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Abstract. Let m e Nand X = (X, X, i, (Ty)qerm) be a measure-preserving system with
an R™-action. We say that a Borel measure v on R is weakly equidistributed for X if
there exists A C R of density 1 such that, for all f € L>(u), we have
lim S (Tigx) dv(a) = f fdu
X

teA,t—o0 JRm

for p-almost every x € X. Let W(X) denote the collection of all @ € R™ such that the
R-action (T;4)seRr is not ergodic. Under the assumption of the pointwise convergence of
the double Birkhoff ergodic average, we show that a Borel measure v on R is weakly
equidistributed for an ergodic system X if and only if v(W (X) 4+ 8) = 0 for every g € R™.
Under the same assumption, we also show that v is weakly equidistributed for all ergodic
measure-preserving systems with R”-actions if and only if v(£) = 0 for all hyperplanes £
of R™. Unlike many equidistribution results in literature whose proofs use methods from
harmonic analysis, our results adopt a purely ergodic-theoretic approach.
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1. Introduction
1.1. Strong equidistribution over dilated measures. Let G be a locally compact
Hausdorff topological group. A measure-preserving G-system (or a G-system) is a
tuple X = (X, X, u, (Ty)geg), where (X, X, ) is a separable probability space and
T, : X — X, g € G are measurable and measure-preserving transformations such that
Ty o Ty = Tgp, Te; =1id for all g, h € G. We also require that, for all x € X, the map
G — X, g — Tyx is measurable. We say that X is ergodic if Ae X, T,A = A for all
g € G implies that uw(A) =0or 1.

Let m € N, v be a Borel measure on R and X = (X, &, u, (Tg)germ) be an ergodic
R™-system. Throughout this paper, we assume that v(R™) = 1. We say that v is (strongly)
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equidistributed for X if, for all f € L*°(u), we have

lim / F(Trax) dv(e) = / fdu
—o0 R]n X

for p-almost every (u-a.e.) x € X. The Birkhoff ergodic theorem for R-systems (see, for
example, [9, Corollary 8.15]) states that for every ergodic R-system (X, X, u, (T})/eRr)

and every f € L®(u),
1

T
Jim = [*p= [ ran
for p-a.e. x € X, which is equivalent to saying that the Lebesgue measure restricted to
the interval [—1, 1] is equidistributed for every ergodic R-system. Similarly, the Birkhoff
ergodic theorem holds for R"”-systems for all m € N: the Lebesgue measure restricted
to the unit cube or ball in R is equidistributed for every ergodic R"-system (see, for
example, [9, Theorem 8.19]).

It is an interesting question to ask if similar results hold for the Lebesgue measure
restricted to the boundary of the unit cube or ball. The motivation for this question was
from a result of Stein [23] in 1976, who showed that for ¢ € LP(R™), p > m/(m — 1),
m > 3, and for Lebesgue-a.e. x € R™, we have that

lim | ¢(x —u) dop,(u) = ¢(x),

t—0 S

where o), is the Lebesgue measure on R™ restricted to S;, the sphere of radius ¢ centered
at the origin. Later an analog of this result was proved in the ergodic-theoretic setting.
It was proved by Jones [16] (for m > 3) and Lacey [18] (for m = 2) that the Lebesgue
measure restricted to the boundary of the unit ball 0y, 1 is equidistributed for all ergodic
R™-systems. We remark that, on the other hand, it is not hard to see that the Lebesgue
measure restricted to the boundary of the unit cube is not equidistributed for some ergodic
R™-systems. It is then natural to ask which measure v on R™ is equidistributed for all
ergodic R™-systems. It was proved by Bjorklund [5] that if v has Fourier dimensiona > 1,
meaning that a is the supremum over all 0 <a <d such that lim;_, o [V(0)] - ]9/
< 00, then v is equidistributed for all ergodic R™-systems. It is worth noting that strong
equidistribution for polynomial maps on special homogeneous systems have also been
studied in recent years (see [17, 22], for example).

1.2.  Weak equidistribution over dilated measures. In contrast to the strong equidistri-
bution, a notion called ‘weak equidistribution’ has recently been studied, and various
results have been obtained in the settings of translation surfaces [7] and nilmanifolds [17].
To be more precise, we say that a Borel measure v on R is weakly equidistributed for an
R™-system X if there exists A C R of density 1 such that, for all f € L°(u), we have
im [ st dve= [ s
R™ X

teA,t— 0
for u-a.e. x € X. By the examples in [17, §5], strong and weak equidistributions are not
equivalent conditions.
It is natural to ask which measures v on R™ are weakly equidistributed for all ergodic
R™-systems. In this paper, we provide a necessary and sufficient condition for such v under
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the assumption of the pointwise convergence of the double Birkhoff ergodic average. We
say that an R™-system (X, X, u, (Tg)germ) is good for double Birkhoff averages if, for
all f1, f» € L®(u) and o1, ap € R™, the limit
1 (7

tim 7+ [ i) o) d

T—-oo T Jo
exists for pu-a.e. x € X.

We now state our first theorem. A hyperplane of R™ is V + 8 for some subspace V of

R™ of codimension 1 and 8 € R™.

