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The von Kármán constant k relates the flow speed profile in a wall-bounded shear
flow to the stress at the surface. Recent laboratory studies in aerodynamically smooth
flow report k values that cluster around 0.42–0.43 and around 0.37–0.39. Recent
data from the atmospheric boundary layer, where the flow is usually aerodynamically
rough, are similarly ambiguous: k is often reported to be significantly smaller than the
canonical value 0.40, and two recent data sets suggest that k decreases with increasing
roughness Reynolds number Re∗. To this discussion, we bring two large atmospheric
data sets that suggest k is constant, 0.387 ± 0.003, for 2 � Re∗ � 100.

The data come from our yearlong deployment on Arctic sea ice during SHEBA,
the experiment to study the Surface Heat Budget of the Arctic Ocean, and from over
800 h of observations over Antarctic sea ice on Ice Station Weddell (ISW). These
were superb sites for atmospheric boundary-layer research; they were horizontally
homogeneous, uncomplicated by topography, and unobstructed and uniform for
hundreds of kilometres in all directions.

During SHEBA, we instrumented a 20 m tower at five levels between 2 and 18 m
with identical sonic anemometer/thermometers and, with these, measured hourly
averaged values of the wind speed U (z) and the stress τ (z) at each tower level z.
On ISW, we measured the wind-speed profile with propeller anemometers at four
heights between 0.5 and 4 m and measured τ with a sonic anemometer/thermometer
at one height. On invoking strict quality controls, we gleaned 453 hourly U (z) profiles
from the SHEBA set and 100 from the ISW set. All of these profiles reflect near-
neutral stratification, and each exhibits a logarithmic layer that extends over all
sampling heights. By combining these profiles and our measurements of τ , we made
553 independent determinations of k. This is, thus, the largest, most comprehensive
atmospheric data set ever used to evaluate the von Kármán constant.

1. Introduction
The Kansas experiment focused attention in the atmospheric boundary-layer

community on the crucial role that the von Kármán constant k plays in boundary-
layer theory. In reporting that k = 0.35, Businger et al. (1971) created a firestorm of
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118 E. L Andreas and others

uncertainty and, in fact, produced a division in the community: one camp immediately
embraced the new value for its analyses; and the other camp stuck with the traditional
value of 0.40–0.41. Although Wieringa (1980) later eased the apprehensions of some
by arguing that flow distortion explained the small Kansas k value and by then
suggesting that the corrected Kansas result should be k = 0.41, Wyngaard et al.
(1982) were unconvinced and stood by their value of 0.35.

Several other atmospheric scientists addressed this controversy with reviews and
theory. For example, after reviewing Tennekes’s (1968) theory, which predicts k = 0.33
for very large Reynolds numbers, Yaglom (1974) concluded that k is known only with
an error of about 20 % and that no basis exists to reject the hypothesis that k = 0.4
(‘without the second decimal place’). Using a model for boundary-layer plumes and
downdrafts, Telford (1982) predicted k =0.37. Coincidentally, using renormalization-
group analysis, though not applying it necessarily in the atmosphere, Yakhot &
Orszag (1986a, b) also obtained the same theoretical value, 0.37. Tennekes (1973) used
similarity arguments to suggest that, in the atmosphere, k should become constant
only as the Rossby number approaches infinity. However, Högström (1996) saw no
Rossby number influence on k in his review of 18 atmospheric data sets.

As interest in measuring k in the atmosphere intensified, more and more frequently
was it reported to be less than 0.40. From among the several sets of such measurements,
we mention as examples the values of Francey & Garratt (1981), 0.33 ± 0.03 and
0.38 ± 0.04 depending on the stratification correction they used; Dyer & Bradley
(1982), 0.385 ± 0.021; and Kondo & Sato (1982), 0.39. In another set of measurements
with large Reynolds number – though in a laboratory wind-wave tunnel – Tseng,
Hsu & Wu (1992) obtained k = 0.37 ± 0.03. Similarly, Telford & Businger (1986)
reinterpreted data reported by Högström (1985) and concluded that these suggest
k = 0.359 ± 0.014 rather than the 0.400 ± 0.011 that Högström obtained.

Based on 29 data points from the atmospheric surface layer, Frenzen & Vogel
(1995a) reported k to be 0.39 ± 1 % but later revised this value to 0.387 ± 0.010
(Frenzen & Vogel 1995b). Similarly, from roughly a hundred data points from both
their own measurements and historical sets, Oncley et al. (1996) obtained an average
value for k of 0.365 ± 0.015. More importantly, though, these three papers suggest
that k decreases weakly with increasing roughness Reynolds number (see also Vogel &
Frenzen 2002).

In his extensive review of atmospheric observations, Högström (1996) concluded
that ‘k is actually constant in atmospheric surface-layer flow, having in fact the
same value as is found from laboratory data’, 0.40, regardless of whether the flow
is aerodynamically smooth or rough. The irony here is that, shortly after Högström
published his paper, several studies appeared to contradict the notion that laboratory
measurements agree that k is 0.40. First, Zagarola & Smits (1998) published highly
regarded measurements of the von Kármán constant at large Reynolds number in the
Princeton superpipe. Their conclusion was that k = 0.436 ± 0.002 in aerodynamically
smooth flow. Perry, Hafez & Chong (2001), however, reanalysed these pipe data and
interpreted them to give k = 0.39; but, McKeon (2003) suggested some possible biases
in the analysis by Perry et al. that would result in k values that were biased low.
Then, using new corrections for the Pitot tubes used to measure the velocity profile,
McKeon et al. (2004) reanalysed the Zagarola & Smits data and also obtained
new data in the Princeton superpipe. Their analysis of these two data sets yielded
k = 0.421 ± 0.002, thereby corroborating the larger value in aerodynamically smooth
flow that Zagarola & Smits found.
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Evaluations of the von Kármán constant 119

In contrast, though, Zanoun, Durst & Nagib (2003) made measurements in
aerodynamically smooth high-Reynolds-number flow in a wind tunnel that yielded
k = 0.37, which they note is approximately e−1. Likewise, Österlund et al. (2000)
reported measurement from wind tunnels at the Royal Institute of Technology in
Stockholm and at Illinois Institute of Technology (IIT) that yielded k = 0.38 in
aerodynamically smooth flow. The key feature of both of their data sets is that the
wind tunnels had zero pressure gradient. Nagib, Christophorou & Monkewitz (2004)
obtained several new velocity profile data sets from the IIT wind tunnel with a different
pressure gradient along the tunnel for each set. Again, for measurements with zero
pressure gradient, they found k =0.38. However, we infer from their measurements in
favourable and adverse pressure gradients that their analysis technique would yield
k values that are biased low for an adverse pressure gradient and are biased high
for a favourable pressure gradient. Coincidentally, the Princeton superpipe had a
favourable pressure gradient for the data sets that Zagarola & Smits (1998) and
McKeon et al. (2004) reported.

In summary, the best recent laboratory results no longer support the canonical
laboratory value of k = 0.40 that Högström (1996) advocated; but the field is again
divided, at least for aerodynamically smooth flow. Some laboratory data suggest that
k is significantly larger than 0.40, while other laboratory data suggest k is smaller
than 0.40. The two results may arise as a consequence of the presence or absence of
a pressure gradient in the laboratory flows. Meanwhile, in the atmospheric surface
layer, where the flow is commonly aerodynamically rough and the along-wind pressure
gradient is very small, k seems to be smaller than 0.40.

Here we bring to this discussion the two largest data sets ever obtained in the
atmospheric surface layer that have implications for understanding the behaviour of
the von Kármán constant. We collected these data over sea ice during SHEBA, the
experiment to study the Surface Heat Budget of the Arctic Ocean (Andreas et al.
1999; Persson et al. 2002; Uttal et al. 2002), and in the Antarctic on Ice Station
Weddell (ISW; Gordon & Lukin 1992; ISW Group 1993).

In the next section, we review the logarithmic flow speed profile for both
aerodynamically smooth and aerodynamically rough flow. This discussion highlights
that the roughness Reynolds number is an important dynamic parameter for
characterizing wall-bounded shear flows. After next describing our SHEBA and
Ice Station Weddell data, we demonstrate that the logarithmic wind speed profile is
quite robust; it appears routinely in the atmospheric surface layer in near-neutral
stratification even when the stress is not constant with height.

