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Dense particle suspensions are widely encountered in many applications and in
environmental flows. While many previous studies investigate their rheological
properties in laminar flows, little is known on the behaviour of these suspensions in
the turbulent/inertial regime. The present study aims to fill this gap by investigating
the turbulent flow of a Newtonian fluid laden with solid neutrally-buoyant spheres
at relatively high volume fractions in a plane channel. Direct numerical simulation
(DNS) are performed in the range of volume fractions Φ = 0–0.2 with an immersed
boundary method (IBM) used to account for the dispersed phase. The results show
that the mean velocity profiles are significantly altered by the presence of a solid
phase with a decrease of the von Kármán constant in the log-law. The overall drag
is found to increase with the volume fraction, more than one would expect if just
considering the increase of the system viscosity due to the presence of the particles.
At the highest volume fraction investigated here, Φ = 0.2, the velocity fluctuation
intensities and the Reynolds shear stress are found to decrease. The analysis of
the mean momentum balance shows that the particle-induced stresses govern the
dynamics at high Φ and are the main responsible of the overall drag increase. In
the dense limit, we therefore find a decrease of the turbulence activity and a growth
of the particle induced stress, where the latter dominates for the Reynolds numbers
considered here.

Key words: multiphase and particle-laden flows, suspensions, turbulent flows

1. Introduction
Suspensions of solid particles in liquid flows are widely encountered in industrial

application and environmental problems. Sediment transport, avalanches, slurries,
pyroclastic flows, oil industry and pharmaceutical processes represent typical examples
where a step forward in the understanding and modelling of these complex fluids is
essential. Given the high flow rates typically encountered in these applications, inertia
strongly influences the flow regime that may be chaotic and turbulent. The main aim

† Email address for correspondence: francesco.picano@unipd.it
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of the present work is therefore to investigate the interactions between the phases of
a suspension in the turbulent regime.

Suspensions are often constituted by a Newtonian liquid laden with solid particles
that may differ for size, shape, density and stiffness. Even restricting our analysis to
monodisperse rigid neutrally buoyant spheres, the laminar flow of these suspension
shows peculiar rheological properties, such as high effective viscosities, normal stress
differences, shear thinning or thickening and jamming at high volume fractions,
see e.g. Stickel & Powell (2005), Morris (2009) and Wagner & Brady (2009) for
recent reviews on the topic. In particular, still dealing with simple laminar flows, the
suspended phase alters the response of the complex fluid to the local deformation
rate leading, for example, to an increase of the effective viscosity of the suspension
µe with respect to that of the pure fluid µ (Guazzelli & Morris 2011). A first attempt
to characterise this effect can be traced back to Einstein (1906, 1911) who provided
a linear estimate of the effective viscosity µe = µ (1 + 2.5Φ), with Φ the volume
fraction, valid in the dilute regime. Few decades later, Batchelor (1970) and Batchelor
& Green (1972) derived and proposed a quadratic correction that partially accounts
for the mutual interactions among particles, which become increasingly critical when
increasing the volume fraction. Indeed, the suspension viscosity increases by more
than one order of magnitude in the dense regime, until the system jams behaving as
a glass or a crystal (Sierou & Brady 2002). For dense cases only semi-empirical laws
exist for the effective viscosity; the mixture viscosity has been observed to diverge
when the system approaches the maximum packing limit Φm = 0.58–0.62 (Boyer,
Guazzelli & Pouliquen 2011), as reproduced by empirical fits such as those by Eilers
and Kriegher & Dougherty (Stickel & Powell 2005).

The rheological properties of suspensions have been often studied in the viscous
Stokesian regime where inertial effects are negligible and can be safely neglected.
Nonetheless in several applications the flow Reynolds number is high enough that
the inertia is significant at the particle scale. The seminal work of Bagnold (1954)
on the highly inertial regime revealed how the increase of the particle collisions
induces an effective viscosity that increases linearly with the shear rate. Even if the
macroscopic flow is viscous and laminar, inertial effects at the particle scale may
induce shear-thickening (Kulkarni & Morris 2008b; Picano et al. 2013) or normal
stress differences (Zarraga, Hill & Leighton 2000). This change of the macroscopic
behaviour is due to a strong modification of the particle microstructure, i.e. the
relative position and velocity of the suspended particles (Morris 2009; Picano et al.
2013). A finite particle-scale Reynolds number, Rea > 0, breaks the symmetry of the
particle pair trajectories (Kulkarni & Morris 2008a; Picano et al. 2013) and induces
an anisotropic microstructure, in turns responsible of shear-thickening.

It is well established that the macroscopic flow behaviour changes dramatically from
the laminar conditions to the typical chaotic dynamics of transitional and turbulent
flows when increasing the Reynolds number, still for single-phase fluids. The effect
of a dense suspended phase on the transition to turbulence in pipe flows has been
investigated experimentally by Matas, Morris & Guazzelli (2003). These authors
report a non-trivial behaviour of the critical Reynolds number at which transition
is observed. The critical Reynolds number for relatively large particles is found to
first decrease and then increases, with a minimum in the range Φ ∼ 0.05–0.1. This
non-monotonic behaviour cannot be explained only in terms of the increase of the
suspension effective viscosity. These experiments have been numerically reproduced
in Yu et al. (2013). Recently, Lashgari et al. (2014) showed that the flow behaviour
is more complex than that pertaining to unladen flows: three different regimes coexist
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with different probability when changing the volume fraction Φ and the Reynolds
number Re. In each regime the flow is dominated by viscous, turbulent and particle
stresses, respectively.

As far as the turbulent regime is concerned, most part of the previous studies
pertains to the dilute or very dilute regimes. In the very dilute regime, the particle
concentration is so small that the solid phase has a negligible effect on the flow.
In this, so-called, one-way coupling regime, the main object of most investigations
is the particle transport properties. In particular, inertia affects the particle turbulent
dispersion leading to preferential migration. Small-scale clustering has been observed
both in isotropic (see e.g. Toschi & Bodenschatz 2009) and inhomogeneous flows
(see e.g. Sardina et al. 2012). It amounts to a segregation of the particles in fractal
sets (Bec et al. 2007; Toschi & Bodenschatz 2009) induced by the coupling of the
turbulent flow dynamics (dissipative) and the particle inertia when the time scales of
the two phenomena are similar. In wall-bounded flow, particle inertia induces a mean
particle drift towards the wall, so-called turbophoresis (Reeks 1983). This effect is
most pronounced when the particle inertial time scale almost matches the turbulent
near-wall characteristic time (Soldati & Marchioli 2009). Clustering and turbophoresis
interact leading to the formation of streaky particle patterns (e.g. Sardina et al. 2011).

