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We compare, in an extensive and systematic way, linear theory results obtained
with the hybrid (ion kinetic and electron fluid), the gyrokinetic and the fully kinetic
plasma models. We present a test case with parameters that are relevant for solar
wind turbulence at small scales, which is a topic now recognized to need a kinetic
treatment, to a certain extent. We comment on the comparison of low-frequency
single modes (Alfvén/ion-cyclotron, ion-acoustic and fast modes) for a wide range of
propagation angles, and on the overall spectral properties of the linear operators, for
quasi-perpendicular propagation. The methodology and the results presented in this
paper will be valuable when choosing which model should be used in regimes where
the assumptions of each model are not trivially satisfied.
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1. Introduction

One of the distinctive characteristics of plasmas is that they have time and length
scales that are typically well separated. For example, in an electron–proton plasma
the mass ratio between the two species is approximately equal to 1836, and this
determines a separation of the same factor in the respective cyclotron frequencies and
of a factor ∼√1836 ' 43 in the respective Larmor radii and plasma frequencies.
Such a large separation of scales translates very often into unaffordable costs,
from a computational point of view. In particular, it is well known that a fully
kinetic treatment, where two Vlasov equations (one for each species) are coupled
to Maxwell’s equations, is prohibitively expensive in multiple dimensions. For this
reason, several reduced models have been studied in the past that are able to retain
some of the kinetic features of the plasma at a reduced computational cost (Matthews
1994; Waltz et al. 1997; Cheng & Johnson 1999; Park et al. 1999; Goswami, Passot
& Sulem 2005; Brizard & Hahm 2007; Valentini et al. 2007). Such models could be
ordered in a hierarchy that transitions all the way from kinetic to fluid theory (Dendy
1995; Tronci et al. 2014; Tronci & Camporeale 2015; Camporeale et al. 2016). In
this paper, we focus specifically on two models that have been extensively used for
solar wind turbulence studies: the hybrid (ion kinetic and electron fluid) and the
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gyrokinetic models. The philosophy behind these two models is quite different. In
the hybrid model the heavy species (protons) is treated kinetically and its distribution
function obeys the Vlasov equation (which is in principle six-dimensional), while
the light species (electrons) is treated as an inertialess neutralizing fluid. Thus, the
computational saving is achieved by factoring out from the model the time and
spatial scales associated with electrons. We note that the term ‘hybrid’ is used
widely in different contexts with different meanings, but here we use it with the
specific meaning given. On the other hand, the gyrokinetic model treats both species
kinetically, but it performs a time average on the ion-cyclotron period. As a result,
the six-dimensional distribution functions collapse into five dimensions. Interestingly,
such dimensionality reduction of the particle distribution functions (and the fact that
the dynamics faster than the ion gyroperiod is neglected) results in a sizable saving
in computational time.

Like all reduced models, the derivation of the hybrid and gyrokinetic models is
based on a certain number of assumptions. They both make use of the so-called
quasi-neutrality condition, which asserts that ion and electron densities are equal,
ni = ne. This is satisfied as long as the Debye length is much smaller than the
characteristic spatial scales, and the characteristic frequencies are much smaller
than the electron plasma frequency. As a consequence, the displacement current
in Ampere’s law is neglected in both models. Furthermore, the gyrokinetic theory
assumes that frequencies are much smaller than the ion-cyclotron frequency, ω�Ωi,
and that the wave spectrum is very anisotropic, k||� k⊥. The hybrid model, instead,
necessitates of a closure in terms of an equation of state for the electrons.

The fundamental problem that we tackle in this paper is: what does much smaller
mean?

Once a model (and the computer code that solves it) has been extensively used
and benchmarked in a certain regime, it is certainly tempting to push the simulations
into unexplored regimes. Although there are cases for which the reduced models are
obviously inadequate, there exist a large range of ‘grey areas’, where their validity
is not obvious. In a sense, the issue of validating a reduced model is an ill-posed
problem. In principle, the validation of the results in these grey areas can only be
performed by comparing with a fully kinetic model. On the other hand, if such
solutions from the fully kinetic models were available, one would not need to use a
reduced model!