From the logarithmic wind speed profiles and our SHEBA and ISW measurements
of the friction velocity u∗, we make 553 independent evaluations of the von Kármán
constant. At first sight, these seem to vary dramatically with roughness Reynolds
number Re∗, approaching the constant value of 0.421 found by McKeon et al. (2004)
in aerodynamically smooth flow but decreasing to levels as low as 0.30 for Re∗ � 200.
After further analyses, we suggest that measurement uncertainty explains the spread
in k values; and artificial correlation that results from the shared variables that go into
evaluating k and defining Re∗ explains the apparent Reynolds number dependence
of k. We corroborate this latter conclusion by demonstrating that our k values are
uncorrelated with values of Re∗ computed with a bulk flux algorithm that does not
use any variables shared with k. We thus conclude that the von Kármán constant is,
indeed, constant and has a value of 0.387 ± 0.003 for roughness Reynolds numbers
between 2 and 100.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

01
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000164


120 E. L Andreas and others

2. The logarithmic wind speed profile
The logarithmic flow speed profile is a very robust experimental and mathematical

feature of wall-bounded shear flows. Classically, that profile derives from mixing
length arguments (e.g. Goldstein 1965, p. 208ff.; Schlichting 1968, p. 545ff.; Hinze 1975,
p. 624ff.). In a neutrally stratified atmospheric surface layer where only one length
scale – the distance z above the surface – characterizes the flow, these arguments still
work (e.g. Businger 1973; Fleagle & Businger 1980, p. 272ff.); but in the atmosphere,
asymptotic similarity arguments, as developed by Blackadar & Tennekes (1968)
and Tennekes (1973; see also Garratt 1992), yield an elegant and less constrained
derivation of the logarithmic wind speed profile.

In essence, all of these varied analyses predict that the surface stress τ0 is related
to the vertical profile of the longitudinal wind speed, U (z), through

τ0 = ρ u∗0kz
∂U

∂z
. (2.1)

Here, τ0 = −ρuw0, where ρ is the air density, u and w are turbulent velocity
fluctuations in the along-wind and vertical directions, and the overbar indicates a
time average. Also in (2.1), u∗0 ≡ (τ0/ρ)1/2 is the friction velocity, and k is the von
Kármán constant. That is, the von Kármán relates the surface stress to the near-
surface flow speed profile. Because τ0 = ρu2

∗0, (2.1) reduces to

u∗0

kz
=

∂U

∂z
. (2.2)

For flow over an aerodynamically smooth surface, ν/u∗0, where ν is the kinematic
viscosity, is the only available length scale with which to non-dimensionalize (2.2).
Equation (2.2) thus becomes

1

kz+

=
∂(U/u∗0)

∂z+

, (2.3)

where z+ = u∗0z/ν. This has the solution

U (z)

u∗0

=
1

k
ln

(
u∗0z

ν

)
+ B, (2.4)

where B is an integration constant that must be found experimentally.
On the other hand, for flow that is aerodynamically rough or in transition between

smooth and rough, the aerodynamic roughness length z0 can non-dimensionalize (2.2).
Thus,

1

k ξ
=

∂(U/u∗0)

∂ξ
, (2.5)

where ξ = z/z0. Equation (2.5) has the solution

U (z)

u∗0

=
1

k
ln

(
z

z0

)
, (2.6)

which has no additive integration constant because z0 is defined such that U (z) = 0
at z = z0.

Because the length scales ν/u∗0 and z0 characterize aerodynamically smooth
and aerodynamically rough flow, their ratio Re∗ ≡ u∗0z0/ν, the roughness Reynolds
number, is dynamically important. One of our purposes here is to investigate the
suggestion that the von Kármán constant depends on Re∗.
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On comparing (2.4) and (2.6), we can define a roughness length for aerodynamically
smooth flow, z0s , that has the same property as does z0; the wind speed profile is zero
for z = z0s . This parameter is (e.g. Monin & Yaglom 1971, p. 287; Andreas & Treviño
2000)

z0s = (ν/u∗0) exp(−k B). (2.7)

With typical values for k and B of 0.4 and 5 (Tennekes & Lumley 1972, p. 157;
Yaglom 1993; Long, Wiberg & Nowell 1993),

z0s = 0.135(ν/u∗0). (2.8)

Consequently, the roughness Reynolds number in aerodynamically smooth flow (i.e.
u∗0z0s/ν) is always constant, 0.135, for the assumed values of k and B .

Aerodynamically rough flow, on the other hand, features a wide range of roughness
Reynolds numbers with a minimum of about 2.5 (e.g. Schlichting 1968, p. 579ff.;
Monin & Yaglom 1971, p. 288ff.; Businger 1973). Consequently, Re∗ values between
0.135 and 2.5 characterize the transition region between smooth and rough flow.

3. Measurements
3.1. During SHEBA

The experiment to study the Surface Heat Budget of the Arctic Ocean (SHEBA)
centred on an ice camp in the Beaufort Gyre of the Arctic Ocean. Uttal et al. (2002)
show the drift track of this camp, which was manned continuously from 2 October
1997 until 11 October 1998.

Throughout this experiment, we maintained a 20 m meteorological tower
(figure 1) that was instrumented at five levels with identical three-axis sonic
anemometer/thermometers (Applied Technologies, Longmont, Colorado). The tower
had two sections: a 10 m tall walk-up scaffold that was 2 m on a side; and a 20 m
triangular section, with each side of the triangle being about 0.5 m.

We mounted three sonics on the scaffold at the ends of booms that extended about
3 m from the scaffold. The triangular section had two instrument carriages: one that
ran between heights of about 1 and 9 m and another that ran between 11 and 19 m.
Each of these carriages held a sonic at the end of a 2 m boom. Thus, all five sonics
extended at least 2 m in front of our open tower; we therefore believe that flow
distortion at the anemometers was negligible.

Although the sonics varied in height through the year over a range of about a
metre as a consequence of snow accumulation and ablation (Persson et al. 2002,
table 1), nominal heights of the three sonics on the scaffold were 3.2, 5.1 and 8.9 m.
The sonic on the lower carriage of the triangular section was typically at 2.2 m; while
the sonic on the upper section was, nominally, at 14 m in the winter and 18 m in
the summer. Periodically, we used the carriages to move the sonics side-by-side for
intercomparisons.

Our sonics were the so-called K-type, which feature three orthogonal, 15 cm sound
paths that are separated to minimize flow distortion (Kaimal & Finnigan 1994,
p. 218ff.). The remaining flow distortion had been studied and quantified (Kaimal et al.
1990); each sonic system had firmware that corrected the output for this flow distortion
in real-time. The sonic output was a digital signal of the velocity measured along
each of the three sonic axes and the ‘sonic’ temperature measured on the vertical axis.
The sampling rate for each signal was 10 Hz. We logged all the raw 10 Hz data on a
personal computer for later processing.
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Figure 1. Our 20 m SHEBA tower was instrumented at five levels with identical sonic
anemometer/thermometers.

Except for rare breakups of the ice camp that cut power to our site, our instruments
ran almost continuously from 31 October 1997 to 29 September 1998. We averaged
all variables hourly. Consequently, we potentially have over 8000 h of data for our
analysis.
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From our sonic anemometer/thermometers, we obtained both the mean components
of the velocity vector – denoted as U , V and W , where U is along-wind, V is cross-
wind, and W is vertical – and the turbulent components of velocity (u, v and w) and
‘sonic’ temperature (θ). As Persson et al. (2002) and Grachev et al. (2005) explain, we
did spectral and cospectral analyses of these turbulent fluctuations to obtain uw, the
along-wind vertical stress, and wθ , the temperature flux, at each level that produced
good data for the analysis hour. To obtain U , uw and wθ , we had to rotate averaged
quantities from the ‘sonic’ frame in which they were measured to the natural ‘wind’
frame. We did this by requiring that the mean wind and the turbulent stress at each
measurement level be in the U -direction. That is, after rotation, V = 0, W = 0 and
vw = 0. Hence, at each tower level with good data for the hour, we can define a mean
wind speed U (z) and a local stress τ (z). Although it is loose usage, as shorthand, we
define a local friction velocity as u∗(z) = [τ (z)/ρ]1/2.

Because the sonic temperature θ is nearly the virtual temperature (Schotanus,
Nieuwstadt & De Bruin 1983; Kaimal & Gaynor 1991; Larsen et al. 1993), our
wθ values provide a measurement of atmospheric stratification. We quantify this
stratification as z/L, where L is the Obukhov length,

L =

[
−kg

Tv

wθ

u3
∗

]−1

. (3.1)

Here, Tv is the average virtual temperature, and g is the acceleration due to gravity.
A common concern with sonic anemometers is that, because they average over

a sound path of length d (15 cm in our case), the instruments cannot measure the
smallest turbulence scales. For our K-type sonics, another concern is that the sound
paths that measure u and v are separated by a distance s = 27 cm from the path that
measures w. Hence, u and v signals lose coherence with w for the smaller turbulence
scales.

