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SUMMARY
A new image-based controller is proposed for the robotic system with the joint velocity signals
unavailable. The Immersion and Invariance (I&I) observer is applied to estimate the unknown
velocity information. Compared with the general velocity observer, the I&I observer can estimate
the unknown velocity exponentially. We consider the case that the exact camera parameters are not
known. The corresponding adaptive controller is designed for the robot system and the stability is
rigorously proven by using Lyapunov theorem. Finally, simulations are performed and the results
show the effectiveness of the proposed control approach.
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1. Introduction
Visual servoing has attracted more and more researchers’ attention during the past decades. Many
servoing schemes have been proposed, see ref. [1 and the references therein] . Based on the hand–
eye relation, visual servo systems have two types of camera configurations: eye-in hand (moving
camera)2–6 and eye-to-hand (fixed camera).7, 8 Visual servoing can also be classified into two broad
classes: position-based visual servoing and image-based visual servoing. Position-based schemes
define the error system between the current position and the desired one in the robot workspace,
while image-based schemes define the error system based on the camera screen coordinate. When
we consider the tasks the robot performed, we can classify them into visual tracking and visual
positioning. Visual tracking is that the visual positioning regulates the end-effector to an objective
position based on visual information. The robot end-effector tracks a desired moving object via visual
tracking.

Many nonlinear control schemes have been proposed for the visual tracking control of the robot
system. Astolfi and Ortega9 proposed a new adaptive visual servoing scheme based on the notion of
system immersion and manifold invariance (I&I). Akella10 proposed an adaptive control scheme in
the presence of parametric uncertainties . Liu et al.11, 12 proposed a new visual servoing scheme based
on the notion of depth-independent interaction matrix. In ref. [13], a new controller was presented to
regulate a set of feature points on the image plane to the desired positions by controlling the motion
of a robot manipulator in uncalibrated environment. Moreover, this controller can also cope with
the unknown camera robot parameters. Although there are so many regulation schemes in this field,
almost all of these need the assumption that the velocities of robot joints are known in advance. Su
et al.14 proposed a regulation method under the consideration that the robot velocities are unavailable.
The so-called dirty “ derivative” technique was applied to estimate robot velocities, and asymptotical
convergence results were given. Liang et al.15 proposed a sliding mode observer to estimate joint
velocities. An adaptive visual servoing scheme with uncalibrated camera was proposed in ref. [16]
for the case that robot parameters are unknown and the velocity signal is not available. In ref. [17], a
reduced-order nonlinear observer was developed to estimate the distance from a moving camera to a
feature point on a static object.
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Astolfi and Ortega9 in 2003 were the first to propose the notion of system immersion and (manifold)
invariance; they also designed a velocity observer based on this notion for mechanical system. Unlike
other velocity observer, this observer was globally convergent. In ref. [18], we showed that the robot
can successfully accomplish the positioning task with I&I joint velocity observer. But similar to many
previous works, we supposed that all the parameters of the robot and the camera are exactly known in
advance. In this work, we will develop our previous work to the case that all camera parameters are
unknown and the depth-independent interaction is used to linearize camera parameters with the use of
a Jacobian matrix. The main contributions of this work are as follows: (i) an I&I velocity observer is
constructed to estimate the velocities, and the estimation error is shown to be exponentially convergent;
(ii) an adaptive observer control design method is proposed based on the estimated velocities and
(iii) by using the Lyapunov stability theory, the stability of the closed-loop system is proved in the
rigorous sense.

This paper is organized as follows. Section 2 presents preliminary knowledge for the visual servoing
model with the related properties. Section 3 introduces an I&I velocity observer. In Section 4, we
design a controller with the joint velocities estimated by an I&I observer, and analyse the stability of
the whole closed-loop system. Simulation results are given in Section 5 to illustrate the performance
of the proposed scheme. Section 6 concludes with a summary of the obtained results.

Notation: Throughout this paper, the norm of vector is denoted by |·| and the norm of matrix is
denoted by ‖·‖, λmin (K) and λmax (K) denote the minimal and maximal eigenvalues of matrix K

respectively.

