. We have

_ L(1,0,std) "
e Ve

v

8. Tamagawa measures

Let F be a totally real number field and F a totally real étale quadratic algebra over F.
Let Wy be a two-dimensional symplectic space over E and V' a four-dimensional quadratic
space over F. Set

G' = {g’ S RE/F(GSP(W())) ‘ V(g/) S Gm}, Gll = RE/F(Sp(Wo)) = RE/F(SLQ),
H =GO(V), H, = O(V).

Let Zg: and Zg be the identity component of the centre of G’ and H, respectively. We
have isogenies
pr: G| — Za/\G', pr: Hy — Zy\H.

Let wg: and wy be non-zero invariant differential forms of top degree on Zg/\G' and
Zy\H over F, respectively. Then wg: = pr*(wgr) and wy, = pr*(wg) are also non-
zero invariant differential forms of top degree on G} and H; over F', respectively. Fix a
non-trivial additive character ¥ = @), 1, of A/F. For each place v of F, let dz, be the
self-dual Haar measure on F, with respect to v,. Let dgj ,, dg,, dhS ,,, dhJ) be the Haar
measures on

’ ZG’,'U\G;n Hl,v; ZH,’U\H’U)

1,0

determined by dz, and wg, wgr, wm,, wx, respectively. Let dhy, = %dh?!v and
dh, = %dh?). Let F)" = v(H,). Then we have

1
/ N CALTAEE D D S AL
ZG’,'U\GU CEFHX’Q\FUX Gl,,u
1
/;HTU\HU ¢(hv) dhv = 5 Z i ¢(h1,vhc) dhl,v,

c€EF\FOT

for f € LY(Zg »,\G)) and ¢ € L' (Zy,\H,). Here g, € Zg: ,\G,, with v(g.) = ¢ and
he € Zp ,\H, with v(h.) = c. By definition, the product measures

Idst .. J[de.  [[dbrw.  J]dhe
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are the Tamagawa measures on
Gi(A),  Za(A\G'(A),  Hi(A),  Zg(A)\H(A),

respectively. We remark that the products of these measures are convergent, although
the volumes of hyperspecial maximal compact subgroups are not 1 for almost all v.

9. The explicit local seesaw identity

We retain the notation of §§1 and 8. We fix a place v of F and suppress it from the
notation. Let W = V ®@p W = Rg,p(Wo ®p Vi), where Vg = V ®p E. Let w be the
Weil representation of Mp(W) with respect to 1. We may regard w as a representation of
G(O(V) x Sp(W))(F) or that of G(Sp(Wy) x O(VEg))(FE). In particular, we have a seesaw

diagram:
G = GSp(W)(F) H' = GO(Vg)(E)
G" = GSp(Wo)(E)’ H = GO(V)(F)

The goal of this section is to establish an explicit seesaw identity for this seesaw diagram.
Recall that o is an irreducible unitary admissible representation of H and 7 is an

irreducible unitary admissible representation of GSp(Wy)(FE) containing an irreducible

subrepresentation 7’ of G'. Let B, : c ® @ — C and B, : 7 ® T — C be pairings. Let

B, : 7’ @ @' — C be the pairing given by B°, = B, |gx . Let C = F>2\F*+. Put
O(p1,p2; 01, 023 f1, f2)

= Z B, (w(g190: hihe)pi, 92) By (o (hihe) 1, d2) B (7(g19¢) f1, f2) dhi dg)
cec /G /H

for ¢1,p2 € w, 1,02 € o, and fi1, fo € . Here dhy and dgf are the Haar measures on
H, and G} given in §8, respectively.

Lemma 9.1. The integral Q(p1, ¢2; @1, d2; f1, f2) is absolutely convergent.
Proof. We only consider the case E = K = F X F and D = M o(F'); the other cases
are similar. It suffices to show that the integral
[ Bulwltlar,an) tas a)er, 9208 (olt(as,a0)on, 62)
(FF)
x B (1(t(a1,a2)) f1, f2)|ay 2a5 2a52a; % d* a1 d* ag d* az d*ay

is absolutely convergent. Here F* = {a € F* | |a| < 1},
a 0 a 0
t(a,a") =
(a’a ) ( (O a_1> 7 <O al_l) )7
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and we regard t(a,a’) as an element of G’ or that of H. By the Kim-Shahidi estimate
[26, 28], there exist % < A1, A2, A3, Ay < 1 such that

1B, (1(t(a1,a2)) f1, f2)| < Claq|* |az|*2,
1Bo (0 (t(az,as)) g1, d2)| < Clas|**|aq|™,

for ai,as,as,as € F* with some constant C. We define a function " on F* by

1 if Ft
T(a):{ 1Irac R

la|=! otherwise.

For ¢, ¢’ € S(F), we have

< C'T(a)

‘ | dlai as

for a € F* with some constant C’. Realizing the Weil representation w on S(Ms 2(F)?),
we have

w(t(a1,az2),t(as,as))p1(z,y)
—1 -1 -1 —1 -1 _ -1
- |a2a2|@1 103 G471 G103 Gy T2 G203 G4Y1 Aa2a3 Ay Y2
- 12 —1 ) —1
a1a3a473 10304 T4 a2a304Y3 a2a30, Y4

for

Hence we have

|Bu(w(t(ar,az2),t(as, as))p1, p2)|
< C’"|a%a§|T(a1a3_1a4)T(a1a3_1a21)T(a1a3a4)T(a1a3a21)

x Y(azaz "as)T (azaz ta; M) Y (asazas)Y (azaza; ")
with some constant C*”. By symmetry, it suffices to show that the integral
/ / T(a1a51a4)T(a1a3_1a21)T(a2a§1a4)T(a2aglazl)
lai]|<]az2|<1 J]as|<|asa|<1
|a1 agzaQS 2 )‘4 2|dxal d*asd*a3d*ay

is convergent. We change variables b1 = asza4 and by = agall. Let puy = %()\3 + A\4) and
o = %()\3 —A4). Note that g < p < 1land |usg| < é. It remains to show that the integral

Y R (U O O
la1]|<]az|<1 J[b1|<]b2|<1

X [atan? bk T2 |d ¥ ag d* ag d¥ by d* by
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is convergent. The integrand is equal to
" a3 b by if Jas| < faz| < [ba] < [baf <1,
Jartaa oy TIOR? | Jar| < Jbaf < lao] < [bof <1,
|ay a2 b TG Jan| < [ba] < [ba] < fas| < 1,
a3 a2 G (b < fan] < fag] < [ba| < 1,
a3 ag 2T [ba] < fan] < [ba] < Jas| < 1,
ja 2ax2 20 b5 2t (b < Jbel < ar| < Jaof < 1.
We change variables:
ay = titatsty, ag = titats, by = t1te, bo =t1 if |az| < az| < |b1] < |be| <1,
ay = titatsts, by = titats, ag = tita, by =ty if |ay| < [b1] < az| < [b2| <1,
ay = titatsts, b1 = titats, by = t1te, ag =t if |ag| < |b1| < |be| < az| <1,
by = titatsts, a1 = titals, ag = tite, by =t if [b1| < a1 < fag| < [b2| < 1,
b = titatsts, ay = titats, by = tita, ag =ty if |by] < a1| < |bo| < a2| <1,
b1 = titatsts, by = titats, a1 = tita, ap =t if [b1] < |b2| < ay| < |ag| < 1,
where t1,t2,t3,t4 € F*. Then the integrand is equal to
jggr AR R R e i | < ] < i < el < 1,
[ A2 AR I TR TN i Ja | < [ba] < fao] < [bo] <1,
[ R g TR i fan] < o] < e < o] < 1,
A2 At 2 T by | < Jaa| < fao] < [bo] <1,
1 AR g e T | by | < Jaa] < fbe] < as] <1,
e A TG 2 by | < Jba| < Jan| < ag] < 1.

It is easy to check that the integral in each of the six ranges is convergent. This completes
the proof of the lemma. O

Let 0(7) be the theta lift of 7 to H(E). Let 6 : w®7T — 6(7) be an equivariant surjective
map. Let 6(7') be the image of w @ 7’ in 6(7). Let

T: (wXo)
T (wKR)

R (X))
®((cXa)®

(7' R7") —
(7' ®7") —

be equivariant surjective maps induced by

020 (W)@ (cXa) (o)X 6(o),
020 : (wWRo)® (r®7') — 6(x") Ko(r!

);
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respectively. Let B : 7 ® 7 — C and Bg(T) :0(7) ® 0(1) — C be the pairings given by

B&r(e((plv $1),0(p2,$2))

_ CEeK(2)
L(l,’l‘, Ad® wE®K/E) H,

Bu(w(h1)p1, 92)Bo(o(h1) g1, ¢2) dhy (9.1)

and

B 001,10, 0 o) = Tl | Butuldon on)Bo e Sy (02

for p1,02 € w, ¢1,02 € o, and f1, fo € T, respectively. Here dh; and dg] are the
Haar measures on H; and G} given in §8, respectively. We remark that the normalizing
factors in the front of the integrals are introduced to ensure that (9.1) and (9.2) are 1 for
unramified data if we take Haar measures such that the volumes of hyperspecial maximal
compact subgroups are 1. (Notice that such measures do not agree with the measures
given in §8.) We define a G’ x G’-invariant functional

P (rRT) @ (7 ®7') = C
by

1 L(1,0,std)L(1,0,Ad)L(1, 7, Ad)
¢(2)¢(4) L(3,0 x 6(7))

x / BE(n(g ), 62) B (' () f1, 2) dg’ (9.3)
Za\G

P 1, b2; f1, f2) =

for ¢1,¢02 € m and f1, fo € 7. Here dg’ is the Haar measure on Zg/\G’ given in §8.
By Lemma 9.1, this integral is absolutely convergent. We define an H x H-invariant
functional

T (0 X5)® (0(r)RO(r)) — C
by

1 L(1,0,Ad)L(1, 7%, Ad)
(per(2)  L(3,0 x0(1))

< [ Balo(ér. 02)Bh ()W ) db - (0.)
Zg\H

o1, b2; f1, f2) =

for ¢1,¢2 € o and f1, fo € (7). Here dh is the Haar measure on Zg\H given in §8.
Now we have the following lemma, which should be thought of as an explicit local
seesaw identity.

Lemma 9.2. We have

PloT =Tto T’
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as functionals on (WX @) ® (6 K7) @ (7' K 7). Namely, the diagram

(WRO)®(cXa)® (7' X7')

is commutative.

