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ARCHAEOLOGICAL FUTURES

A stable relationship: isotopes and
bioarchaeology are in it for the long haul
Kate Britton∗

Elemental beginnings
Given their ubiquity in dietary reconstruction, it is fitting that the story of isotopes began
with a conversation over dinner. Although coined in scientific literature by Frederick
Soddy (1913), the word ‘isotope’ was first conceived by Margaret Todd, a medical
doctor (also known as the novelist ‘Graham Travers’, and an all-round gender-stereotype-
smasher of their age). In 1912, Soddy and Todd were attending a supper in Glasgow.
When talk turned to work, Soddy described the then nameless concept of elements of
different masses that occupy the same place in the periodic table. Todd suggested the term
‘isotope’, from the Greek isos (‘same’) + topos (‘place’), and the name stuck (Nicol 1957;
Nagel 1982).

Two decades after Soddy’s death, the first stable isotope studies in archaeology were
published. Emerging from advances in radiocarbon dating, plant sciences and ecosystem
research (e.g. DeNiro & Epstein 1978a; Vogel 1978), initial applications focused on the
uptake of maize agriculture in North America, with prehistoric human bones serving as
‘markers’ for maize consumption (Vogel & van der Merwe 1977; van der Merwe & Vogel
1978). These seminal studies demonstrated the ground-breaking potential of this new
technique in estimating past dietary patterns.

The use of nitrogen isotopes in exploring trophic level relationships in terrestrial and
marine ecosystems followed soon after (DeNiro & Epstein 1981; Minagawa & Wada
1984; Schoeninger & DeNiro 1984), and archaeological investigations of marine resource
exploitation using carbon and nitrogen isotope data were published (e.g. Schoeninger et al.
1983). Research on oxygen isotope ratios of meteoric water (Craig 1961; Dansgaard 1964)
allowed relationships between drinking water, body water and mammalian mineralised
tissues to be investigated as a means of reconstructing climate (Longinelli 1984; Luz et al.
1984). In 1985, the first study relating skeletal strontium isotope ratios to geologically
sourced strontium to establish lifetime mobility in archaeological individuals was published
(Ericson 1985).
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Fractionating into a field
Research into the relationship between isotopic inputs and bodily isotope values has been
central to the development of isotope bioarchaeology. This has involved probing the
complexities of environmental, physiological and metabolic variation in modern plants and
animals (e.g. Ambrose 1991; Kohn 1996; Burton et al. 1999; Heaton 1999). Controlled
feeding experiments provided vital perspectives on the systematics, caveats and capabilities
of isotopic approaches (e.g. DeNiro & Epstein 1978b; Tieszen et al. 1983; Ambrose &
Norr 1993; Ambrose 2000; Howland et al. 2003; Sponheimer et al. 2003). Of equal
importance were studies of the ways isotope ratios can be altered after burial (e.g.
DeNiro 1985; Nelson et al. 1986; Tuross et al. 1988; Hedges et al. 1995; Collins et al.
2002).

Quality criteria for bone collagen have increased confidence in the data produced
(Ambrose 1990; van Klinken 1999; Nehlich & Richards 2009). While similar easily
applicable criteria are not available for the assessment of biomineral isotope data, there
are emerging consensuses: e.g. that tooth enamel best preserves in vivo signatures, and that
preparation protocols can alter isotope measurements substantially, particularly in bone (e.g.
Koch et al. 1997; Hoppe et al. 2003; Grimes & Pellegrini 2013).

By highlighting the caveats and limitations of isotope approaches in bioarchaeology,
these studies have together led to greater certainty that isotope measurements determined
from archaeological remains are representative of in vivo values and have widened their
applications. With the parallel developments in mass spectrometry (and its increased cost-
effectiveness and availability), the 1990s and 2000s saw a huge increase in the output of
isotopic data for archaeological case studies (Makarewicz & Sealy 2015: 147).

With the non-specialist in mind, this commentary aims to provide a discursive overview
of the history of isotope bioarchaeology, explore some highlights and challenges, and
speculate a little on the position of isotope analysis in bioarchaeology now and into the
future. Given the burgeoning size of the field, and in light of the author’s own experiences,
case studies explored here are largely focused on (relatively) recent time periods, and on
Western Europe, although themes are hopefully universal. With a view to brevity, the reader,
and the confines of word count, a limited number of references are given in the main text,
and a more extensive (but not exhaustive) list of recommended further reading is provided
as online supplementary material for some of the topics explored here. In the companion
bibliography I also refer the reader to excellent specialist reviews for detailed information
on the background, theory and methods, current status and future directions of isotope
bioarchaeology.

