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Abstract

We propose two distance-based topological indices (level index and Gini index) as
measures of disparity within a single tree and within tree classes. The level index and the
Gini index of a single tree are measures of balance within the tree. On the other hand, the
Gini index for a class of random trees can be used as a comparative measure of balance
between tree classes. We establish a general expression for the level index of a tree. We
compute the Gini index for two random classes of caterpillar trees and see that a random
multinomial model of trees with finite height has a countable number of limits in [0, %],
whereas a model with independent level numbers fills the spectrum (O, %].
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1. Introduction

Many types of graphs arise in important applications, such as networks, data structures,
models for algorithms, and models for chemical molecules.

Topological indices numerically quantify aspects of these graphs for multiple purposes, such
as ranking and comparing their properties to identify the better selections among them, and
predicting properties of molecules. When molecules are viewed as graphs, structural properties
such as connectivity and balance are correlated with physical properties such as boiling points.

Several indices have been proposed and analyzed for different classes of graphs. These
include the Zagreb index [3], the Randi¢ index [4], and the Wiener index [10], among others.
However, no one single index adequately describes all the facets of a tree. Rather, combinations
of these indices can coalesce to portray a picture. Our motivation is to propose two other indices,
namely, the level index and the Gini index. The standard Gini index (also known as the Gini
coefficient) is a measure of discrepancy in a data set and is commonly used in economics to
study the distribution of income within a nation. It is sometimes referred to as an inequality
index. The World Bank uses it (among other factors) as a basis for the approval of project
funding and allocation of aid to countries and maintains a website on Gini index statistics.

The Gini index can be a measure to capture the balance within a tree and compare the overall
balance of a random class of trees.
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2. Organization

In Section 3 we review the usual Gini index. In Section 4 we introduce some preliminaries
about trees, and construct the Gini index of a class in two steps: in Subsection 4.1 we introduce
the level index of a tree, and in Subsection 4.2 we build from it a Gini index of a random class
of trees. In Subsection 4.3 we provide a computational formula for the level index.

To put these two new indices into perspective, the rest of the paper is devoted to the study
of these indices in specific species of random trees. In Section 5 we examine the Gini index of
caterpillars, where two random models are considered (the multinomial model in Subsection 5.1
and a model of independent level numbers in Subsection 5.2). We conclude with some remarks
in Section 6.

3. The Gini index

The Gini index was first introduced in 1912 by Corrado Gini [7]. The survey [1] provides an
excellent exposition to the origin, developments, and uses of this index. This index is the ratio
of the area between the Lorenz curve and the 45-degree line to the area under the 45-degree line,
where the Lorenz curve is the cumulative distribution function of a nation’s wealth, i.e. a graph
of the function that gives the percentage of a nation’s wealth accounted for by a proportion
of the population. The Gini index is equivalent to the relative mean absolute difference of
elements of the distribution.

A statistical estimator is defined as follows; see [6]. Suppose that Xy, ..., X, are the
observations of a sample of size n > 2 of independent and identically distributed (i.i.d.) random
variables from a common distribution of known mean p > 0. The Gini index is estimated by

Zl§i<j§n |Xj — X
n2u '

Gn = 3.1)

If 1 is not known, it is replaced by an estimator of it.

4. The Gini index of trees

We propose a Wiener-like topological index, crafted to capture the degree of balance within
the strata of rooted trees. We build from it a (distance-based) model of the Gini index for classes
of trees.

We deal with rooted trees, i.e. trees in which a node is distinguished as a center or a root. We
first establish some terminology. Suppose that we have a rooted tree 7, on |7| nodes (i.e. of
size |T|), and we arbitrarily label its nodes distinctly with elements of the set {1, ..., |T|}. Let
D;(T) be the distance from the root (measured in edges) of the node labelled with i. Some
sources call this distance the level, depth, or altitude of the node. The distance from the root to
a node at the highest altitude is called the height of the tree. We call the number of nodes at a
level the level number as they are termed in [5] and [12].

4.1. The level index of a tree

Inspired by the Wiener index, we propose an index that is unique to structures with a node
distinguished as a root. Let T be a given rooted tree with the parameters described above. The
classical Wiener index of the tree T is the sum of all distances between pairs of nodes in it. If
we let d; ;j(T') be the distance between nodes i and j, the index is defined as

D di(D).

I<i<j<|T|
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To produce a balance-oriented variation of the Wiener index, we replace the d; ; with the
absolute difference between the distance of the two nodes i and j from the root, deriving from
the Wiener index a new topological tree index called the level index, i.e.