Increasing the solid phase concentration, while still keeping small the volume
fraction and the particle diameter with respect to the flow length scales, the flow
satisfies the so-called two-way coupling approximation, see among others Ferrante
& Elghobashi (2003) and Balachandar & Eaton (2010). This regime is characterised
by high mass density ratios, i.e. the ratio between the mass of the solid phase
and the fluid one, and low volume fractions (Balachandar & Eaton 2010) in the
limit of high mass fractions; this occurs typically for solid particles or droplets
dispersed in a gas phase when the density ratio between particles and fluid is
high (approximately 1000). In this regime the dispersed phase back-reacts on the
carrier fluid exchanging momentum, with inter-particle interactions and excluded
volume effects being negligible given the small volume fractions. In homogeneous
and isotropic flows, Squires & Eaton (1991) and Elghobashi & Truesdell (1993)
observe an attenuation of the turbulent kinetic energy at large scales accompanied
by an energy increase at small scales. Sundaram & Collins (1999) and Ferrante &
Elghobashi (2003) also performed systematic studies to understand the effect of the
particle inertia and of the mass fraction on the flow. Gualtieri et al. (2013) report that
the particle segregation in anisotropic fractal sets induces an alternative mechanism to
directly transfer energy from large to small scales. Similar results have been reported
for wall-bounded turbulent flows. Kulick, Fessler & Eaton (1994) showed that the
solid phase reduces the turbulent near-wall fluctuations increasing their anisotropy,
see also Li et al. (2001). Zhao, Andersson & Gillissen (2010) showed how these
interactions may lead to drag reduction.

If the dispersed phase is not constituted by elements smaller than the hydrodynamic
scales, the suspended phase directly affects the turbulent structures at scales similar
or below the particle size (Naso & Prosperetti 2010; Bellani et al. 2012; Homann,
Bec & Grauer 2013). As the system is nonlinear and chaotic, these large-scale
interactions modulate the whole process inducing non-trivial effects on the turbulence
cascade (Lucci, Ferrante & Elghobashi 2010; Yeo et al. 2010) where increase or
decrease of the spectral energy distribution depends on the particle size and mass
fraction. Pan & Banerjee (1996) were the first to simulate the effect of finite-size
particles in a turbulent channel flow showing that when these are larger than the
dissipative scale turbulent fluctuations and stresses become larger. The open-channel
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flow laden with heavy finite-size particles has been investigated in the dilute regime
by Kidanemariam et al. (2013) and Kidanemariam & Uhlmann (2014) showing that
the solid phase preferentially accumulates in near-wall low-speed streaks, the flow
structures characterised by smaller streamwise velocity.

Increasing the volume fraction, the coupling among the phases becomes richer
and particle–particle hydrodynamic interactions and collisions cannot be neglected.
In this dense regime, so-called four-way coupling, the rheological properties of
the suspension interact with the chaotic dynamics of the fluid phase when the flow
inertia is sufficiently large, i.e. at high Reynolds number. Few studies investigate dense
suspensions in the highly inertial regime: Matas et al. (2003), Loisel et al. (2013)
and Yu et al. (2013) show the effect on transition in wall-bounded flows showing
a decrease of the critical Reynolds number in the semidilute regime. Concerning
the turbulent regime of relatively dense suspensions of wall-bounded flows, Shao,
Wu & Yu (2012) report results for channel flow up to 7 % volume fraction both
considering neutrally buoyant and heavy particles. These authors document a decrease
of the fluid streamwise velocity fluctuation due to an attenuation of the large-scale
streamwise vortices. In the case of heavy, sedimenting, particles, the bottom wall
behaves as a rough boundary with particles free to resuspend. Different regimes have
been observed when the importance of the particle buoyancy is varied in the recent
study of Vowinckel, Kempe & Fröhlich (2014).

In this context, even restricting to the case of neutrally buoyant particles, little is
know on the effect of a dense suspended phase on the fully turbulent regime. The
main reason can be ascribed to the well known difficulties to tackle this case either
experimentally or numerically. As noticed previously, the dense regime is characterised
by a complex particle microstructure that induces non-trivial macroscopic features.
When the large-scale inertia is high enough, the interaction between the suspension
microstructure, i.e. rheology, and turbulence dynamics is expected to significantly
alter the macroscopic flow dynamics. This is the object of the present study.

To this end, we consider turbulent channel flows laden with finite-size particles
(radius a= h/18 with h the half-channel height) up to a volume fraction Φ = 0.2. We
use data from a direct numerical simulation (DNS) that fully describe the solid phase
dynamics via an immersed boundary method (IBM). We show that the classical
laws for the turbulent mean velocity profiles are modified in the presence of the
particles and the overall drag increases. At the highest volume fraction investigated,
Φ = 0.2, the velocity fluctuation intensities and the Reynolds shear stresses are found
to suddenly decrease. We consider the mean momentum budget to show that the
particle-induced stress is responsible of the overall drag increase at high Φ, while
the turbulent drag decreases.

2. Methodology
2.1. Numerical algorithm

During recent years, different methods have been proposed to perform accurate
DNS of dense multiphase flows. Fully Eulerian methods have been adopted to deal
with two-fluid flows, such as front-tracking, sharp or diffuse interface methods (see
e.g. Tryggvason et al. 2001; Bray 2002; Benzi et al. 2009; Celani et al. (2009);
Magaletti et al. 2013), whereas mixed Lagrangian–Eulerian techniques are found
to be the most appropriate for solid–liquid suspensions (Ladd & Verberg 2001;
Takagi et al. 2003; Lucci et al. 2010; Kidanemariam & Uhlmann 2014; Vowinckel
et al. 2014). In this framework, the present simulations have been performed with a
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numerical code that fully describes the coupling between the solid and fluid phases
(Breugem 2012). The Eulerian fluid phase evolves according to the incompressible
Navier–Stokes equations,

∇ · uf = 0, (2.1)
∂uf

∂t
+ uf · ∇uf =− 1

ρ
∇p+ ν∇2uf + f , (2.2)

where uf is the fluid velocity, f a generic force field, p the pressure, ν = µ/ρ the
kinematic viscosity of the pure fluid with µ the dynamic viscosity and ρ the fluid
density (same as the particle density in this study). The solid phase consists of
neutrally buoyant rigid spheres whose centroid linear and angular velocities, up and
ωp, are governed by the Newton–Euler Lagrangian equations,

ρVp
dup

dt
= ρ

∮
∂Vp

τ · ndS, (2.3)

Ip
dωp

dt
= ρ

∮
∂Vp

r× τ · ndS, (2.4)

where a is the particle radius and Vp = 4πa3/3 the particle volume; the fluid stress
is τ = −pI + 2µE with E = (∇uf +∇uT

f

)
/2 the deformation tensor. In (2.4), Ip =

(2/5)ρVpa2 represents the moment of inertia, r the distance vector from the centroid
of the sphere and n the unity vector normal to the particle surface ∂Vp. On the particle
surfaces, Dirichlet boundary conditions for the fluid phase are enforced as uf |∂Vp =
up +ωp × r.