The rationale for this work stems from the fact that recent simulations performed
with hybrid and the gyrokinetic codes might be considered the current state of the
art in studies concerned with solar wind turbulence (see, e.g. Valentini, Califano &
Veltri 2010; Howes et al. 2011; Servidio et al. 2012; Franci et al. 2015). Indeed,
it is now widely recognized that a kinetic treatment is necessary for studying solar
wind turbulence at small scales (Camporeale & Burgess 2011; Sahraoui, Belmont &
Goldstein 2012; Boldyrev et al. 2013; Haynes, Burgess & Camporeale 2014; Vásconez
et al. 2014; Haynes et al. 2015). Therefore, it is legitimate to ask what is the range
of validity of such models and when do the results start to deviate considerably from
the correct solutions. Here, we focus on comparing solutions obtained within the linear
theory. Clearly, the ability of a model to describe the property of linear waves, within
a certain accuracy, can be interpreted as a necessary (but not sufficient) condition for
the model to yield reliable results in the nonlinear regime.

The scope of this paper is twofold. First, we directly compare linear theory
solutions obtained from the hybrid and the gyrokinetic models with the complete
Vlasov–Maxwell model, for wavevectors k ranging from kρi = 0.1 to kρi = 44 (with
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ρi the ion Larmor radius), and for a wide range of propagation angles θ , ranging
from 10◦ to 85◦; second, we present a robust and novel methodology to perform such
a comparison in a fair way, that takes into account the fact that for large wavevector
and/or propagation angles, obtaining linear solutions is a non-trivial numerical exercise
due to the presence of many normal modes.

The paper is organized as follows. We introduce the methodology and the
parameters chosen for a test case in § 2, where we also define the errors that will
be measured. Section 3 shows the comparison between hybrid, gyrokinetic, and fully
kinetic solutions for a wide range of cases. Conclusions are drawn in § 4.

2. Methodology and chosen parameters

We study a plasma composed of electrons and protons, with the mass ratio set to
the physical value mi/me= 1836, in Cartesian coordinates (î, ĵ, k̂). As is customary in
linear theory, we study a uniform Maxwellian plasma with density n0 in a constant
magnetic field B = B0k̂, that is perturbed with a small-amplitude plane wave of the
form exp[i(k · x − ωt)], with wavevector k= (k⊥, 0, k||) and complex frequency ω =
ωr + iγ .

We focus on a single choice of parameters that are relevant for solar wind
turbulence studies. In order to facilitate comparisons with published literature, we use
the typical solar wind parameters studied in Salem et al. (2012): B0= 11 nT, Te= 13.0
eV (electron temperature), Tp = 13.6 eV (proton temperature), n0 = 9 cm−3. The
proton plasma beta is βp = 0.4 and the electron plasma to cyclotron frequency ratio
is ωpe/Ωe ' 88. The ratio between Alfvén and ion thermal velocities is vA/vti = 1.57,
and the ratio between the Alfvén velocity and the speed of light is vA/c= 2.6× 10−4.

In all of the three cases considered (fully kinetic, hybrid and gyrokinetic), the
linear wave solutions are obtained by finding the complex frequencies ω for which
the determinant of a 3× 3 matrix D vanishes. f (ω, k)= det(D) is a nonlinear function
of both k and ω, and the standard way to numerically solve the problem, for a fixed
k, is by employing an iterative root finder based on Newton’s method. Unfortunately,
although it is straightforward to extend Newton’s method for finding zeros in the
complex plane, the method can be very sensitive to the choice of an initial guess.
Moreover, due to the possible presence of multiple solutions which are close to
each other in the complex plane, it is not always easy to track a solution ω varying
k. In other words, the solver can easily jump from one solution branch to another
whenever two solutions become close enough. The paper by Podesta (2012) explains
how to reduce the numerical error in calculating the elements of D in the case of
the Vlasov–Maxwell system. Podesta (2012) also suggests identifying possible roots
by visual inspection of the function 1/|f |, where the peaks might indicate roots. An
alternative way, which we think is more robust, less time consuming and can be
easily automated, is to analyse separately the real (Re) and imaginary (Im) parts of
the function f (ω), and to identify the curves in the complex plane, where Re( f )= 0
and Im( f ) = 0, that is where they change sign. Clearly, the intersections of such
curves (Re( f ) = Im( f ) = 0) are the roots f (ω) = 0 that can be used as initial guess
for the Newton solver to achieve a better accuracy. We have employed this method
to identify all the roots in a given region of the complex plane, in § 2.1.1

We refer to Howes et al. (2006) for a derivation of the gyrokinetic linear theory.
The linear theory for the hybrid model can easily be derived by noting that, in the
standard derivation of the Vlasov–Maxwell linear theory, the dielectric tensor ε(ω, k)
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is additive by species (see, e.g. Stix 1962):

ε(ω, k)= 1+
∑

s

χs(ω, k), (2.1)

where 1 is the unit dyadic, χs is the susceptibility of species s and the sum is
over plasma species. Therefore, in a hybrid model it is sufficient to calculate the
electron susceptibilities χe derived within a two-fluid linear model. Here, we have
employed the so-called warm plasma dispersion relation derived in Swanson (2012),
which assumes the equation of state pe/ne = v2

te (with pe, ne and vte the electron
pressure, density and thermal velocity, respectively). Moreover, in order to enforce
the quasi-neutrality condition, it is sufficient to suppress the unit dyadic term in the
dielectric tensor, which is thus defined simply as the sum of the ion susceptibility
(derived in kinetic theory) and the electron one (derived in two-fluid theory).