Many have considered the consequences of sonic configuration on flux
measurements (e.g. Moore 1986; Kristensen et al. 1997), but most such studies reiterate
the conclusions by Kaimal, Wyngaard & Haugen (1968) that only when κ1 d > 1 and
κ1 s > 1 are path-averaging and separation effects detrimental to sonic performance.
Here, κ1 is the one-dimensional turbulence wavenumber. In the atmospheric surface
layer, we typically write κ1 = 2πf/U , where f is the turbulence frequency and U is
again the mean wind speed at measurement height z.

Consider the separation constraint, which is the more severe for our sonics. To
ensure that our measurements of uw were unaffected by sensor separation, we must
require

1 > κ1s = 2π

(
f z

U

)(
s

z

)
. (3.2)

Kaimal & Finnigan (1994, p. 55; cf. Kaimal et al. 1972) give an approximation
for the non-dimensional u–w cospectrum in neutral stratification that should be a
reasonable model for our measurements. We see from this model that, at a non-
dimensional frequency n ≡ f z/U = 1, the cospectrum has fallen to 20 % of its peak
value. Furthermore, if we integrate that cospectrum from n= 0 to n= 1, the result
represents over 95 % of the u–w covariance. In other words, if we can sample
non-dimensional frequencies up to n= 1, we have measured u∗ to better than 97 %
(=

√
0.95).
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On substituting this result – that f z/U = 1 – in (3.2), we establish the measurement
constraint

z > 2πs. (3.3)

This result is a little stronger than Kristensen & Fitzjarrald’s (1984) conclusion that
the measurement height must be only 4–5 times the sound path for flux measurements
to be unaffected by path averaging. Nevertheless, (3.3) means that our K-type sonics
must be above 1.7 m for our measurements of uw to be negligibly affected by sonic
geometry. All measurements at SHEBA and on Ice Station Weddell satisfied this
requirement.

3.2. On Ice Station Weddell

Ice Station Weddell (ISW) was the first ice camp ever placed on drifting sea ice in the
Antarctic for research purposes (Gordon & Lukin 1992; ISW Group 1993). It drifted
northward through the western Weddell Sea from 4 February until 9 June 1992,
paralleling the track of Schackleton’s Endurance. Andreas & Claffey (1995) show the
station’s drift track and describe our micrometeorological measurements on ISW.

Briefly, ISW was a prologue for our longer, more comprehensive measurements at
SHEBA. On ISW, we had a profiling mast instrumented with R. M. Young (Traverse
City, Michigan) propeller anemometers at nominal heights of 0.5, 1, 2 and 4 m
(figure 2). The lower three propellers (model 27103) had fixed orientation with respect
to the mast; the highest anemometer was a propeller-vane (model 35003). These were
all helicoid, four-blade ‘Gill’ propellers (Gill 1973). Our mast rotated, and we used
the propeller-vane for reference to periodically rotate the fixed anemometers into the
mean wind.

Andreas & Claffey (1995) describe these measurements in more detail, explain
our quality controls, and show sample wind speed profiles obtained in near-neutral
stratification. The quality-control issue that we reiterate here is that our analysis used
only profiles for which the hourly averaged wind vector measured by the propeller-
vane was within ± 20◦ of being head-on to the three propellers fixed to the mast.
We obtained the true wind speed from the average wind speed measured by each of
these fixed propellers using the standard cosine correction, which Busch et al. (1980;
also Wyngaard 1981; Kaimal & Finnigan 1994, p. 209ff.) show to be nearly exact for
deviation angles of 20◦ or less.

About 20 m from the profile mast in figure 2 stood a 5 m tower with a K-type
sonic anemometer/thermometer (Applied Technologies), just like the one we used at
SHEBA, mounted at a height of 4.65 m. This provided hourly averages of the stress
τ and the sensible heat flux wθ . Through (3.1) and our supporting meteorological
measurements, this sonic also gave us the Obukhov length. Andreas, Jordan &
Makshtas (2005a) give full details on how we logged, screened and processed these
turbulence measurements on Ice Station Weddell.

We began collecting data on ISW on 25 February 1992 and ran continuously until
29 May 1992. The propeller-vane on our profile mast stopped working on 31 March,
however. Without four levels in the wind-speed profile, we do not feel confident in our
profile analysis. Hence, the analysis we report here goes only until 31 March, but we
still have over 800 hours of data from Ice Station Weddell with which to supplement
our SHEBA analysis.
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Figure 2. Our profile mast on Ice Station Weddell had R. M. Young propeller anemometers
at four levels between 0.5 and 4 m. The upwind fetch is snow-covered sea ice.

4. Profile analysis
We analysed our SHEBA and ISW wind profile data in the context of (2.6). That

is, we carried out a least-squares linear regression of U (z) versus ln(z). This fitting
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yielded the slope S and the intercept I such that

U (z) = S ln(z) + I, (4.1)

where we recognize

S = u∗/k, (4.2)

and

I = −u∗

k
ln(z0) = −S ln(z0). (4.3)

Thus, with a measurement of u∗, (4.2) yields the von Kármán constant. In turn, with
the slope S, (4.3) yields an estimate of z0 whether the flow is aerodynamically rough,
aerodynamically smooth, or in transition. We use this z0 value in our later evaluations
of Re∗.

For our SHEBA analysis, we use for u∗ in (4.2) and (4.3) the inferred surface
value u∗0. We will explain shortly how we obtained this. Since we had only one
sonic anemometer on Ice Station Weddell, u∗ in (4.2) and (4.3) comes from our one
measurement of (τ/ρ)1/2 at 4.65 m.

We placed restrictions on the data to ensure that we were using only the profiles for
these calculations that best met the theoretical conditions. Some of these restrictions
come from Wieringa (1993) and Andreas & Claffey (1995).

4.1. Quality controls

First, to ensure the most accurate estimates of S and I , we excluded any hours from
our SHEBA set that did not have good data for both U (z) and τ (z) for all five tower
levels. For the Ice Station Weddell set, we required that τ and all four U (z) levels be
available.

Secondly, (4.1) is strictly valid only for neutral stratification. Our first screening for
neutral stratification was to analyse only profiles for which the wind speed at all levels
was at least 4 m s−1. In laboratory flows, the walls of the channel impose a longitudinal
direction on the flow, even at very low flow speeds. In the atmospheric boundary
layer, in contrast, turbulence statistics in low wind speeds are very difficult to measure
because the wind is often directionally unstable (e.g. Andreas et al. 1998). Velocity
covariances are, thus, poorly defined, as are the angles for the required coordinate
rotations (Mahrt 1998). Requiring wind speeds of at least 4 m s−1 eliminates most
such meandering flows from our analysis and, in effect, also tends to eliminate
non-stationary conditions.

Our third condition involved the upwind fetch. The SHEBA ice camp was centred
around the Canadian icebreaker Des Groseilliers. When we originally built the camp,
we placed our 20 m tower at the north end with the Des Groseilliers and all other camp
structures in a 75◦ sector south of the tower. In this configuration, the undisturbed
sector that our tower instruments could sample without flow through the tower itself
or over other structures in the camp was approximately 280◦. During the course of our
SHEBA deployment, however, our undisturbed sector narrowed somewhat because
the sea ice moved and deformed. We tracked these changes in fetch conditions and,
for our analyses, rejected any profiles for which the winds were coming from any
sectors containing camp structures.

The undisturbed sector at SHEBA had a natural sea ice surface for untold hundreds
of kilometres. This was snow-covered from the beginning of the experiment until
roughly 1 June 1998, when the snow began to melt. All the snow had melted by early
July, and melt ponds formed and grew to cover about 20 % of the surface by mid-July.
The ponds had refrozen by mid-August, and snow began accumulating again on the
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Figure 3. Representative logarithmic wind-speed profiles that survived our quality controls.
The plot shows profiles from 10 different months of SHEBA, November 1997 to September
1998. The wind-speed axis is relative rather than absolute; adjacent profiles are offset by
4 m s−1. The number under each profile gives the wind speed at a height of 10 m. The solid
lines are the fits based on least-squares linear regression with (4.1) as our model.

surface in late August. Perovich, Tucker & Ligett (2002), Sturm, Holmgren & Perovich
(2002), Uttal et al. (2002), and Perovich et al. (2003) document these changes in the
surface around the SHEBA ice camp and present many photos of surface conditions.