THEOREM 1.1. Let m € N. A Borel measure v on R™ is weakly equidistributed for all
ergodic R™-systems which are good for double Birkhoff averages if and only if v(£) =0
for all hyperplanes £ of R™.

Theorem 1.1 will provide a complete answer for the weak equidistribution problem if
the following conjecture holds.

CONJECTURE 1.2. Every R™-system is good for double Birkhoff averages.

Conjecture 1.2 is still an open question in ergodic theory. Nevertheless, various partial
results on Conjecture 1.2 have been obtained in recent years for some special type of
systems, and so this paper can be viewed as an application of these results. We defer the
discussion of this topic to §5.

Another question we study in this paper is the necessary and sufficient conditions for a
Borel measure v on R™ to be weakly equidistributed on a particular R”-system. Let m € N
and X = (X, X, u, (Tg)germ) be an R™-system. We use I (H) to denote the o -algebra of
X consisting of all the H-invariant sets for every subgroup H of R™. Let W (X) denote
the collection of all @ € R™ such that I ((fa);cr) # [ (R™). If X is an ergodic R"-system,
then W (X) is the collection of all « € R™ such that the R-action (73 );eRr is not ergodic
on X. We have the following result.

THEOREM 1.3. Let m € N and v be a Borel measure on R™. If X is an ergodic R™-system
which is good for double Birkhoff averages such that v(W (X) + B) = 0 for every B € R™,
then v is weakly equidistributed for X. Conversely, if X is an ergodic R™-system such that
v(W(X) + B) #0 for some B € R™, then v is not weakly equidistributed for X.

We remark that the second part of Theorem 1.3 holds for every ergodic R -system. We
give an example to illustrate Theorem 1.3.

Example 1.4. Let m € N and (X =T", X, u) be an m-dimensional torus endowed with
the Lebesgue measure u. For all @ € R, denote T, =« + 8 mod Z™ for all § € T™.
Then X = (X, X, u, (Ty)uerm) is an ergodic R”-system and is good for double Birkhoff
averages. In this case, W(X) consists of all the (m — 1)-dimensional rational subspaces
of R™. By Theorem 1.3, a Borel measure v on R™ is weakly equidistributed for X if and
only if the v-measure of any translation of a rational subspace of R™ is equal to zero. This
recovers a special case of [17, Theorem 1.1].

In the case m = 1, the assumption of goodness for double Birkhoff averages can be
dropped by using Bourgain’s result [6] (see §5).
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PROPOSITION 1.5. Let v be a Borel measure on R and X be an ergodic R-system. Then
v is weakly equidistributed for X if and only if v is atomless (meaning that v({8}) = 0 for
all B e R).

It is an interesting question to understand the algebraic structure of W (X). Let W'(X)
denote the collection of all « € R™ such that I ((na),cz) # I (R™). Then W(X) € W'(X).
By a result of Pugh and Shub [21] (see also Theorem 2.1), W'(X) is contained in the union
of at most countably many hyperplanes of R”. We show in §2 an analog of this result
for W (X).

THEOREM 1.6. Let m € N and X be an R™-system. Then W (X) is the union of at most
countably many proper subspaces of R™.

In other words, W (X) is contained in the union of at most countably many hyperplanes
of R™ passing through the origin.

While all the previous mentioned results on the strong equidistribution rely heavily
on tools from harmonic analysis, in this paper we provide purely ergodic-theoretic
proofs for Theorems 1.1 and 1.3 and Proposition 1.5. An advantage of considering the
weak equidistribution problem is that while the conditions in Theorems 1.1 and 1.3 and
Proposition 1.5 are almost necessary and sufficient, the conditions imposed in all the
previously mentioned results for strong equidistribution seem to be far from necessary.
Moreover, we make no smoothness assumption for the Borel measure v in the main results
of this paper, as we do not apply Fourier analysis in the proofs.

1.3.  Organization of the paper. 1In §2 we provide for later use two variations of the
result of Pugh and Shub [21] on the ergodic directions of R”-systems. In §3 we introduce
Host—Kra characteristic factors, which are the main tool of this paper. For the convenience
of our purpose and future work, we develop the existing results on this topic into a more
general setting. The proofs of the main results (Theorems 1.1 and 1.3) are in §4. In §5, we
review systems which are good for double Birkhoff averages, and discuss applications of
the main theorems of this paper to such systems (including the proof of Proposition 1.5).

2. Ergodic elements in ergodic systems
Letm € N, X be an R™-system and H be a subgroup of G. We say that (T,)seq is ergodic
for X if all the H-invariant subsets of X are of measure either O or 1.

A key ingredient connecting R”-systems and Z" -systems is the following theorem.

THEOREM 2.1. (Pugh and Shub [21, Theorem 1.1]) Let m € N and X be an ergodic
R™-system. Then, for all « € R™ except at most a countable family of hyperplanes of R™,
the Z-action (T,o)nez is ergodic for X.

In this section, we provide two generalizations of Pugh and Shub’s theorem. The first is
a relative version of Theorem 2.1.

LEMMA 2.2. Let m € N and X be a (not necessarily ergodic) R™-system. Then, for
all a e R™ except at most a countable family of hyperplanes of R™, we have that
I((na)pez) = I(R™).

https://doi.org/10.1017/etds.2019.67 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2019.67

610 W. Sun

The proof of this lemma is almost identical to that of Theorem 2.1, so we only provide
a sketch.