In the simulations reported in this paper, the coupling between the two phases is
obtained by using an IBM: this amounts to adding a force field f on the right-hand
side of (2.2) to mimic the actual boundary condition at the moving particle surface,
i.e. uf |∂Vp =up+ωp× r. The fluid phase is evolved solving (2.1) and (2.2) in a domain
containing all of the particles, without the need to adapt the mesh to the current
particle position, using a second-order finite difference scheme on a staggered mesh.
The time integration is performed by a third-order Runge–Kutta scheme combined
with a pressure-correction method on each substep. The Lagrangian evolution of (2.3)
and (2.4) is performed using the same Runge–Kutta scheme of the Eulerian solver.
The particle surface is tracked using NL Lagrangian points uniformly distributed on
the surface of the spheres on which the forces exchanged with the fluid phase are
imposed. To maintain accuracy, the right-hand side of (2.3) and (2.4) are rearranged
in terms of the IBM force field and take into account the mass of the fictitious fluid
phase occupied by the particle volumes

ρVp
dup

dt
=−ρ

NL∑
l=1

Fl1Vl + ρ d
dt

(∫
Vp

uf dV

)
, (2.5)

Ip
dωp

dt
=−ρ

NL∑
l=1

rl ×Fl1Vl + ρ d
dt

(∫
Vp

r× uf dV

)
, (2.6)

where 1Vl is the volume of the cell around the l Lagrangian point and rl the distance
from the particle centre. Here Fl is the force acting on the l Lagrangian point on the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.704


468 F. Picano, W.-P. Breugem and L. Brandt

1

2

3

4

5

6

Fit K&D TSR1959
Fit Eilers S&P ARFM2005

Y&M JFM2010-L
Y&M JFM2010-S

Y&M JCP2010

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

FIGURE 1. (Colour online) Relative viscosity νr versus the volume fraction Φ in a Couette
flow in absence of inertia, Re= 0. The present data are compared with the results by Yeo
& Maxey (2010a,b) and the Eilers fit (1+ 1.25Φ/(1−Φ/0.65)).

particle and is related to the Eulerian force field f : f (x)=∑NL
l=1 Fl δd(x− Xl)1Vl. The

procedure to determine the force field from the boundary conditions at the particle
surface follows an iterative algorithm that allows the code to achieve second order
global accuracy in space. All of the details of this implementation are presented in
Breugem (2012).

The numerical method models the interaction among the particles also when their
gap distance is of the order of or below the grid size. In particular, lubrication models
based on the Brenner’s asymptotic solution (Brenner 1961) are used to correctly
reproduce the interaction between particles when their gap distance is smaller than
twice the mesh size. When particles collide with the wall or among themselves a
soft-collision model ensures an almost elastic rebound with a restitution coefficient
set at 0.97. A complete discussion of these models can be found in Breugem (2012)
and Lambert et al. (2013) where several test cases are presented as validation.

To avoid duplication of published material, we provide here only evidence for
the ability of the present numerical tool to accurately simulate dense suspensions.
Figure 1 displays the relative viscosity, the ratio between the effective viscosity of
the suspension and the viscosity of the fluid phase νr = νe/ν, in laminar flows for
two different volume fractions, Φ = 0.2 and Φ = 0.3. The configuration where this is
measured is the Couette flow at vanishing Reynolds number where the wall-to-wall
distance is 10 times the particle radius. A cubic mesh is used to discretise the
computational domain with eight points per particle radius, a. The streamwise and
spanwise length of the computational domain are 1.6 times the wall-normal width,
i.e. 16a. The relative viscosity extracted after the initial transient phase is measured
by the friction at the wall and perfectly matches previous numerical investigations
(Yeo & Maxey 2010a,b) and empirical fits of experimental data, such as the Eilers
fit (Stickel & Powell 2005).

2.2. Flow configuration
In this work we study a pressure-driven channel flow between two infinite flat walls
located at y = 0 and y = 2h with y the wall-normal direction. Periodic boundary
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Φ 0.0 0.05 0.1 0.2
Np 0 2.500 5.000 10.000

Lx × Ly × Lz 6h× 2h× 3h
Nx ×Ny ×Nz 864× 288× 432

Reb 5600
νr 1.0 1.14 1.33 1.89

Ree 5600 4912 4210 2962

TABLE 1. Summary of the DNS reported here. They pertain to suspensions of Np particles
of radius a/h= 1/18 at different volume fractions Φ. Here Nx,Ny,Nz indicate the number
of grid points in each direction and the bulk Reynolds number is defined as Reb =
U0 ∗ 2h/ν. The relative viscosity, i.e. the ratio between effective suspension viscosity and
the fluid viscosity νr = νe/ν = [1 + 1.25 ∗ Φ/(1 − Φ/0.6)]2 has been estimated via the
Eilers fit (Stickel & Powell 2005). The effective bulk Reynolds number is defined as
Ree =U02h/νe =U02h/(ν νr)= Reb/νr.

conditions are imposed in the streamwise, x, and spanwise, z, directions for a domain
size of Lx = 6h, Ly = 2h and Lz = 3h. A mean pressure gradient acting in the
streamwise direction imposes a fixed value of the bulk velocity U0 across the channel
corresponding to a constant bulk Reynolds number Reb = U02h/ν = 5600, with ν
the kinematic viscosity of the fluid phase; this value corresponds to a Reynolds
number based on the friction velocity Reτ = U∗h/ν = 180 for the single-phase case
where U∗ = √τw/ρ with τw the stress at the wall. As reported in table 1, the bulk
Reynolds number based on the suspension effective viscosity Ree varies with the
volume fraction following the increase of the effective viscosity νe = νr ν where νr
is the relative viscosity estimated by the Eilers fit (Stickel & Powell 2005). The
domain is discretised by a cubic mesh of 864× 288× 432 points in the streamwise,
wall-normal and spanwise directions. Hereafter all of the variables have been made
dimensionless with U0 and h, except those with the superscript ‘+’ that are scaled
with U∗ and δ∗ = ν/U∗ (inner scaling).

Non-Brownian spherical neutrally buoyant rigid particles are considered. The
ratio between the particle radius and the channel half-width is fixed to a/h = 1/18,
corresponding to 10 plus units for the lowest volume fraction considered and 12 for
the largest. Three different volume fractions, Φ = 0.05; 0.1; 0.2, have been examined
in addition to the single phase case for a direct comparison. The highest volume
fraction here addressed requires 10 000 finite-size particles in the computational
domain with Nl = 746 Lagrangian control points on the surface of each sphere and
eight Eulerian grid points per particle radius, see table 1. The simulations were run
on a Cray XE6 system using 2048 cores for a total of approximately 106 CPU hours
for each case.

The simulation starts from the laminar Poiseuille flow for the fluid phase and a
random positioning of the particles. Transition naturally occurs at the fixed Reynolds
number because of the noise added by the presence of the particles. Statistics are
collected after the initial transient phase.