For the Ice Station Weddell data, we were likewise careful to exclude from our
analysis any measurements that may have been disturbed by buildings or structures
in the ice camp (Andreas & Claffey 1995). Our instruments at the ISW camp sampled
over an undisturbed sector of 160◦. The upwind surface in this sector featured snow-
covered sea ice for hundreds of kilometres for the duration of our measurements.

As our fourth quality control, when we fitted the profile data according to (4.1),
we computed the correlation coefficient r for the U (z)-vs.-ln(z) pairs. We kept for
subsequent analysis only profiles for which r � 0.99. Figure 3 shows ten typical profiles
from SHEBA that survived these four quality controls. The solid lines in the figure
satisfy (4.1) and yielded the values for S and I that we use in our subsequent analysis.
Andreas & Claffey (1995) show ten similar examples of acceptable profiles from Ice
Station Weddell.

4.2. Further checks for near-neutral stratification

The previous constraints reduced our original (approximately) 8000 h of recorded
SHEBA data to 641 hourly averaged profiles. For each of these profiles, we computed
a median value of the Obukhov length, Lmed, using u∗,med and wθmed in (3.1), where
u∗,med and wθmed are the median values of u∗(z) and the kinematic heat flux measured
by the five tower sonics during the hour (Grachev et al. 2005). We then computed
10/Lmed, where 10 m is the nominal mid-level of our tower instruments. To further
ensure that the profiles we retained reflected near-neutral stratification, we kept only
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profiles that satisfied −0.1 � 10/Lmed � 0.1. This range is the typical definition of near-
neutral stratification. This screening further reduced our acceptable SHEBA profiles
to 526.

Andreas & Claffey’s (1995) original test for near-neutral stratification in the ISW
data set was with a bulk Richardson number,

RiB =
Rg

Ts + 273.15

[
Ts − (T5 + γR)

U 2
5

]
. (4.4)

Here, R is the reference height of our sonic anemometer, 4.65 m; T5 is the air
temperature measured on the 5m tower near the sonic; U5 is the wind speed
measured by another propeller-vane near the sonic; Ts is the snow surface temperature
(◦C), measured radiometrically (Andreas, Jordan & Makshtas 2004b); and γ = g/cp

converts T5 to potential temperature, where cp is the specific heat of air at
constant pressure. In the 197 one-hour profiles that survived Andreas & Claffey’s
screening, |RiB | was never larger than 0.03 and was less than 0.01 for 75 % of these
profiles. Thus, the ISW screening also identified profiles collected in near-neutral
stratification.

4.3. Surface value of u∗

Although we measured τ on Ice Station Weddell at only one height, all the SHEBA
profiles that we retained included measurements of the local u∗ at five heights. We
could therefore compute u∗0, representative of the surface stress, by least-squares
linear regression. That is, we modelled the u∗ profile as

u∗(z) = az + b. (4.5)

The intercept b is obviously u∗0.
For a strictly defined atmospheric surface layer, a in (4.5) would be zero; and

b = u∗0 would equal u∗,med. Figure 4 shows the relationship between u∗0 and u∗,med for
our data. Sometimes the u∗(z) values increase with height; sometimes they decrease.
Usually, in the profiles that survived our screening, u∗0 is within 10 % of u∗med. We
take this agreement as further evidence that our screening has produced a quality
data set.

Nevertheless, to focus even more strictly on conditions for which surface-layer
similarity should hold, we henceforth eliminate SHEBA profiles that yield u∗0 values
outside the interval 0.90 � u∗0/u∗,med � 1.10. This criterion eliminated another 73
profile, finally leaving us 453.

An essential point here, though, is that even these 73 excluded SHEBA profiles met
all our previous criteria. In particular, even though profiles in this newly excluded
subset did not come from a constant-stress layer, they still displayed logarithmic
behaviour that was as true as in the profiles that we retained. In other words, the
logarithmic wind-speed profile is quite robust and can exist even without a constant-
stress layer.

Frenzen & Vogel (1995a) faced the situation that we faced with our ISW data set.
They measured τ at only one height, 2.5 m. In a desire to obtain u∗0 for a theoretically
correct evaluation of the von Kármán constant, they calculated u∗ as (τ/ρ)1/2 but,
to obtain u∗0, increased this value by 0.5 %, in line with the suggestion by Telford &
Businger (1986). In his reply to Telford & Businger’s comment, Högström (1986)
likewise argued that (τ/ρ)1/2 measured at height z in the atmospheric surface layer
should be increased to obtain an estimate of u∗0. However, at least over Arctic sea ice,
where our instruments were well above the roughness sublayer (e.g. Frenzen & Vogel
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Figure 4. The surface value of the friction velocity, u∗0, from SHEBA, obtained from (4.5).
The u∗,med value is simply the median value of the five u∗(z) measurements during the hour.
The solid line is 1:1; the dotted lines delimit cases for which 0.90 � u∗0/u∗,med � 1.10.

1995b), our data do not support this practice (i.e. figure 4). The [τ (z)/ρ]1/2 ≡ u∗(z)
values increase with height as often as they decrease. Consequently, we use our ISW
measurements of (τ/ρ)1/2 as if they were u∗0 and henceforth always denote them as
u∗0. We have reliable measurements of u∗0 on ISW that coincide with 178 of the 197
logarithmic profiles that survived our screening.

Figure 5 shows these 178 z0–u∗0 pairs that survived our ISW screening and the
453 surviving pairs from SHEBA. Because we required winds of at least 4 m s−1,
the u∗0 values are all larger than 0.15 m s−1. The z0 values, which we obtained from
(4.3), span a range of over three orders of magnitude. Such a range of roughness
lengths, however, is not atypical of snow-covered or sea-ice surfaces (e.g. Inoue 1989;
Guest & Davidson 1991; Andreas & Claffey 1995; Andreas et al. 2005a). The z0

values from ISW, which we collected during a 35 day period over snow-covered ice,
have a narrower spread than the SHEBA values, which represent the full SHEBA
deployment year.

In figure 5, the average u∗0 for the SHEBA data is 0.29 m s−1; for the ISW
data, 0.32 m s−1. For z0, the average in the SHEBA set is 0.4–1 mm, depending on
whether we compute arithmetic or geometric averages; for the ISW set, the z0 values
average 1 mm. For a typical value of the kinematic viscosity for our conditions,
1.2 × 10−5 m2 s−1, these averages yield a roughness Reynolds number that is 10–27,
well into the aerodynamically rough regime, on average. The two lines in figure
5 show the aerodynamically smooth limit, where Re∗ =0.135 [see (2.8)], and the
aerodynamically rough limit, where Re∗ = 2.5, and thus demonstrate that most of our
data come from aerodynamically rough flow.
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Figure 5. �, The 453 z0 and u∗0 values from SHEBA and �, the 178 values from Ice Station
Weddell that survived our screening. The lines show the aerodynamically smooth (i.e. where
Re∗ = 0.135) and aerodynamically rough (i.e. where Re∗ = 2.5) limits, with ν assumed to be
1.2 × 10−5 m2 s−1.

5. The von Kármán constant
5.1. Stratification correction

In Monin–Obukhov similarity theory, which systematizes our understanding of the
atmospheric surface layer, the vertical wind speed gradient in (2.2) is written in
general as

∂U

∂z
=

u∗0

kz
φm(z/L). (5.1)

The definition of k requires that the stratification correction φm be one for neutral
stability (z/L = 0).

After we evaluated k for the cases that survived our screening, we checked for a
residual stratification dependence. That is, we asked whether φm was one for all cases.
Figures 6 and 7 show the resulting SHEBA and ISW k values plotted against the
stratification parameter 〈z〉/L. Here, 〈z〉 is the geometric mean of the profile heights,
and L is the measured Obukhov length. Figure 7 shows fewer ISW points than figure
5 – 100 points compared to 178 – because we did not have measurements of L for
all of the ISW profiles.

Figures 6 and 7 demonstrate that our screening selected conditions very near neutral
stability, but values of the von Kármán constant still depend on stratification. In these
figures, we denote the von Kármán constant as kuc because the values are uncorrected
for residual stratification effects. In light of (5.1), figures 6 and 7, in effect, show

kuc =
k

φm(z/L)
, (5.2)

where k is the true von Kármán constant. The lines in the two figures represent this
relation with k = 0.40, with (Paulson 1970)

φm(z/L) = [1 − 16(z/L)]−1/4 for z/L < 0, (5.3a)
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0.6

0.4kuc

0.2
–0.10 –0.05 0

�z�/L
0.05 0.10

Figure 6. The uncorrected SHEBA k values as a function of the stratification, where 〈z〉 is
the geometric mean of the five measurement heights and L is the median value of the five
measured Obukhov lengths. The line is (5.2).
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kuc
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Figure 7. As in figure 6, except these are the Ice Station Weddell values. Quantity 〈z〉 is the
geometric mean of the four profile heights, and L is the measured Obukhov length.

and with (Dyer 1974)

φm(z/L) = 1 + 5(z/L) for z/L > 0, (5.3b)

Using (5.2) and (5.3), we can obtain stability-corrected values of the von Kármán
constant from the data plotted in figure 6 and 7; that is,

ksc = kucφm(〈z〉/L). (5.4)
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Figure 8. Stability-corrected values of the von Kármán constant �, from SHEBA and �,
from Ice Station Weddell.