2.1. Diagnostics
The results obtained from hybrid and gyrokinetic linear theory are compared with the
ones obtained in the fully kinetic Vlasov–Maxwell theory. We divide the parameter
space into oblique propagation, for θ 6 60◦, and quasi-perpendicular propagation,
for θ > 60◦. While the diagnostics used for oblique propagation are based on the
comparison of single normal modes, we argue that such diagnostics are not sufficiently
informative for the quasi-perpendicular regime. Typically, among the infinite number
of modes which can in principle exist as solutions of the full linear Vlasov–Maxwell
system, one is interested in the few that have lower damping rates, while the others
(usually referred to as ‘heavily damped’) are of little interest because, supposedly,
they do not play a significant role for mode coupling. We note that this view, although
probably correct when the modes are well separated, is questionable when there are a
multitude of normal modes clustered together. In this case, one would like to take into
consideration the overall spectral properties of the linear operator. Such an approach
is justified by the non-normality of the Vlasov–Maxwell linear operator. We refer to,
e.g. Camporeale, Burgess & Passot (2009), Camporeale, Passot & Burgess (2010),
Podesta (2010), Friedman & Carter (2014), Ratushnaya & Samtaney (2014) and
citations therein, for a discussion on non-normal linear operators in plasma physics.
In short, and for the purpose of this paper, we recall that non-normality is due to
the non-orthogonality of the eigenvectors of a linear operator and is connected to the
phenomena of transient growth, by-pass transitions and generally to mode coupling.
An important characteristic of non-normal operators is that their eigenvalues are
highly sensitive to perturbations in the sense that the spectrum can be easily distorted
in the complex plane when the original operator is slightly perturbed. This concept
gives rise to the idea of pseudospectrum, which is extensively discussed in Trefethen
& Embree (2005) and, for the case of the Vlasov–Maxwell system, in Camporeale
(2012). For instance, figure 1 shows a subset of the normal modes (obtained in the
fully kinetic model), in the complex plane, for θ = 80◦. The damping rate γ and
the real frequency ωr are on horizontal and vertical axis, respectively (here and in
all figures these parameters are normalized to the ion-cyclotron frequency Ωi). The
different symbols are for kρi= 0.1 (blue dots), kρi= 1 (red circles) and kρi= 5 (black
crosses). Clearly, a distinction between modes purely based on their damping rate
becomes less and less possible with increasing wavevector. Moreover, there is no
reason to attribute a particular importance to some well-characterized modes (that is,
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FIGURE 1. Normal modes derived with the fully kinetic model. Damping rate (γ ) and
real frequency (ωr) are on the horizontal and vertical axis, respectively. The angle of
propagation is θ = 80◦. Blue dots, red circles and black square denote kρi = 0.1, 1, 5,
respectively.

well characterized in the low k and oblique propagation regime), such as the kinetic
Alfvén wave (KAW) mode. This is particularly clear by inspection of figure 2. Here,
we plot in (a) the subset of normal modes that are confined in the complex plane
within the domain −2.5 < γ < 0 and 0 < ωr < 20. The blue dots and red circles
denote the fully kinetic and the hybrid solutions, respectively. The kinetic Alfvén
wave, that is the root of the dispersion relation that when tracked to low k and low
θ is connected to the Alfvén wave mode, is denoted with a blue cross (ωr = 0.47,
γ =−1.29). It is evident that, in this regime, the KAW is surrounded by many other
modes, some of them with similar frequency but lower damping rate. Nevertheless,
the KAW has been attributed a predominant role in some of the recent solar wind
literature (Sahraoui et al. 2009; Salem et al. 2012). Even if one would like to adhere
to the classical view where the least damped modes are more important than the
heavily damped ones, it is clear that the KAW is not special. Figure 2(b) shows the
same modes, but now sorted as a function of their damping rate per wave period
(|γ |/ωr) (horizontal axis) and their polarization P (vertical axis). The polarization
is here defined following Hunana et al. (2013), as P = arg(Ey/Ex)/π, with Ey and
Ex complex amplitudes of the electric field. Hence, negative/positive values of P
represent left-/right-hand polarization. Interestingly, in this regime, the KAW is the
most rapidly damped mode per wave period. A final remark on figure 2 is that one
can see that, despite being in the electron range (i.e. kρi > 1), the hybrid model
captures most of the normal modes quite accurately. It creates a spurious mode with
ωr = 14 and γ =−0.08 due to the inability to account for electron Landau damping.