Sketch of the proof. Let G be an abelian, Hausdorff, locally compact and separable group,
and X = (X, X, u, (Tg)gec) be a G-system. Using Zorn’s lemma, and the fact that X
is separable, we may decompose LZ(u) as a countable direct sum of orthogonal closed
subspaces

L*(w) = H (P Hi.

where H consists of all the G-invariant functions and, for each i, H; is the smallest closed
subspace of L?(j1) containing the G-orbit of some f; € L2(11). To each i there corresponds
a unique normalized Borel measure 8; on the dual group G= Hom(G, T') such that
(Tg)gec restricted to H; is unitarily equivalent to the ‘direct integral’ representation
mi : G — Un(L*(G, ),

g (&) fO. feLl’@G. By.
For g € G, denote
ker(g) ={x €G: (x,g)=1).
Following the proof in [21], we can deduce the following claims.

Claim 1. The identity element of G has zero Bi measure for all i.

Claim 2. If I((g")nez) # I(G) for some g € G, then there exists i such that §; (ker(g))
> 0.

For Claim 1, if the identity element of G has positive B; measure for some i, by the
argument of [21, proof of Lemma 1], one can construct a non-trivial G-invariant function
lying in H;, a contradiction. For Claim 2, if 1((g"),ez) # I(G) for some g € G, then
there exists a g-invariant function which does not belong to H, and the rest of the proof is
identical to [21, Lemma 2].

We now return to the case where G = R™. By using Claims 1 and 2 to replace [21,
Lemmas 1 and 2], and following the same argument as in [21, §5], we finish the proof. O

We now prove Theorem 1.6, which is a variation of Theorem 2.1 for the ergodicity of
R-actions. This result is of interest in its own right.

Proof of Theorem 1.6. We first claim that for every subspace V of R”, either V C W (X)
or there exists a family of at most countably many proper subspaces (V) ey of V such
that W(X) NV C Uje] V.

Let X=(X, X, u, (Ty)uecrm) and suppose that V & W(X). Then there exists « €
VAW (X) such that 7 ((ta);er) = I (R™) C I(V) C I((ta)ser)- Therefore I (R™) = I (V).
Now consider the V-system Y = (X, X, u, (Ty)aev)- Since I (R™) = I(V), we have that
WX)NV=Ww(Y).

Suppose that, for every family of at most countably many proper subspaces (V;) jes
of V, we have that W(Y)=WX)NV £ Ujej V. Since I((ta);er) C I((na)nez),
applying Lemma 2.2 to Y, there exist at most countably many proper subspaces (V) jcs
of V, and at most countably many hyperplanes (V;) e, of V not passing through the
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origin such that W(Y) € ¢y, V- By assumption, W(Y) € U, V;. So there exists
ae WY\NU jeJ V;. By the definition of W(Y), it is easy to see that o € W(Y) implies
that ra € W(Y) forall € R. Since « ¢ | J ¢, V; implies that te ¢ | ;; V; forall 7 #0,
we must have that {tre: r e R} C | jer V;. However, since V; does not pass through
the origin for all j € J', {ta:t € R}N{J,c, V; is a countable set, which leads to a
contradiction. This proves the claim.

Now we return to the proof of the theorem. By Lemma 2.2, W(X) # R™. By the
claim, there exists a family of at most countably many subspaces (V) jes;ur, of R" of
codimension at least 1 such that W(X) C UjelluLl V;, where V; C W(X) if j € L and
V; € W(X) if j € J1. Applying the claim to each subspace in Ji, there exists a family of
at most countably many subspaces (V;) jes,ur, of R™ such that W (X) C UjeJZULz Vi,
where all V;, j € J are of codimension at least 2, V; € W(X) if j € Ly, and V; £ W(X)
if j € J. Using the claim repeatedly, there exists a family of at most countably many
subspaces (V;) jes,uL,, of R™ such that W (X) C Uje],nULm Vi, where all V;, j € J are
of codimension at least m, V; € W(X) if j € Ly, and V; £ W(X) if j € J;,. Since Jj, is
an empty set, we have that W(X) = J jes, Vij» which finishes the proof. O

3. Characteristic factors and structure theorem

3.1. Host—Kra characteristic factors. Let G be an abelian locally compact Hausdorff
topological group and Hj, ..., Hy be subgroups of G. Let X = (X, X, u, (Tg)gec) be a
G-system. For convenience we denote X[l = X 2d, x4l = x2* and Tg[d] = ngd. For any
subgroup H of G, let I(H) denote the o-algebra of X consisting of all the H-invariant
sets. For 1 < j <d —1, let Ia (Hj[i_]l) denote the sub-o-algebra of XUl consisting of all

the sets which are invariant under Tg[j I for all g € Hj 1. We inductively define the Host—

Kra measures iy, H; on xU1 by setting (g, = 1 X j(H,) 4, meaning that

,,,,,

[ @ sdun = [ B B ) di

forall f, g € L°(u); and forall 1 < j <d — 1, define g, .. Hiyy = IH,y,... H, XIA(H,[QI)

LH, ... H;, meaning that

for all f e L*°(n). Let Zy,,.. H,(X) (or Zp, .. u, When there is no confusion) be the
sub-o-algebra of A such that, for all f € L*(w),

E(f|Zmn,,.. .n,(X)) =0 ifandonlyif || flx, a,,..#H, =0.