3. Results
3.1. Single-point flow and particle velocity statistics

Snapshots of the suspension flow are shown in figure 2 for the different nominal
volume fractions Φ under investigation. The instantaneous streamwise velocity is
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FIGURE 2. (Colour online) Instantaneous snapshots of the streamwise velocity on different
orthogonal planes together with the corresponding particle position represented only on
one half of the domain. The four panels represent the different values of the volume
fraction under investigation, (a) Φ = 0, (b) Φ = 0.05, (c) Φ = 0.1 and (d) Φ = 0.2.

represented on different orthogonal planes with the bottom plane located in the
viscous sublayer to highlight the low- and high-speed streaks characteristic of
near-wall turbulence. Finite-size particles are displayed only on one half of the
domain to give a visual feeling on how dense the solid phase is for the different
Φ. Indeed, at the highest volume fraction, Φ = 0.2, the particles are so dense that
completely hide the bottom wall. The cases with Φ = 0.05 and Φ = 0.1 show velocity
contours similar to those of the unladen case where it is possible to recognise the
typical near-wall streamwise velocity streaks; these are however more noisy and
characterised by significant small-scale modulations (of particle size). At Φ = 0.2 the
small-scale noise is stronger and the streaks become wider.

The mean fluid velocity profiles are shown in figure 3. The statistics conditioned
to the fluid phase have been calculated considering only the points located out of the
volume occupied by the particles in each field (phase-ensemble average). Figure 3(a)
reports the velocity in outer units Uf , indicating that the maximum velocity at the
mid-plane grows with Φ (note that the flow rate is constant in these simulations). In
general, the mean velocity more closely resembles the laminar parabolic profile when
increasing the volume fraction: the velocity increases in the centre of the channel at
higher Φ, whereas it decreases near the wall, up to y∼ 1/2. The higher the volume
fraction the more intense this effect is. Figure 3(b) displays the mean fluid velocity
profiles scaled in inner units in the log-linear scale, U+f = Uf /U∗ versus y+ = y/δ∗
where the friction velocity and viscous length are U∗ = √τw/ρ and δ∗ = ν/U∗ with
τw the wall stress. The progressive decrease of the profiles with the volume fraction
Φ indicates that the overall drag increases. Analysing the flow in terms of the
canonical classification of wall turbulence, we can still recognise for all cases a region

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.704


Turbulent channel flow of dense suspensions 471

0

0.2

0.4

0.6

0.8

1.0

1.2

(a) (b)1.4

0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

100 101 102

FIGURE 3. (Colour online) Mean fluid velocity profiles for the different volume fractions
under investigations in (a) outer units (hereafter wall normal distances without the
superscript + are assumed to be rescaled by h) and (b) inner units: U+f = Uf /U∗ versus
y+= y/δ∗, with U∗ and δ∗ the friction velocity and viscous length scale, see the definition
in the text.

Φ 0.0 0.05 0.1 0.2
Reτ 180 195 204 216

k 0.4 0.36 0.32 0.22
B 5.5 2.7 0.27 −6.3

Ree
τ 180 171 153 114

Re′eτ 180 159 139 102

TABLE 2. The von Kármán constant k and additive constant B of the log-law estimated
from the present simulations for the different volume fractions Φ examined. Here B and
k have been fitted in the range y+ ∈ [50, 150]. The friction Reynolds number Reτ =U∗h/ν,
and the effective friction Reynolds number, defined as Ree

τ = U∗h/νe = Reτ/νr, are also
reported together with an estimate of the effective friction Reynolds number based on the
correlation Re′eτ ' 0.09Re0.88

e , see e.g. Pope (2000).

(y+ > 40–50) where the mean profile follows a log-law:

U+ = (1/k) log(y+)+ B (3.1)

with k the von Kármán constant and B the additive coefficient. Fits of these constants
and the corresponding Friction Reynolds number Reτ =U∗h/ν are reported in table 2
for all of the volume fractions investigated.

The friction Reynolds number computed from the simulation data differs from what
can be estimated using the rheological properties of the suspension, that is using the
relative viscosity νr, see table 1. The values of Ree

τ = U∗h/νe = Reτ/νr in table 2
are computed using the measured wall friction and the effective viscosity of the
suspension. Considering the bulk effective Reynolds number Ree = Reb/νr, computed
in a similar way, it is also possible to estimate an expected value of the friction
Reynolds number using the correlation valid in Newtonian flows, Re′eτ ' 0.09Re0.88

e
(see Pope 2000). The data in table 2 clearly indicate that the effective friction
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Reynolds number Ree
τ = Reτ/νr is always higher than what expected considering only

the effective viscosity of the suspension, i.e. Re′eτ . This fact (Re′eτ < Ree
τ ) implies that

the particles alter the turbulence and induce an additional dissipation mechanism, as
shown by the higher measured wall friction. As shown later, the increased friction can
be explained by an increase of the turbulent activity for Φ 6 0.1, whereas this is no
more the case for the highest volume fraction considered. The increased dissipation
at this higher Φ may be explained by an increased particle induced stress, i.e. inertial
shear thickening (Morris 2009; Picano et al. 2013). Inertial shear thickening occurs in
a dense suspension when inertial effects are present at the particle scale (finite-particle
Reynolds number) and amounts to an increase of the effective viscosity with respect
the value obtained by rheological experiments at vanishing inertia (Reynolds number)
and same volume fraction. The relatively high Reynolds number of the present
turbulent cases triggers inertial effects in the transported particles.

The slope of the log-layer increases, i.e. the von Kármán constant k decreases, while
the additive constant B decreases. At Φ = 0.2 the differences with respect to the
unladen case become critical with B strongly negative and k about half of the value
for the single phase flow. These two behaviours act in an opposite way: a reduced
von Kármán constant k usually denotes drag reduction (Virk 1975), while a small or
negative additive constant B an increase of the drag. The combination of these two
counteracting effects lead to an increase of the overall drag for the present cases as
demonstrated by the increase of the friction Reynolds number Reτ . The decrease of the
additive constant B appears to be linked to particle–fluid interactions occurring near
the wall. In particular, focusing on the case at Φ = 0.2, we note a sudden change in
the mean velocity profile after the first layer of particles, i.e. y+ ∼ 20∼ d+p . The near
wall dynamics is therefore influenced by the particle layering induced by the wall. A
similar behaviour has been observed in turbulent flows over porous media (Breugem,
Boersma & Uittenbogaard 2006) suggesting that the near-wall layers of particles may
act as a porous media for the fluid phase.

It is worth commenting at this point that increasing the bulk Reynolds number
usually leads to a widening of the log-law region and, consequently, to a stronger
impact of the slope of the log-law on the overall mean velocity profile. Assuming
that the constant B does not change significantly upon increasing the bulk Reynolds
number (at fixed d+), the overall mass flux may increase leading to drag reduction if
the log region is long enough for the mean velocity at Φ = 0.2 to become larger than
the corresponding values for the single-phase fluid near the channel centreline. This is
just a speculation and its proof is out of the scope of the present investigation where
we consider only a fixed bulk Reynolds number. Simulations at higher Reynolds
number and fixed particle size (in plus units) are currently computationally too
expensive and out of our reach.