2. Problem Formulation
The problem considered in this study is to design a new controller to regulate the end-effector of
the manipulator to a target position. Here the camera is fixed at a certain place where it can always
capture manipulator’s image. Moreover, joints’ velocities and camera parameters are supposed to be
unknown. In this paper, we suppose that the end-effector of the manipulator is always in camera’s
field of view. Then some knowledge of robot system and camera model is presented.

2.1. Robot system
The robot system considered in this paper is an n-link eye-to-hand manipulator. Generally, an n-degree
of freedom robot manipulator system governed by the following dynamics in the absence of friction
and other disturbance is as follows:

M (q) q̈ + C (q, q̇) q̇ + G (q) = τ, (1)

where q(t), q̇(t), q̈(t) ∈ Rn denote the vectors of joint displacements, velocities and accelerations
respectively, M(q) ∈ Rn×n represents the symmetric positive definite manipulator inertial matrix,
C(q, q̇) ∈ Rn×n is the centripetal and Coriolis torque matrix, G(q) ∈ Rn represents the gravitational
torque vector and τ ∈ Rn is the input torque vector.

The robot dynamics has the following well-known structural properties:

Property 1. For a manipulator with revolute joints, the inertia matrix M(q) is symmetric positive-
definite and has the following upper and lower bounds:

0 < λmin(M(q))I ≤ M(q) ≤ λmax(M(q))I ≤ ∞, (2)

where I ∈ Rn×n is the identity matrix.

Property 2. The matrix Ṁ(q) − 2C(q, q̇) is skew-symmetric and satisfies

qT [Ṁ(q) − 2C(q, q̇)]q = 0, ∀q ∈ Rn. (3)

In this paper, a factorization of inertia matrix borrowing from Liang et al.15 is introduced,

M (q) = T T (q) T (q) , (4)
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where T (q) ∈ Rn×n always exists and is a full rank matrix because that M(q) is a symmetric positive
definite matrix. Besides, define the mappings L : R → Rn×n and F : Rn × Rn → Rn as

L (q) = T −1 (q) , F (q, τ ) = LT (q) (τ − G (q)) (5)

with y = q, x = T (q) q̇, the robot system (1) can be transformed into the following form:

ẏ = L (y) x,

ẋ = S (y, x) x + F (y, τ ) ,

(6)

the mapping S : Rn × Rn → Rn×n is defined as

S = (Ṫ − T −T C)T −1, (7)

where S satisfies the following three properties:

(i) S is skew-symmetric, i.e., S + ST = 0.

(ii) S is linear in the second argument, i.e., S (y, α1x + α2x̄) = α1S (y, x) + α2S (y, x̄) for all
y, x, x̄ ∈ Rn and α1, α2 ∈ R.

(iii) There exists a mapping S̄ : Rn × Rn → Rn×n satisfying S (x, x) y = S̄ (x, y) x.

See ref. [19] for the proof of the properties.
As we all know, the robot dynamics describes the relationship between joint displacements and

input torques, and the robot differential kinematics describes the relationship between the velocities
of joints and the velocities of robot end-effector as follows,

Ẋ = JA (q) q̇, (8)

where X, Ẋ ∈ R3 represent the robot end-effector position and velocity vectors respectively. JA (q)
is an analytical robot Jacobian matrix.

2.2. Camera system
In this paper, we use the depth-independent interaction matrix to denote imaging model. Three
coordinates are set up to denote the system: robot base coordinate, end-effector coordinate and
camera coordinate. We consider that the object can be characterized by a set of feature points. The
position of the feature point in the camera screen is ς = [u, v]. Cz is the depth of the feature points
with respect to the camera coordinate. The relationship between these is given as follows:

(
ς

1

)
= 1

Cz

N

(
X

1

)
, (9)

where N is a 3 × 4 matrix, which is called a perspective matrix, and N contains all the parameters of
the camera. From Eq. (9), we get