Proof. Given the absolute convergence of Lemma 9.1, the commutativity of the diagram
is essentially a consequence of Fubini’s theorem. More precisely, we have

Ceox(2)L(1,7,Ad® wE®K/E)_1Q(901a ©2; 01, 25 f1, f2)

=2/ hihe) i, 62)Bj . (0(r) (hhe)0(pr. f1), 002, f2)) dln

ceC

=2 / | Bl (R)01, 62 (07) 110, ) 0. ) 0
Also, we have

C(2)C(4)L(1, 0, Std)ilg(%, ©2; 01, P25 f1, f2)
Z 7(919.)0( 21, 1), 0(03, $2)) By (7' (9192) fr, f2) dg
e

= 2/ BE(m(9)0(p1, 61), 0(p2, $2)) By (' (') f1, f2) A
Za\G'+
where Gt = {¢g’ € G’ | v(¢') € v(H)}. By Lemma 5.2, this integral is equal to

2 [ B0, 00). 0000, 62) B (6 1. f2) dg
Ze\G'

This completes the proof. O

10. Proof of Theorem 1.1

We retain the notation of §§1 and 8. Let W = V @ W = Rg/p(Wo ®r Vi), where
Ve = V ®r E. Let w be the Weil representation of Mp(W(A)) on the space V,, with
respect to 1. We may regard w as a representation of G(O(V') x Sp(W))(A) or that of
G(Sp(Wo) x O(Ve))(AR).
We fix a subspace Vy+ of V! such that the restriction to G’(A) as functions induces an
isomorphism
Vo V.,
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as representations of G'(A). Let B, : V, ® V, — C and By : Vu ® Vur — C be the
Petersson pairings. We fix a decomposition B, = [[, B-,, where B, : 7, ® 7, = Cis a
pairing. Let B°, : 7/, @ 7/, — C be the pairing given by B%, = B,, |t @7t -
Lemma 10.1. We have

B =27 1%, [[ B

Here
5= -1 ifE=FXF,
0 if F is a quadratic extension of F.

Proof. By [17, Remark 4.20], we have

vol(Za ()G (F)\G' (4))
vol(Zg, (A)G/(F)\G(4))

B (filaray, folaray) = | %7 ] B-(fi, f2)

f9r f1, fo € V. Here Zg and Z g, are the identity components of the centres of G’ and
G', respectively. Since vol(Zg (A)G'(F)\G'(A)) = 2 and

vollZer (B)G NG (8)) = {;L i 2 is quziiratic extension of F,
the assertion follows. O
Let 6(7) be the theta lift of 7 to H(Ag) on the space Vy(;. Let
0: V@ Ve = Vo
and

0y i wy @ Ty — O(7y)

be equivariant surjective maps such that § = @), 0,. Let Vy(y and (7, ) be the images
of V, ® Vv and w, ® 7, in Vy(,y and 0(7,), respectively. Let

T (VuRV) @ (Ve BV,) @ (Ve B Vi) = (Vo B V5) ® (Vogmry B Vager))s
be equivariant surjective maps induced by
0@0: (V,BV,)® (Vo B V;) = Vi) B Vo),
0@6: (VoRV,)® (Ve B Vi) = Vi B Vo),

respectively. Let

Ty (wo B@wy) @ (0, X Gy) ® (771/;
7:;/ Hwy B ay) ® (0, May) @ (7qu; &7‘11’}) = (oM ay) ® (9(7":}) X 0(m,)),
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be equivariant surjective maps such that 7 =@, 7, and 7' =&, 7,. We define an
H(A) x H(A)-invariant functional

Z:(V,®V,)® (Vory X Ve(r)) —C
by

I(¢1, ¢2; f1, f2) = (/ ¢1(h)fi(h) dh> (/ $2(h) f2(h) dh>
Z (A)H(F)\H(A) Zy (A)H(F)\H(A)

for ¢1,¢2 € V, and f1, fo € Vp(r). Here dh = [],dh, is the Tamagawa measure on
Zg(A\H(A). Put
2 fK=FXxF.
0 =vol(Zu(WH(F\H(A) =4 "~ =
1 if K is a quadratic extension of F.

Now we have the global seesaw identity.

Lemma 10.2. We have
PoT =ZoT'

as functionals on (V, X V,)® (V, ®V,)® (f/ﬂf X ‘:/ﬂ/).
Proof. Let C = AX2F>*T\AXT. Put

Q(wzﬁ,f):// / 0(g, 9., hrhe; @)d(hihe) f(ghgl) dhy dg) de
c JayrnGl(a) Ja(P)\HL(A)

for p € V,,, ¢ € V,,, and f € V.. Here dc is the Haar measure on C such that vol(C) =1,
dg} is the Tamagawa measure on G} (A), and dh; is the Tamagawa measure on Hi(A).
We have

m%¢b:// 0 hes o, F)b(hihe) dhn de
CJH{(F)\H1(A)
1

/ 0(h; o, F)o(h) dh
U JZy (A H(F)\H(A)

Also, we have

Q(p, 6, f) = / / 0(919:; ¢, ) f(g19.) dgy de
¢ Jay ey (a)
1

v /ZG/<A)G’<F>+\G/<A)+

where f = f|G/(A). Note that vol(Zg (A)G'(F)™\G'(A)T) = v. Since the support of
0(p, ¢) is contained in G(F)G(A)T, we have

0(g"; 0, 9)f(g")dg’,

0(g"50,90)f(g")dg" = / 0(g'; 0, 0)f(g")dg".

/Zc;/(A)G’(F)*\G”(A)Jr Zgr ()G (FI\G'(A)

This completes the proof. O
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Let
B, :V,® Vg — C and 89(7-) : Vg(,,-) ® Vg(,r) - C

be the Petersson pairings. We fix decompositions B, = [], Bs, and By = [], Bo(r,)»
where B,, : 0, ® 6, — C and By(,,) : 0(7,) ® §(7,) — C are pairings. For each place v of
F, we define an H, x H,-invariant functional

Iﬂ (oy X G,) @ (0(1,) ®O(7,)) = C

by
IE(¢1,’U’ ¢2,v; fl,va f2,'u) = / BO'U (Uv(hv)¢1,va ¢2,v)89(‘rv) (Q(Tv)(hv)fl,va f2,v) dh
Z,0\Hy
for ¢1.4, 02, € 0y and fi1 4, fo., € 6(7,). By Proposition 3.2, we have
L(3,0 x 6(t
Zy.
L(1,0,Ad)L(1 TK,Ad H !

T =2CpeK(2)

Here
—4 ifE=K=FXF,
—1 if E=F x F and K is a quadratic extension of F,
c= 4 —3 if F is a quadratic extension of F and K = F X F,
—2 if F and K are quadratic extensions of F' and F = K,
—1 if F and K are quadratic extensions of F' and E # K
and
T 1 LU(I,UU,Ad)L”(l,TK,U,Ad)Ih.
" (eek,(2) Ly(3,00 x 0(7,)) !

By Lemma 10.2, we have

L(3,0 x 6(7)) /
L(1,0, A L(1, 75, Ad) HI ° T

PoT =2Ceek(2 )

Let B%,_ . :0(r,) ® 0(r,) — C be the pairing defined by (9.2) and

0(1v)
7! (0,XR5,) ® (0(r,) KO(r,)) — C

v ¢

the H, X H,-invariant functional defined by (9.4). By Proposition 6.10, we have

//L(l,T,Ad®wE®K/E)
Bo(ry = 2° [155..)-
o (EoK(2) o)

v

Here
0 if E=K=FXF,

—2 if E=F x F and K is a quadratic extension of F,
B"=<0 if F is a quadratic extension of F' and K = F x F,
if £ and K are quadratic extensions of F and F = K,
—1 if F and K are quadratic extensions of F' and F # K.
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Hence we have

7" L(l O'XH
— 9B "+c 2 f /
Pl =2 " Iq 5 AdL erd HI ° T

Let BY :m, ® 7, — C be the pairing defined by (9.1) and let
Ph(m, B 7)) ® (n, ®¥7l) = C
be the G x G -invariant functional defined by (9.3). By Lemma 9.2, we have

L(1 o x 0(r

_ 9B +c f
Pl =2 I 5 AdL lTAd HPOT

By Proposition 7.13 and Lemma 10.1, we have

9" +c L(%,a x 0(T)) ¢(2)¢(4) Hp o T

PoT = 35z, LT, 0, Ad)L(1, 7, Ad) L(L, 0, td)

This shows the desired identity of invariant functionals on the image of 7, which
is the subspace (Vy(o) M V(o)) @ (Ve B V) of (Vr B V;) ® (Vi B Vo). Since G(A) =
G'(A)G(A)* and V; is generated by Vp(,), we have

¢(2)¢(4) L(3,0 % 6(r)) 17
27 =5"=¢|%,| L(1, 0,std)L(1,0, Ad)L(1, 7, Ad) L1 7

,P =
This completes the proof of Theorem 1.1.

Appendix A. Explicit local theta correspondence for GO(V) x GSp,

In this appendix, let F' be a non-archimedean local field of characteristic zero and resid-
ual characteristic p. We consider an arbitrary four-dimensional quadratic space V' and a
four-dimensional symplectic space W over F. The discriminant algebra of V is an étale
quadratic F-algebra K. Let vy and vy denote the similitude characters of the corre-
sponding similitude groups GO(V') and GSp(W), respectively. The image of vy is the
subgroup N, p(K*) C F* and we set

GSp(W)" = {g € GSp(W) | vw (g) € Ng/r(K™)}.

For a non-trivial additive character ) of F', one has an induced Weil representation {2y,
of the similitude dual pair GO(V) x GSp(W) ™. If K is split, then (2, is independent of ),
and in general, {2, depends only on the orbit of ¢ under the natural action of Ny, p(K*).
Thus, when K is a field, there are two such induced Weil representations. Henceforth,
we shall fix an orbit of ¢ and write {2 for 2, suppressing ¢ from the notation. However,
because we shall be dealing with various different dual pairs, we shall sometimes write
2y w to indicate the particular dual pair we are considering.

If o is an irreducible representation of GO(V'), then the maximal o-isotypic quotient
of 2 is of the form o K O(o) for some smooth representation (o) (the big theta lift of o)
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of GSp(W)*. One knows that ©(o) is a representation of finite length. We let (o) (the

small theta lift of o) denote the maximal semisimple quotient of @ (o). Moreover, we set
6(0) = indggoy ) (O(0)) and (o) = indggoiw), (0(0)).

Again, we shall sometimes write Oy, (o), 6v,w (o) and so on if there is a need to be

specific about the dual pair we are considering.

We should remark that the definition of the induced Weil representation 2 used in this
appendix is as given in [9], which is slightly different from that given in [47] (and used in
the main body of this paper). Moreover, our definition of ©(0) is slightly different from
that given in the main body of this paper. The upshot is that these two changes cancel
each other, so that the local theta correspondence defined in this appendix agrees with
that defined in the main body of this paper. In particular, the local theta correspondence
preserves central characters.

The main result of this appendix is the following.