The root-mean-square (r.m.s.) of the fluid velocity fluctuations and the Reynolds
shear stress in outer units are reported in figure 4. We note that despite the increase
of the friction Reynolds number the peak of the streamwise velocity r.m.s., u′f rms

,
decreases with Φ, while a non-monotonic behaviour is apparent in the bulk of the
flow. For values of Φ 6 0.1 the intensity of the cross-stream velocity fluctuations
increases with respect to the single-phase cases, displaying also higher peak values.
This indicates that the particle presence redistributes energy towards a more isotropic
state. Interestingly, at the highest volume fraction considered, Φ = 0.2, we note a
decrease of the level of fluctuations with respect to all the other cases, with the
exception of a thin region close to wall, which will be discussed more in detail in
the following. At this high volume fraction we therefore note a reduced turbulence
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FIGURE 4. (Colour online) Intensity of the fluctuation velocity components and the
Reynolds shear stress for the fluid phase in outer units for different volume fractions Φ:
(a) streamwise u′f rms

; (b) wall-normal v′f rms
; (c) spanwise w′f rms

velocity fluctuations; (d)
shear stress 〈u′fv′f 〉.

activity, as confirmed by considering the variations of the Reynolds stress in the
presence of particles in figure 4(d). Note that the Reynolds stresses represent the
main engine for the production of turbulent fluctuations. While these stresses increase
for Φ= 0.05 and Φ= 0.1, they decrease at Φ= 0.2 despite the increase of the friction
Reynolds number. At first sight, this aspect may appear controversial, however, as
we will discuss in detail in § 3.2, the reduction of the turbulent activity at Φ = 0.2 is
associated with an increase of the stresses induced by the solid phase which results
in enhanced drag.

Further insight into the near wall dynamics can be gained by displaying the same
quantities scaled in inner units, see figure 5. The peak of the fluctuation intensity
reduces for all of the velocity components when divided by the friction velocity
with the only exception of the spanwise component. More importantly, we observe
that the fluctuation level monotonically increases with Φ in the viscous sublayer.
This enhancement of the near-wall fluctuation can be explained by considering the
squeezing motions occurring between the wall and an incoming or outgoing particle.
We also note that the peak of the Reynolds stresses decreases monotonically (when
scaled by the friction velocity squared) becoming about half of the expected value
for the highest volume fraction considered here. The reduction of the Reynolds stress
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FIGURE 5. (Colour online) Intensity of the fluctuation velocity components and Reynolds
shear stress for the fluid phase in inner units for different volume fractions Φ: (a)
streamwise u′f

+
rms

; (b) wall-normal v′f
+
rms

; and (c) spanwise w′f
+
rms

velocity component; (d)
shear stress 〈u′fv′f 〉+.

in inner units indicates that the increase of the drag is not due to an enhancement of
the turbulence activity, rather that it is linked to the solid phase dynamics.

To analyse the solid phase behaviour, we report the mean local volume fraction
φ(y) and the mean particle velocity Up in figure 6. The mean local volume fraction
(figure 6a) shows a first local maximum around y= 0.06–0.1, a value slightly larger
than one particle radius (y = 1/18). Increasing the bulk volume fraction Φ the
intensity of the peak grows, while a local minimum appears at y∼ dp = h/9. As also
observed in dense laminar regimes (Yeo & Maxey 2010a), a particle layer forms
at the wall and becomes more intense when increasing the bulk volume fraction Φ.
It should be noted however that these near-wall maxima are smaller or similar to
the bulk concentration, hence they are not related to the turbophoretic drift typically
observed in dilute suspensions when particles are heavier than the fluid (Reeks 1983).
Instead, these near-wall layers are induced by the planar symmetry of the wall and
the excluded finite volume of the solid spheres. We believe that the formation of
this particle layer follows a mechanics similar to that usually observed in laminar
Poiseuille and Couette flows (Yeo & Maxey 2010a, 2011; Picano et al. 2013). Once
a particle reaches the wall the strong wall–particle lubrication interaction stabilises
the particle wall-normal position that is therefore mainly affected by the collisions
with other particles. Hence, it becomes difficult for the particles belonging to the first
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FIGURE 6. (Colour online) Particle average data for different nominal volume fractions Φ:
(a) mean local volume fraction φ versus the wall-normal coordinate y (maximum statistical
error ±0.01); (b) mean particle velocity profile, U+p = Up/U∗ in viscous units y+ = y/δ∗
(lines) (maximum statistical error ±0.25 U∗). The mean fluid velocity U+f is also reported
for comparison (symbols).

layer to escape from it. Figure 6(b) depicts the mean particle velocity U+p in inner
units (solid lines) where the fluid velocity is also reported with symbols for a close
comparison. As shown in the figure, solid and fluid phases flow with the same mean
velocity in the whole channel with the exception of the first particle layer near the
wall, y+ 6 20, where particles have a mean velocity larger than the surrounding fluid.
It should be considered here that while the velocity at the wall is zero for the fluid,
this is not the case for the solid phase as particles can have a relative tangential
motion.

The fluctuation intensities, r.m.s., of the particle velocities are shown in figure 7(a–
c), in inner units. The streamwise component u′prms

shows similar fluctuation levels
for both phases and all Φ with some small differences close to the wall where the
solid phase fluctuations do not vanish. Considering the three velocity components we
generally observe that particles tend to fluctuate less than the fluid at the same position
except for the region close to the wall. This behaviour is summarised in figure 7(d)
where we display the ratio between the turbulent kinetic energy of the fluid and of the
solid phase, Kf /Kp= (u′2f +v′2f +w′2f )/(u

′2
p +v′2p +w′2p ). Apart from a thin region close to

the wall, the fluid turbulent kinetic energy is higher than the energy of the solid phase
by about 10–20 %. The higher particle fluctuation level in the near-wall region, due
to the absence of a no-slip condition at the wall, suggests that this is the cause of the
near-wall enhancement of the fluid fluctuation level (compared with the single-phase
flow) discussed above. One last remark concerns the local peak of the wall-normal
particle velocity fluctuation close to wall. This maximum originates from particles that
reach and leave the first layer at the wall. In this region the fluid velocity fluctuations
increase with Φ, although the maximum for the solid phase decreases. This is not
contradictory, as it just indicates that at small volume fractions the incoming/leaving
particles are fewer, but faster; with increasing Φ, more particles enter and leave the
first layer although at smaller velocity as it is more crowded.

Figure 8 reports the mean particle angular velocity Ωz, panel (a), and the particle
angular velocity fluctuation r.m.s. in the spanwise ω′z rms, panel (b), streamwise ω′x rms,
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FIGURE 7. (Colour online) Intensity of the fluctuation velocity components for the solid
phase in inner units for the different volume fraction Φ studied (maximum statistical error
±0.06 U∗). (a) streamwise u′p

+
rms

; (b) wall-normal v′p
+
rms

; and (c) spanwise w′p
+
rms

component.
Symbols represent the fluctuation levels of the fluid phase. (d) Displays the wall-normal
profile of the ratio between the turbulent kinetic energy of the fluid and of the solid phase.