L(T)y= ) |Dj(T)—Di(T)l.

1<i<j<|T|

4.2. The Gini index of a random class of trees

Suppose that we have a random class 7 of trees. (By random we refer to a model of
randomness that we leave unspecified at this time.) From the level index for each tree, we build
a relative Gini index for the trees of the class and consider their average to be a Gini index for
the entire class. We take this to be a comparative measure of balance between classes.

We treat a class of random trees as a distribution of depths and we take the Gini index of that
distribution. Therefore, the relative Gini index mimics the standard Gini index by replacing
the X; in (3.1) with D;, the node distances from the root. Thus, the numerator of the relative
Gini index is replaced with the level index. The depths would then not represent i.i.d. random
variables. Therefore, we need to adapt the definition to work for new types of data. Hence, we
also need a replacement for u, as each tree T € J has its own average depth, and there is an
overall average depth over the entire class. So, we consider the depth of a randomly chosen
node in a random rooted tree (note the double randomness) as a representative average depth
in the ‘average distribution’. Let DX be the depth of a randomly chosen node in a random tree.
We have a well-defined notion of E[D;’;], as well as a well-defined average tree size E[|T|], in
the class. We can then define the relative Gini index of the tree T within this class to be

_ Zl§i<j§‘T‘ |D;(T) — Di(T)| . L(T)
B (E[T|)E[D%] - (E[TIDE[DE]

Gy (T) 4.1

We take G;i = E[G+(T)] as the Gini index of the class 7.

Note that if the class 7 has only one tree in it (occurring with probability 1), the Gini index
for the class is then reduced to a topological Gini index of the tree. We illustrate these concepts
by two examples.

Example 4.1. Consider the tree T of Figure 1 as a deterministic family 7~ of trees in which T
occurs with probability 1. The average depth of a node in this tree is

E[D:]=L0+(0+D+Q+2+2) =1
and the level index of the tree is

LT)=1+142+4+24+2+1+14+14+1+14+1=14,

FIGURE 1: A rooted tree with Gini index %.
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FIGURE 2: A class of random trees: the tree on the left occurs with probablhty 3, and the tree on the right
occurs with probablhty . The Gini index of the class is 15641

yielding the Gini index of the tree

N 14 7
7=G7(T)= 5—7 =5 ~0.292.
6 x4/3 24
Example 4.2. Consider a family 7 of the two random trees of Figure 2 with corresponding
probabilities 1 5 for the tree on the left and % for the tree on the right. The tree on the left is
that of Example 4.1 with average depth % 7 and level index 14. The tree on the right has average
depth 5 and level index 7. The average depth across the trees of this class is
1.,.5.,2_23
E[D7l=3x3+3x5 =7
The average size of trees in this class is

E[T|]=6x1+4x3="1"

The tree on the left has relative Gini mdex 14/((14/ 3)2 x 23/18) = 161 , while that of the one

on the right is 7/((14/3)* x 23/18) = 322 The Gini index of the class is
14x1/3+7x2/3 54
(14/3)2 x 23/18 ~ 161

Comparing the Gini index of the two classes in Examples 4.1 and 4.2, we find that the first
class is better balanced than the second.

=E[G7] = ~ (0.335.

4.3. Computing the level index

Let T be a tree of height & and level numbers 1 = Ny, ..., Nj. Nodes at levels i and i + j
have a difference in depth of j. Therefore, the level index is

h h—i

LZZZjNiNi+j' 4.2)

i=0 j=0

Technically speaking, L is L(T), a function of T, and so are h = h(T) and N; = N;(T) for
each i, and so forth. We drop the T for simplicity. In what follows, we use a variety of notation
depending on what we believe enhances readability. For example, the level index for a tree T,
from a class of trees all of the same size, say n, can be represented as L, or L(T,,). Some of the
classes we consider have two parameters, such as tree size and height, and it is natural there to
use double subscripts for tree parameters.

If we are computing the level index or Gini index of a given tree (i.e. a deterministic class
of trees comprised of one tree) we have all we need: all the components in (4.1) and (4.2) are
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determined by the given tree. However, if the tree belongs to arandom class, we need to compute
E[|T|] and E[Dij’i], the average tree size and depth of nodes in the class, for the denominator of
the Gini index in (4.1). This cannot be determined without imposing a probability measure [P on
a space of trees. For the same class of trees 77, the average depth E[ D7 ] will vary with P. For
instance, if the class of trees we are cons1der1ng consists of one given tree, occurring then with
probability 1, E[ DX ] is the average depth of a node in that tree, as in Example 4.1. However, if
the class has several trees in it, each having its own positive probability, E[ D] is the average
depth of a node across the entire family of trees, each contributing according to its assigned
probability, as in Example 4.2.