Theorem A.l. Let o be an irreducible representation of GO(V).
(i) O(o) is multiplicity free (possibly zero) and has a unique irreducible quotient 6(o).

(ii) O(o) can be precisely determined in terms of o (in terms of the local Langlands
correspondence for GSp, established in [9]).

For the purpose of this paper, we really only need part (i) of the theorem, but we
find it useful to include part (ii) as well. Part (ii) of the theorem will be stated in full
details in the respective cases later on. In order to do that, we first need to introduce
some notation for representations of GO(V') and GSp(W)™*.

A.1. Principal series representations of GSp,

We have a Witt decomposition W = Y* @ Y with a two-dimensional isotropic space
Y. We can write
Y*=Fei®Feys and Y =Ff ®Ff,

with (e;, f;) = 0;; and consider the decomposition W = Fe; & W' & F fi, where W’/ =
Feo @ Ffy. Let Q(Z) = L(Z)U(Z) be the parabolic subgroup stabilizing Z = F'f1, so
that

L(Z) =2 GL(Z) x GSp(W')

and U(Z) is a Heisenberg group:
1—Sym*Z — U(Z) — Hom(W', Z) — 1.

This is typically called the Klingen or Heisenberg parabolic subgroup. An irreducible
representation of L(Z) is thus of the form X7 with a character x of F* and an irreducible
representation 7 of GSp(W’) & GLy. We denote the corresponding normalized induced
representation by Igz)(x, 7). If Ig(z)(x,7) is a standard module, then it has a unique
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irreducible quotient (the Langlands quotient), which we shall denote by Jg(z)(x, 7). The
same notation applies to other principal series representations to be introduced later.

The module structure of I(z)(x, 7) is known by Sally and Tadi¢ [51] and a convenient
reference is [50]. In particular, we note the following.

Lemma A.2.

(a) Suppose that 7 is a supercuspidal representation of GLa. Then Ig(z(x,T) is
reducible if and only if one of the following holds:

(i) x=1;

(ii) x = xo| - |** with a non-trivial quadratic character xo such that Txo = 7.

In case (i), Ig(z)(1,7) is the direct sum of two irreducible quasi-tempered repre-
sentations, exactly one of which is generic. In case (ii), assuming without loss of
generality that x = xo| - |, one has a non-split short exact sequence:

0 — St(xo0,70) — Ig(z)(xol - |, 7ol - \71/2) — Sp(xo0,70) = 0.

Here St(x0, 70) is a generic discrete series representation and the Langlands quotient
Sp(xo, o) is non-generic.

(b) Suppose that T is a twisted Steinberg representation of GLy. Then Iz (x,T) is
reducible if and only if one of the following holds:
(i) x=1
(i) x = [**
In case (i), Ig(z)(1,st,) is the direct sum of two irreducible quasi-tempered repre-

sentations, exactly one of which is generic. In case (i), Igz) (|- |*,stu|-|~") has the
twisted Steinberg representation Stpasp, - 4 as its unique irreducible submodule.

(c) There is a standard intertwining operator

Ion (X 7X) = Iz (X, 7),

which is an isomorphism if Iz (X, T) is irreducible. If Iy (x~Y,7x) is a stan-
dard module, then the image of this operator is the unique irreducible submodule
of Ig(z)(x, 7).

Let P(Y) = M(Y)N(Y) be the Siegel parabolic subgroup stabilizing Y, so that
MY)=GL(Y)xG,, and N(Y)==Sym?Y.

An irreducible representation of M(Y') is thus of the form 7 X p with an irreducible
representation 7 of GL(Y) & GL2 and a character u of F*. We denote the corresponding
normalized induced representation by Ip(yy(7,u). As before, the module structure of
Ipyy (T, 1) is completely known by [51] and a convenient reference is [50]. In particular,
we note the following.
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Lemma A.3.

(a) Suppose that 7 is a supercuspidal representation of GLs. Then Ipyy (t,p) is

reducible if and only if T = 7| - |2 with 7y having trivial central character.

In this case, one has a non-split short exact sequence:
0 = St(70, o) — Ipyy (ol - V%, ol - [71) = Sp(70, p10) — 0.

Here St(79, po) is a generic discrete series representation and the Langlands quotient
Sp(70, o) is non-generic.

(b) Suppose that T is a twisted Steinberg representation of GLy. Then Ipy)(7,p) is
reducible if and only if one of the following holds.

(i) 7 =st|-|¥1/2; in this case, Ip(yy(st |- [*/2, u| - |71/?) has a unique irreducible
Langlands quotient and a unique irreducible quasi-tempered submodule, which
is the unique generic constituent of Ig(z)(1,st,).

(i) 7 = sty| - |*¥/? with a non-trivial quadratic character x; in this case,
Ipeyy(sty| - [/2, ol - | ~'/2) has a unique irreducible Langlands quotient and a
unique irreducible submodule, which is a generic discrete series representation
St(sty, ft0). Moreover, St(sty, xpo) = St(sty, io)-

(iii) 7 = st|-|[3/2; in this case, Ipy(st| - [*/2, u| - |73/%) has the twisted Steinberg
representation Stpasp, 4 as its unique irreducible submodule.

(¢) There is a standard intertwining operator
IP(Y) (T7 ,LL) - IP(Y) (7_\/, Mw7)7

which is an isomorphism if Ipyy (T, ) is irreducible. If Ipyy(T,p) is a standard
module, then the image of this operator is the unique irreducible submodule of

Ipiyy (7Y, pewr ).
Finally, let B = P(Y)NQ(Z) = TU be a Borel subgroup of GSp(W), so that
T = (GL(Ff1) x GL(Ff2)) X Gy,

In particular, for characters xi, x2, and x of F*, we let Ip(x1, x2;X) denote the nor-
malized induced representation. Again, we refer the reader to [50] for the reducibility
points and module structure of Ig(x1, x2; X). We simply note here that Ig(x1, x2;X) is
multiplicity free, and if x; and xo are unitary, then Ig(x1,x2;X) is irreducible.

A.2. Representations of GO(V)

Now we come to representations of GO(V). We consider the various cases separately.
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K is split
In this case, we have
V =(D,—Np),
where D is a quaternion F-algebra (possibly split) with reduced norm Np. We have the
identification
GSO(V) = (DX x D*)/{(z,27Y) | z € F*}
via

(91,92) : ¢ — g12go.

Moreover, the main involution  — Z on D gives an order two element ¢ of O(V') with
determinant —1, so that GO(V) = GSO(V) x (t). The conjugation of t on GSO(V) is
given by (g1, g2) — (g2, g1). Thus, an irreducible representation of GSO(V) is of the form
71 W 7 with an irreducible representation 7; of D* such that w,, = w,,. Moreover, the
action of t sends 71 X 7 to 7 X 7.

In particular, if 71 = 7 = 7, then there are two extensions of 7 X 7 to GO(V'), which
we denote by (7 X 7)*. To distinguish these two extensions, we note that exactly one of
them participates in the theta correspondence with GSp(W’) = GLg, and we denote this
distinguished extension by (7 X 7)*.

On the other hand, if 71 # 79, then

GO(V)

. GO(V)
ind GSO(V

GSO(V)(Tl D 7'2) = ind

)(7'2@71)

is irreducible, in which case we denote this irreducible representation by (r; X m)* =
(7'1 X Tg)i .

When D is split, the quadratic space V is split and we have a Witt decomposition
V = X @ X* with a two-dimensional isotropic space X. Let P(X) = M (X)N(X) be the
parabolic subgroup stabilizing X, so that

M(X)=GL(X)xG, and N(X)=A%X.

For an irreducible representation 7 X x of GL(X) x G,,, =2 GLa x F'*, we let Ip(x)(T, X)
denote the normalized induced representation. The following lemma is easy to check.

Lemma A.4. Under the identification GSO(V) = (GLg x GLg)/F*, we have
m(x1,x2) BT = Ipx)(7¥x1, x2) = Ip(x) (X5 15 x2)-

K is a field

In this case, we have two quadratic spaces
Vt=HeV and V =He Vy,
where H is the hyperbolic plane and

Vi = (K,Ng/p) and Vi = (K,6Ng,p)
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with § € F* \ Ng/p(K*). One can realize these quadratic spaces on the space V' of
2 x 2 Hermitian matrices with entries in K. The determinant map defines a quadratic
form on V and we have

VT =(V,—det) and V~ = (V,—ddet).
The similitude groups of V = V* are isomorphic:
GO(V) = GSO(V) x (t)

with
GSO(V) = (GLa(K) x F*)/{(2,Ng/p(2)7") | 2 € K7}

acting via
(9, ) s @ = Agz'g”,

and t € O(V) with determinant —1 acting via
t:x— 2%

where ¢ is the non-trivial element of Gal(K/F). Without loss of generality, we shall
henceforth fix
V=Vt

The conjugation of ¢ on GSO(V) is given by (g, A\) — (g%, \). Moreover, we let
sgn : GO(V) — {£1}

be the unique non-trivial quadratic character of GO(V) trivial on GSO(V).

Thus, an irreducible representation of GSO(V) is of the form 7X x with an irreducible
representation 7 of GL2(K) and a character x of F* such that w, = x o Ng,p. Such
a representation is invariant under the action of ¢ if and only if 7 is obtained by base
change from GLo(F'), in which case there are two extensions of 7 X x to GO(V'), which
we denote by (7 X x)*. How can one distinguish between these two extensions of 7 X x?
As we now explain, one can do this using the Whittaker model when 7 is generic.

More precisely, if Uy is the unipotent radical of a ¢-stable Borel subgroup of GSO(V),
let 9y be a generic character of Uy which is fixed by the action of the outer automorphism
t. Then, if 7 is invariant and generic, t acts on the one-dimensional space Homy, ((7 X
X)F, Cy,) with 2 = 1. Then (7 ¥ x)T is the extension of 7 X y such that ¢ acts by +1
on Homy, ((7 & x)*,Cy,). Note that this characterization is independent of the choice
of the generic character 1y which is fixed by .

There is another way of specifying the two extensions of 7y in the invariant case, using
their behaviour under the theta correspondence. Following Roberts [49], we distinguish
two mutually exclusive scenarios in the invariant case.

Invariant and distinguished representations: these are the representations 7 X y,
where 7 is the base change of an irreducible representation 7 of GLo(F') with central
character xwg,p. In this case, by [49, Theorem 3.4], one of the extensions (7 X x)* of
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7&K x to GO(V) participates in the theta correspondence with GSp(W’)* = GLJ (and
hence with GSpJ ), whereas the other extension (7 X )~ does not participate in the
theta correspondence with GSp;. When 7 is generic, it follows from Corollary A.17

below that the extension (7 X x)* is the same as the one defined above using the
Whittaker model.