panel (c) and wallnormal ω′y rms, panel (d), directions. The mean particle angular
velocity Ωz is maximum close to the wall and vanishes in the centerline for symmetry.
This behavior indicates that the particle belonging to the layer close to the wall tend
to roll on the wall minimising their local slip velocity, which as previously discussed
is in principle not vanishing. The slight reduction of the maximum rotation observed
when increasing the volume fraction Φ is induced by the more intense particle–particle
interactions occurring in the first layer. Interestingly, at Φ = 0.2, in the bulk of the
flow, the mean angular velocity is higher than in the other cases. This can be
explained by the higher fluid velocity gradient exhibited in this region at Φ = 0.2, see
for instance figure 3. Concerning the fluctuation levels of the particle angular velocity,
we note that the maximum of each component occurs near the wall showing values
that are about 15–25 % of the mean value. Near the peak, the spanwise fluctuating
component shows higher intensity ω′z rms driven by the inhomogeneity of the mean
angular velocity, while the three components become of similar magnitude near the
centreline (isotropy). The densest case shows slightly smaller fluctuations whereas the
flows at Φ = 0.05 and 0.1 exhibit almost the same values.
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FIGURE 8. (Colour online) Particle angular velocity statistics in outer units for the
different volume fractions Φ studied: (a) mean angular velocity (spanwise component) Ωz;
(b) fluctuation r.m.s. of the spanwise fluctuation component ω′z rms; (c) fluctuation r.m.s. of
the streamwise component ω′x rms; (d) fluctuation r.m.s. of the wall-normal component ω′y rms.

3.2. Total stress balance
The understanding of the momentum exchange between the two phases in dense
particle-laden turbulent channel flows is conveniently addressed by examining the
streamwise momentum budget, i.e. the average stress budget. Following the rationale
on the mean momentum balance given in appendix A (see also Marchioro, Tankslay
& Prosperetti (1999) and Zhang & Prosperetti (2010) for more details), we can write
the whole budget as the sum of three terms:

τ = τV + τT + τP, (3.2)

where τ =U2
∗ (1− y) is the total stress, τV = ν(1− φ)(dUf )/(dy) is the viscous stress,

τT = −〈u′cv′c〉 is the turbulent Reynolds shear stress of the combined phase 〈u′cv′c〉 =
φ〈u′pv′p〉 + (1 − φ)〈u′fv′f 〉 (with the particle Reynolds stress φ〈u′pv′p〉 = τTp) and τP =
(φ/ρ)(〈σp xy〉) the particle induced stress.

Figure 9 reports the stress balance given in (3.2) from the simulations for the four
bulk volume fractions Φ presented here and normalised by the corresponding friction

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

70
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.704


478 F. Picano, W.-P. Breugem and L. Brandt

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0(a) (b)

(c) (d)

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

FIGURE 9. (Colour online) Momentum budget for the different bulk volume fractions Φ
under investigation. The wall is at y = 0, whereas y = 1 is the channel centreline. Here
τV , τT and τP represent the viscous, turbulent and particle induced stresses. Here τTp is
the particle Reynolds stress and τ =U2

∗ (1− y) the total stress, (a) Φ = 0, (b) Φ = 0.05,
(c) Φ = 0.1 and (d) Φ = 0.2.

velocity squared, U2
∗ (the particle-induced stress has been indirectly calculated from

the balance). As already known for the single-phase flow (Pope 2000), the total stress
τ is mainly given by the turbulent Reynolds stress term for y > 0.2. The relevance
of the viscous stress increases approaching the wall, becoming the leading term
as the Reynolds stress is zero at the wall. At Φ = 0.05, see figure 9(b), the basic
picture remains unaltered with the particle-induced stress τP showing a non-negligible
contribution only near the wall; note that the particle turbulent Reynolds stress is still
negligible in this configuration. Increasing the volume fraction to Φ = 0.1 (figure 9c),
the particle-induced stress becomes of the same order of magnitude as the other terms
in the near wall region, y≈ 0.05, which roughly corresponds to a particle radius. The
contribution from the particle stress, although still subleading with respect to the
turbulent stress τT , is important throughout the whole channel. Note also that the
turbulent stress associated to the solid phase alone, τTp , amounts to ∼10 % of the
total τT , scaling almost linearly with the volume fraction. For the highest volume
fraction considered, Φ = 0.2 (see figure 9d), the near-wall dynamics is dominated by
the particle-induced stresses. This is now the leading term around y= 0.05. Moreover,
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FIGURE 10. (Colour online) (a) Wall-normal profiles of the shear stress of the combined
phase 〈u′Cv′C〉/U2

0 (symbols) and linear fitting of the slope of the profile at the centreline,
y= 1, depicted with solid lines. (b) Friction Reynolds number Reτ = u∗h/ν and turbulent
friction Reynolds number ReT = UT

∗ h/ν versus the bulk volume fraction Φ from the
simulations presented here.

the total stress in the bulk of the flow, y> 0.2, is transmitted by the turbulent shear
stress τT and the particle induced stress τP in similar shares. In other words, the
turbulent shear stress amounts to about half of the total stress in the bulk of the
flow. This indicates that the turbulent dynamics is strongly altered by the dense
particle concentration: although the system is still turbulent, the particle-induced
stress becomes crucial in transferring the mean stress through the channel.

This behaviour is consistent with the decrease of the turbulence activity discussed
previously for the flow with the highest particle number, Φ=0.2. As mentioned above,
although the turbulence intensities and the Reynolds shear stress are attenuated, the
total drag, i.e. the friction Reynolds number increases. One can therefore conclude
that this increase of the total drag is not associated to a turbulence enhancement, but
to an increase of the particle-induced stress, or borrowing rheological terms, to an
increase of the effective viscosity of the flowing medium.

In order to quantify the level of turbulence activity, we can define the turbulent
friction velocity as

UT
∗ =

√
d〈u′cv′c〉

dy

∣∣∣∣∣
y=1

, (3.3)

that is the square root of the wall-normal derivative of the Reynolds stress profile at
the centreline (y = 1). This quantity has been chosen because it can be shown that
the turbulent friction velocity well approximates the wall friction velocity for unladen
cases at high bulk Reynolds number, UT

∗ =U∗ +O(1/Re), see e.g. Pope (2000).
Figure 10(a) reports the turbulent Reynolds stress of the combined phase 〈u′cv′c〉 in

outer units together with a straight line indicating the slope at y = 1. The intercept
of this line originating at (y, 〈u′cv′c〉)= (1, 0) with the vertical axis provides the value
of the turbulent friction velocity, UT

∗ as defined above. As clear from the figure, UT
∗

increases when adding the solid phase until Φ = 0.1 and then decreases at Φ = 0.2.
Using these values, we can then define a turbulent friction Reynolds number: ReT =
UT
∗ h/ν. Since ReT is proportional to UT

∗ , it follows that ReT = Reτ + O(1/Re) for
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FIGURE 11. (Colour online) Correlations of the velocity fluctuations versus the spanwise
separation 1z+ for different bulk volume fractions Φ. Streamwise–streamwise component
Ruu at (a) y = d = h/18 ' 20δ∗ and (b) at y = 2d = h/9 ' 40δ∗. Wall-normal component
Rvv at (c) y= d= h/18' 20δ∗ and (d) at y= 2d= h/9' 40δ∗.

high-Reynolds-number single-phase turbulent channel flows. Figure 10(b) depicts the
friction Reynolds number Reτ and the turbulent Reynolds number ReT just introduced
versus the bulk volume fraction Φ. The values of the two Reynolds numbers in the
unladen case, Φ = 0, are close, as expected. Increasing the volume fraction, both
Reτ and ReT increase up to Φ = 0.1, ReT at a slower rate. Interestingly, at Φ = 0.2,
the turbulent friction Reynolds number ReT suddenly decreases, whereas the friction
Reynolds number based on the actual wall-shear still increases.