Figure 8 demonstrates that this correction removed the stratification effects in our
measurements of the von Kármán constant; it thus represents our final data set.
From over 8000 h of operation at SHEBA, we gleaned 453 h of data that satisfied
our requirements. Likewise, we reduced over 2200 h of data from Ice Station Weddell
to the 100 best hours for our analysis.

5.2. k as a function of Re∗

To test the idea that the von Kármán constant depends on the roughness Reynolds
number, we plot our stability-corrected k values versus Re∗ in figure 9. (These values
are ksc from figure 8, but we henceforth drop the subscript sc in our plots and text
because we refer exclusively to these values now.) This figure seems to suggest that
k is a function of the roughness Reynolds number in the atmospheric surface layer.
For Re∗ nominally above 6, the k values decrease markedly with increasing Re∗. For
Re∗ less than about 6, on the other hand, the k values bend over and tend toward the
constant value 0.421 reported by McKeon et al. (2004).

Figure 9 also shows our least-squares fit (denoted ‘Best fit’) to both the SHEBA
and ISW data for which Re∗ � 6. That line is

k = −0.0148 ln(Re∗) + 0.427, (5.5)

and the correlation coefficient of these k − ln(Re∗) pairs is −0.429.
The summary results from Oncley et al. (1996) for 6 � Re∗ � 1000 depicted in

figure 9 agree well with our best fit. The Frenzen & Vogel (1995a) line in the figure
tends to be above our results and to depend more weakly on Re∗.

5.3. Uncertainty analysis

We should now backtrack a bit to consider whether the variability in k that figure 9
depicts is real or is a consequence of measurement uncertainty. We base this
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Re* = u*0z0/v
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Best fit

Figure 9. The stability-corrected �, SHEBA and �, Ice Station Weddell values of the von
Kármán constant are plotted against measured values of the roughness Reynolds number. The
plot also shows tendencies and roughness Reynolds number ranges for the k values that (i)
McKeon et al. (2004), (ii) Frenzen & Vogel (1995a) and (iii) Oncley et al. (1996) deduce. The
‘Best fit’ line is (5.5).

uncertainty analysis on the SHEBA data; the ISW measurements would yield similar
results.

The SHEBA values of k and z0 that we use to construct figure 9 come from
our profile analysis from (4.1) to (4.3). We assign the following uncertainties to
our five profile heights: ± 0.2m at z1, z2 and z3 (which were at 2.2, 3.2 and 5.1 m
on average), ± 0.3 m at z4 (8.9 m on average), and ± 0.5m at z5 (typically 14 or
18 m). These uncertainties reflect the fact that the base of our tower accumulated
snow; we were, thus, unable to measure heights directly to a pristine snow surface.
Although we list average heights above, for our calculations, we used actual height
estimates at each hour. We obtained these by interpolating between occasional direct
height measurements using frequent measurements of snow depth (Persson et al.
2002).

Based on our experience with ATI sonic anemometers, we estimate that these yield
the wind speed for an hour of averaging with an uncertainty of ± 0.03 m s−1. We
arrive at this figure from measurements of the standard deviation of the wind speed,
σu, which is typically 10 % of the mean wind speed (Panofsky & Dutton 1984, p.
166ff.; Arya 1988, p. 153ff.). For example, Fairall et al. (1996, table 1) give a value of
0.3 m s−1 as the typical standard deviation based on 50 min averages for wind speeds
in the range we encountered. An estimate of the error in the mean wind speed is, thus,
(0.3 m s−1)/

√
N , where N is the number of independent samples used to construct

the average. Since wind speed has a decorrelation time that is nominally 10 s (e.g.
Treviño & Andreas 2000), N for the Fairall et al. observations is about 300, and
σu/

√
N ≈ 0.02 m s−1. Since we average for an hour, our uncertainty estimate for the

mean wind speed of ± 0.03 m s−1 is conservative.
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As a conservative estimate for the uncertainty in the slope S that we derive from
our profile analysis, consider

S 	 (U5 ± 0.03) − (U1 ± 0.03)

ln[(z5 ± 0.5)/(z1 ± 0.2)]
. (5.6)

Since U5 − U1 is typically 1.5 m s−1 (see figure 3), (5.6) implies

S 	 (U5 − U1) ± 4%

ln(z5/z1) ± 7%
, (5.7)

where, to be conservative, we used z5 = 14 m rather than 18 m. Equation (5.7) implies
that S has an uncertainty of about ± 11 %.

Individual measurements of u∗ can be uncertain by ± 10 % (e.g. Finkelstein &
Sims 2001). Since we use five independent measurements of u∗ to determine
the median of u∗, u∗,med, a typical uncertainty for u∗,med is ± 10 %/

√
5 = ± 4.5 %.

Further, since we required that u∗0 be within 10 % of u∗,med (see figure 4), we take
± 4.5 %(1 ± 10%) = 5% as the uncertainty in u∗,0.

The function φm that we use in (5.4) to remove stratification effects is also uncertain.
In near-neutral but unstable stratification, the basic form of (5.3a) is well accepted;
but the multiplicative constant 16 has been reported to range, typically, from 14 to
20 (e.g. Sorbjan 1989, p. 74; Högström 1996). Since 〈z〉/L is hardly ever smaller than
−0.05 in our application (i.e. figures 6–8), this range of choices suggests a maximum
uncertainty for φm in unstable stratification of 2.6 %.

Likewise, in near-neutral but stable stratification, (5.3b) is an acceptable form for
the stratification correction; but the multiplicative constant 5 is typically reported to
range from 4 to 6 (e.g. Sorbjan 1989, p. 76; Högström 1996). Again, since 〈z〉/L is
rarely above 0.05 in our application, our choice of φm in stable stratification has a
maximum uncertainty of 4 %.

Because most of our data cluster between 〈z〉/L values of −0.02 and 0.02, we will
take ± 2 % as the typical uncertainty in φm.

From (4.2) and (5.2), these considerations suggest

k =
u∗0 ± 5%

(S ± 11%)(φm ± 2%)
. (5.8)

That is, individual measurements of the stability-corrected k values in figure 9 may
be uncertain by ± 18 %. The average k value of all points shown in figure 9 is 0.387;
consequently, we should realistically expect our measurements of k to be scattered
between 0.317 and 0.457. In fact, only 39 of the 553 k values (7 %) in figure 9 are
outside this range. The variability in k in figure 9, therefore, may result largely from
measurement uncertainty despite the trend with Re∗.

We estimate the uncertainty in the Re∗ values in figure 9 along these same lines
and find that individual estimates of Re∗ may range from 45 % to 240 % of the true
value. Essentially, Re∗ is uncertain by a factor of two; uncertainty in z0 causes most
of this uncertainty. Nevertheless, figure 9, which shows Re∗ ranging from about 0.1
to 500, realistically depicts that we experienced a wide range of roughness conditions
during our measurements.

5.4. Evidence of a constant-stress layer

Earlier, we fitted the local friction velocity profile u∗(z) with a linear function of z.
Since our tower levels were roughly logarithmically spaced, it is also reasonable to
evaluate the divergence in u∗(z) as ∂u∗/∂ ln(z). Further, we define a non-dimensional
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Du* = (∂u*/∂ ln z) (ln�z�/u*0)
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Figure 10. Our stability-corrected values of the von Kármán constant evaluated from the
SHEBA data are plotted against the non-dimensional divergence in u∗ with height. The dashed
lines are at Du∗ = −0.03 and Du∗ =0.03 and delimit values collected in a constant-stress layer.

flux divergence as

Du∗ ≡ ∂u∗

∂ ln(z)

ln〈z〉
u∗0

. (5.9)

Here, we use least-squares linear regression to compute ∂u∗/∂ln(z), and ln〈z〉 is the
natural log of the geometric mean height, which is equivalent to the average of the
logs of the five tower levels. As always, we evaluate (5.9) only when all five values of
u∗(z) are available.