ς = 1

Cz

PX, (10)

where matrix P is a sub-matrix of N and

P =
(

N11 N12 N13

N21 N22 N23

)
, (11)

then we have

ς̇ = 1

Cz

(PẊ − ςĊz) = 1

Cz

A (t) q̇ (t) , (12)
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where 1
Cz

A (t) is called the depth-independent matrix and

A (t) = (
P − ς (t) NT

3

)
JA (q (t)) (13)

from Liu et al.,11 the depth-independent matrix can be linearized to the camera parameters and has
the following properties:

Property 3. Depth-independent matrix A (t) has a rank of 2 if the perspective matrix N is 3.

Property 4. For any 2 × 1 vector ρ, there is A (t) ρ = Y (ρ, ς (t)) θ , where Y (ρ, ς (t)) is a matrix
independent of the camera intrinsic or extrinsic parameters, and θ is an unknown vector.

Our objective in this paper is to design a controller for the robot system (1) guaranteeing that as

t → ∞, ς̃ = ς − ςd → 0,
∧
q̇ → 0 (this implies q̇ → 0 under the assumption that the observer can

estimate the virtual velocities successfully), ς , ςd , ς̃ stand for the current image position, desired
image position and image position error respectively.

3. Immersion and Invariance Velocity Observer
In this section, the I&I observer will be designed to estimate x which has been defined in (6).

We propose the following manifold for system (7),

s = ξ − x + β (y, ŷ, x̂) , (14)

where ξ , ŷ, x̂ ∈ Rn are the variables of the observer, the mapping β : R3n → Rn is a nonlinear
function vector to be defined. If we can prove that the manifold s is attractive and invariant, then x

can be estimated by ξ + β. We differentiate s and have

ṡ = ξ̇ − ẋ + β̇ = ξ̇ − S (y, x) x − F + ∇yβŷ + ∇ŷβŷ + ∇x̂βx̂. (15)

Let

ξ̇ = F − ∇ŷβŷ − ∇x̂βx̂ + S (y, ξ + β) (ξ + β) − ∇yβL (y) (ξ + β) (16)

and

∇yβ = [k1I + S̄(y, ξ + β)]L−1(y), k1 > 0, (17)

where s is attractive and invariant. However, solving (17) is a daunting task and β may not exist. In
ref. [19], the authors proposed an approximation solution of ∇yβ.

Give the solution of ∇yβ as

β (y, ŷ, x̂) =
∫ y1

0
H1 ([s, ŷ2, . . . , ŷn] , x̂) ds +

· · · +
∫ yn

0
Hn ([ŷ1, . . . , ŷn=1, s] , x̂) ds, (18)

where

H (y, ξ + β) = [H1 (y, ξ + β) · · ·Hn (y, ξ + β)] , (19)

we get

ṡ = (S − k1) z + (
y + 
x)L (y) z (20)
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such that


y (y, x, 0) = 0, 
x (y, x̂, 0) = 0. (21)

As S is skew-symmetric and k1 > 0, 
y and 
x play the role of disturbances that will be dominated
by a dynamic scaling as follows:

η = 1

r
z. (22)

Differentiating η yields

η̇ = (S − k1I ) η + (
y + 
x)L (y) η − ṙ

r
η. (23)

Define V1 = 1
2 |η|2, and its time derivative is

V̇1 = −
(

k1 + ṙ

r

)
|η|2 − ηT

(
y + 
x

)
L (y) η. (24)

Applying Young’s inequality and letting

ṙ = −k1

4
(r − 1) + r

k1
(‖ 
y L‖2 + ‖ 
x L‖2) r(0) ≥ 1, (25)

one has

V̇1 ≤ −
(

k1

2
− k1

4

r − 1

r

)
|η|2 ≤ −k1

4
|η|2 . (26)

Thus, η-subsystem is globally exponentially stable (GES), if r (t) ∈ L∞ is proved, z = 0 will also
be GES. Before going through the proof, we firstly analyse the stability of ey and ex . One has

·
ŷ = L (y) (ξ + β) − ψ1 (y, r) ey,

·
x̂ = F + S (y, ξ + β) (ξ + β) − ψ2 (y, r) ex,

(27)

where ψ1, ψ2 will be defined later. With (6) and (16), the error systems are

ėy = Lz − ψ1ey,

ėx = ∇yβLz − ψ2ex.