Similar to [13, proof of Lemma 4] (or [14, Lemma 4.3]), one can show that Zp,
is well defined and we call it a Host—Kra characteristic factor. Sometimes we will
slightly abuse the notation and say that ‘Zy,, . p, is a factor X’, meaning that the system
(X, Zn,....Hy» 1, G) is afactor of (X, X, u, G).
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The following lemma is useful in many circumstances.

LEMMA 3.1. Let G be an abelian locally compact Hausdorff topological group and X be

a G-system. Let Hy, ..., Hy, H]’- be subgroups of G for some 1 < j <d.

(i)  For every permutation o : {1, ...,d} — {1,...,d}, we have that Zy, .. p,(X) =
Ztty oo o X

(i) I[fI(H)j)=I(H)), then Zp, u,,...H;,...H,X) = Zy, ... HY ..oy X)-

Proof. (i) The proof is similar to [13] and so we only provide a sketch. It suffices
to show that, for all subgroups Hi, ..., H; of G and 1 <i <d — 1, we have that
ZHy,...Hi Hiyy, . HyX) = Z g1y . Hipy H . Hy (XD, OF

”f”X,H] ,,,,, H; Hii,..., H; — 0 < ”f”X,H],.‘.,Hi+1,Hi,.‘.,Hd =0

for all f e L%®®(u)f. By the definition of the Host-Kra measure, it suffices to
show that || flIx my.... 5. 5.y =0 1 FIIX Hy.....Hiy . 1, = 0. Replacing the system X =
(X, X, p, (T)geq) with (XU =1y (TFW)4eq), it suffices to show
that for all G-systems X and subgroups Hj, H> of G, we have that

IflIx. a1, =0 & | flIX o, 11y = 0.

Suppose first that || f|Ix, g, 7, = 0. We may assume that || ||z, < 1. Let (F1 3)nen
and (F2,)neny be any Fglner sequences of H; and Hj, respectively. Similarly to
[13, Lemma 2], it is not hard to show that

< flx,by,0,=0.

S [T Tt T du

L | |- |
N—oo |F - |F
LN 2N g1€EFI N 262N

So the limit limy o (1/(1F1LN 1 [F2ND) Xg ey v ey Ix [Tg f-Tof Tog fdu
exists and is equal to 0. On the other hand, similarly to [13, (11)] (and invoking [9,
Theorem 8.13], the Birkhoff ergodic theorem for G-systems),

1
lim / T f Ty f - T, du,
Z N—s oo |F1,N| Z X f glf ng gngf

Q€N g1€EF N

4 .
= lim
1 Ve, = Jim s

where the limit
. 1
lim
N—oo |F1 N|

Z /;(f'Tglf'ngf'Tg]ngdﬂ

g1€F N

exists for all g € H». By [3, Lemmas 1.1 and 1.2],

lim lim /f~T foTo f T fdu
N—oo |Fp N Z N—oo |Fy N Z X 81 82 8182
826N g1€F1N
f 1 > ff Tof Toof - Togf du=0
= lm T - . . . M: ,
N—oo |Fin| - |F2N| ¥ g & ag

81€F1 N .§2€ 2N
and so || f|IX, 4, #; = 0. Similarly, || f||x, #,,#, = 0 implies that || f||x, #,, #, = 0.

T It seems that [13, proof of Proposition 3] can be adapted to proving that ”f”X.,H],.N,H,-,H,‘H !!!!! Hy =
Ifx, ay.,..., Hiy1,H;,....Hy for all f € L°°(X). But we do not need this property in this paper.
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We now prove (ii). By (i), we may assume without loss of generality that j = 1. Note
that

MH = K XT(H) b= X)) b= Ry, -

By induction, wy, H,,.. H, =UH Hy.. . H, and so Zpy, n,,.. Hd(X)ZZH{,Hz,...,Hd(X)v
which finishes the proof. O

The following is an immediate corollary of Lemma 3.1.

LEMMA 3.2. Let G be an abelian locally compact Hausdorff topological group and X be
a G-system. Let Hy, ..., Hyq, H{, ..., H) be subgroups of G. If 1 (H;) = 1(H)) for all
1 <i <d. Then ZHI,H2 H X) = ZH’ Hj

3.2. Structure theorems for R™-systems. In this section, we establish structure
theorems for R™-systems. These questions have been studied in various papers; see, for
example, [2, 4, 20, 24]. As none of the existing results can be applied directly to our
problem, we need to develop the past results into a more general setting. In this paper, we
only use some special cases of the theorems developed in this section. But we still write
all the results in full generality for the convenience of future researchers.