Invariant but not distinguished representations: these are the remaining invari-
ant representations 7 X x. In this case, [49, Theorem 3.4] says that neither of the two
extensions (7 X x)* participates in the theta correspondence with GSp(W’)* = GLJ,
but both participate in the theta correspondence with GSpZ. Thus, the theta corre-
spondence does not allow one to distinguish between the two extensions. When 7 is
generic, it follows from Corollary A.17 below that the theta lift of exactly one of the
extensions, namely the extension (7 X x)T defined above, is a generic representation
of GSpj .

We should remark that Roberts’s definition of distinguished representations uses the
existence of SO(2,1)-invariant functionals. In [48], he showed that his definition agrees
with the one above when the residual characteristic of F' is p # 2. It is not difficult to prove
the same assertion for all p by computing the theta correspondence for GL3 x GSO(V)
and the Whittaker modules of the induced Weil representations.

On the other hand, if 7 X x is not invariant, then

. GOV . 2GO(V) [ ¢
deS(()(\l)(T M) = deS(()(\Z')(T X x)

is irreducible, in which case we denote this irreducible representation by (7 X x)* =
(THWXx)".

Now we describe principal series representations of GO(V). We have a Witt decompo-
sition V = J @ Vi @ J* with an isotropic line J. Let Q(J) = L(J)U(J) be the parabolic
subgroup stabilizing J, so that

L(J) = GL(J) x GO(Vk) and U(J)= Hom(Vk,J).

We set Q(J)T = Q(J) N GSO(V).

Let x X p be an irreducible representation of GL(J) x GSO(Vk) = F* x K*. If p is
invariant under the Galois action, then p has two extensions u* to GO(Vk ), whereas if
1 is not invariant under the Galois action, then we set

_ . 1GO(V;
pt=pT = mdc;s(()(al)( )-

We consider the normalized induced representations IQ(J)(X,pi) and Ig(jy+(x, ) of
GO(V) and GSO(V), respectively. If we take J to be the isotropic line spanned by the
matrix diag(1,0) € V, then the following lemma is easy to check.

Lemma A.5. Under the identification GSO(V) = (GL2(K) x F*)/K*, we have

Ion 06 ™) = (m((x o Nigyp)p, p) B (x - plpx ).
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From this lemma, it is not difficult to deduce the following.
Lemma A.6.
(i) Iges)(x, u*) is reducible if and only if one of the following holds:

o xoNg/p=p/p-|- }t(l; in this case, I+ (X, i) is reducible;
o u¢# pand x =1 or wi,p; in this case, I+ (X, p) is irreducible, but

Iguy(x,n*) =0 @ o -sgn
for some irreducible representation o of GO(V).

(ii) Ig(sy+(x,p) is invariant if and only if one of the following mutually exclusive con-
ditions holds:

o pf =
o uf# pandx =1orwg/p.
In this case, it is distinguished unless u® # p and X = Wi,/ p.

A.3. Theta lifts from GO(Vk)

Before coming to our main results, let us recall the theta lifts from GO(Vk) to
GSp(W') = GLy and GSp(W) = GSp,. The following proposition is well known.

Proposition A.7. Let p be an irreducible representation of GSO(Vk) = K*.
(i) If pu is not Galois invariant (so that p* = u~), then
O(u*) = 0(u*)
is a non-zero irreducible supercuspidal representation of GL;‘ such that

() = indg 2 (O(1))

is irreducible supercuspidal. These are precisely the supercuspidal representations
of GLy which are dihedral with respect to K.

(ii) If u is Galois invariant so that y = ip o Ng,p for some pu, then
O(u*) =0(u")
is a non-zero irreducible representation of GLJ such that
m(p) = indgig(@(lﬁ)) = W(MFHUFWK/F)-

Moreover,
O(u~) =0.
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X

Proposition A.8. Let ;1 be an irreducible representation of GSO(Vk) =2 K*.
(i) If p is not Galois invariant (so that u™ = u~), then
() = ()
is a non-zero irreducible representation of GSp, such that

~ . .GSp, -
O(i™) = indggrt (O(u™)) = Jaz @iyl - [, w ()| - 1772).

(ii) If u is Galois invariant so that y = yip o Ng,p for some pup, then
O(u*) =0(u")
is a non-zero irreducible representation of GSpI such that

O(u") := indg s (B(u+))

is the unique irreducible quotient of

Iozy(wirl - [, m()| - |712) = Ip(wkypl - |wiypipel - |7172).

On the other hand,
Ou™) =0(u")

is a non-zero irreducible representation of GSp, such that O(u~) is the irreducible
non-generic supercuspidal representation of GSp, with L-parameter (up X .Sy) ®
(hrwr/p X Sy) and similitude character u%. Note that the L-parameter is a rep-
resentation of the Weil-Deligne group Wr x SLy(C) and Ss is the irreducible two-
dimensional representation of SLz(C).

Proof. We shall only give a sketch of the proof. Applying the normalized Jacquet module
functor Rg(z) to the induced Weil representation 2y, w of GO(Vk) x GSp(W)™, one
sees that there is a GL(Z) x (GO(Vk) x GSp(W’)*)-equivariant surjective map

Roz) (v w) = wiypl - |TT R (v, w|detyy[H/2).
By the previous proposition, one has a GO(Vx) x GSp(W’)T-equivariant surjective map
Qv weldetw [V = ™ B (v wr (u)] - 2.
Frobenius reciprocity shows that there is a non-zero equivariant map
Qview = 1t R Iz Wiyl |7 Oview ()] - [V2).

Since Oy, w(pt) is an irreducible representation (as O(Vx) is anisotropic), we have

Oview (nt) — Igzy+ (WiyF| - =1 Oviewr ()] - |1/2)a
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so that

Oview (nh) = Iz (wiyrel - |7 w(w)] - [V2).
The latter representation has Jg(z)(wr/r| - |, m(p)| - |71/?) as its unique irreducible sub-
module and this proves the proposition for p¥.

To complete the proof of the proposition, we need to show the claim in (ii) that G (u~)
is the irreducible non-generic supercuspidal representation with the desired L-parameter.
Proposition A.7 shows that é(/f) is supercuspidal and it is non-zero since we are in the
stable range. Moreover, it is not difficult to show that the Whittaker module of {2y, w
is zero, so that ©(u~) is non-generic. Now by [9], ©(x~) has a non-zero theta lift to
the anisotropic group GSO(D, —Np), where D is the quaternion division F-algebra. We
need to show that its theta lift to GSO(D, —Np) is ur M purwi/p.

For this, we resort to a global argument.

e Choose number fields F C K such that for some place v of F, one has K, /F,, = K/F.
e Choose a quaternion F-algebra D such that D, = D and K C D.
e Let = be a Hecke character of Aj such that =, = up.

e One has the automorphic representation =M Swg /r of GSO(ID, —Np)(Ar) and one
may consider its theta lift O(Z X Swg r) to GSpy.

We claim that this global theta lift is non-zero. To see this, one computes a Fourier
coefficient of this theta lift along the Siegel parabolic subgroup P(Y"). More precisely, the
generic M (Y)-orbits of Fourier coefficients are naturally parametrized by étale quadratic
F-algebras. If one takes a character ¥ of N(Y) corresponding to K, then the identity
component of the stabilizer of ¥ in M(Y') is isomorphic to GSO(Vk) = K*. One can
then compute the Bessel period of the theta lift defined by the character ¥ of N(Y)(Ar)
and the character = o Nk r of A . By a standard computation, one sees that this Bessel
period is non-zero precisely when both the representations = and Zwg /r have non-zero
period integrals over the torus Ay against the character = 1o Nk /. Since this last
condition evidently holds, we conclude that (= X Swgr) is non-zero.

In addition, we know that the theta lift O(Z X Swg/r) is irreducible, and its local
component at v is non-generic supercuspidal with L-parameter (pp3S2)@(urwr,pXS2).
Moreover, ©(5 W Zwgp) is nearly equivalent to the global theta lift ©(= o Ng/p) of
Z o Ngr from GSO(Vk) to GSpj . In particular, it is CAP with respect to the Borel
subgroup of GSpy,.

According to a result of Soudry [53], all such CAP representations are obtained by
theta lifts from GO(Vk) and so one concludes that ©(5 M Swg/p) is an irreducible
constituent of ©(Z o Ng/r). By extracting the local component at v, one concludes that

Op,w 1k B purwic/r) = Oview (17) or Ovyew (1”).
Since we have already seen that éVKVW(/fF) is non-supercuspidal, we must have

Op,w(ur B prwi/r) = Oview (17).
This completes the proof of the proposition. O
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A.4. Explicit determination of local theta lifts

Now we can state the main results of this appendix. These are contained in the following
three theorems. Together, they imply Theorem A.1.

Theorem A.9. Let V be the anisotropic quadratic space and let 71X be an irreducible
representation of GSO(V) = GSO(4).

e O((11 ¥ 12)*) is either zero or an irreducible representation of GSp,,.

e If 7y =79 =T, then
O((r X 7)") = mg (JL(7)),
which is the unique non-generic constituent of Ig(z)(1,JL(7)), whereas
O((rX7r)7)=0.
e If Ty # 7o, then
O((m B m)*%) = O((r B ) )

is the irreducible non-generic supercuspidal representation of GSp, with L-param-
eter ¢, ® ¢, and similitude character w,, = ws,.

Theorem A.10. Let V be the split quadratic space and let 7y X 75 be an irreducible
representation of GSO(V) = GSO(2, 2).

e [f 7y =1 = T is a discrete series representation, then
O((TR7)") =0((TR7)") = Tgen(T),
which is the unique generic constituent of Igz)y(1,7), whereas

O(rX®7)7)=0.

e If 7y # 75 are both supercuspidal, then O((1; K 79)%) = 0((1y K 72)*) is the irre-
ducible generic supercuspidal representation of GSp, with L-parameter ¢, & ¢r,
and similitude character w,;, = w,.

e If 7 is supercuspidal and T = st,, then
O B 7)) =0((ry B m)™) = St(rix ", x)-
e Suppose that 11 = sty, and T = sty, with x1 # x2 but X3 = x3. Then

O((r K 72) ™) = 0((11 W 72) ") = St(sty, /xas X2) = St(Stys /xs s X1)-

e Suppose that 11 is a discrete series representation and 7o — 7(x, x') with |x/x'| =
|-]7% and s¢ > 0, so that 7o is a non-discrete series representation. Then

Ipyy(mix ™t x) = O((1 Kim) ™),

so that the latter representation is multiplicity free and

0((r W 72)") = Jpe)(mix ™1 x)-
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e Suppose that
7 = m(x1, X)) and T2 = m(x2,X5)

with |x:/xi| =|-|7% and s; > s3 > 0. Then

Ipeyy(m(xh, x2)x1 s x1) = Is(Xa/x1, x2/x15 x1) — O((11 K 2)F),

so that the latter representation is multiplicity free and

0((r1 ®72)") = Je(xs/Xx1, X2/X13 X1)-

If 1 =19 =7, then
O((rX®7r)7)=0.