The friction velocity and Reynolds number are a measure of the overall drag as they
are proportional to the imposed pressure gradient, while the turbulent friction velocity
and corresponding Reynolds number introduced here indicate only the portion of the
drag directly induced by the turbulent activity. We therefore conclude that in dense
cases, i.e. Φ = 0.2, a turbulent drag reduction indeed occurs and this is related to a
reduced turbulence activity. Nonetheless, this turbulent drag reduction does not reflect
in a decrease of the total drag at the Reynolds number investigated here because the
particle-induced stress (increased viscosity of the suspension) more than counteracts
the positive effect due to the reduced turbulent mixing. The observations emerging
from our analysis of the momentum budget explain and are consistent with the large
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reduction of the von Kármán constant k found for this dense case and reported in
table 2.

3.3. Velocity correlations
Further understanding of the effect of the solid phase on the turbulent channel flow is
obtained by examining the two-point spatial correlation of the velocity field. It is well
known that the autocorrelations of the streamwise and wall-normal velocity along the
spanwise direction,

Ruu(y, 1z)= 〈u
′(x, y, z, t)u′(x, y, z+1z, t)〉

u′2rms

, (3.4)

Rvv(y, 1z)= 〈v
′(x, y, z, t)v′(x, y, z+1z, t)〉

v′2rms

(3.5)

show a negative minimum value in the near-wall region around 1z+ = 60–80 and
1z+ = 30–40, respectively, for a single-phase turbulent flow.

These values reflect the typical structures of wall-bounded turbulence, i.e. quasi-
streamwise vortices and low-speed streaks that sustain the turbulence process (Kim,
Moin & Moser 1987; Waleffe 1997; Pope 2000; Brandt 2014). It has also been
observed that in drag-reducing turbulent flows the width and the spacing of these
characteristic structures increases (De Angelis, Casciola & Piva 2002; Stone, Waleffe
& Graham 2002), leading to an increase of the spanwise separation of these minima.

The streamwise autocorrelation Ruu is shown in figure 11(a,b), where it is evaluated
at two wall-normal distances, y=d'20δ∗ and y=2d'40δ∗. The correlations are here
calculated for the combined phase, but they do not differ appreciably if calculated only
for the fluid phase. At y= d we note a progressive increase of the separation distance
with the particle volume fraction together with a smoothening of the minimum,
indicating a less-evident width of the near-wall flow structures. Further away from
the wall, y=2d, we observe the formation of wider streamwise velocity streaks for the
flow with Φ= 0.2, with a separation of the minimum of the autocorrelation, 1z+, that
is almost twice that pertaining to single-phase near-wall turbulence. The system tends
therefore to form streaks twice as large as those in single-phase turbulent channel
flows. These larger structures are also seen by the shift of the lowest minimum of
Ruu to y= 2d instead of y= d∼ 20δ∗ where the single-phase channel flow shows the
sharper minimum in the autocorrelation functions. The wall-normal autocorrelations
Rvv are shown in figure 11(c,d) for the same two wall-parallel planes. Increasing
the volume fraction Φ we observe less sharp minima that completely disappear at
Φ= 0.2. This suggests a significant alteration of the structure of the wall turbulence at
high volume fractions with a flow much less organised in coherent structures. Similar
observations are reported in Loisel et al. (2013) for transitional flows at lower Φ. The
behaviour of the velocity autocorrelations is consistent with what found in turbulent
drag-reducing flows (growth of the buffer region). Hence, it appears once more that
despite the total drag increase, the turbulent induced drag reduces at least at high
volume fraction.

4. Final remarks
We report data from the numerical simulations of turbulent channel flow laden with

finite-size particles at high volume fractions. The simulations have been performed
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using an efficient implementation of the IBM that enable us to fully resolve the
fluid–structure interactions. We provide a statistical analysis to assess the effect of an
increasing solid volume fraction (up to Φ = 0.2) on a turbulent channel flow at fixed
bulk Reynolds number, i.e. Reb =U0 2h/ν.

The finite-size particles interact with the turbulent motions altering the near-wall
turbulence regeneration process. For the two lowest volume fractions considered,
Φ 6 0.1, we still observe the classic behaviour of near-wall turbulence, modulated
however by the particle presence. At Φ = 0.2 the solid phase is so dense that several
aspects of turbulent wall flows are lost: the mean velocity profile is strongly altered,
the turbulent fluctuations decrease, the velocity autocorrelations show streamwise
elongated structures twice as wide as in single-phase channel flows and the absence
of a negative correlation of the wall-normal velocity, in addition to a more isotropic
distribution of the velocity fluctuations.

The law of the wall is modified by the presence of a solid phase but can still be
recognised at the Reynolds number of our simulations for all of the volume fractions
investigated. The von Kármán and additive constants, k and B, therefore assume
different values. In particular, increasing the volume fraction we report a reduction of
k, increase of the slope, and a strong decrease of B, increased near-wall dissipation.
The reduction of k usually denotes turbulent drag reduction. However, in the present
cases we always observe an increase of the overall drag due to the decrease of the
additive constant B. This is also confirmed by the increase of the friction Reynolds
number, Reτ , when increasing the volume fraction at constant mass flux.

We evaluate the streamwise momentum balance for the flows under investigation
and show that the additional stress due to the presence of the particles becomes
increasingly relevant when increasing the particle volume fraction. As expected the
Reynolds transport term dominates at zero and low Φ, while at Φ = 0.2 the particle
stress becomes of the same order of magnitude.

Examining the turbulent shear stress and the streamwise momentum balance, we
thus note that the turbulence activity and the related stress reduce at the highest
volume fraction considered here, i.e. Φ = 0.2. In order to characterise the turbulent
drag, we define a turbulent friction Reynolds number ReT whose friction velocity
is based on the slope of the Reynolds shear stress profile at the centreline. This
parameter approximates the usual Reτ in unladen turbulent channel flow. Using this
turbulent friction Reynolds number, we quantitatively show that the turbulent drag
(measured by ReT) first gently increases with Φ and then sharply decreases at Φ=0.2,
even though the overall drag still increases.

These results suggest that further increasing the Reynolds number while keeping
constant the particle size in inner units, d+, may lead to an overall drag reduction
in dense cases as shown here. The main assumption behind this conjecture is that
the near-wall turbulence–particle dynamics remain similar when the bulk Reynolds
number is increased, as might occur when the particle size in inner units remains
constant (i.e. the friction particle Reynolds number). Indeed, we show here that
increasing the bulk Reynolds number the turbulent induced drag increases its weight
in the stress balance. Hence, the reduced turbulence activity and the consequent
reduced turbulent drag should induce a decrease of the total drag at high enough
Reynolds. This should appear as an extension of the log-layer with almost the same
reduced k and B as reported here. New and even larger simulations would be needed
in the future to test this hypothesis. In the meanwhile, we hope to stimulate new
experimental investigations towards this direction.