CONVENTION 3.3. Letm € N, X be an R™-system and Hy, . . ., Hy be subgroups of R™.
In the notation wg, H,,.. Hy» ZH H,,...H; and || - IX, B, By, ... Hys if Hi = (ta;) R for some
o; € R™, we abbreviate H; by «;. If H; = (na;),cyz, for some o; € R™, we abbreviate H;
by ;. For example, the notion Zy, o, @, represents Zia,),cp, (ta2),cr, (nay)nezr AN oy ar.a3

represents [A(ro, reRs (t02)reRr, (n03)nez

The Host—Kra characteristic factor is an important tool in the study of problems related
to multiple averages. For example, certain Host—Kra characteristic factors control the L2
limit of multiple averages for Z™-systems.

THEOREM 3.4. Let m e N, X = (X, X, u, (Ty)germ) be an R™-system and let ay, . . .,
ag € R™. Denote Z, =7 ——(X) for all 1 <i <d. Then, for all fi,...,

——
U X — ey O —

fa € L*®(w), both the L*(1v) limits of

lim — Z Fi(Tue, x) - oo+ fa(Tuays)

N—oo N
and
N—-1
1 - S
Jim ZO E(A1Z0) (Tha %) - -+ B(fal Za) Ty )
n=

exist and coincide (as L*(w) functions). Moreover, if both limit exist for p-a.e. x € X, then
they coincide for ji-a.e. x € X.

Proof. The existence and coincidence of the LZ(u) limits is a result of Host [13,
Proposition 1]. The existence and coincidence of the pointwise limit follows from the
fact that if a sequence of bounded functions converge both as L?(x) functions and almost
everywhere, then both limits are the same. O
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The following lemma illustrates the connection between Host—Kra measures,
seminorms and characteristic factors for R™-systems and Z™ -systems.

LEMMA 3.5. Let X be an R™-system and ay, . .., ag € R™. Then for Lebesgue almost
every s €R, usg, .., = Way,.ag |- 1X,5G70,....: =l IXa,.a0 and Zsg,. sa; =
Zoq ..... ag

Proof. Let H; denote the R-span of «; and ﬁ, denote the Z-span of @;. Applying
Lemma 2.2 to each H;, for Lebesgue almost every s € R, we have that I (H;) = I(s H )
for all 1 <i <d. By Corollary 3.2, Zsﬁh-..,sl?d =Zpy,,...H, By definition, Wsf, . sHy =
p,...Hg and |- lIx sz, @, = I - I1X, &y, 1, - This finishes the proof. O

We can now prove the following analog of Theorem 3.4 for R -systems.

PROPOSITION 3.6. Let meN, X=(X, X, u, (Tg)gern) be an R™-system and let
at,...,oqg €R™ Denote Z; = Zy,; o) —a;,....aq—a; (X) for all 1 <i <d. Then, for all
f1, .-+, fa € L%°(w), both the limits

,,,,,

hm _/ fl(Ttoux) 'fd(Tt(xdx) dt
and

1 T
lim T /0 E(A1Z)(TiayX) - - - - - E(fal Za) (Tra,x) dt

T—o00

exist and coincide (as L*(j) functions). Moreover, if both limit exists for p-a.e. x € X,
then they coincide for p-a.e. x € X.

Proof. By Lemma 3.5, there exists s € R such that Z; =Z, o,—q;,.. ay—a; X) =

— (X) forall 1 <i <d. For convenience we may assume without loss
50,5 (@1 ;). en.v5 (g —at

of generahty that s = 1 By Theorem 3.4, for all f1, ..., fa € L*®(w),
| Nl
Jim Z Toa fi -+ Tag fa = Jim ZO T E(A11Z1) . . .+ TugyB(fal Za),
n

where the limits are taken in L?(1). Using the fact that every Z; is G-invariant, we have
that, as Lz(u) functions,

Fim —/ J1(Thoy %) - -+ fa(Tha, X)) dt

1 N—-1

:/O ngn N Z(Trmfl)(Tnotlx) : (Trotdfd)(Tnadx) dr
! 1
— [ Jim & Z BTy 1120 (T ) -+ Ty fal Za) (T ) d
1 T
= Tlimw T fo E(AIZD)(Tigyx) - - - - - E(falZa)(Tia,x) dt. 9]

Note that if a sequence of bounded functions converge both as L? (1) functions and almost
everywhere, then both limits are the same. So (1) also holds for u-a.e. x € X if all the
limits in (1) exist for p-a.e. x € X. O
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Let X = N/T', where N is a (k-step) nilpotent group and I" is a discrete cocompact
subgroup of N. Let X and u be the Borel o-algebra and Haar measure of X. Let
To: X - X, Tgx =bg - x, g € G, for some group homomorphism g — b, from G to N.
We say that X = (X, X, u, (Ty)gec) is a (k-step) G-nilsystem. It is classical that we can
choose N to be simply connected, and we make this assumption throughout this paper. We
remark that if G is connected, then we may also assume that N is connected. The following
theorem is a combination of Theorem 3.4 in this paper and [24, Theorem 3.7]. We omit
the proof.

THEOREM 3.7. Let m € N, X be an ergodic R"-system and let a1, . .., oz € R™. If the
Z-action (Tha; )nez is ergodic for X for all 1 <i <d, then Zg; ... 5;(X) is an inverse limit
of (d — 1)-step R™-nilsystems.

.....

We have the following structure theorem for R -actions, which should be viewed as an
analog of the Host—Kra structure theorem [14].