Theorem A.11. Suppose that the discriminant algebra K of V' is a field. Let T X x be
an irreducible representation of

GSO(V) =GS0(3,1) = (GLy(K) x F*)/K™,
so that w, = x o Ng/p.

(i) If o is an irreducible representation of GO(V), then ©(c) = 0 if and only if 0 =
(tr ® x)~ for an invariant and distinguished 7 X x; we shall say that such a o
is of forbidden type. If o is not of forbidden type, then 6(o) is an irreducible
representation of GSp} such that 0(c) is irreducible.

(ii) Suppose that T is supercuspidal. Then we have the following situations.
e (Non-invariant case.) If 7¢ # 7, then O((1 ¥ x)*) = 6((r ¥ x)*) is generic
supercuspidal.

o (Invariant and distinguished case.) Suppose that 7 = 7 and T is obtained
by base change of some supercuspidal representation 7p of GLo(F') and x =
wTFwK/F. Then

é((T X X)+) = 5((7 X X)+) = IQ(Z) (WE/FyTF)

with L-parameter ¢, ® ¢r.wi,/r and similitude character w,,wg/p.

e (Invariant but not distinguished case.) Suppose that 7¢ = 7 and 7 is obtained
by base change of some supercuspidal representation 7 of GLo(F') but
X = Wrp,. Then

O((T¥x)") and O((rKx)")

are both irreducible supercuspidal with L-parameter ¢,, ® ¢;,wg,r and
similitude character w.,,. Exactly one of them, namely O((1 X x)™), is generic.
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(iii) Suppose that T = St,, Is a twisted Steinberg representation so that p?> = x oNg /.
Then there is a quadratic character n (possibly trivial) of F* such that pu¢/p =
noNg/p and x =1 - jt|px, so that

Sty B x < I (] - | 1] - 1)

Then we have the following situations.

e (Non-invariant case.) If u¢ # p, then n # 1 or Wk, r, and

O((TRx)*) = 0((r B x)") = St(nwr,p, 7(1).
e (Invariant and distinguished case.) In this case, we have n = wg/p, p =
proNg/p, and x = ,u%wK/F. Then

Sty My — IQ(J)+(WK/F| |ypl - 1_(1/2)

and
O((TRx)") = 0((r®X)T) = Ig(z)(Wr/F Stur)-
e (Invariant but not distinguished case.) In this case, we have n = 1, u =
proNg/p, and x = ,u%. Then
O((r®x)*) and O((rKx)7)

are both irreducible discrete series representations of GSp, with L-parameter
(ur ¥ Ss) © (upwi/rp B S2) and similitude character p%. In particular,

O((TRY)T) = St(stwK/F,,uF)
is generic, whereas O((t X x)~) is non-generic supercuspidal.

(iv) Suppose that o is a non-discrete series representation of GO(V) which is not of
forbidden type, so that

o= It

with |x| = ||~ and sg > 0. Then we have the following situations.

e (Non-invariant or invariant and distinguished case.) In this case, we have

Igz) (X 'wi/p, m(1)x) > O(0),

where m(y) is as given in Proposition A.7. In particular, ©(c) is multiplicity
free and has a unique irreducible quotient.

e (Invariant but not distinguished case.) In this case,
O(0) and O(o -sgn)

are the two irreducible constituents of I(z)(1,7(u)).

https://doi.org/10.1017/51474748010000198 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748010000198

On endoscopy and the refined Gross—Prasad conjecture for (SO5,SOy4) 301

A.5. Jacquet and Whittaker modules

Because Theorem A.11 is the most subtle part of the three theorems, we shall give
its proof in detail here and then give a sketch of the proof of Theorem A.10 later.
(Theorem A.9 is the easiest part and its proof will be omitted.) Hence we shall assume
that K is a field until § A.7. A key step in the proof of Theorem A.11 is the computation
of normalized Jacquet modules of the induced Weil representation {2 with respect to
Q(J) and Q(Z). This is a by-now-standard computation, following the lines of [29], and
we shall simply state the results below.

Proposition A.12. Let Rg(s)(f2) denote the normalized Jacquet module of §2 along
Q(J). Then we have a short exact sequence of L(J) x GSp(W)T-modules:

0—A— Rg)(2) = B —0.
Here, as GL(J) x (GO(Vk) x GSp(W)™)-modules,
B 2 |det ;| R (2v,ew @ vy |71/?),
where v, w is the induced Weil representation of GO(Vx) x GSp(W)*, and
A= 152+ (S(F*) ® v wr @ |det | - [detz |~ (wre/p o detz) vy, | 71),
where the action of (GL(J) x GO(Vk)) x (GL(Z) x GSp(W’')™) on S(F*) is given by

(((a, ), (0, 9) f)(@) = f(b~  zavw(g))
and v, w is the induced Weil representation of GO(Vi) x GSp(W')*.
Corollary A.13. Let x X u be an irreducible representation of GL(J) x GSO(Vk).

(i) We have
Homar()xGo(vic) (By x B ) # 0
if and only if x = | -|, in which case
Homgr(nyxcovi) (B, x ¥ pf) = (QVK,W(M€)|VW|1/2)*.

In particular,
Homgr()xcovi)(Bs x B ™) = Jgz)y+ (Wi rl - |, Oview (1))
(ii) We have
Homgr,(ryxco(vi) (A, x ¥ ) =0
if and only if u is invariant and e = —. Qutside of this case, we have

)

*

Homgr(nyxcowi) (A, X B u) = Igzy+ (X 'wi/r, Oviewr (1F) - x)*
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(iii) In particular, if x # | -|, then

Homgo ) (2, I 06 1)) = Igz+ (X 'wi/r, Oviewr () - X)*.

Proposition A.14. Let Rg(z)+(f2) denote the normalized Jacquet module of 2 along
Q(Z)". Then we have a short exact sequence of GO(V) x L(Z)"-modules:

0—= A" = Rgz)+(£2) = B' = 0.
Here, as GL(Z) x (GO(V) x GSp(W’)")-modules,
B' = (wkp o detz) X 2y
where 2v.w- is the induced Weil representation of GO(V') x GSp(W’)*, and
A= I (S(F*) @ Qv wr @ (wieyp o detg) vy | vw |71,
where the action of (GL(J) x GO(Vk)) x (GL(Z) x GSp(W’)™) on S(F*) is given by
(((a, ), (0, 9) f)(@) = f(a™ v (g) ad)
and 2y, w is the induced Weil representation of GO(Vk) x GSp(W')*.
Corollary A.15.

(i) Suppose that T X x is an irreducible representation of GSO(V) = (GLy(K) x
F*)/K* which is invariant and distinguished, so that (7 X )" participates in the
theta correspondence with GSp(W’)* = GLj . If the small theta lift of (X x)* to
GLj is denoted by 71, then

Homgov)xaspmw+ (92, (T B X) T R Igz)+ (wi/p, 1)) # 0.
(ii) We have
Homgy,(zyxcspw)+ (A X B Ove wo (1h) = Igun (X wieyr T (x 0 vy )™

We also need the computation of the Whittaker module of the induced Weil represen-
tation (2. This is given by the following.
Proposition A.16. Let U be the unipotent radical of the Borel subgroup B = P(Y)N
Q(Z) of GSp,. Let v and 1)’ be representatives of the two orbits of generic characters of
U under the action of B*. Similarly, let Uy be the unipotent radical of a t-stable Borel
subgroup of GO(V') and vy a generic character of Uy which is fixed by t. Then (perhaps
after relabelling v and ')

~ - GO
(vw)uy = C'mdUOXEYtg (o X 1),
whereas
(‘QV,W)U,’L[), = 0.

Corollary A.17. Let 7 K x be an irreducible representation of GSO(V') for a generic
7. Then Oy w((r K x)T) is ¢-generic, whereas in the invariant case, Oy ((1 K x)™) Is
non-generic with respect to any generic character.
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A.6. Proof of Theorem A.11

We are now ready to give the proof of Theorem A.11. Suppose that o is an irreducible
representation of GO(V'). We first note the following.

e If o is infinite dimensional, then [49, Theorem 3.4] says that @(c) = 0 if and only
if o = (1 ®x)~ for an invariant and distinguished 7 X x. The case where o is finite
dimensional can be established in the course of the proof below, but since it is not
relevant to the application to this paper, we shall omit the details.

e By a result of Mui¢ [42, Theorem 6.2], ©(0) is irreducible or zero if o is a discrete
series representation, at least when the residual characteristic of F' is p # 2. The
reason for this restriction on p in [42] is that the Howe duality conjecture on the
irreducibility of (o) is known to hold in general for p # 2 but not for p = 2.
However, our proof below actually verifies the Howe duality conjecture for all p,
so that [42, Theorem 6.2] holds without restriction on residual characteristic, at
least for the dual pair considered here. Note, however, that this information is not
necessary for Theorem A.1.

In view of the above, we may assume henceforth that ¢ is not of forbidden type. We
now consider the various cases in Theorem A.11 in turn.

Non-discrete series representations

Let o be a non-discrete series representation of GO(V') which is not of forbidden type.
Then, as in Theorem A.11 (iv), we have

o= Igu(x,uh)

with |x| =|-|7% and s¢ > 0. By Frobenius reciprocity, one has

O(0)* = Homgov)(£2,0) < Homgo (12, Iy (x, 1u1))
= Homgr()xcovi) (Ro (2), x ¥ ™).

By Corollary A.13, we see that

*

Homgr()xcovi) (R (92), x R ut) = Iozy+ (X 'wi/r, Oviewr (07)X)
and hence
Ioz+ (X 'wiyrs Oview (1F)x) — O(0),
so that 3
Loz (X 'wiyps m()x) = 6(0).

We now examine the various cases in Theorem A.11 (iv).
o (Non-invariant case.) In this case, u # p and x # 1 or wi,/p and Oy, w(u') is
supercuspidal. By Lemma A.2, Iz (x 'wk/p, m(p)x) is either irreducible or of

length two with a unique irreducible quotient. This shows that O(o) is multiplicity
free and 0(o) is irreducible, as desired.
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e (Invariant and distinguished case.) In this case, either u¢ = p or u° # pand x = 1.
When 4¢ = 1 so that u = pp o Ng/p, we have 7(p) = m(pur, prwg,r) and

Igzy (X 'wkyp, (e, prwic p)X) = 6(0).

Moreover,

Iony (X 'wiye, m(pr, prwk p)X) = Is(X Wi/ r, Wi/ P5 XIF).
This is irreducible unless x = |- |7! or wk,p|-|~". In any case, it is multiplicity
free and has a unique irreducible quotient (see [50, Table A.1, Type V, p. 270]).