Major contributions
Stable isotope approaches have made central contributions to several archaeological debates,
and have opened new lines of enquiry. For example, isotope evidence for the diets and
movements of our earliest ancestors has had profound implications for our understanding
of human ecology and evolution (Lee-Thorp et al. 2010; Copeland et al. 2011; Schoeninger
2014).

© Antiquity Publications Ltd, 2017

854

https://doi.org/10.15184/aqy.2017.98 Published online by Cambridge University Press

https://doi.org/10.15184/aqy.2017.98


R
es

ea
rc

h

A stable relationship

Isotope analysis has also proved to be a valuable tool for investigating major
archaeological transitions, such as the shift from Mesolithic hunter-gatherer-fisher
communities to Neolithic farmers. Initial bone collagen studies suggested the abandonment
of marine foods at the onset of the British Neolithic (Richards et al. 2003). This sparked
debate, as researchers sought to reconcile isotope data with other evidence (Milner et al.
2004; Richards & Schulting 2006). Dental micro-sampling approaches have somewhat
resolved this, confirming not only the dietary predominance of terrestrial foods, but also the
intermittent, regional consumption of marine resources (Montgomery et al. 2013). Beyond
the issue of fish, the first studies were significant in contributing to a rethinking of the mode
of change during the Mesolithic to Neolithic transition in Britain, prompting new analyses
that now overwhelmingly support an ‘abruptist’ model (Rowley-Conwy 2011). Isotope
approaches have, however, demonstrated that the dynamics of ‘Neolithisation’ were non-
homogeneous world-wide. Strontium and oxygen isotopes, for example, indicate a more
prolonged transition in Thailand, with changes in residency patterns as matrilocality gained
predominance alongside agriculture (Bentley et al. 2005). In contrast, analyses in Central
Europe have concluded that patrilocality very likely prevailed (Haak et al. 2008; Bentley
2013).

These studies illustrate perhaps the most valuable contribution that isotope
bioarchaeology makes to archaeology: the illumination of past intra-society variation. By
providing evidence for individual life-histories, isotope studies reveal differences between
individuals and within societies, such as dietary variation by age group (Pearson et al.
2015) or faith (Alexander et al. 2015). Multi-isotope approaches are particularly effective
for characterising inter-personal variations linked to socio-cultural identities (Knudson
& Stojanowski 2008); for example, the combination of isotope analyses used to identify
fish consumption among the high-status immigrant Bishops of Whithorn (Müldner et al.
2009).

Expanding the spectrum
Isotope bioarchaeology is not confined to human mobility and diet; other aspects of
nutrition, malnutrition and similar physiological conditions have been investigated. Isotope
datasets evidencing the age at onset and subsequent completion of weaning (evidenced by
a drop in trophic level; Fogel et al. 1989) have been published from British sites across
multiple periods, from the Iron Age to the eighteenth/nineteenth centuries AD (e.g. Jay
et al. 2008; Nitsch et al. 2011). Despite being from geographically and socially disparate
populations, the volume of isotope data allows broad trends to emerge. Within a diachronic
framework, the implications of the post-medieval reduction in breastfeeding duration in
Britain highlight the potential relationship between breastfeeding, population increase and
urbanism (Haydock et al. 2013).

Isotope studies of infant feeding practices are significant in that they illuminate an aspect
of the past that is otherwise ‘invisible’, and create a narrative built around the experiences
of women and children. These studies also mark an emerging area of bioarchaeology to
which isotopes will contribute heavily in the future; namely, the interaction between socio-
cultural change and diet, mobility and other life-history events. Culture-mediated biological
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and ecological change in humans has become highly topical in bioarchaeology in recent
years. For example, research on the evolution of the human microbiome (Warinner et al.
2015) can be viewed as a response to the shift in archaeological theoretical frameworks
to include those from evolutionary ecology, such as gene-culture co-evolution and niche
construction theory (Laland & O’Brien 2010; Laland et al. 2010; Makarewicz 2016: 200).
Urbanism and industrialisation are likely to be focal points of future bioarchaeological
research within these new frameworks. The near unique potential of isotope analyses to
access the cultural, biological and environmental (White & Longstaffe 2016), and to
broaden our understanding of past activities and culturally mediated ecological changes,
places these approaches at the centre of future bioarchaeological research.