PROPOSITION 3.8. Let m € N and X be an ergodic R™-system. Then Zgm _ gm(X)
with d-copies of R™ is an inverse limit of (d — 1)-step R™-nilsystems. Moreover, if
ai, ..., oq € R™ are such that the R-action (Tiq,)icr is ergodic for X for all 1 <i <d,
then Zy, rm (X) with d copies of R™.

..........

Proof. By Lemma 2.2, it is not hard to show that there exists a Z-action (T, )necz ergodic
for X for all 1 <i <d. By Lemma 3.2, we have that Zgm Ty with
d copies of R, which is an inverse limit of (d — 1)-step R™-nilsystems by Theorem 3.7.

,,,,,

If af, ..., g € R™ are such that the R-action (T, ):;cr is ergodic for X for all
1 <i<d, then I((ta;);er) = I(R™) for all 1 <i <d. By Lemma 3.2, we have that
ZO{] ,,,,, oy (X) = Z]R’”,...,]R’” (X) O

4. Proof of the main theorems

We prove Theorems 1.1 and 1.3 in this section.

LEMMA 4.1. Let m €N, v be a Borel measure on R™ and X be an R™-system. If
v(W(X) + B) = 0 for all hyperplanes p € R™, then the set of all (o, B) € R¥™ such that
Zyo-p=2Zpo—p=Zrn rm is of v X v measure 1.

Proof. By Proposition 3.8, if all the three R-actions (T;¢);eRr, (T7g)rer and (T;@—p))reR
are ergodic for X, then Zy o g = Zg o—p = Zgrm gm. So it suffices to show that the sets

Ei={ B eR™:aecWX)}, Er={a B)eR™:BecWX)}

and
Es={(a, p) eR™ 0 — B € W(X)},

have zero v x v measure. Obviously,

vX V(E)) =v x v(Ey) =v(WX)) =0.
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On the other hand,
v x v(E3) =/ v({a e R" :a € W(X) + B}) dv(B)
]Rm

=/ v(W(X) + B) dV(ﬂ)=f 0dv(B)=0.

Rm Rln

This finishes proof. O
We start with a special case of Theorem 1.3.

PROPOSITION 4.2. Let d,m € N, v be a Borel measure on R™ and X be an ergodic
R™-system such that Zgm g (X) = X with d copies of R™. If v(W(X) + B) = 0 for all
hyperplanes B € R™, then v is weakly equidistributed for X.

Proof. 1t suffices to show that, for all f € L () with | x fdn=0,

1 T
lim /0 /R ) dvie)

for u-a.e. x € X. Let Jy denote the set of all («, ) € R¥" such that Zoa-p=2pa—p=
Zgm gm. By Lemma 4.1, v x v(Jp) = 1. So

1 T
lim —f
T—-oo T Jo
1 (7 _
= gin = [ P T T avie) dve)
0 R&m

2
dt=0

2
dt

/ J (Tiax) dv(e)
Rm

1 T o
_ /R 2 (lim 1 fo F (L) F(Tip) dt) (@) dv(B)

T—oo T
1 [T —
= / ( lim — / S (Tiax) f(Tipx) dt) dv(a) dv(B). 2
Jo\T—=oo T Jy

Since Zrn . rm(X) =X, by Proposition 3.8 and an approximation argument, we may
assume without loss of generality that X is an R -nilsystem. We may assume without loss
of generality that X is connected.

Suppose that X = N/T", where N is a (k-step) nilpotent group and I" is a discrete
cocompact subgroup of N. Let X and u be the Borel o-algebra and Haar measure of X.
Assume that Ty : X — X, Tox = bg - x, g € G, for some group homomorphism g — b,
from G to N. Let J denote the set of all («, B) € R¥" such that ((byoT, bigT"))ier is
equidistributed on X x X.If v x v(J) =1, then

<2>=/ f®?duxudv(a)dv(ﬁ)=/‘/ fdu
J JXxX J1JX

which finishes the proof.

We now prove that v x v(J) = 1. Since R™ is a connected group, we may assume that
X = N/T' with N being connected and simply connected. Note that for all non-trivial
horizontal characters y of X (a horizontal character on X = N /T is a continuous group
homomorphism y from N to T such that x (I") = 1), the complement of the set

Ay ={a eR": x(by) #1}
is contained in W(X). So v(A,) = 1.

2
dv(a) dv(B) =0,
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Let
A ={a € R™: x(by) # 1 for all non-trivial horizontal characters y}.

Since there are only countably many horizontal characters, v(A) = 1.

Fix o € A. Let B, denote the set of 8 such that ((b;oI", b;1")),eRr is not equidistributed
on X x X. Then, for B € By, by Leibman’s theorem [19], there exists a non-trivial
horizontal character xq g of X x X such that x, g(by, bg) = 1. Since a € A, there exist
horizontal characters x and x of X such that x (by) = x'(bg) # 1.