When p€ # p and xy = 1, we have
Io)(Lp™) =0 ®o-sgn.
Hence we have
O(0) ® O(0 - sgn) = Ig(z)+ (Wi, Oview (17)),
so that

O(0) ®O(0 - sgn) = Iozy(wi/r, (1)),

where m(p) is supercuspidal. By Lemma A.2, Ig(z)(wk/p, (1)) is irreducible.
Moreover, o - sgn is of forbidden type, so that ©(c - sgn) = 0. Hence we conclude
that

O(0) = Igz)(wryr, (1))

e (Invariant but not distinguished case.) In this case, u® # p but x = wg/p. Then

Iouy(wi/rpt) =0 @ o -sgn.

Hence we have
O(0) ® O(0 - sgn) = Ig(z)+ (1, vie,w (1)),

so that . 3
O(0) ® O(0 -sgn) = Ig(z)(1, (),

where m(p) is supercuspidal. By Lemma A.2, Ioz)(1,7(x)) is the direct sum of a
generic representation and a non-generic one, which constitute an L-packet of size
two.

Twisted Steinberg representations

Let 7 = St, be a twisted Steinberg representation so that u? = xo Ng/p and 0 =
(St, B x)*. It is easy to see that there is a quadratic character 1 (possibly trivial) of
F* such that pu°/pu =noNg/p and x = 7 - | px. The representation St My is invariant
but not distinguished if and only if 5 is trivial. We now examine the various cases in
Theorem A.11 (iii).
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e (Non-invariant or invariant and distinguished case.) In this case, n is non-trivial
and we have

o = Iyl - | n*|vve|712).
By Corollary A.13, we have
Ioezy+ (/e - |75 Oview ()] '/?) - B(0),

so that .
Iz (mwryrl - |7h m(w)] - [12) - 6(0).
By Lemma A.2 and [50, Table A.1, Type IIL, p. 270, Iz (nwk/F| - | =1 ()] - \1/2)

is multiplicity free with a unique irreducible quotient

St(nwr/p,m(p))  if n # wi/p (non-invariant),
Igzy(wi)pystuy) if n =wg/p (invariant and distinguished),

where pir is a character of I such that y = pup o Ng/p in the invariant and
distinguished case. This verifies Theorem A.1 in this case. It does not quite show
that ©(o) is irreducible, but as we explained above, this follows from a result of
Muié [42, Theorem 6.2].

o (Invariant but not distinguished case.) To a certain extent, this is the most non-
trivial case of Theorem A.11. If 0 = (St, X p%)~, then

o= Iou (|- |1 lvve | 7172).

By Corollary A.13 (i), (ii) and Proposition A.8 (ii) we deduce that
O(a) = Ovew ()

is the non-generic supercuspidal representation with the desired L-parameter. On
the other hand, if o = (St, X p%)*, then

o= Lo (|- |t v |72).
In this case, Corollary A.13 implies that one has an exact sequence:
0 = Joezy+ (Wicsel - | Oview (h)] - [ 71/2)7
— Homaow) (2, I (| - |, ¥ v, | 7/2))
§ — *
= Iz (Wieyel - 17 Oviewr ()] - [V2)".

Since
i 8(0)* — HomGO(V)(‘Q7IQ(J)(| ’ |7:[‘L+|VVK|71/2))7

we obtain by composition with § a map

doi: @(0)* — IQ(Z)+(WK/F| . |7179VK,W’(/L+)| . |1/2)*'
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We claim that this map is still injective; this will be sufficient to establish the
desired result in this case. Indeed, it will give
Loy (wiyel - 17 w(w)] - ?) - 6(0),
and one knows by [51] (see also [50, Table A.1, Type V, p. 270]) that
Iozy(wirpl - |7 hm(w)] - [Y?) = Ip(wiypl - |7 wiyes prl - [1?)

is multiplicity free with a unique irreducible quotient St(stw,,,, pr). This verifies
Theorem A.1 in this case, and together with [42, Theorem 6.2], one has

O(0) = St(stuy s 1F)-

It remains to show that d o ¢ is injective. Suppose on the contrary that it is not.
Then we would have a non-zero equivariant map

2 = 0 W oy (@icrel - | Oviews ()] - |772),

so that

oFf HomGSpI(Q’ JQ(Z)*(WK/F| . ‘70VK,W’(,UJ+)| . |71/2))
- HomGSPz(Q’IQ(Z)*— (wK/F| ' |_179VK,W' (/j‘+)| : |1/2))

Now we compute the latter Hom space using Corollary A.15 (ii). We conclude that

Homgg,+ (2, Loy Wi/l - |75 viewr (W) - 1V2) = Ioun (- | it v | 7H2)7

so that

Iouy (|- | i v | 7V2) = o
This is a contradiction, since Ig()(| - |, #*|vv, | 71/2) has o as a submodule but not
a quotient.

Supercuspidal representations

Let 7Xx be a supercuspidal representation of GSO(V'). Finally, we examine the various
cases in Theorem A.11 (ii).

e (Non-invariant case.) In this case, one knows by [49, Theorem 3.4] that O((r X
X)T) is non-zero and irreducible supercuspidal. Moreover, the L-parameter of
O((r ® x)T) is identified in [9, §11].

e (Invariant and distinguished case.) In this case, 7 is the base change of some
supercuspidal representation 7p of GLo(F) and x = w;,wg /p. Moreover, one
knows that the extension (7 X )T participates in the theta correspondence with
GSp(W')* = GLj and its theta lift to GLJ is a constituent 74 of 7‘F|GL2+. By
Corollary A.15, we deduce that

O((r¥x)") = Io(z)+ (Wi /r: TF ),
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and hence
O((TRX)*) = Igz)(wk/r, TF),

which is irreducible.

e (Invariant but not distinguished case.) In this case, 7 is the base change of some
supercuspidal representation 7p of GLy(F') but x = w,,. One knows by [49, The-
orem 3.4] that both extensions (7 X x)* have non-zero big theta lifts to GSp}
and O((1 ® x)*) is irreducible supercuspidal. It remains to show that these two
supercuspidal representations of GSp, make up an L-packet with L-parameter
7 D Prpwiyp and similitude character w;,. Note that 77 is necessarily non-
dihedral with respect to K, so that Trwg/p # TF.

For this, we consider the representations

TF W Trwi/F of GSO(2,2),
JL(p) B IL(rp)wre/p  of GSO(4)

and their theta lifts to GSp,. Then we are required to show that

é((T X X)+) =0(r X TFWK/F),
O((t®x)”) = O(JL(rr) K JL(Tr)wk /F)-

We achieve this by using a global argument.

e Choose a totally real number field F such that for two places v and v’ of T,
one has F, =F, = F.

e Choose a totally real quadratic extension K of F such that K, = K, = K.

e Let X be a cuspidal representation of GLa(Ap) such that X, = ¥,y = 77 and
the archimedean component Y, of X is a discrete series representation. This

can be achieved by using a simple trace formula. By [4], such a X' is tempered.
Then X' X Ywy r is a tempered cuspidal representation of GSO(2,2)(Ar).

e Consider the global theta lift

of XX Ywy r to GSpy. It is an irreducible globally generic cuspidal represen-
tation.

On the other hand, we may consider the base change BC(X) of X' to GL2(Ak),
so that BC(X) K wy is a globally generic tempered cuspidal representation of
GSO(V)(Ar) = (GL2(Ak) x Ay ) /Ay, where V is the quadratic space H® (K, Ng r).
Observe that BC(X) K wy; is a globally invariant representation and almost all of
its local components are distinguished, but its local components at v and v’ are
isomorphic to 7 X y which is not distinguished.
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Because BC(Y) X wy is globally invariant, it can be abstractly extended to an
irreducible representation of GO(V)(Ap) in infinitely many ways; more precisely,
at each place of IF, one has two possible extensions. One knows that at least half of
these extensions occur in the space of cusp forms on GO(V)(Ag). This is because
at least one of these extensions is automorphic, and one can twist an automorphic
extension by an automorphic sign character of GO(V)(Ay). In particular, one can
find an automorphic extension of BC(X) K wy whose local component at v is any
one of the two extensions (7 X x)*. We denote one such automorphic extension by
(BC(¥)Kwx)*. By using the place v, one can further ensure that at any place w
such that BC(X,) K wy, is distinguished, the local component of (BC(X) Kwy)*
is the 4-extension
(BC(X,) Rws, )T,

Thus, we may ensure that all the local components of (BC(X)Xwy)* have non-zero
local theta lifts to GSpj .

Now by [49, Theorem 8.3], the global theta lift of (BC(X) X wx)® to GSp, is
non-zero and irreducible cuspidal. Thus, we obtain an irreducible cuspidal repre-

sentation )
T+ = O((BC(Y) R wx)¥)

of GSp4(Ar). By the local unramified theta correspondence, one sees that IT* is
nearly equivalent to IT, so that the partial standard L-function L°(s, IT*,std) of
degree five has a pole at s = 1. By a result of Kudla and Rallis [34], this implies that
IT* has a non-zero global theta lift to an inner form of GSO(2,2). Such an inner
form is associated to a quaternion F-algebra D+ (possibly split) and is isomorphic
to (DX x DX)/F*. If we denote the theta lift of II* to such an inner form by
Op. (IT*), then Op, (IT*) is a cuspidal representation which is nearly equivalent to
YR Ywg p. Thus, YR Ywg /r must be the Jacquet-Langlands transfer of Op, (I1 ).
Note that at the place v, we necessarily have (D), # (D_),. By extracting the
local component at v, we conclude that

{B((rRx)*"),0((7 B x) ")} = {8(rr B 7rwi)r), O(JL(7r) R IL(Tr)wk/F)}-

Since we know that O((r X x)T) and (7% K TrWi/F) are generic and the other
two representations are not, we obtain the desired result.

This completes the proof of Theorem A.11.

A.7. Proof of Theorem A.10

For the sake of completeness, we shall give a sketch of the proof of Theorem A.10. As
before, a key step is the computation of normalized Jacquet modules of the induced Weil
representation 2y, where V' is now the split four-dimensional quadratic space. Before
coming to this computation, we first introduce some more notation.

Recall that V = X & X*, where X is a two-dimensional isotropic space. We can write

X =Fu, @ Fuys and X" = Fv, ® Fuy
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with (u;,v;) = d;5. Let P(X) be the parabolic subgroup of GSO(V) stabilizing X with
Levi factor
M(X) = GL(X) x Gy,.

Let J = Fuj be the isotropic line spanned by u; in X and let B(J) be the stabilizer
of J in M(X); it is also the stabilizer of the isotropic line spanned by ve in X*. With
respect to the basis {uj,us} of X, B(J) is the group of upper triangular matrices in
M(X) =2 GL(X) x Gy,. We write

(t(a,b), \) = ( (g 2) 7A> € B(J) € M(X).