2.1.1. Definition of errors
We define the following two measures of error that assess the deviation of the

frequency ω (obtained either with the hybrid or gyrokinetic model), with respect to
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(a)

(b)

FIGURE 2. Normal modes for θ = 80◦ and kρi= 5 for fully kinetic (blue dots) and hybrid
(red circles) models. (a) Solutions in the complex plane (γ , ωr). (b) Solutions plotted as
functions of |γ |/ωr (horizontal axis) and polarization P (vertical axis). In both panels the
kinetic Alfvén wave is denoted with a blue cross.

the correct value obtained with the Vlasov–Maxwell theory, denoted as ωVM:

εω = |ωVM −ω|
|ωVM| (2.2)

εwave = ‖Re(exp[−iωVMt])−Re(exp[−iωt])‖2. (2.3)

The error εω in (2.2) is simply the relative distance between the two frequencies,
in the complex plane, and it does not distinguish the measure in which the real
and the imaginary part (damping rate) of the frequency contribute to the error. In
order to calculate the error denoted as εwave in (2.3), we define a time interval,
t= [0, 2π/Re(ωVM)], that covers one wave period (with respect to ωVM), is discretized
in 200 points and we calculate the L2 norm of the difference of the real part of
the wave amplitude (normalized by the number of points). This metric is relevant
because it comprises the information on how much a wave with frequency ω will
differ, during one wave period, from the reference wave with frequency ωVM, by
modelling its actual time evolution.
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(a) (b) (c)

FIGURE 3. Pseudospectra in the complex plane (γ , ωr) for kρi = 1 and θ = 80◦. (a)
Fully kinetic; (b) Hybrid; (c) Gyrokinetic. The colour plot represents f (ω) = det(D) in
logarithmic scale.

(a) (b) (c)

FIGURE 4. Pseudospectra in the complex plane (γ , ωr) for kρi = 1 and θ = 85◦. (a)
Fully kinetic; (b) Hybrid; (c) Gyrokinetic. The colour plot represents f (ω) = det(D) in
logarithmic scale.

Moreover, we will use one more metric to compare results in the quasi-perpendicular
regime. Here, we seek to have a measure that gives us information on the global
difference between the spectra calculated with the three methods. For this purpose,
we rely on the (generalized) definition of the ε-pseudospectrum Λε(D), for a fixed k:

Λε(D)= {z ∈C : |det(D(z))|6 ε}. (2.4)

Clearly, the pseudospectrum reduces to the standard spectrum (set of eigenvalues) for
ε→ 0. For instance, figures 3 and 4 compare the fully kinetic (a), hybrid (b) and
gyrokinetic (c) pseudospectra for the case kρi = 1 and θ = 80◦ (figure 3) or θ = 85◦
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FIGURE 5. Range of validity of the gyrokinetic model. Square and diamond symbols
indicate an error in the real frequency of 10 % and 30 %, respectively. The perpendicular
wavevector k⊥ρi and the angle of propagation θ are on the horizontal and vertical axis.
The model is valid above the symbols.

FIGURE 6. Range of validity of the gyrokinetic model. Dispersion relation for
Alfvén/ion-cyclotron wave, plotted as ωr/k||vA as a function of k⊥ρi. The blue line denotes
the gyrokinetic solution, which is independent of the angle of propagation. The red,
yellow and purple lines denote the fully kinetic solution for angles of propagation θ =
80◦, 85◦, 89◦.

(figure 4), in the region −0.5<γ <0, and 0<ωr<1. The colour plot is in logarithmic
scale and denotes the value of det(D). One can visually identify the eigenvalues as
the points where the concentric curves are centred. In order to measure quantitatively
the error in the pseudospectra, we proceed as follows. We compute, for a fixed value
of k = |k|, the function f (ω) = det(D(ω)) on a 500 × 500 grid covering the domain
0 6 ωr 6 5k and −0.5k 6 γ 6 0. Because f can vary by several orders of magnitude
within this domain, it is not convenient to calculate an error directly defined on f .
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(a)

(b)

FIGURE 7. Dispersion relation for Alfvén/ion-cyclotron waves for angles of propagation
θ = 10◦, 30◦, 60◦ (curves from left to right). Blue, red and green lines are for fully kinetic,
hybrid and gyrokinetic models, respectively. (a) Real frequency ωr; (b) Damping rate γ .
k⊥ρi is on the horizontal axis. All axes are in logarithmic scale.

