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We consider the problem of a firm facing failures with weak forewarning signals. In the
base model that we study, the firm watches for signals of a random arrival of a disruptive
innovation and continuously updates the posterior probability that a disruptive innova-
tion has already happened. A disruptive innovation is marked by a rapid increase in the
growth rate of the market for a new technology, and it is followed by a random arrival
of catastrophic failure of the firm. The firm can invest capital to adopt the innovation to
prevent failure. The optimal policy is to adopt it when the posterior probability exceeds
an optimally chosen threshold. We investigate the probability of failure under the optimal
policy when the cost of failure is large and the arrival rate of disruptive innovation is low.
The probability of failure is close to one if the arrival rate is extremely low while it is close
to zero if the arrival rate is moderate. We also consider an extension of the base model
to incorporate recurrence of disruptive innovation; when the arrival rate is moderate, the
optimal threshold and the failure probability can be significantly larger than those of the
base model.

1. INTRODUCTION

Even successful firms may falter in the face of disruptive technological innovations [4]. East-
man Kodak Co., once a dominant photographic film company, failed to respond fast enough
to the emergence of digital imaging technology in the 1990s because it held a strong belief,
based on a 100-year history, that ample profit opportunities still existed in its traditional
chemical film market. When Kodak finally conceded that its traditional market was shrink-
ing and restructured itself for the digital image market in 2003, it was too late; rival firms
had already amassed experience and competitive advantage [7]. Between 1998 and 2010,
Kodak’s enterprise value declined by approximately 95%; it filed for Chapter 11 bankruptcy
protection in January 2012. Kodak is not an isolated incident of a once-successful firm that
failed to recognize sweeping technological changes; Polaroid Corp., Borders Group Inc., and
Blockbuster Inc. are among the most well-known recent examples of firms that faltered
spectacularly in the face of disruptive innovations [22].

There are two main difficulties with detecting and responding to a disruptive inno-
vation. First, the signs of a disruptive innovation are often too weak for the incumbent
firm to detect in the early stages of the innovation. A new disruptive innovation need not
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compete head-to-head with the extant technology at the outset because it initially targets
a completely different market, and hence, it might evade the incumbent’s attention [5].
For example, in the 1990s, the digital imaging technology initially targeted a low-cost
and low-performance camera market while Kodak was seeking a high-priced performance-
competitive camera market. By the time the signs of disruption are conspicuous, the new
technology will have encroached upon the incumbent firm’s market, and it is already too
late for the incumbent firm to respond due to, for example, first-mover advantage. Second,
disruptive innovations are often very slow to happen, and hence, a successful incumbent
firm may become complacent and believe that the current technology is unlikely to become
obsolete for a long time to come, even in the face of a disruptive innovation. For instance,
from the invention of the first digital camera in 1975, it took approximately 20 years for
digital imaging technology to set foot in the consumer-level market. Other examples of
innovations that took many decades to replace extant technologies include Watt’s steam
engine and the steamship [17].

In this paper, we investigate the incumbent firm’s optimal policy of response to weak
signals of a regime change which will propel enterprise-wide catastrophic failure. For exam-
ple, the incumbent firm can invest in adopting the new technology to prevent failure. Our
primary goal is to obtain insights into the efficacy of the optimal policy of adoption under
extreme values of model parameters (weak signals, slow disruption, and high cost of failure)
that often characterize disruptive innovations. Of particular interest to us is whether, even
if the arrival of a disruptive innovation is extremely slow, an incumbent firm can effectively
prevent failure by following an optimal (profit-maximizing) policy instead of succumbing to
irrational complacency.

Our paper has two contributions. First, we extend the well-known change point detec-
tion theory to a model of catastrophic business failure with weak forewarning signals.
Although our model has deep roots in the conventional change point detection models, it
possesses mathematically and economically different salient features and applies to distinct
settings. Second, we offer practical insights into the optimal policy, the expected return,
and the probability of failure under the optimal policy.