This study reports detailed statistics of particle-laden channel flow at high volume
fractions, accessible only recently (Kidanemariam & Uhlmann 2014; Vowinckel et al.
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2014), and it could therefore be extended in many non-trivial directions. Two-body
particle statistics, such as collisions rates and clustering, have not yet been considered
because it is out of the scope of the present work. In addition, the effect of the
particle shape (Bellani et al. 2012) and deformability (e.g. Clausen, Reasor & Aidun
2011) surely deserves attention as it will add new interesting physics to our current
understanding.
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Appendix A. Total stress of the suspension mixture
In this work we use the framework developed by Prosperetti and coworkers to

examine the stresses in suspension mixtures, see e.g. Marchioro et al. (1999) and
Zhang & Prosperetti (2010) for more details.

We assume the same density ρ for the fluid and the particles and consider
dimensional variables for all of the calculations presented in this appendix. Following
Zhang & Prosperetti (2010), we define the phase indicator as ξ = 0 in the fluid
phase and ξ = 1 in the solid phase. Defining the phase-ensemble average, ‘〈 〉’, as the
ensemble average (implicitly) conditioned to the phase considered (particulate, fluid
and combined), we can calculate the local volume fraction in a point as

φ = 〈ξ〉. (A 1)

Considering a generic observable of the combined phase oc = ξop + (1 − ξ)of ,
constructed in terms of op/f , the same observable in the particulate and fluid phases,
it holds that

〈oc〉 = 〈ξop〉 + 〈(1− ξ)of 〉 = φ〈op〉 + (1− φ)〈of 〉. (A 2)

Note that we are not using different symbols for the different phase ensemble averages,
but implicitly assume that the phase conditioning is indicated by the subscript inside
the brackets.

The force balance for the volume V delimited by the surface S (V ) is

ρ

∫
V

ξap + (1− ξ)af dV =
∮

S (V )

[ξσp + (1− ξ)σf ] · ndS, (A 3)

with n the outer unity vector normal to the surface S (V ), the subscripts ‘f ’ and ‘p’
denoting fluid and particle phases, ai and σi the acceleration and the general stress in
the phase i. Applying the phase ensemble average to (A 3), we obtain

ρ

∫
V

〈ξap〉 + 〈(1− ξ)af 〉dV =
∫

V

∇ · [〈ξσp〉 + 〈(1− ξ)σf 〉]dV, (A 4)

where we used the divergence theorem to the differentiable integrand on the right-
hand side. Since the last equation holds for any mesoscale volume V , we can use
the corresponding differential form of the equation,

ρ〈ξap〉 + ρ〈(1− ξ)af 〉 =∇ · [〈ξσp〉 + 〈(1− ξ)σf 〉]. (A 5)
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Considering the identities (A 1) and (A 2), we can further simplify the expression
above

ρφ〈ap〉 + ρ(1− φ)〈af 〉 =∇ · (φ〈σp〉 + (1− φ)〈σf 〉). (A 6)

Assuming the constitutive law of a Newtonian fluid σf = −pI + 2µE with p
the pressure and E = (∇uf + ∇uf

T)/2 the symmetric part of the fluid velocity
gradient tensor and considering that both the fluid and particle velocity fields are
divergence-free, equation (A 6) can be rewritten as

φ
〈up〉
∂t
+ φ〈up · ∇up〉 + (1− φ) 〈uf 〉

∂t
+ (1− φ)〈uf · ∇uf 〉

=∇ · (φ〈σp/ρ〉
)−∇[(1− φ)〈p/ρ〉]+∇ · [(1− φ)2ν〈E〉]. (A 7)

We next denote the statistically stationary mean fluid and particle velocities as Uf /p=
〈uf /p〉 and the fluctuations around these mean values as u′f /p = Uf /p − 〈uf /p〉, so that
the average momentum equation becomes

φUp · ∇Up + φ∇ · 〈u′pu′p〉 + (1− φ)Uf · ∇Uf + (1− φ)〈u′f u′f 〉
=∇ · (φ〈σp/ρ〉

)−∇[(1− φ)P/ρ]+∇ · [(1− φ)2ν〈E〉], (A 8)

with P the mean pressure.
Exploiting the symmetries of a fully developed parallel channel flow, characterised

by two homogeneous directions, the streamwise x and spanwise z, we project (A 8) in
the inhomogeneous wall-normal direction y,

d
dy

[
(1− φ)〈v′2f 〉 + φ〈v′2p 〉 + (1− φ)

P
ρ
− φ
ρ
〈σp yy〉

]
= 0. (A 9)

Integrating (A 9) in the y direction and denoting the wall pressure by Pw(x), we obtain

(1− φ)〈v′2f 〉 + φ〈v′2p 〉 +
PT

ρ
= Pw

ρ
, (A 10)

where we also introduced the mean total pressure PT = (1− φ)(P/ρ)− φ〈σP yy〉/ρ. It
should be noted that PT coincides with Pw at the wall and that

∂PT

∂x
= ∂Pw

∂x
. (A 11)

Projecting (A 8) in the streamwise direction x, we have

d
dy

[
(1− φ)〈u′fv′f 〉 + φ〈u′pv′p〉 − ν(1− φ)

dUf

dy
− φ
ρ
〈σp xy〉

]
=− d

dx

(
Pw

ρ

)
, (A 12)

where we neglect the terms (∂/∂x)
[
(φ/ρ)(〈σp xx − σp yy〉)

]
because of the streamwise

homogeneity.
Integrating (A 12) in the wall normal direction and denoting the Reynolds shear

stress of the combined phase 〈u′Cv′C〉= (1−φ)〈u′fv′f 〉+φ〈u′pv′p〉, we obtain the equation
for the total stress τ(y),

τ(y)=−〈u′Cv′C〉 + ν(1− φ)
dUf

dy
+ φ
ρ
〈σp xy〉 = ν dUf

dy

∣∣∣∣
w

(
1− y

h

)
, (A 13)
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where we considered the boundary condition at the wall, τw = τ(0) = ν(dUf /dy)|y=0.
Equation (A 13) shows that the total stress of a turbulent suspension in a channel
geometry is given by three contributions: the viscous part, τV = ν(1 − φ)(dUf /dy),
the turbulent part τT = −〈u′Cv′C〉 = −(1 − φ)〈u′fv′f 〉 − φ〈u′pv′p〉 and the particle-induced
stress, τP = φ〈σp xy〉/ρ. It should be noted that the turbulent stress accounts for the
coherent streamwise and wall-normal motion of both fluid and solid phases. The
particle-induced stress is originated by the total stress exerted by the solid phase, see
(A 3), and takes into account hydrodynamic interactions and collisions. In the absence
of particles, φ→ 0, (A 13) reduces to the classic momentum balance for single-phase
turbulence (see Pope 2000).
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