(28)

To prove the stability of ey and ex , we define the following Lyapunov function:

V2 = V1 + 1

2
(|ex |2 + |ey |2). (29)

Differentiating V2 along (26) and (28) gives

V̇2 ≤ −
(

k1

4
− 1

)
|η|2 −

(
ψ1 − r2

2
‖L‖2

) ∣∣ey

∣∣2

−
(

ψ2 − r2

2

∥∥∇yβ
∥∥2 ‖L‖2

)
|ex |2 . (30)
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Selecting k1 = 4 (1 + ψ3), ψ1 = r2

2 ‖L‖2 + ψ4 and ψ2 = r2

2

∥∥∇yβ
∥∥2 ‖L‖2 + ψ5, with ψ3, ψ4,

ψ5 > 0, we obtain

V̇2 ≤ −ψ3 |η|2 − ψ4

∣∣ey

∣∣2 − ψ5 |ex |2 . (31)

Based on (29) and (31), one knows that ex and ey converge to zero exponentially. In the next section
we will prove that r (t) ∈ L∞.

Remark 1. In this section, we investigate the observer design problem. It is shown that the resultant
closed-loop system is GES. The parameters ψ3, ψ4, ψ5 will be defined in the next section.

4. Control Design
In this section, the control scheme with robotic joint velocities estimated by the I&I observer will be
presented. The adaptive control method will also be given to estimate the unknown camera parameters.
Some parameters of the observer will be determined in this part. We will show that the positioning
error converges to zero asymptotically with our control scheme.

Firstly, a simple PD-like controller for robot system (1) is proposed. The controller is given as
follows:

τ = G (q) − Kv

∧
q̇ − ÂT Kpς̃ (32)

with

∧
q̇ = L(y)x, (33)

(AT − ÂT )Kpς̃ = Y (ς (t) , q (t)) θ̃ , (34)

where θ̃ = θ̂ − θ , the dynamics of
·
θ̂ is given by

(
ÂT − AT

)
Kpς̃ = Y (ς̃ (t), q(t))θ̃ , (35)

where Kv , Kp are positive-definite velocity and position gain matrices,
∧
q̇ is the estimated velocities of

the manipulators by the I&I observer, L and x have been defined in the section of observer design, A

is the so-called depth-independent matrix, Y (ς (t) , q (t)) is a 2 × 11 matrix, which is only dependent
on ς (t) and q (t), θ is an 11-dimension vector about camera parameters.

To prove the stability of the whole system, we firstly substitute the controller into robot system
(6), then we have

˙̂θ = �YT (ς(t), q(t))L(y)x. (36)

From the observer design, one has x̂ − x = rη + ex , so (36) can be transformed into

⎧⎨
⎩

ẏ = Lx

ẋ = S (y, x) x + LT
(−KvLx − ÂT Kpς̃

)
.

−LT KvL (rη + ex)
(37)

To analyse the stability of the whole closed-loop system with the control scheme, we define the
following Lyapunov-like function,

V4
(
x, ς̃, g̃, ex, ey, η, r

) = 1

2
xT x + 1

2
Czς̃

T Kpς̃ + V2 + 1

2
r2 + 1

2
θ̃ T �−1θ̃ , (38)
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where Cz > 0. Its time derivative along (14), (25) and (38) is as follows:

V̇4 = xT ẋ + Czς̃
T Kp

·
ς̃ + V̇2 + rṙ + θ̃�−1

·
θ̃

= xT S (y, x) x − xT LT KvLx − xT LT ÂT Kpς̃ + θ̃�−1
·
θ̃

+ Czς̃
T Kp

1

Cz

AT Lx − xT LT KvL (rη + ex) + V̇2 + rṙ (39)

= −xT LT KvLx − xT LT
(
ÂT − AT

)
Kpς̃

− xT LT KvL (rη + ex) + V̇2 + rṙ + θ̃�−1
·
θ̃ .