Similarly, recall that W =Y* @Y,
Y*:F61®F62 and Y:Ffl@FfQ

with (e;, f;) = d;;. The stabilizer of Y in GSp(W) is the Siegel parabolic subgroup P(Y")
with Levi factor
M(Y) 2 GL(Y) X G,

and the stabilizer of Z = F'f; in GSp(W) is the Klingen parabolic subgroup Q(Z) with
Levi factor
L(Z) = GL(Z) x GSp(W'),

where W’ = Fey, @ F fs.
With the above notation, we have the following.

Proposition A.18. The normalized Jacquet module Rp(x)(£2v,w) of 2v,w along P(X)
has a natural three step filtration as an M (X) x GSp(W)-module whose successive quo-
tients are described as follows.

(i) The top quotient is
C = S(F™).

Here the action of (m,\) € M(X) = GL(X) x G,,, on S(F*) is given by
((m, M) (1) = [detix (m) 2272/ £ (M),
(ii) The middle subquotient is
B = Ipyxq(z)(S(F*) @ S(F*v2 @ f1)).
Here the action of (t(a,b),\) € B(J) on S(F*) ® S(F*v2 ® f1) is given by
((t(a, b), N f)(t ) = |a] [b]*|A]=*/2 f(At, ba),
whereas the action of (o, g) € L(Z) =2 GL(Z) x GSp(W’) is given by

(0, 9) 1)(t, ) = |al 2w (9)| f (vw (9)t, ™ o (g)).
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(iii) Finally, the submodule is
A= Ip(y) (S(FX) ® S(ISOIH(X, Y))),

where Isom(X,Y) is the set of isomorphisms from X to Y as vector spaces (which
is a torsor for GL(X) as well as for GL(Y')). Here the action of (m,\) € M(X) =
GL(X) x Gy, on S(F*) ® S(Isom(X,Y)) is given by

((m, A)F)(E k) = |detx (m)*2IN T2 F (M, hom),
whereas the action of (m/,N') € M(Y) =2 GL(Y) x G, is given by

((m, X)) (1, ) = [N/ dety (m) |7 f Ve, X~ o 1),

Corollary A.19. Let 0 = 7w(x1,x2) X 7 be a representation of GSO(V) = (GLg x
GLy)/F* such that 7 is irreducible but m(x1, x2) may be reducible, so that w, = x1X2
and

o =Ipcx)(T7x1,X2)-
Then
Homggov)(£2,0) = Hompyx) (Rp(x)(2), 77 x1 M x2).
(i) If x1/x2 # | - |2, then
Homy(x)(C, 7¥x1 B x2) = 0.
(ii) If Rp(7) does not have x1|-|~* W n as a subquotient for any character 1), then

HomM(X)(BJVXl X x2) = 0.
(iii) If the conditions in (i) and (ii) hold, then
HOIHM(X)(RP(X)(Q), Tvxl X XQ) - HomM(X)(A,Tvxl X Xz) = Ip(y)(TXl_l,Xl)*.

Proposition A.20. Let U be the unipotent radical of the Borel subgroup P(Y)NQ(Z)
of GSp, and 1 a generic character of U. Similarly, let Uy be the unipotent radical of a
Borel subgroup of GSO(V') and vy a generic character of Uy. Then

(QV,W)U,’L/J = C_indSOSO(V) (wo) .

In particular, if o is an irreducible generic representation of GSO(V), then its big theta
lift ©(o) to GSp, is generic and hence non-zero.

We are now ready to give the proof of Theorem A.10. Let 7y X 75 be an irreducible
representation of GSO(V) = (GLg x GLg)/F*. Then one knows by results of Roberts
that

9(7’1 &Tg) = 9(7’2&7‘1) 750

We now consider the various cases in Theorem A.10 in turn.
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Supercuspidal representations

Suppose that 73 K 5 is supercuspidal. Then one knows that O(r; Kmp) = 0(m K 13) is
non-zero and irreducible. Moreover, if 71 # 72, then the theta lift of 7 X7 to GSp(W') =
GLy is zero and hence 6(7; X 75) is supercuspidal. By definition, the L-parameter of
0(m1 ®72) is ¢, @ ¢y, with similitude character w,, = wy,.

On the other hand, if 7y = 7 = 7, then 7 X 7 participates in the theta correspondence
with GSp(W’) = GLg and its big theta lift to GLy is 7. By an analogue of Proposi-
tion A.14 for the split V', there is a GSO(V) x L(Z)-equivariant surjective map

Rozy)(2vw) = Qvw:.
By Frobenius reciprocity, one has a non-zero GSO(V') x GSp(W)-equivariant map
QV,W — (T X 7') D IQ(Z)(LT)-
Thus, we see that
O(TRT) = Igz(1,7).
We know that Iz (1, 7) is the direct sum of two irreducible constituents with a unique
generic constituent mgen (7). It follows from Proposition A.20 that

Ot ®T) = mgen (7).

Discrete series representations

Suppose that ¢ = st, X 7, where st, is a twisted Steinberg representation and 7 is
a discrete series representation so that w, = x2. Note that 7 is either supercuspidal or
equal to st,. Then

o = m(xl |72l T R = Tpeo (7YX 12 x0T,

We would like to apply Corollary A.19 (iii) and so we need to verify that the conditions
in Corollary A.19 (i), (ii) hold. The condition in Corollary A.19 (i) obviously holds, and
that in Corollary A.19 (ii) holds when 7 is supercuspidal. If 7 = st,, is a twisted Steinberg
representation (so that y? = p?), then

Rp(r)=pl- "2 Rul- |72 #x]-|7V2 -y

for any character n. Hence the condition in Corollary A.19 (ii) also holds when 7 is a
twisted Steinberg representation. In particular, we conclude by Corollary A.19 (iii) that

Ipery(mx M- 17V2,x] - [M2) = 6(0).

By Lemma A.3, the above induced representation is multiplicity free and of length two
with a unique irreducible quotient, so that @ (o) is multiplicity free and 6(c) is irreducible.
Moreover,

0(0) {St(rx_l, x) if T # sty,

Tgen(T) if 7 = st,.
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There remains the issue of whether ©(o) = 6(o). This follows from a result of
Muié [42], but we can also give a brief sketch of the proof. Suppose on the contrary
that ©(c) = Ipryy(tx |- |72, x| - ['/?). Then we would have

" = HomGsp(W)(Qv,W,IP(Y)(TXA\ : |71/2,X| : |1/2))-

Now one compute the latter Hom space, which amounts to the computation of the nor-
malized Jacquet module Rp(y)(f2v,w). A short computation shows that

Homespw) (Qvw, Ipery (P - 72, x] - 1M2) = Ipoo (7Y - V2, x| - [7H3)7,

so that
Ipco) (Tx| - 12, x| 712 = o
This is a contradiction, since Ip(x)(7Vx| - |'/2, x| - |71/?) has o as a submodule but not

a quotient. Thus, we conclude that ©(c) = 6(0) is irreducible.

Non-discrete series representations. I
Suppose that
o= m(x1,x2) BT = Ipx)(TVx1, X2);

where 7 is a discrete series representation with w, = x1x2, |x1/x2| =|-|7%°, and s > 0.
Again, we would like to apply Corollary A.19 (iii) and so we need to verify the conditions
there. As before, the only issue is the condition in Corollary A.19 (ii) when 7 = st is a
twisted Steinberg representation, in which case

Rp(r) = x| "2 ®x|- |72

and we need to show that this is different from x1|-|~* X7 for any character 7. In other
words, we need to show that x/x1 # | - |~3/2. But observe that

X = el = b Plxe/xal = bl |,

so that
x/xal =172 # |- |72

This verifies that the conditions in Corollary A.19 (i), (ii) hold, so that we conclude that
Ipiyy(Tx1 " x1) — O(0).

Since the above induced representation is multiplicity free with a unique irreducible

quotient, we conclude that ©(c) is multiplicity free and 6(c) = Jp(y)(Tx7 ", x1) s irre-
ducible.
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Non-discrete series representations. 11
Finally, we consider the case where
o = m(x1,X1) 7 (x2, x3)
with x1xi = xexb, [Xi/xi| = 1|75, and s1 > s2 > 0. We consider two subcases.
(a) x2/x5 # ||~ in this case 7(x2, X5) = m(x%, X2) is irreducible and
o = Ipcxy(m(xa, x5) ¥ X1, X1)-

Again, to apply Corollary A.19 (iii), we need to verify the conditions there, and in
particular the condition in Corollary A.19 (ii). We have

Rp(7(x2,x5)) = (x2 ¥ xz) ® (x5 W x2)

up to semisimplification and so we need to verify that yo # x1|-|~! and x4 #
x1|- |71 To see these, we argue by contradiction. If xo = x1|-|~!, then x5 = x}]| - |,
so that

|17 = [xe/Xa] = /XAl 72 = 72

This would give s; = s1 + 2, which contradicts s; > s2. On the other hand, if
x5 =xi|-|7" then x2 = xi| - |, so that

R Bl

|- %2 = Ixa/xzl = Ixa /x4l -

This would give s3 = —s; — 2 < 0, which is a contradiction. Thus, we may apply
Corollary A.19 (iii) to conclude that

Ipery(m(Xa, X2)x1 5 X1) = I (Xa/x1, X2/ X135 X1) — 6(0).
This shows that ©(o) is multiplicity free with a unique irreducible quotient
0(0) = Jp(Xa/x1, X2/X15 X1)-

(b) x2/x5 = | - |71; in this case, m(x2,X%) is reducible and has the one-dimensional
representation xz| - |'/? as its unique irreducible submodule. Then

o = m(x1, x1) Bxal - M2 = Ipoo (g |- 1712 00)-
Applying Corollary A.19 (iii) (we leave the verification of the conditions there to
the reader), we conclude that
Ipy (i "Xzl - 12, x1) = ©(0).
Observe that

|1/2

Ip(xh/x1, x2/x13x1) = Ipovy (X7 " x2| - 1M x1)

and the former induced representation is a standard module. This shows that ©(o)
is multiplicity free with a unique irreducible quotient

0(c) = JB(XIQ/X17X2/X1§X1)'

This completes the proof of Theorem A.10.
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Appendix B. Spherical Eisenstein series on GOs,,

Let F be a number field. Let £(s) = ©°/2((s), where D is the absolute value of the
discriminant of F' and ((s) is the zeta function of F including archimedean factors. Then
the functional equation £(1 — s) = £(s) holds. We write

__"r _
&(s) = ] +v4+0(s—1).
For each s € C, let

[s](a) = lal*,  [s]'(a) = |a|" log]al,

for a € A*. For an automorphic form ¢ on GOg,(A), let

for h € GOg,(A). Let 1 denote the constant function on GOg,(A).