Moreover, we seek to define an error that emphasizes the differences only in regions
where f (ωVM) is small, disregarding regions where f is large. Therefore, we map f (ω)
into a new function φ(ω) through a sigmoid:

φ(ω)= 1+ 9f
1+ f

. (2.5)

The new function φ(ω) is defined between 1 (for f = 0) and 10 (for f→∞). Finally,
we define the error εD as:

εD =
∥∥∥∥(φ(ω)− φ(ωVM))

φ(ωVM)

∥∥∥∥
2

, (2.6)

where the L-2 norm is normalized on the number of grid points.
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FIGURE 8. Errors for Alfvén/ion-cyclotron wave with θ = 10◦, as functions of k⊥ρi. Red
and green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote
εω and dashed lines denote εwave.

FIGURE 9. Errors for Alfvén/ion-cyclotron wave with θ = 30◦, as functions of k⊥ρi. Red
and green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote
εω and dashed lines denote εwave.

2.2. Range of validity of the gyrokinetic model
As we mentioned, one important assumption in the derivation of the gyrokinetic
model is that k||� k⊥. This requirement restricts dramatically the range of validity of
the model. Following the philosophy outlined in the Introduction, we will compare
the three models also in the non-quasi-perpendicular propagation regime, that is, in
a range where the gyrokinetic model is not expected to be valid. Figure 5 shows
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FIGURE 10. Errors for Alfvén/ion-cyclotron wave with θ = 60◦, as functions of k⊥ρi. Red
and green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote
εω and dashed lines denote εwave.

(a)

(b)

FIGURE 11. Dispersion relation for Alfvén/ion-cyclotron waves for angles of propagation
θ = 80◦, 85◦, 89◦ (curves from left to right). Blue, red, and green lines are for fully kinetic,
hybrid and gyrokinetic models, respectively. (a) Real frequency ωr; (b) Damping rate γ .
k⊥ρi is on the horizontal axis. All axes are in logarithmic scale.

the range of validity of the gyrokinetic model. The symbols denote the angle of
propagation θ for a given value of perpendicular wavevector k⊥ρi that results in a
relative error on the kinetic Alfvén wave real frequency of 10 % (squares) and 30 %
(diamonds). One can appreciate that, for k⊥ρi > 3, the propagation cone is restricted
to angles very close to 90◦. An alternative way of appreciating this result is shown in
figure 6, which shows the dispersion relation for the Alfvén/ion-cyclotron wave. When
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FIGURE 12. Errors for Alfvén/ion-cyclotron wave with θ = 80◦, as functions of k⊥ρi. Red
and green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote
εω and dashed lines denote εwave.

FIGURE 13. Errors for Alfvén/ion-cyclotron wave with θ = 85◦, as functions of k⊥ρi. Red
and green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote
εω and dashed lines denote εwave.

plotted as ωr/k||vA as a function of k⊥ρi, the dispersion relation becomes independent
of angle, in the gyrokinetic model (shown in blue). The red, yellow and purple lines
denote the fully kinetic solution for angles of propagation θ = 80◦, 85◦, 89◦. The
gyrokinetic model has been suggested as a valid model for the study of solar wind
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FIGURE 14. Errors for Alfvén/ion-cyclotron wave with θ = 89◦, as functions of k⊥ρi. Red
and green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote
εω and dashed lines denote εwave.

turbulence all the way to electron scales (Howes et al. 2011) on the basis that some
observational data suggest that the propagation angle in the solar wind averages at
approximately 88◦ and across the examined spectra never falls below 60◦ (Narita et al.
2010; Sahraoui et al. 2010). It is not within the scope of this paper to discuss the
issue of the observed wave spectrum anisotropy in the solar wind. However, it is fair
to mention that the problem is still open, and some recent works have emphasized
the importance of quasi-parallel wave propagation (Osman & Horbury 2009; Kiyani
et al. 2013; Lion, Alexandrova & Zaslavsky 2016). Furthermore, the development
of wavevector anisotropy is an open research question, for which linear properties
over a range of propagation angles will be important. It is in this spirit that, in the
following, we present a comparison of the models across a wide range of propagation
angles.