For all horizontal characters x and x’ of X, let

By x = {y eR": x(by) = X/(by)}-

B, , is obviously non-empty. Pick any yy € B, ,. Then
By ={y eR": x'(by_y) =1}

which is contained in W (X) + y9. By assumption, v(B, ,) = 0.
Since B, = Uxil Ux’ B, ,,wehave that v(By) =0.Sov x v(J°) <v x v({(a, B) :
o € A, B € By}) =0. This finishes the proof. O

Proof of Theorem 1.3. We start with the first part. Let X = (X, X, u, (Ty)qerm) be an
ergodic R™-system which is good for double Birkhoff averages such that v(W (X) + 8)
=0 for all B8 € R™. Since X is separable, it suffices to show that, for all f € L*°(u), there
exists A € R of density 1 such that

lim / S (Tigx) dv(a) = / fdp 3)
teA,t—o0 Jpm X
for p-a.e. x € X. Suppose first that f is measurable with respect to Zg» rm. Consider the
factor system Y = (X, Zgrm gm, i, (Ty)aerm) of X. Since W(Y) € W(X), we have that
v(W(Y) + B) =0forall g € R™. So (3) follows from Propositions 4.2.
We now assume that E( f|Zgn gn) = 0. To show (3), it suffices to show that

2

f(Tiax) dv(a)| dt =0

Rm

for pu-a.e. x € X. By Proposition 3.6 and the assumption that X is good for double Birkhoff
averages,

1 T
lim —f
T—oo T Jo

T
— lim + / /  F(TaX) f (Typx) dv(e) dv(B) dt
0 R%m

2
dt

/ f(Tiax) dv(a)
Rm

T—oo T

1 /T _
= /]RZm( lim — /0 f(Tiex) f(Tigx) dt) dv(a) dv(B)

1 [T —
= [ (im 7 [ 501 e Bt BTN 2 i) ) (@) i),

T—o0
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Let J denote the set of all (a, B) € R* such that Zoyo-p=2Zpa—p=2ZrnRrmn. By
Lemma4.1,v x v(J) = 1. So

1 [T —
L (i 3 [ 801 e 0BG 2 T ) vt o

1 [T _
- fl ( lim /0 E(f | Zan ) Tiac) ) ECF| Zamn ) (Typ) dr) dv(@) dv(B) =0

and we are done.

We now prove the second part. Let X = (X, X, u, (Ty)germ) be an ergodic R”-system
and suppose that v(W(X) + 8) > 0 for some 8 € R™. We wish to show that v is not
weakly equidistributed for X. By Theorem 1.6, there exist 8 € R” and a subspace V of R™
contained in W (X) such that v(V + B8) > 0 and v(V’ + B) = 0 for every proper subspace
V'’ of V. Again by Theorem 1.6, it is not hard to show that there exists an (m — 1)-
dimensional subspace Vj of R™ which contains V such that, for every subspace V" of
R™ which is contained in W (X) but not contained in V, we have V” + Vo =R™. Let U
be the one-dimensional subspace of R™ which is the orthogonal complement of Vj, and
let 7 : R™ — U be the natural projection. Let Y = (X, I(Vp), u, (Ty)aev)- Since, for all
Vp-invariant functions f, we have

/ f(Tto:x)dV(a):/ f(Ttn(a)x)dV(a)Z/ f(Tiex) dmyv(a),
Rm Rm U

where m,v is the push-forward of v under 7, in order to show that v is not weakly
equidistributed for the ergodic R”-system X, it suffices to show that w,v is not weakly
equidistributed for the ergodic U-system Y.

We may decompose v as the sum of two (unnormalized) measures v = v, + vy,
where v.({}) =0 for all 8 € U, and vy is supported on at most countably many points
on U. Since m,v({w(B)}) = v(Vo + B) = v(V + B) > 0, we have that vy £ 0. Since U is
isomorphic to R, applying the conclusion of the first part, we have that (the normalization
of) v, is weakly equidistributed for Y. So it suffices to show that (the normalization of) vy
is not weakly equidistributed for Y.

Suppose that (the normalization of) v, is weakly equidistributed for Y. We may assume
that vy = ;c ; ¢j8a; for some non-empty countable index set J, ¢; > 0, j € U, where
aj #aj for j # j'. We assume without loss of generality that }_ ;. ; ¢; = 1. Then, for all

f e L) with [ fdu=0,
1 T 2 1 T
Tll_)moo T /0 dt = Th_)moo T /(; ]ze; ¢j f(Tra;X)

for p-a.e. x € X. Since f € L (), we have that the L' () limit of
2

2
dt=0

f(Tiax) dv(or)
Rm

is also equal to 0. Since U is of dimension 1, by Theorem 1.6, for all « € U\{0}, (T}4)rer
is ergodic for Y. So

. 1 (7 —
Jim /0 ( /X F(Tia) () du) dt =lao 112,
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1 T
/ lim —/
x T—oo T Jy

= Z Cjc/j Tlimm?/ </ f(Ttot,x)f(Tta/x)dM>

So

2
i [ (Tia; )| dt dp(x)

j.jed

= 3 e gim / ( | £y ap0F du) t
j.Jj'ed

=Y G 1fl7ag, >0
jeJ

whenever || f1l;2(,) > 0 (since J is non-empty), a contradiction. This proves the second
part of the theorem. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose first that v is a Borel measure on R” such that v(£) =
for all hyperplanes ¢ of R™. Let X be an ergodic R”-system which is good for double
Birkhoff ergodic averages. By Theorem 1.6, for every g € R”, W(X) + B is contained in
an at most countable union of hyperplanes of R”. So v(W (X) + 8) = 0. By Theorem 1.3,
v is weakly equidistributed for X. This proofs the ‘if” part.