For each r € N with r < n, let P, , be the parabolic subgroup of GOy, and E(”’T)(s)
the spherical Eisenstein series given in §7.3. Note that E(™0)(s) = 1. For each sy € C,
let

BUO(s) = 37 (s = 50) Y (s0)
d>—o00

be the Laurent expansion of E(™7")(s) at s = sq.
Let @ = P,1. For an automorphic form ¢ on GOgy,(A), let ¢g denote the constant
term of ¢ along Q). We regard ¢¢ as an automorphic form on A* x GOs,,_2(A) via the

embedding
a 0 0 0
0 d 0 v
h/
@H) =10 o wwyat o]
0 ¢ 0 d’
where

Lemma B.1. Let ¢ be a K-invariant automorphic form on GOas, (A). Assume that ¢ is
concentrated on the Borel subgroup. If ¢g = 0, then

¢ =0.
Proof. The assertion follows from the Langlands lemma (see [24, Corollary 3.1]). O

We have a double coset decomposition

GO, — P, QU Pn,ngn’r)Q U Pn,rwén’r)Q ifl1<r<n,
n P, QU Pn,rwén’r)Q if r =mn,
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where
0 0 1 0 0 0 0 0
0 1,_; 0 0 0 0 0 0
1 0 0 0 0 0 0 0
mr |00 0 1,,4 0 0 O 0
710 o0 o0 0 0o 0 1 0
0 0 0 0 0 1,1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1,.,1
and
0O 0 1 0
w(mr)_ 0 1,1 O 0
2711 o o0 o

0 0 0 1,4
As in [24, Proposition 2.6], a routine calculation shows the following proposition.
Proposition B.2. If 1 < r < n, then E"")(s)q is equal to
[s+32n—r—-1)]® Er=br=(s 4 Dl-3s—12n—r—1)]
E(s+ %(211 —3r—1))
s+3(2n—r—1))
E(s + 5(r —1))&(s — 5(2n — 3r — 1))&(2s)

E(s+(r+1)E(s+3@n—r—1))E@2s+7r—1)
x[-s+i@2n—r-1)]@ Bt (s - Hds - 12n—r - 1))

[r] @ BC=10 (s) [ 5]

If r = n, then E(™")(s)q is equal to

5+ 30— D] ® B" 1D (s + s (n - 1)

«S@i(fz)—l)[s +1(n—1)] @ B1n=D(s — 1)ls L — 1)),

The case n =1
Obviously, EM1(s) is entire. We have
EM0) =21,  EMY0) =0

The case n = 2

Let » = 2. By Proposition B.2, we have

ECD(s)g=[s+ 3] @ EMY(s+ 1)[-L1s - 1]
£(2s)

ey R Y EL ]
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Hence E(2?)(s) has a simple pole at s = % and is holomorphic at s = 3. Also, the
functional equation

£(25)E??) (—s) = £(25 4+ 1) E@2(s)

holds. We have

221y _ P

Let r = 1. By Proposition B.2, we have

E(QJ)(S)Q - [5 1] ® 1[_%5 - %} f(i(S)l) [1] ® E(Ll)(s)[_%}
5(5)2 2 1[L 1
§(s+1)2[_s Hetlzs =l

Hence E(s) has a double pole at s = 1 and is holomorphic at s = 2. We have

2

(2,1) P
EZN ) = 5(2)21'

Lemma B.3.

2,1 1Y 2,2
EYD (1) = S EPY (L),

- £@2)
Proof. We have
ESY (D)o = @ BV (1[4
+ #@H@J' ® BV (0)[0] + 3[0] @ BV (0)[0] + [0] @ E{Y (0)[0])
(1 €2 (1)
0 (p £2) ) 0} Eo ™ (0)10]
=@ ESY (1)) - ?'02)601' ©1[0] - (0] ® 1[0]’)
20 (v €2
) (p 5(2>)[0] 100l

On the other hand,

EZV(1)g = gim © B (1)~ 4]

L . N, 200 (7€)
+ g(2)2( 0] ® 1[0] + 3[0] ® 1[0]') + 0L (p 0 )[o] ®1[0].
By Lemma B.1, this yields the lemma. 0
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The case n = 3

Let » = 3. By Proposition B.2, we have

EC(s)g = [s+ 1] ® E®? (s + L)[-1s - 1]

£(§2«(9245r)2)[_8 +1]@ B® (s — 3)[35 - 3]
= [s+ 1@ E®? (s + H)[-3s - 1]
m[‘”“ ® BC?) (=5 + )[Fs — 3.

Hence E(?”?’)(s) has a simple pole at s = 1 and is holomorphic at s = 0. Also, the
functional equation

£(2s — 1NEG3) (—s) = £(25 + 2)EG3)(s)
holds. We have

B3 (0) = —fég) EP0),  E%Y (1) = L1

Let r = 2. By Proposition B.2, we have

E®(s)g = [s + @ E@V(s + L)[~1s — 3] + gg " e B2 ()
T L Y-SRI

Let » = 1. By Proposition B.2, we have

EGY(s)g =[s+2]®1[-1s— 1]+ St 1) [1] @ E@Y(s)[-1]

(s +2)
-1
E(s+1)¢(s+2)

Hence E(?”l)(s) has a simple pole at s = 2 and has a simple pole at s = 1. We have

[—s+2]®1[3s—1].

B1) o PE(2)
E5O) = gae@

G, 1.

Lemma B.4.

E®P(3) = %Eé?”?’)(l).
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Proof. We have

=2l ESY ()] - @([0]’ ©1[0] — 4[0] © 1[0]')
§(2) 22) 1 2p (£(2) £(4)
T e e BT @0 g (6(2) @ )M @10

+ B0 © ES (0] + 3ol @ ESV0)0) + 0] B4 ()]
* o s ~ e )0 S E 00
= i) ® B () - e (07 © 10 - 3o @ 10])
+ e BT 00+ e (55 - i Jw e
Hence the assertion follows from Lemmas B.1 and B.3. (Il

Lemma B.5.
(3,1) _ P (3,3)
E* 1) = E 0).
1 ( ) 26(3) 0 ( )
Proof. We have

By (0)q = 1" G (D)I-3) - 311 @ EEY(G)-3)' + 1 @ B (3)[-3]
)

+1) @ G (D)3 - 1 @ EEP (L)[-4) + 1] © ES? (4)[-4]
4¢'(2) (22) 1y 1
= w5 W e 14 - H 147 + 201 @ B () [-4)
4p€'(2)
+ £(2)2 [1] @ 1[-3].
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On the other hand,

E4 1) = @15 5EV 1)1 4 £B) (“2) - 5’(3’) e ESD @)

! O G ) @ :
e I @ -3+ e 1-4)
* e (50 et
- B e -+ 258 ey
+ e (14 - H @ -3
Hence the assertion follows from Lemmas B.1 and B.3. U

The casen = 4

Let » = 4. By Proposition B.2, we have

E4Y(s)g = [s+ 3] @ ECI (s + 1)[-1s - 3]

£(2s) 3 3,3
_ E33) (g 1ylg_ 3
Hence E(*4)(s) has a simple pole at s = 1.
Let r = 2. By Proposition B.2, we have
§(s+3)

ED(s)q = [s+ 5] @ B@V (s + 3)[~3s - {1+
£(s + 3)6(s — 5)8(25)

s+ 3)E(s +2)E@s + 1)

Hence E(*2)(s) has a double pole at s = 2

5.
Let r = 1. By Proposition B.2, we have

[-s+3]@EGY(s - L)[is - 2.

D (g s L1y 3y, S5+2) (3.1 (g)[_1
B (g = s+ 3] @145 — §1+ S 2 1] © BOV(5)-4
LS =2) [—s+3]@1[s— 2],

(s +1)€(s +3)
Hence E(*1)(s) has a simple pole at s = 1.

Lemma B.6.

(4,2) 13y _ p€(2) (4,4) 1
B0 = e
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Proof. We have

EYY (o = 2o EEP(1)[-1) + ﬁ)m © ESP(0)[~1)
— L e+ ﬁ)m © B (0)[-1].

On the other hand,

E4D ), = @ @ mE2(3) 1)1 2B 1y g g )1

£(4) £(4)?
2
p°€(2) p€(2) (3,1) 1
= 2] ® 1[-1] + 1l EX: 7 (1)][—5].
Hence the assertion follows from Lemmas B.1 and B.5. O
Lemma B.7.
BGY ) =BGV ().
Proof. We have
3) 3,1 p
B4 (1) = ¥ e BEV W) -1 + L e 1[-1).
e = S e BV (-4 + sl @ 11

Hence the assertion follows from Lemmas B.1 and B.5. O

Proposition B.8.

pE2) ' o) 3y (441 (4,1) oy 382 Ly
() P =m0 am (- 1+ F ) p

Proof. We have

B (3o = (2 @ ESY (1)[-1] - §[2) & BEEY ()[-1)' + [2) © B (1)[-1]

+ f@)(—m’ @ BV (0)[- 3]+ 41 @ ESY (0)[- 4] + [1] @ B (0)[ 1))
p (2 €W (33) 0y _1

“gi (W 0

P

(2 @ 1[-1] = 12l @ 1[-1]) + [2] @ ES? (1)[-1]

€
P (1] ® E 11 (3:3) ([ Ly
~ @' 9 0)[-1] - 1) @ B (0)[-1))
P (1 €2 &8 (3:3) (1
+ei (35 ) e B0
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By Lemmas B.4 and B.5, we have

EYY(3)q = ® BV (2)[-2]

+ S0 541
+ (5 - 58 Jre B @1
" gff) (-1 @ B%V()[=3]+ 110 BV )-4) + 1)@ BV (1))
(e e ) e B Y
- 5<p3§>(52<)4> Mtz + g(p:f)f()@ 2o 5 -1
gt (&)~ ) o2
- 25252?5 ('@ B2 (0)[-4] - 311 @ B¢ (0)[-3])
+ 2 @ BV (D)4
(55 B Ee s

and

E (1) = 4] ®1[-2]

+.EKESH]QQE%&1V1)P—%
N ggi; (gg’)) - i((j)) e ESY@)-4
<+j%ppy®u—u+%M®1FHU
e (e P e

— 4] © 1[-2] gg;m @ ES (1)[-4]
+%@Kﬁ§3 ?g)m®ﬂ9%m[;

£(4)
P (r_ 22 €H) _
+a@( £(2) ﬂ@)m®1[”
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Hence we have

p€(2) N o 4,4 41
) E4Y () - B (b)g - ESV (g

(5(3)5(4>

— (- 2+ EDmeain 2 (- 1 EE e 004

%
_(_7 3¢'(2) (44) 1
(- 3+ % )P e

By Lemma B.1, this yields the proposition. [l
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