Figure 10 shows values of the stability-corrected SHEBA k values plotted against
Du∗. In a constant-stress layer, Du∗ would be zero. As figure 4, figure 10 demonstrates
that, even though our SHEBA wind-speed profiles were collected in near-neutral
stratification and exhibited logarithmic behaviour, they did not necessarily come
from a constant-stress layer. Also as figure 4, figure 10 shows that u∗(z) can both
increase and decrease with height, contrary to the assumption usually used to correct
k values derived from a single measurement of τ .

In figure 10, the cases with large positive Du∗ yield the largest k values. We can
provisionally eliminate these largest k values from our analysis by arbitrarily assuming
that profiles for which Du∗ is in [−0.03, 0.03] reflect a constant-stress layer; these
should be our best data. The dashed lines in figure 10 delimit this region, which
contains 83 points. Still, even with this focus on a constant-stress layer, the k values
in figure 10 do not show any obvious tendencies with Du∗.

Table 1 summarizes the statistics of our measured k values for various sorting
categories, including the Du∗ categories. We can use the statistic

Σ =
x

1
− x

2(
σ 2

1 /N2 + σ 2
2 /N1

)1/2
(5.10)
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Data set Number Average Standard deviation 2SDM

SHEBA
All 453 0.389 0.042 0.004
For Du∗ in [−0.03, 0.03] 83 0.383 0.038 0.008
For Du∗ outside [−0.03, 0.03] 370 0.390 0.043 0.004
Winter 272 0.396 0.042 0.005
Summer 181 0.379 0.041 0.006

Ice Station Weddell 100 0.381 0.030 0.006
Combined SHEBA & ISW 553 0.387 0.041 0.003

Table 1. Summary of average von Kármán constants. ‘2SDM’ is twice the standard deviation
of the mean, which approximately defines the 95 % confidence interval for the ‘Average’.

to test the hypothesis that the averages in any two categories in table 1 are different.
Here, x is the average k value for a category in the table, σ is the corresponding
sample standard deviation, and N is the number of samples in the category. This Σ

statistic is normally distributed with mean zero and standard deviation 1 when N1

and N2 are large. For all categories in table 1, the samples sizes are large enough to
satisfy this condition.

When x
1
and x

2
in (5.10) are the average k values when Du∗ is within and outside the

interval [−0.03, 0.03], respectively, Σ = − 1.38. Thus, we would accept the hypothesis
that k is smaller when Du∗ is in [−0.03, 0.03] than when it is outside this interval
only at the 8% significance level. Because 8 % is a fairly large significance level for
a one-sided test, our data suggest that the von Kármán constant has the same value
whether the stress is constant with height or changes by roughly ±20 % over a layer
12–16 m thick.

6. Artificial correlation
6.1. In the k-Re∗ measurements

A troubling feature of our analysis is that evaluating k requires u∗0 and the slope
S of the logarithmic profile, while evaluating Re∗ also requires u∗0 and z0; and z0

derives from S through (4.3). As a result, because of the shared variables, k and Re∗
may have built-in correlation that does not reflect any physics (e.g. Hicks 1978a, b;
Kenney 1982; Firebaugh & Gibbs 1985; Kronmal 1993; Andreas & Hicks 2002). In
the Appendix, we use techniques suggested by Hicks (1978b) and Andreas (2002) to
quantify this artificial correlation.

That analysis suggests that, because of the shared variables, the SHEBA and ISW k–
ln(Re∗) pairs for which Re∗ � 6 have a built-in correlation with a correlation coefficient
of ra = −0.396 (subscript a for artificial). Compare this with the experimental
correlation coefficient, rd = −0.429 (subscript d for data), for these same data.
Moreover, the analysis in the Appendix lets us compute the least-squares regression
line for the artificial correlation of these data as

k = −0.0220 ln (Re∗) + 0.451. (6.1)

Compare this with (5.5).
Figure 11 reproduces the plot from figure 9, but here we identify the SHEBA

points for which Du∗ is in [−0.03, 0.03], presumably our most reliable data. These
best points, however, do not exhibit behaviour that differs significantly from the
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0.6

0.4k

0.2
10–2 10–1 100 101 102

Artificial fit

103

Best fit

Re* = u*0z0/v

Figure 11. The stability-corrected von Kármán constants are again plotted against the
measured roughness Reynolds number. The plot identifies the SHEBA points �, that were
collected in a constant-flux layer, where −0.03 � Du∗ � 0.03, and �, outside, as identified in
figure 10. �, Ice Station Weddell. The plot again shows our ‘Best fit’ line, (5.5), and the line
suggested by the artificial correlation required by the shared variables in k and Re∗, (6.1)
(‘Artificial fit’).

entire data set in general. In particular, for Re∗ � 6, these best points still scatter
fairly uniformly about the ‘best fit’ line that we determined using the whole data set.

In figure 11, we also include the correlation line (6.1) (denoted ‘Artificial fit’). This
line is similar to our best-fit line and also reasonably captures the trend in k with Re∗
for Re∗ � 6.

We can calculate a confidence interval for the correlation coefficient ra to help us
decide whether the artificial correlation is largely responsible for the decrease in k

with Re∗ that we see in figure 11. Bendat & Piersol (1971, p. 126ff.) explain that the
statistic

ω(r) = 1
2
ln

(
1 + r

1 − r

)
, (6.2)

where r is the correlation coefficient, has a normal distribution with mean ω =ω(ra)
and variance

σ 2
ω =

1

N − 3
, (6.3)

where N(= 383) is the number of k–Re∗ data pairs for which Re∗ � 6 in our data set.
Using this information, we can define a confidence interval for ω from the probability

statement

Pr

{
− zε/2 �

ω − ω

σω

� zε/2

}
= 1 − ε. (6.4)

Here, zε/2 is the 100(1 − ε/2) percentage point of a normal distribution. If ε = 0.05,
zε/2 = 1.96; and (6.4) defines a 95 % confidence interval.
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On using (6.2) to express (6.4) in terms of r , rearranging, obtaining ω = −0.419
for ra = −0.396 from (6.2) and σω =0.0513 from (6.3), we finally obtain a probability
statement for the correlation coefficient;

Pr{−0.477 � r � −0.308} = 95%. (6.5)

That is, [−0.477, −0.308] is a 95 % confidence interval for the artificial correlation
coefficient. Since the actual correlation coefficient for the k–ln(Re∗) data for Re∗ � 6,
rd = −0.429, is well within this interval, we cannot attribute any real dependence on
Re∗ to the k values in figure 11. The trend we find in k for Re∗ � 6 results strictly
from artificial correlation. We suspect that artificial correlation also influenced the
conclusion in Frenzen & Vogel (1995a) and Oncley et al. (1996) that k depends on
Re∗.

6.2. Bulk flux estimate of Re∗

The artificial correlation arises because we use the same measurements to evaluate
both k and Re∗. If we could make an independent estimate of Re∗, we would find a
more reliable answer to our question of whether k depends on Re∗. We thus estimate
u∗0 and z0 – and therefore Re∗ – from a bulk flux algorithm.

The bulk flux method (e.g. Fairall et al. 1996, 2003) derives from Monin–Obukhov
similarity theory. The surface stress and the fluxes of sensible (Hs) and latent (HL)
heat are expressed as

τ ≡ ρu2
∗0 = ρCDRU 2

R, (6.6a)

Hs ≡ ρcpwθ = ρcpCHRUR(Θs − ΘR), (6.6b)

HL ≡ ρLvwq = ρLvCERUR(Qs − QR). (6.6c)

Here, cp is the specific heat of air at constant pressure; Lv , the latent heat of
sublimation (over ice and snow, remember); wq , the flux of specific humidity, where
q is the turbulent fluctuation in specific humidity; UR , ΘR and QR , the mean wind
speed, potential temperature and specific humidity at reference height R; and Θs and
Qs , the temperature and humidity at the surface.

The key to the bulk flux method is specifying the transfer coefficients for momentum
(CDR , also called the drag coefficient) and for sensible (CHR) and latent (CER) heat.
We report our parameterization for these over sea ice elsewhere (Jordan, Andreas &
Makshtas 1999; Andreas 1987, 2002; Andreas et al. 2004a, b, 2005a, b). Realize, too,
that, although we primarily want to predict u∗0 and z0, we must carry the Hs and
HL equations in our bulk flux algorithm because the Obukhov length L (required to
compute CDR , CHR and CER) depends on τ , Hs and HL (see (3.1)). Thus, we must
solve the bulk flux equations iteratively.