We now prove the ‘only if” part. Suppose that there exists a hyperplane of R™,

{={aeR":a -B=c}

such that v(£) # 0, where 8 € R and ¢ € R. Let (X, X, ) be the one-dimensional torus.
Let (Sy)ser be the ergodic R-action on X given by S;x =x +s mod 1, x € [0, 1). We
now consider the R -system Xo = (X, X, u, (Ty)aecrm), Wwhere Ty = Sz () foralla € R™
with 7 : R”™ — R being the linear map given by 7(a) =« - 8, « € R™. This system is
obviously good for Birkhoff double averages.

Note that WXg)={e e R":a- =0} and so v(l) =v(W(Xp)+c¢)=0. By
Theorem 1.3, v is not weakly equidistributed for Xj. O

5. Systems good for double Birkhoff averages

In this section we discuss to what extent do the main theorems of this paper apply, that is,
which systems are good for double Birkhoff averages. Using an argument similar to the
proof of Proposition 3.6 (or use [4, Theorem 3.1]), it is not hard to show the following
lemma.

LEMMA 5.1. Let X = (X, X, u, (Ty)germ) be an R™-system. If, for all fi, f» € L*(u)
and ay, ay € R™, the limit
N-1

lim — Z fl (Talnx)fZ(Taznx) “4)

N—soco N

exists for p-a.e. x € X, then X is good for double Birkhoff averages.
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Combining Lemma 5.1 with past results in the literature, we have that the following
R™-systems X = (X, X, i, (Ty)qerm) are good for double Birkhoff averages.

e Assani [1]: every weakly mixing R™-system X such that, for every g € R™, the
restriction of Ty to the Pinsker algebra of X (the maximal sub-o-algebra on which
T, has zero entropy) has singular spectrum with respect to the Lebesgue measuref.

e Bourgain [6]: every R-system (or every R”-system X = (X, X, i, (Ty)qerm) for
which there exist an R-action (S;);er on X and g € R™ such that T, = S,.g for all
o e R™),

e Donoso and Sun [8]: every distal R”-system X (the case m = 1 was proved by Huang,
Shao and Ye [15]).

For completeness we recall the definition of distal systems (and refer readers to
(10, Ch. 10] for further details). Let G be a group and 7 : X = (X, X, u, (Tg)gec) —
Y = (Y, ), v, (5)sec) be afactor map between two G-systems. We say 7 is an isometric
extension (or X is an isometric extension of Y) if there exist a compact group H, a
closed subgroup I' of H, and a cocycle p : G x Y — H such that (X, X, u, (Tg)gec) =
Y xH/T, Y xH,vxm, (Ty)gec), where m is the Haar measure on H/T', H is the
Borel o-algebra on H/T", and that for all g € G and (y, al’) € Y x H/T", we have

Te(y, al') = (Sgy, p(g, y)al).

Definition 5.2. Let X be a G-system. We say that X is distal if there exist a countable
ordinal 1 and a directed family of factors Xy, 8 < n of X such that:

(1) Xy is the trivial system, and X, = X;

(2) for 0 < n, the extension 1y : Xg4+1 — Xp is isometric and is not an isomorphism;
(3) foralimitordinall <7, X; =limg; Xp.

As a result of [8], we have the following applications of Theorems 1.1 and 1.3.

PROPOSITION 5.3. Let m € N and v be a Borel measure on R™.

(1) v is weakly equidistributed for an ergodic distal R™-system X if and only if
v(W(X) + B) =0 forevery B € R™,

(i) v is weakly equidistributed for all ergodic distal R™-systems if and only if v(£) =0
for all hyperplanes £ of R™.

Proof. Fix a1, a; € R™ and let G’ denote the Z-span of aj, ap. Then it is easy
to see by definition that if X= (X, X, i, (Ty)qerm) is a distal R™-system, then
(X, X, u, (Ty)gea) is a distal Z2-system. By [8], the limit (4) exists for all fi, f> €
L*®(wn) and p-ae. x € X. By Lemma 5.1, X is good for double Birkhoff averages, and
so the ‘if” parts of (i) and (ii) follow from the first part of Theorem 1.3 and the ‘if” part
of Theorem 1.1, respectively. The ‘only if” part of (i) follows from the second part of
Theorem 1.3 (which is valid for every R™-system). The ‘only if” part of (ii) follows from
the ‘only if” of Theorem 1.1 as the system X constructed in the proof of Theorem 1.1 is
distal. O

T Ref. [1] only covered the case where m = 1, but the general case can be deduced by a similar argument
combined with results in [12]. It is worth noting that the results in [1] were recently improved by Gutman
etal [11].
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Using the result of [6], we can deduce Proposition 1.5 from Theorem 1.3.

Proof of Proposition 1.5. Let v be a Borel measure on R and X be an ergodic R-system.
By [6], X is good for double Birkhoff averages. Then, by Theorem 1.3, v is weakly
equidistributed for X if and only if v(W(X) 4+ 8) = 0 for all 8 € R. Since X is an ergodic
R-system, it is easy to see that W (X) = {0}. This finishes the proof. O
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