5. The Gini index of random caterpillars

Let P, be a rooted path made up of the & nodes vy, ..., vy—1, with the root vy being an
endpoint, and v, being the only leaf at the other end. We call that path the spine. Suppose
that X; nodes fori = 1, ..., h join the structure by attaching themselves as children of v;_.
Thus, fori =1, ..., h—1,leveli has N; = X; 4 1 nodes (the 1 accounts for one sibling on the
spine), but level # has X nodes only. Such a tree is known in the literature as a caterpillar [9].
This source poetically describes a tree from this species as ‘a tree which metamorphoses into a
path, when its cocoon of endpoints is removed’. The chemistry literature refers to caterpillars
as Gutman trees or benzenoid trees [2]. A topological perspective of caterpillars was given
in [8] and [11].

It turns out that the Gini index of a caterpillar depends critically on the interplay of the level
numbers and their rates of growth. We shall discuss a case in which the level numbers are
identically distributed but dependent, and several cases where they are independent.

5.1. A multinomial model

Let bin(n, p) represent a binomial random variable that counts the number of successes

in n i.i.d. experiments, with probability of success p, and let multinom(n, p1, ..., p,) be the
multinomial vector of shares obtained by dropping n distinguishable balls in r distinguishable
boxes, with the ith box attracting the balls with probability p; fori =1, ..., r. Suppose that n
organisms attack the spine and each predator chooses any of the 4 nodes of the spine with equal
probability. Thus, X; is distributed like bin(n, 1/ k), and collectively (Xi, ..., Xp) isa
i 1 1
multinom|( n, —, ..., —
h h
——
h times
vector.

We can think of the emerging caterpillar as an algae as it represents colonies of biological
organisms attacking a natural resource. Note that here the Gini index (of the class) is a function
of h and n and so are the other parameters such as the level index (of a tree in the class); it is
natural to use double subscripts for such parameters. To keep the notation simple, we do not
use additional parameters for the N;. We then have

h—1h—i—1
(Lol =Y Y JEIN;Niyjl +Z<h—z)E[N Ni]
i=0 j=0
h—1 h—1h—i—1
=Y JEINo(X; + DI+ Y > JEIX; + D(Xij + D]+ AEINoX]
j=1 i=1 j=1
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h—1
+ ) (h = DHELX; + )X,

i=1

h—1 h—1h—i—1
= EX]+ DY+ EX X] +2EX ]+ DY Y j+hEX]
j=1 i=1 j=1
h—1

+ (B[X1 X2] + BIX1D) ),
j=1

where in the last step we used the identical distribution of the X; and pairs of them. The mean

and covariance structure of a multinom(n, p1, ..., p;) vector is well known; we have
nn—1) n
]E[X1X2]=—h2 , E[X] = =

We can now compute the average level index:
1
ElLnul = o ((h% = Dn? + Qh* = b + 4 + Dn + 5 — 1),

Further, the average depth of a randomly selected node across this class of caterpillars is

h—1

E[D?,] _ZIE[ Nl=—— <Zi(E[Xi]+1)+h]E[Xh]>=

i=1

n +h—1
+h 2

The Gini index of the class follows as the average across all multinomial caterpillars, i.e.

((h% — Dn® + 2h> — h®> +4h + Dn + h* — h?)/6h
(n+h)2n/(n+h)+ (h—1)/2)

After asymptotic simplification, we obtain (as n — 00)

nh = ElGnnl =

lim G h—1
i, G = 5

In addition, if # — oo, we obtain

lim lim G é
h—o00 h—>00 n.h

We note that the asymptotics of the average Gini index for multinomial caterpillars do not
fill the spectrum of possible values. The first few values for lim,_, o, G* o are 0, L 55 5 }‘, 145
for i = 1,2,3, 4,5, and at h = 300 this limit is 22 ~ 0.332222, already at 99.6666% of the
limit 1 3, when h itself goes to co. For multinomial caterpillars of finite height, we see that the

limit of the class Gini index falls in a discrete set of values.

5.2. A model of independent level numbers

In the multinomial model of caterpillars, we assumed a total of n organisms attacking the
spine. This imposition on the total number of organisms introduces dependency among the
level numbers. In this section we employ a model in which the level numbers are independent.
The model is pertinent to the formation of computer networks, where there is a common ‘bus’
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or ‘hub’ of servers to which users subscribe to receive internet services. Suppose that there is
also a main server at one endpoint of the hub (root of the path) considered as the master server.