Figure 12 shows the results of our calculations with this bulk flux algorithm. Here,
we have used our algorithm to make a ‘bulk’ estimate of the roughness Reynolds
number, Re∗,Bulk, for each set of conditions that provided a k value. In other words,
in Re∗,Bulk, the u∗0 and z0 values now come strictly from our algorithm. The figure
also shows the least-squares fit of the k–ln(Re∗,Bulk) pairs for the Ice Station Weddell
set, for the SHEBA set, and for the combined set.

The correlation coefficient for the ISW k–ln(Re∗,Bulk) data in figure 12 is –0.209.
Using the same procedure as in the last section, we compute the 95 % confidence
interval on this correlation coefficient to be [–0.390, –0.012]. That is, the ISW line in
figure 12 is statistically different from horizontal (i.e. the correlation coefficient would
equal zero) at the 5% significance level – but just barely. However, the fitting lines for
the SHEBA and combined sets in figure 12 have correlation coefficients of –0.003 and
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Figure 12. The stability-corrected von Kármán constants are plotted against corresponding
estimates of the roughness Reynolds number from our bulk flux algorithm. The lines show the
least-squares fits of �, the Ice Station Weddell data; �, the SHEBA data, and the combined
set.

–0.021, respectively, and these mean that k has no statistically significant correlation
with our bulk estimate of the roughness Reynolds number in these larger data sets.

In summary, this analysis reiterates our conclusion in the last section: our
measurements of the von Kármán constant exhibit no dependence on the roughness
Reynolds number for 2 � Re∗,Bulk � 100.

7. Discussion
7.1. The inconstancy of stress with height

Although all 453 of the SHEBA wind speed profiles that we used in our final analysis
show a logarithmic dependence on height, as depicted in figure 3, few of these also
exhibit a corresponding layer of constant stress. With u∗ as a surrogate for this stress,
we establish this fact with figures 4 and 10. We here speculate on the reasons for this
variability in stress with height.

In the atmospheric surface layer, the equation for the mean longitudinal velocity
component, U (z), derives from the Navier–Stokes equation under the assumptions
of a large Reynolds number and horizontal homogeneity (e.g. Busch 1973; Businger
1982);

∂U (z)

∂t
= −∂uw

∂z
+ fC[V (z) − Vg]. (7.1)

Here, fC is the Coriolis parameter, V (z) is the mean transverse velocity component
(zero in our coordinate system), and Vg is the transverse component of the geostrophic
wind. On scaling (7.1) with u∗0 and z0, we obtain (cf. Tennekes 1982)
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∂(U/u∗0)

∂(u∗0 t/z0)
= −

∂
(
uw/u2

∗0

)
∂(z/z0)

− fCz0

u∗0

(
Vg

u∗0

)
. (7.2)

We recognize u∗0/fC z0 as the surface Rossby number, Ro∗, and evaluate this to
have been about 2 × 106 for both SHEBA and Ice Station Weddell for typical values
for u∗0 and z0 that we have already discussed. Further, u∗0/Vg is comparable to the
geostrophic drag coefficient, which commonly ranges between 0.01 and 0.05 over sea
ice (Overland & Davidson 1992; Overland & Colony 1994; Andreas 1998). Therefore,
the right-most term in (7.2) is of order 10−5 and, thus, negligible. The variation in uw

with height may consequently result from non-stationarity;

∂U

∂t
≈ −∂uw

∂z
. (7.3)

Because of figure 4, we excluded SHEBA profiles for which u∗(z) varied by
more than about 10 % between the top and bottom instruments on our tower.
Thus, ∂uw ≈ (�u∗)

2 ≈ 0.001 m2 s−2 for a typical SHEBA u∗ value of 0.3 m s−1.
Likewise, ∂z ≈ �z was between 12 and 16 m. For demonstration purposes, take
�z =15 m. Consequently, we estimate the maximum wind speed change that could
have occurred during any hour of SHEBA data that we retained to be �U =
± (0.001) m2 s−2/15 m)(3600 s) = ± 0.2 m s−1. Because this is not an unusually large
change in wind speed, non-stationarity could explain the variability in stress with
height. Notice, too, that this mechanism causes stress to both increase and decrease
with height, as we observed (figure 10).

Another explanation for the variability in stress with height could be the shallowness
of the atmospheric boundary layer. Because of the high emissivity and high albedo
of a sea ice surface, the absence of sunlight during the winter, and the low sun angle
when the sun is up, sea ice usually loses long-wave radiation to space (Intrieri et al.
2002). The resulting stable atmospheric layer over the sea ice, however, is frequently
elevated. In other words, the base of the inversion layer is not always at the surface
over either Arctic or Antarctic sea ice (Kahl 1990; Serreze, Kahl & Schnell 1992;
Andreas, Claffey & Makshtas 2000); and between the surface and the inversion base,
the atmosphere can have neutral or weakly unstable stratification. With either a
surface-based or an elevated inversion, though, because of the overriding inversion
layer, the atmospheric boundary layer can be quite shallow. On Ice Station Weddell,
for instance, boundary-layer depths h under 100 m were not unusual (e.g. Andreas
et al. 2000).

Caughey, Wyngaard & Kaimal (1979) and Nieuwstadt (1984) show non-dimensional
stress, −uw/u2

∗0, plotted versus non-dimensional height, z/h, from observations over
land in stable stratification. Both plots suggest that −uw can decrease to roughly 70 %
of its surface value over the lower 20 % of a stable boundary layer (see also Garratt
1992, p. 167ff.). For a 100 m deep atmospheric boundary layer, these observations
imply that u∗(z) might decrease to about 80 % of u∗0 at the top of our 20 m tower.

Again, these estimates are in line with what we observed. However, this shallow
stable boundary layer argument explains only a decrease in u∗(z) with height, while
figure 10 shows that u∗(z) increased with height more often than it decreased.

7.2. Effects of drifting snow

Another possible explanation for the variation in stress with height and, indeed, for
the variability in k could be the stabilization of the near-surface atmosphere caused
by drifting and blowing snow. On reviewing our measurements in light of blowing
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Figure 13. The stability-corrected von Kármán constants are plotted against the measured
friction velocity. The SHEBA data are grouped according to season: �, winter or �, summer.
All the Ice Station Weddell data (�) come from winter conditions.

snow models and analyses by Wamser & Lykossov (1995), Déry & Taylor (1996) and
Bintanja (2002) and the suspended sediment model of Taylor & Dyer (1977), however,
we see no reason to suspect that blowing snow affected our stress or k measurements.
Our measurements of the wind-speed profile and τ were well above the region most
strongly affected by blowing snow. Nevertheless, we can still query our data about
possible blowing-snow effects.

Based on the behaviour of the snow surface, we divided the SHEBA year into two
seasons, winter and summer. During winter, the snow was ubiquitous and dry, and
the winds were occasionally strong enough to cause ‘storms’ of drifting and blowing
snow. In summer, winds were too light or the snow was too sticky to become airborne;
and for much of the summer, no snow was present on the sea ice. Winter ran from
the start of the SHEBA experiment in October 1997 to 14 May 1998 and from 15
September to the end of the experiment in October 1998. Summer was the intervening
period, 15 May to 14 September 1998. All of the Ice Station Weddell cases fit our
definition of winter.

Figure 13 shows our SHEBA and ISW measurements of k versus u∗0. We have
separated the SHEBA data into winter and summer measurements. The plot shows
272 SHEBA winter measurements that yield an average k value of 0.396 ± 0.005,
where the uncertainty is twice the standard deviation of the mean (table 1). The plot
also shows 181 SHEBA summer measurements for which k averages 0.379 ± 0.006
and 100 ISW (winter) measurements for which k averages 0.381 ± 0.006.

Over sea ice, snow begins to drift when the friction velocity reaches about 0.3 m s−1

(Andreas et al. 2004a, 2005a). Amid the clutter of points in figure 13, we do not see
any obvious trends with u∗0; but figure 13 suffers from artificial correlation because
u∗0 appears in the calculation of k (i.e. see (4.2)). Consequently, we hesitate to infer
cause and effect from figure 13.
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0.5

0.4k

0.3
0.2 0.4

u*0, Bulk (m s–1)

0.6

Figure 14. The measured von Kármán constants are averaged in bins of friction velocity
computed from our bulk flux algorithm, u∗0,Bulk. Except for large u∗0,Bulk, where we have few
observations, the u∗0,Bulk bins are 5 cm s−1 wide. The error bars are ± 2 standard deviations in
the means of k and u∗0,Bulk. �, SHEBA winter; �, SHEBA, summer; �, Ice Station Weddell.

Instead, we plot k as a function of the friction velocity that we obtained from
our bulk flux algorithm, u∗0,Bulk. Our measurements of k have negligible artificial
correlation with u∗0,Bulk. Furthermore, we bin-average the three k sets in figure 13 to
obtain a better picture of tendencies with u∗0 (figure 14).