With Eqs. (34) and (35), we have

θ̃ T � ˙̃θ − xT LT (y)
(
ÂT − AT

)
Kpς̃

= θ̃ T Y T (ς(t), q(t))L(y)x − xT LT (y)Y (ς(t), q(t))θ̃ (40)

= 0.

Substituting (40) into (39), one has

V̇4 = −xT LT KvLx − xT LT KvL (rη + ex) + V̇2 + rṙ

− λmin (Kv) |Lx|2 + ε

2
|KvLx|2

+ 1

2ε
|L (rη + ex)|2 + V̇2 + rṙ

+ 1

ε
‖L‖2 |ex |2 − ψ3 |η|2 − ψ4

∣∣ey

∣∣2 − ψ5 |ex |2 (41)

+ r2

4 (1 + ψ3)

(
‖
xL‖2 + ∥∥
yL

∥∥2
)

= −
(
λmin (Kv) − ε

2
λ2

max (Kv)
)

|Lx|2 − ψ4|ey |2

−
(

ψ3 − 1

ε
r2 ‖L‖2

)
|η|2 −

(
ψ5 − 1

ε
‖L‖2

)
|ex |2

+ r2

4 (1 + ψ3)

(
‖
xL‖2 + ∥∥
yL

∥∥2
)

.

Note that in the process of derivation of V̇4, we use the Young’s inequality −2ab ≤ εa2 + 1
ε
b2

to get −xT LT KvL (rη + ex) ≤ ε
2 |KvLx|2 + 1

2ε
|L (rη + ex)|2. With (21), there exist �̄y , �̄x : Rn ×

Rn × Rn → Rn×n×n satisfying

∥∥
y

(
y, x̂, ey

)∥∥ ≤ ∥∥
̄y

(
y, x̂, ey

)∥∥ ∣∣ey

∣∣∥∥
x

(
y, x̂, ey

)∥∥ ≤ ∥∥
̄x

(
y, x̂, ey

)∥∥ |ex |
(42)
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Fig. 1. The block diagram of a closed-loop system.

Then V̇4 yields

V̇4 ≤ −
(
λmin (Kv) − ε

2
λ2

max (Kv)
)

|Lx|2

−
(

ψ3 − 1

ε
r2 ‖L‖2

)
|η|2 (43)

−
(

ψ4 − r2

4 (1 + ψ3)
‖L‖2

∥∥
̄y

∥∥2
) ∣∣ey

∣∣2

−
(

ψ5 − 1

ε
‖L‖2 − r2

4 (1 + ψ3)
‖L‖2

∥∥
̄x

∥∥2
)

|ex |2 .

Select the observer parameters as

ψ3 = 1

ε
r2 ‖L‖2 + α1,

ψ4 = r2

4 (1 + ψ3)
‖L‖2

∥∥
̄y

∥∥2 + α2,

ψ5 = 1

ε
‖L‖2 + r2

4 (1 + ψ3)
‖L‖2

∥∥
̄x

∥∥2 + α3,

with α1, α2, α3 > 0, and ε is chosen such that 0 < ε < 2λmin(Kv)
λmax(Kv) . Defining α0 = λmin (Kv) −

ε
2λ2

max (Kv), we have

V̇4 ≤ −α0 |Lx|2 − α1 |η|2 − α2

∣∣ey

∣∣2 − α3 |ex |2 . (44)

With (44), one has x, η, ey , ex ∈ L∞ ∩ L2, r (t) ∈ L∞, then the closed-loop system is GES. Figure 1
gives the flow chart of the closed-loop system with our control scheme.

With the above analysis, we present the main result as follows.

Theorem 1. Given the robot dynamics (1) and the imaging model (12), the whole system is
globally stable with the controller (32), in which the joint velocities are estimated by the observer
whose dynamics is obtained from (16), (25) and (27).