If isotope bioarchaeology is to rise to these and other challenges, new or refined analytical
approaches must be a priority. While bulk bone collagen studies are the current mainstay
of palaeodietary reconstruction, carbon isotope analysis of single amino acids can provide
more nuanced insights into protein sources, particularly in complex foodwebs (Fogel &
Tuross 2003; Corr et al. 2005; McCullagh et al. 2005; Webb et al. 2015). Single amino acid
nitrogen isotope analysis, along with the compound-specific carbon isotope analysis of lipids
and bone mineral, also have the potential to provide more nuanced insights into diet (Jim
et al. 2004; Styring et al. 2010; Colonese et al. 2015). ‘Non-traditional’ elements, such as
calcium (Reynard et al. 2013) and zinc (Jaouen et al. 2016), will prove increasingly useful in
palaeodietary studies, particularly where organics are not preserved (Jaouen & Pons 2016).
Underused since initial research, lead isotope applications will also become more widely
used, corroborating strontium isotope evidence for human and animal mobility (e.g. Shaw
et al. 2016). Other isotopes, such as neodymium (Tütken et al. 2011), may also prove
to be useful provenance proxies. Finally, recent advances in micro-sampling approaches
to human dentition (Beaumont & Montgomery 2015; Willmes et al. 2016) will make
their application more routine, thereby enhancing temporal resolution in isotope studies by
providing time-series dietary or mobility data for archaeological individuals.

Compound-specific approaches and new sampling strategies will help in taking stable
isotope analyses ‘beyond diet’, and will aid in the identification of nutritional stress
and disease (Reitsema 2013). Similarly, as our understanding of the impact of culinary
preparation on the isotope ratios of food and drink improves, other applications will arise.
Boiling and fermentation, for example, can alter the oxygen isotope values of drinking
water and therefore potentially alter human tissues when consumed (Brettell et al. 2012).
While this poses problems for mobility studies, it could throw light on past drinking habits
(Lamb et al. 2014). If experimental studies can improve our understanding of the isotope
systematics of post-procurement foodways, then the use of established or ‘non-traditional’
isotope approaches in investigating cooking, or other preparation/culinary practices, may
move to the fore.

Four legs good
Isotope zooarchaeology has recently proved valuable in disentangling complex aspects of
human-animal subsistence, and economic and socio-cultural relationships (Makarewicz
2016). Often using intra-tooth sampling (which provides time-series isotope records;
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Balasse 2003; Zazzo et al. 2006), aspects of animal husbandry such as foddering and
birth seasonality have been investigated, illuminating the experiences of animals and the
decisions of herders (Balasse et al. 2006; Towers et al. 2014). Strontium isotope studies
on archaeological fauna have explored aspects of past human lifeways such as trade and
transhumance (Bentley & Knipper 2005; Thornton 2011). The need to provide food for
omnivorous domesticates brings additional considerations to human foodways, and isotope
studies have explored these in a range of contexts (e.g. McManus-Fry et al. 2016).

Remains of wild animals from Pleistocene sites have also been analysed to explore
ancient foodwebs and environmental change (Bocherens 2003; Richards & Hedges 2003;
Stevens et al. 2008; Feranec et al. 2010). While this kind of isotope palaeoecology is well-
established, its potential for archaeological studies is only now being realised. Archaeological
faunal remains are significant in that they are often the product of human activity, and
can provide insights into that activity. Herbivore intra-tooth oxygen isotope data can,
for example, provide evidence of seasonal temperature variations and, when applied to
anthropogenically derived assemblages, generate terrestrial palaeoclimate proxy data near-
synchronous to human site-use (e.g. Bernard et al. 2009). Strontium isotope evidence for
migratory behaviours of important prey species, such as reindeer, can provide useful insights
into human behaviours and decisions, such as landscape-use and hunting strategies (Britton
et al. 2011; Price et al. 2017).

Connected lines of enquiry in isotope ecology and archaeology are now set to emerge; for
example, in investigating the relationship between past climatic change, faunal migrations
and human societies. Cross-disciplinary research projects will require specialists from both
fields, and the combination of methodological and theoretical frameworks. Site-formation
processes, and site-specific physical and chemical taphonomy, must all be understood
in order to assess the potential and limitations of any particular assemblage or research
question. New approaches to sampling must be sought, since the large sample sizes and
controls typical in isotope ecology are difficult for archaeological materials to meet. To
utilise isotope evidence for climatic change or faunal mobility (and through this, human
behaviours and experiences), novel methods of analysing isotope data are also required.
Among these, GIS tools and computational models that are commonly used in spatial
ecology could allow landscape-level approaches to isotope data. This could take intra-tooth
strontium data beyond the identification of migratory or non-migratory individuals, to the
modelling of seasonal movements across ‘iscoscapes’. First, however, it will be essential to
develop these tools within a proof-of-concept framework using modern materials.