The Gini index of such a network may be correlated with the speed of communication within
the network. It is natural to use & as a subscript for the level index, the depth of a randomly
chosen node and the Gini index. We do not use additional parameters for the N;. Let X; for
i = 1,...,h be independent random variables. Suppose that level i attracts X; users. Thus,
the level numbers in the network are

No =1, Ni=X;+1 fori=1,...,h—1, Np = Xp.

To ease some of the forthcoming computations, we impose a regularity condition. Namely,
we assume that

h
Zvar[Ni] = o(h?P1?). (5.1)
i=l1

One main result of this paper is the following.

Theorem 5.1. Consider a class of caterpillars with independent random level numbers. We
assume that the distribution of the level number N; has average value pu; ~ Ki? for some
power p > 0 and constant K > 0, and satisfies the regularity condition (5.1). This class of
random caterpillars has a Gini index G; — 1/(2p + 3) as h — oo.

Proof. All asymptotics in this proof are taken as 7 — oo. Let V), = Z?:oNi /hP*l. By
independence and the regularity condition (5.1), we have

h
var[N;] 1
arlVil=) 5o = s
i=0

x o(h*P*?) > 0.

Subsequently, by Chebyshev’s inequality, for any ¢ > 0, we have

var[Y;]
P(Yy - El¥,]l > &) < —5— = 0.
Therefore, we have
Yy — E[Y] — O. (5.2)
‘We further have i
Ki?  KhPtl 4 O(nP) K
E[Y4] ~ Z T = ST z
= (r+1D p+

Adding this latter convergence relation to (5.2), we obtain

2’1: N K 5.3)
i—oherl p+1 '

Similarly, we have

h . h h
iN; 2 N; 5 1 N;
I POL R I ST R D) SRR L Y
‘ e ‘

=

i=
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and, by almost identical steps, we have
h

3 iNi 7 K (5.4)
i—ohH2 p+2 .

Using (5.3) and (5.4), we obtain

St iN; 5 pt1
AY M N pH2

But, then we have
hoo
_oiN;
< leho ! <1
h} i Ni
and the boundedness ensures that convergence in probability implies convergence in moments.
In other words, we have

’

lE[DZ]: [Z =o' Ni ] L ptl
h Z _o Ni p+2
We have calculated an important component in the denominator of the Gini index. The other
one is
) Khpt!
E[Sy] = ZEM _1+Zu, gkz T
For the numerator of the G1n1 index, we need the average level index, i.e.
h h—i
=Y JEINiNij]
i=0 j=0
h—1 h—i
= ZJE [Nj1+ Y > JEINiNiyj]
i=1 j=0
h h—1 h—i
= Z jmj+ Z Z Jwititj  (by independence)
j—l i=1 j=0
h—1 h—i
~ Z KjPth ) ) K2jiPG+ )Y
i=1 j=0
K2p20+3

(P+D(P+22p+3)
and we obtain the last asymptotic relation by comparing the sums to integrals.
We can compose the asymptotic Gini index from the following components:

272p+3 pHIN 2 -1
i~ [ roma | () Go)] — w0
(p+DpP+2)2p+3) p+1 p+2 2p+3

5.3. An illustrative example

We discuss an instance of Theorem 5.1. Note that p can be any nonnegative real number,
rendering the possible limiting Gini index values fill the range (0, %], as opposed to the usual
economics Gini index which fills the entire [0, 1] interval.
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Example 5.1. Take the case

—1)i

X; = K3 + u) Poi(i°/?) + bin(i%, p) 4+ 301ni + szJ,
i

where Poi(i°/?) is a Poisson random variable with parameter i 3/2_ Here, we have Wi ~ 3i 32,

The limiting Gini index is %.

6. Concluding remarks

We introduced a notion of the Gini index for a class of rooted trees. The concept extends to
all connected graphs with a distinguished vertex, which is a topic for future research. The usual
Gini index is known to have range [0, 1]. In contrast, we found that the limiting Gini index of
certain random caterpillars falls in the reduced range (0, %].

The independence of the data in the usual Gini index makes it possible in a poor country for
a few outliers of very wealthy individuals to catapult the index to values close to 1. By contrast,
in trees if there are outliers (nodes at very high altitudes), they cannot be there alone, there
must be other nodes nearby to hold the tree together. This dependence reduces the influence of
outliers and results in a smaller range of Gini indices for trees.

The Gini index proposed in this paper is distance-based. One can think of a Gini index
comparing node properties in a tree other than their depths, such as their degrees. This is the
subject of a future research.
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