Remark 2. To control the 3D position and orientation of a robot manipulator using the visual
feedback, more than one feature point must be used in visual servoing. According to the projection
geometry of a camera, three non-collinear feature points are sufficient to constrain the position and
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Fig. 2. Position error of joint1 in robot coordinate.

orientation of a rigid object in a 3D space.13 Similar to Wang et al.,13 the controller proposed in this
paper can be directly extended to the tracking control of three feature points. The dimension of the
depth-independent interaction matrix will increase the computation time. When three feature points
are used, the controller will be designed as follows:

τ = G (q) − Kv

∧
q̇ −

3∑
i=1

ÂT
i Kpiς̃i (45)

Similar to the above proof procedure, by applying the Lyapunov function, the convergence of the
image on all the feature points can be proved. The difference is that the convergence of image errors
to zero is guaranteed only when three feature points are on the rigid body.

5. Simulations
To illustrate the effectiveness of the proposed control scheme, the simulation results achieved from
a two-link camera-to-hand robot will be given in this section. For system (1), the inertial matrix,
centripetal and Coriolis matrix and gravitational torque vector are defined as

M(q) =
[

m1d
2
1 + m2l

2
1 + I1 m2l1d2 cos (q2 − q1)

m2l1d2 cos (q2 − q1) m2d
2
2 + I2

]
,

C(q, q̇) =
[

0 m2l1d2 sin(q2 − q1)q̇1

m2l1d2 sin(q2 − q1)q̇2 0

]
,

G(q) =
[

m1d
2
1g cos (q1) + m2l1g cos (q1)

m2d2g cos (q2)

]
,

where m1 = 2 and m2 = 1.4 denote the mass of the links, l1 = 0.6 and l2 = 0.4 denote the length of
the links, and d1 = 0.45 and d2 = 0.3143 denote the location of the centre of mass of each link from
its end. I1 and I2 stand for the moment of inertia of the links, these are given by I1 = 1

12m1
(
l2
1 + l2

wd1

)
,
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Fig. 3. Position error of joint 2 in robot coordinate.
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Fig. 4. Position error of u in camera coordinate.

I2 = 1
12m2(l2

2 + l2
wd2), where lwd1 = lwd2 = 0.07 are the width of the links respectively. See ref. [16]

for more about the observer dynamics.
The initial estimations of the camera parameters are given as follows,

N̂ (0) =
⎡
⎣0.97 −0.26 0 0.1

0 0 −1 0.1
0.26 0.97 0 3

⎤
⎦ .
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Fig. 5. Position error of v in camera coordinate.
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Fig. 6. Estimated error of velocity of joint 1.

Here we select f = 2, γ = 200, pz = −4. The initial values of the system are set as q (0) = (0, 0)T ,
q̇ (0) = (0, 0)T , ζ (0) = (30, −40)T , x (0) = (3, 4)T , y (0) = (1, 2)T , β (0) = (9.0697, 21.1207)T ,
r (0) = 2. The controller gains are chosen as Kp = diag(5, 8), Kv = diag(30, 30).

The position errors of joints 1 and 2 are shown in Figs. 2 and 3 respectively. Figures 4 and 5 show
the position errors with camera coordinates respectively. The estimated errors of joint velocities with
our observer are shown in Figs. 6 and 7. From these figures, we can see that all of them converge to
zero asymptotically. Therefore, the control objective is achieved by applying the velocity observer
and the new controller designed in this paper.
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Fig. 7. Estimated error of velocity of joint 2.

6. Conclusions
The image-based robotic control problem is considered with unknown camera parameters and joint
velocities in this paper. New observer is designed for the estimation of the unknown velocity
information. We use the depth-independent matrix to linearize camera parameters from the image
Jacobian matrix and then estimate the unknown camera parameters with adaptive scheme. The
observer-based output feedback controller is proposed and the stability of the whole system is
proved. Finally, the simulations are performed and the results show the effectiveness of the proposed
control methods.
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