3. Results
Historically, different communities in plasma physics have adopted different

nomenclatures for linear waves. Here we follow the nomenclature adopted by Gary
(2005). We will refer to the Alfvén/ion-cyclotron mode as the electromagnetic mode
that is left-handed polarized for parallel propagation. The ion-acoustic mode is the
one that connects to the electrostatic solution for parallel propagation, and the fast
(magnetosonic) waves is the mode that connects to the right-handed polarized mode
for parallel propagation. In this section we first discuss the dispersion relations of
each one of these three modes, and then we compare the models comparing the
pseudospectra in the quasi-perpendicular regime.

3.1. Alfvén/ion-cyclotron (AIC) mode
Figure 7 shows the dispersion relation for the AIC mode, for angles of propagation
θ = 10◦, 30◦, 60◦. Blue, red and green curves are for fully kinetic, hybrid and
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(a)

(b)

FIGURE 15. Dispersion relation for ion-acoustic waves for angles of propagation θ =
10◦, 30◦, 60◦ (curves from left to right). Blue, red and green lines are for fully kinetic,
hybrid, and gyrokinetic models, respectively. (a) Real frequency ωr; (b) Damping rate γ .
k⊥ρi is on the horizontal axis. All axes are in logarithmic scale.

gyrokinetic models, respectively (the same notation will be used for all following
figures). The real frequency ωr is shown in (a) and the damping rate in (b). In both
panels k⊥ρi is on the horizontal axis (logarithmic scale is used on all axes). The
three different propagation angles can be identified from the starting values of k⊥ρi.
Since all the curves are plotted from kρi = 0.1, the initial perpendicular wavevector
increases with increasing θ . For θ = 10◦ and 30◦, the hybrid and fully kinetic solutions
are almost indistinguishable. In particular, the saturation of wave frequency is well
represented. The corresponding damping rates present a mismatch at low k and agree
well at large k. A peculiar feature of the θ = 60◦ solution is that a branch bifurcation
happens around k⊥ρi = 0.6 for the hybrid solution. The gyrokinetic solution does not
capture the correct frequency saturation, for any angle of propagation, as expected.
Consequently, the frequencies of the gyrokinetic solutions become much higher
than the correct values, even for k⊥ρi < 1. The gyrokinetic solutions are generally
less damped than the correct fully kinetic solutions (b). The errors for the AIC mode
solutions are shown in figures 8–10, for the cases θ = 10◦, 30◦, 60◦, respectively. Here,
the hybrid model is shown in red and the gyrokinetic in green. Solid and dashed
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FIGURE 16. Errors for ion-acoustic wave with θ = 10◦, as functions of k⊥ρi. Red and
green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote εω
and dashed lines denote εwave.

FIGURE 17. Errors for ion-acoustic wave with θ = 30◦, as functions of k⊥ρi. Red and
green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote εω
and dashed lines denote εwave.

lines denote the errors εω and εwave, respectively. One can notice that the errors for
the hybrid solutions are lower than the corresponding errors for the gyrokinetic model
for θ = 10◦ and 30◦. However, which model performs better for θ = 60◦ depends on
k⊥ρi. The fact that the gyrokinetic errors in figure 10 for θ = 60◦ do not grow very
large, and almost saturate for k⊥ρi > 1 despite the fact that the dispersion relation
shows a large mismatch with the fully kinetic solution, is due to the fact that the
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FIGURE 18. Errors for ion-acoustic wave with θ = 60◦, as functions of k⊥ρi. Red and
green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote εω
and dashed lines denote εwave.

mode becomes heavily damped, and therefore the contribution of the real frequency
mismatch becomes negligible in the errors.

Moving to quasi-perpendicular angles, figure 11 shows the dispersion relation
for AIC for θ = 80◦, 85◦, 89◦ (from left to right). Interestingly, even at such a
large propagation angle, the AIC mode resonates with ions and presents a frequency
saturation. Once again the gyrokinetic solution is quite faithful (now both in frequency
and damping rate) up to the wavenumbers where the dispersion relation saturates. In
this regime, the hybrid solution presents larger errors, in particular close to the elbow
of the curves where the damping rates depart from the Vlasov–Maxwell values (b).
Moreover, in the θ = 89◦ case, the saturated value of the hybrid solution is not correct
(being larger than ω/Ωi = 1). The respective errors are plotted in figures 12–14. It is
clear how the gyrokinetic solution gets better and better, with respect to the hybrid,
with increasing angle of propagation (only for wavevectors smaller than the value
where dispersive effects take place).