The error bars in figure 14 mark ± 2 standard deviations in the bin means and
thus show, approximately, the 95 % confidence interval for each bin-averaged value.
Notice that, for the ISW and SHEBA winter sets, the bin-averaged k values do not
vary significantly for u∗0,Bulk above 0.3 m s−1, where drifting and blowing snow would
have been present. Thus, we again conclude that drifting snow has not affected our
measurements of the von Kármán constant.

The one surprise in figure 14 is that, for the SHEBA summer set, k does seem to
trend with u∗0,Bulk, although there was no blowing snow in the summer. The k values
when u∗0,Bulk is above 0.3 m s−1 are significantly larger than when u∗0,Bulk is below
this limit. We have no ready physical explanation for this behaviour but assume it
is a statistical quirk. The SHEBA summer data fall into only five u∗0,Bulk bins, and
the bins with the smallest and largest u∗0,Bulk contain only seven and three points,
respectively.

8. Conclusions
During SHEBA, our profiling tower was instrumented and running for roughly

8000 h. Through careful screening, we retained 453 h from this set as cases that most
nearly represent near-neutral stratification in an atmospheric surface layer with a
nearly constant vertical stress profile. Each of these 453 profiles included the vector
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wind speed U (z) and eddy-covariance measurements of the stress τ (z) at each of five
tower levels, nominally between 2 and 18 m.

Each of these 453 wind-speed profiles exhibited a layer, encompassing all five
levels, that was logarithmic in z with a correlation coefficient of 0.99 or better. That
logarithmic behaviour, however, did not require that the layer be a region of constant
stress. Our u∗(z) ≡ [τ (z)/ρ]1/2 values both increased and decreased with height
along the tower by as much as 10 %. That is, the logarithmic wind-speed profile
is an experimentally robust feature of the neutrally stratified atmospheric surface
layer.

On Ice Station Weddell, we ran another profiling mast that used different technology
and sampled a different height range from our SHEBA tower. The ISW mast used
propeller anemometers to measure U (z) at four levels and operated for over 800 h
in this configuration. In this set, we identified 100 hourly profiles collected in near-
neutral stratification that were logarithmic in z with a correlation coefficient of at
least 0.99 and for which we also measured u∗0 and the Obukhov length L.

From the SHEBA and ISW U (z) profiles and our direct measurements of u∗0,
we made 553 independent determinations of the von Kármán constant k. Although
recent literature suggests that k depends on the roughness Reynolds number Re∗, we
see no reliable evidence of this behaviour in our data. When we plot k versus our
measured value of Re∗, k obviously decreases with increasing Re∗ for Re∗ � 6; but
we reject this evidence because the shared variables that went into calculating both k

and Re∗ require this trend. When we, instead, plot k versus an estimate of Re∗ derived
from a bulk flux algorithm – a pairing that has no artificial correlation – the k values
are independent of Re∗,Bulk for 2 � Re∗,Bulk � 100. Thus, with a much larger data set,
we contradict the suggestion by Frenzen & Vogel (1995a, b) and Oncley et al. (1996)
that k depends on the roughness Reynolds number in aerodynamically rough flow.

Our combined data set does suggest that k is smaller than the canonical value
of 0.40 – but not by much. The average of 553 estimates is k = 0.387 ± 0.003. This
value is more in line with the laboratory value for aerodynamically smooth flow of
0.38 reported by Österlund et al. (2000) and Nagib et al. (2004) than it is with the
values from Zagarola & Smits (1998) and McKeon et al. (2004) of 0.436 and 0.421,
respectively. The former two studies were in wind tunnels with zero pressure gradient;
while the latter two were in the Princeton superpipe, which had a favourable pressure
gradient. Our atmospheric observations featured along-wind pressure gradients that
were extremely weak – at least three orders of magnitude less than the smallest
gradients that Zagarola & Smits used.

Our results, thus, seem to unify the laboratory and atmospheric observations of k.
When combined with the results from Österlund et al. (2000), Zanoun et al. (2003),
and Nagib et al. (2004), our data support the conclusion that the von Kármán
constant is, indeed, constant at 0.38–0.39 in all aerodynamic roughness regimes.

We thank Joost Businger and Paul Frenzen for providing historical perspective and
encouragement, Keith McNaughton for pointing out relevant related work, Mark
Zagarola for important insights into preparing the manuscript, and three referees
for helpful comments. The US Department of the Army supported E. L A., K. J. C.
and R. E. J. in this work through Project 611102T2400. The US National Science
Foundation also supported this work with awards to the Army’s Cold Regions
Research and Engineering Laboratory (OPP-97-02025, OPP-98-14024 and OPP-00-
84190), NOAA’s Earth System Research Laboratory (OPP-97-01766 and OPP-00-
84323), and the Naval Postgraduate School (OPP-97-01390 and OPP-00-84279).
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Appendix. Artificial correlation
For the data in figure 9 for which Re∗ � 6, our model is that k is linearly related to

the logarithm of Re∗,

k(S, u∗0, φm) = αln[Re∗(u∗0, ν, S, I )] + β. (A 1)

We determine α and β by least-squares linear regression and quantify the goodness
of this model with the correlation coefficient r , which we obtain from

r =
Cov[ln(Re∗), k]

σlnRe∗σk

, (A 2)

where Cov is the covariance operator, and σlnRe∗ and σk are standard deviations of
ln(Re∗) and k. Further, α and β come from

α =
Cov[ln(Re∗), k]

σ 2
lnRe∗

(A 3)

and

β = k − α ln(Re∗). (A 4)

Here k and ln(Re∗) are the averages of the k and ln(Re∗) values used in the fitting.
To investigate how artificial correlation affects our analysis, we evaluate r , α and

β under the assumption that the fundamental quantities, u∗0, ν, S, I and φm, are
all uncorrelated. We base this analysis on differentials (e.g. Andreas 1992) or, in
Margenau & Murphy’s (1956, p. 504ff.) terminology, ‘residuals’.

To evaluate the standard deviations of k and ln(Re∗) and the covariance between
them, start with the differential of k. Equations (4.2) and (5.4) give

k =
u∗0φm

S
. (A 5)

Therefore,

dk =
∂k

∂S
dS +

∂k

∂u∗0

du∗0 +
∂k

∂φm

dφm. (A 6)

By using (A 5) to evaluate these partial derivatives, we obtain

dk = −u∗0 φm

S2
dS +

φm

S
du∗0 +

u∗0

S
dφm. (A 7)

Similarly, from (A 1),

d[ln(Re∗)] =
1

Re∗

[
∂Re∗

∂u∗0

du∗0 +
∂Re∗

∂ν
dν +

∂Re∗

∂S
dS +

∂Re∗

∂I
dI

]
; (A 8)

while from (4.3),

Re∗ =
u∗0

ν
exp(−I/S). (A 9)

Equation (A 9) yields all the partial derivatives required in (A 8); (A 8) thus becomes

d[ln(Re∗)] =
du∗0

u∗0

− dν

ν
+

IdS

S2
− dI

S
. (A 10)

If we square (A 7), average, identify dxdx ≡ σ 2
x , and invoke our assumption that all

cross-terms (e.g. dSdu∗0) are zero, we obtain

σ 2
k =

u2
∗0φ

2
m σ 2

S

S4
+

φ2
mσ 2

u∗0

S2
+

u2
∗0σ

2
φm

S2
. (A 11)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

01
64

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000164


Evaluations of the von Kármán constant 145

Here we interpret u∗0, S and φm to be averages, though we have dropped the overbars.
Likewise, from (A 10),

σ 2
lnRe∗

=
σ 2

u∗0

u2
∗0

+
σ 2

ν

ν2
+

I 2 σ 2
S

S4
+

σ 2
I

S2
. (A 12)

Finally, we identify the covariance as

Cov[ln(Re∗), k] ≡ dln(Re∗) dk. (A 13)

With (A 7) and (A 10), this becomes

Cov[ln(Re∗), k] =
φmσ 2

u∗0

S u∗0

− u∗0φmIσ 2
S

S4
. (A 14)

Using (A 11), (A 12) and (A 14) in (A 2), (A 3) and (A 4), we can evaluate r , α and β

under the assumption that none of the fundamental variables are correlated. Because
the covariance between ln(Re∗) and k computed from (A 14) is non-zero in general, r

and α will be non-zero; thus, k will appear correlated with ln(Re∗) simply because of
the shared variables. In summary, these α, β and r values quantify the ‘best’ artificial
fit for the k–ln(Re∗) pairs for Re∗ � 6.
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