An unnatural abundance
A growing strength of isotope bioarchaeology is the sheer quantity of data generated from
‘routine’ applications. The publication of full isotope datasets, along with %C, %N, C:N
or strontium concentration data, is increasingly common and ensures that other scientists
can properly access the data. Although practices in data reporting still require improvement
(Szpak et al. 2017), it is now possible to conduct original research using datasets combined
from previously published studies. Such syntheses reveal diachronic and population-level
trends, and allow enhanced critique of the capabilities of the techniques to, for example,
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identify immigrants from oxygen isotopes (Lightfoot & O’Connell 2016). New methods
of analysing large datasets, such as Bayesian mixing models or GIS tools, will prove
increasingly valuable (e.g. Fernandes et al. 2014; Willmes et al. 2014).

User-contributed datasets, such as ‘GenBank’ for DNA, present a promising new method
of collating large quantities of bioarchaeological isotope data ready to be ‘excavated’ later.
A recent call for a similar ‘IsoBank’ from the ecological community (Pauli et al. 2015)
was met with enthusiasm from isotope archaeologists (Pilaar Birch & Graham 2015).
The framework, management and costs of such a database, among other issues, still need
to be addressed by the broader community (Pauli et al. 2015). Once these hurdles are
overcome, however, ‘IsoBank’ will represent not only a sound curatorial move for a field
with burgeoning data, but (and more significantly) will yield fantastic new opportunities to
generate new knowledge.

Concluding thoughts and moving forward
In the era of ‘big data’, isotope analyses provide a valuable, accessible and relatively
inexpensive means of exploring past human lifeways and experiences. From population-
level insights to individual ‘biographies’ (Eriksson & Lidén 2013), isotopic studies help
to answer archaeological enquiries at a range of scales. Isotope data allow the experiences
of individual people, and intra-societal differences, to be traced. Applied en masse and in
the context of societal or cultural transitions, isotope data can illuminate the modes and
temporalities of change, and its consequences.

As archaeological research begins to focus on the relationship between human life-
histories, physiology and socio-cultural change, isotope approaches are well positioned
to drive these emerging research directions. They are a tool for accessing the past
by encompassing both the cultural and the ecological (Bogaard & Outram 2013).
Methodological and analytical developments must continue, however, for more nuanced
interpretations to become possible, and to distinguish between dietary, physiological
or other influences. Multi-isotope approaches, compound-specific analyses, and intra-
tissue/multi-tissue comparisons must become more routine. A better understanding of how
culinary preparation or other culturally mediated behaviours can influence isotope values
in food or water is also required. Fundamental experimental investigations and proof-of-
concept research must continue alongside archaeological applications for both the adoption
of new analytical approaches and the more confident (and creative) use of existing ones
(Pollard 2011). It is essential that funders and grant reviewers recognise these priorities.

Another priority must be the continued integration of isotopic datasets into broader
archaeological frameworks. This should embrace the complementarity of diverse lines of
enquiry, while exploiting the contradictions of parallel datasets, to explore new research
directions. For example, isotopic records of human diets could be contrasted with excavated
evidence of food remains to raise questions about cultural construction of space, waste and
diet. Isotope studies do not, and should not, exist in isolation, but should be components
of well-integrated studies using diverse theoretical and methodological approaches; for
example, in the combination of isotope and genetic data for studying Romano-British
‘origins’ (Martiniano et al. 2016). The integration of isotope data with other lines of
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evidence is key. Archaeologists can contribute to this by integrating broad datasets from
a range of specialisms (including isotopes) in their research designs, with all data properly
collected, analysed and contextualised.

Isotope zooarchaeology will continue to grow as a sub-field, facilitating the
understanding of past human societies and natural environments. This is illustrative of
the continued growth of inter-disciplinary research in academia, and isotope archaeologists
are now actively contributing to other fields. To meet the challenge of emerging fields (such
as faunal spatial palaeoecology), cross-disciplinary methodologies and epistemologies will
need to be reconciled. Issues of research design and sample size are sources of discrepancy,
as are the methods of analysing, visualising and interacting with data and the theoretical
frameworks used to interpret it. To move forward, an understanding of the archaeological
record, taphonomy and diagenesis will need to be combined with ecologically derived
theoretical and practical approaches.

Perhaps the most immediate concern for the discipline and its future, however, lies with
the availability and usability of datasets. The creation of a universal isotope data repository
will not only allay curatorial concerns, but will lead to new directions in research. The
harnessing of large datasets is likely to stimulate entirely new lines of enquiry into temporal,
spatial and cultural variation. As recently voiced in ecological literature, and echoed in the
archaeological community, ‘IsoBank’ would be a very welcome addition. Forty years on
from the first published applications, we can be confident that bioarchaeology and isotopes
are in it for the long haul, so perhaps it is time to start saving.

Supplementary material
To view supplementary material for this article, please visit http://doi.org/10.15184/aqy.
2017.98
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