3.2. Ion-acoustic (IA) mode
The dispersion relation for the IA mode is shown in figure 15, with the same format
as in the previous section. One can distinguish the following features. Regarding
the real frequency (a), there is again a good agreement between hybrid and fully
kinetic; the gyrokinetic frequency also presents a similar agreement, but only for
small k values. Damping rates present larger mismatches. Notably, the dispersion
relation for the case θ = 60◦ presents an ‘elbow’ for k⊥ρi ∼ 1 that is captured by
the hybrid model. We show the errors εω and εwave for θ = 10◦, θ = 30◦, θ = 60◦
respectively in figures 16–18 (same format as previous section). The errors are now
generally smaller for gyrokinetic mode at small k⊥ρi, and increasing with wavevector,
and is almost constant in value for the hybrid solutions. The dispersion relation
plots for quasi-perpendicular angles are shown in figure 19. Similarly to the AIC
case, the gyrokinetic model reproduces more faithfully the Vlasov–Maxwell solutions,
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(a)

(b)

FIGURE 19. Dispersion relation for ion-acoustic waves for angles of propagation θ =
80◦, 85◦, 89◦ (curves from left to right). Blue, red and green lines are for fully kinetic,
hybrid, and gyrokinetic models, respectively. (a) Real frequency ωr; (b) Damping rate γ .
k⊥ρi is on the horizontal axis. All axes are in logarithmic scale.

until dispersive effects take place. A small but noticeable mismatch in the sound
speed can be noted for the hybrid solution, that is shifted vertically. The only curve
where the gyrokinetic and the Vlasov–Maxwell solution agree for the whole range
of wavevectors considered is for θ = 89◦. The corresponding errors are shown in
figures 20–22. It is interesting to notice how the relative accuracy of the two models
strongly depend on the wavevector. For instance, at θ = 80◦ the gyrokinetic solution is
approximately two order of magnitudes more accurate than the hybrid for k⊥ρi = 0.1,
but starts to become less accurate for k⊥ρi > 2. Also, it is interesting that the hybrid
solution errors decrease with increasing wavevector. That is, the model is more
accurate in the dispersive regions of the curves.

3.3. Fast mode
It is well known that the fast mode solution is factored out from the gyrokinetic
model. In this sense, a comparison of the gyrokinetic with the other the two models
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FIGURE 20. Errors for ion-acoustic wave with θ = 80◦, as functions of k⊥ρi. Red and
green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote εω
and dashed lines denote εwave.

FIGURE 21. Errors for ion-acoustic wave with θ = 85◦, as functions of k⊥ρi. Red and
green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote εω
and dashed lines denote εwave.

is meaningless. In figure 23 we compare the dispersion relations of the fully kinetic,
the hybrid and the two-fluid models for θ = 10◦, θ = 30◦, θ = 60◦. The dispersion
relation for the latter follows the derivation of Zhao et al. (2014). The three solutions
are in a very good agreement for the real frequency (a), where a slight deviation
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FIGURE 22. Errors for ion-acoustic wave with θ = 89◦, as functions of k⊥ρi. Red and
green curves are for hybrid and gyrokinetic models, respectively. Solid lines denote εω
and dashed lines denote εwave.

with respect to the correct solution occurs only at large k⊥. Interestingly, the two-
fluid solution is a very good proxy for both hybrid and fully kinetic solutions, in
this regime. (b) Shows the corresponding damping rate (the two-fluid model is not
shown since its solutions are always real). Once again, as expected, the hybrid model
underestimates the damping rates, although there is a certain regime, approximately
for kρi 6 1, where the red and blue curves have a good agreement.

3.4. Quasi-perpendicular propagation
In this section we perform the analysis of the error εD of (2.6). As we discussed
above, in this regime the goal is not to compare the solutions for normal modes,
but rather to provide a single measure of the error that captures the overall distance
between the models in term of their pseudospectrum. This approach is justified by the
non-normality of the linear operators, and by the fact that a multitude of modes appear
in this regime, and it is not obvious why any of those should play a particular role in
the plasma dynamics. Figure 24 shows the error εD for angles of propagation θ = 60◦,
θ = 70◦, θ = 80◦ and θ = 85◦ (respectively in blue, red, yellow and magenta). The
solid lines are for the hybrid model, and the dashed lines for the gyrokinetic. A very
interesting trend can be noticed. The errors for the gyrokinetic model have a sharp
increase, of almost an order of magnitude, around k⊥ρi = 1, while the hybrid model
error tends to increase for k⊥ρi < 1 and to decrease for k⊥ρi > 1. Overall, the hybrid
model performs much better than the gyrokinetic. This is not surprising because, as
was already evident by inspection of figures 3 and 4, the gyrokinetic model simply
misses many roots of the fully kinetic dispersion relation. It is important to realize
that the modes that are not captured by this model are not ‘heavily damped’ with
respect to the modes that are captured (but they have higher frequencies). One could
argue that the error εD is defined and constructed in a rather arbitrary way. Although
this is certainly true, we think that it is still very informative regarding how much
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(a)

(b)

FIGURE 23. Dispersion relation for fast waves for angles of propagation θ = 10◦, 30◦, 60◦
(curves from left to right). Blue, red and green lines are for fully kinetic, hybrid and
two-fluid models, respectively. (a) Real frequency ωr in logarithmic scale; (b) Damping
rate γ in logarithmic scale. k⊥ρi is on the horizontal axis in logarithmic scale.

a reduced model is able to reproduce the correct linear evolution of the system. As
we mentioned, the ability of the gyrokinetic model to describe solar wind turbulence
in the regime k⊥� k|| has been stressed in many recent papers (Schekochihin et al.
2009; TenBarge, Howes & Dorland 2013). Although this might certainly be true, we
believe that it is informative to know what is left out of the model in terms of normal
modes. In figure 25 we compare the three models (fully kinetic to the left, hybrid in
the middle, gyrokinetic to the right) for the case kρi = 1 and θ = 85◦. Here, we do
not show the normal modes but the curves Re( f ) = 0 (black) and Im( f ) = 0 (red)
in the domain −0.2 < γ < 0 and 0 < ωr < 2.5. The normal modes can be inferred
as the points where black and red curves intersect. This figure reinforces what is
well known about the models: the gyrokinetic model factors out high-frequency modes
(irrespective of their damping rate) and the hybrid model does not properly damp
some of the modes (the ones that undergo electron Landau damping).
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FIGURE 24. Error εD as a function of k⊥ρi for angles of propagation θ =60◦,70◦,80◦,85◦
(blue, red, yellow and magenta). Dashed and solid lines are for gyrokinetic and hybrid
models, respectively.

(a) (b) (c)

FIGURE 25. Real (black) and imaginary (red) part of f (ω)= det(D) for θ = 85◦, kρi = 1.
(a) Fully kinetic; (b) Hybrid; (c) Gyrokinetic model. The intersection between black and
red curves identify normal modes.

4. Conclusions

Reduced kinetic models are extensively used in plasma physics in lieu of the more
complete Vlasov–Maxwell system. In this paper, we have compared the hybrid (ion
kinetic and electron fluid), the gyrokinetic and the fully kinetic models, for a wide
range of wavevectors and propagation angles, in linear theory. We have chosen one
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test case with parameters relevant to the study of solar wind turbulence. We have
compared the dispersion relations of single normal modes, for angles of propagation
θ = 10◦, 30◦, 60◦, 80◦, 85◦, 89◦ and pseudospectra for θ = 60◦, 70◦, 80◦, 85◦. The latter
method is justified by the multitude of modes that appear in the quasi-perpendicular
case, which makes it non-trivial to identify which one plays a predominant role. It is
important to remember that the gyrokinetic model has been employed also outside its
nominal range of validity (k||� k⊥). We note that the Vlasov–Maxwell linear theory
has recently been investigated by Sahraoui et al. (2012), for very oblique propagation
angles. Our findings can be summarized as follows. The hybrid solutions present a
reasonable agreement with the Vlasov–Maxwell system across all propagation angles,
the largest disagreement being for θ = 89◦. Interestingly, the errors decrease in the
region where the waves resonate with ions and the dispersion curves saturate. One
major mismatch of the hybrid model happens for θ = 60◦, where a clear matching of
the hybrid AIC and IA modes with the corresponding Vlasov–Maxwell modes is not
possible due to branch switching. As expected, the gyrokinetic model presents larger
errors for angles of propagation less than 80◦, particularly for k⊥ρi> 1. However, also
for quasi-perpendicular propagation, the errors increase abruptly as soon as the waves
become resonant with the ions. In conclusion, it appears that the hybrid model should
be preferred for its ability to represent most of the normal modes, at least in the ion
regime k⊥ρi < 1 and, to a certain extent, also in the electron regime. However, we
notice that the spurious low value of damping rates of some hybrid solutions might
result in numerical instabilities, due to the accumulation of energy that is not properly
damped. In this respect, a promising numerical approach consists in devising models
that factor out Langmuir oscillations while still retaining the fully kinetic nature of the
solution (see, e.g. Degond, Deluzet & Savelief 2012; Chen & Chacon 2014; Tronci &
Camporeale 2015).
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