In our theoretical model, we incorporate five salient features of an incumbent firm
facing a potentially disruptive new technology. (1) The incumbent fails in two steps. In the
first step, disruption takes place, that is, a new technology finds its footing in the current
market, but its market share remains negligible for some time. In this stage, we say that the
incumbent firm is in a disrupted state. The second step is a random arrival of catastrophic
failure of the incumbent firm due to swift growth of the new technology. (2) On the alert
for signals of disruption, the incumbent firm monitors the growth of the market for the new
technology and updates its belief regarding whether disruption has already happened or
not. However, even if a disruption happens, its signals are too weak and too noisy for the
incumbent firm to detect it with certainty. (3) The incumbent firm can prevent failure if it
recovers its original undisrupted state by investing a fixed amount of capital to adopt the
new technology. (4) Once failure takes place, the firm incurs a colossal loss of its enterprise
value due to the shrunk market demand for its extant technology. (5) The arrival rate of
disruption is low, that is, it takes a long time for a new technology to become a disruptive
innovation.

We model the situation as an optimal stopping problem for a Bayesian decision-maker.
One possible sign of the arrival of disruption is a rapid increase in the market growth rate
of a new technology [5]. In our model, the firm monitors the growth rate of the market for
the new technology; if the rate of increase of the market growth rate is high, then it is a sign
that disruption happened. We model the market growth rate as a Brownian motion with
unknown drift. The drift can be interpreted as the rate of increase in the market growth
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rate. The value of the drift changes from zero to a higher value when disruption happens.
Based on the history of the market growth rate observed, the firm can continuously update
its belief characterized by the posterior probability that the firm is in a disrupted state. At
any point in time, the firm can spend a fixed amount of capital to prevent failure. Utilizing
optimal stopping theory, we find that the optimal policy is to adopt the new technology
when the posterior probability exceeds a threshold value.

We obtain a number of qualitative insights into the optimal policy and the probability
of eventual failure under the optimal policy. Throughout the paper, we assume that the
cost of failure is much larger than the cost of recovery. We find that the optimal recovery
threshold takes a small value, which is inversely proportional to the cost of failure. The
optimal return and the probability of failure critically depend on the magnitude of the
arrival rate of disruption, however. If the arrival rate of disruption is moderate (not very
low), then the optimal policy is to recover the undisrupted state early. Consequently, the
magnitude of the optimal expected return is approximately the cost of recovery, and the
failure probability is very low. In contrast, if the arrival rate of disruption is extremely low,
then the failure probability is very close to 1 even though the firm employs the optimal
policy, and the optimal return is approximately the return from no recovery effort even
though the optimal threshold is a very small number. This is because, due to the slow
arrival of disruption, the firm updates its posterior belief very slowly; consequently, it takes
a very long time for the posterior probability to reach the threshold of recovery, and failure
is likely to happen before the firm invests in recovery.

Next we turn to the case of recurrent disruption. Under moderate arrival rates of disrup-
tion, we find qualitatively different results from those of the single-disruption model if the
emergence of new technologies takes very little time. In particular, the recovery threshold is
significantly higher, the optimal return is significantly lower, and the failure probability is
significantly higher. In contrast, under extremely small arrival rates of disruption, there is
very little difference from the results of the single-disruption model. Our results illustrate
the danger of using a single-disruption assumption when disruption is a recurrent event.

The paper is organized as follows. We briefly discuss the related literature in Section 2.
We investigate the base model of a single disruption in Section 3 and extend it to a model
of recurrent disruption in Section 4. Conclusions are given in Section 5. All proofs appear
in Appendix.

2. RELATED LITERATURE

Change point detection theory has a long history with rich literature. See Rapoport, Stein,
and Burkheimer [16] and Poor and Hadjiliadis [15] for an overview and references therein.
The most relevant to this paper is the literature on Shiryaev’s problem, the objective of
which is to minimize the cost of missing a sudden and random change of regime when
the decision-maker observes a noisy signal of the change [21]. The signal process can be
formulated as a Brownian motion, the drift of which suddenly changes at a random time,
and the optimal detection problem can be solved by the well-established optimal stopping
theory [2,20]. The optimal policy is to stop when the posterior probability of change exceeds
a threshold value [14]. The problem can be also formulated in a discrete-time version or with
an observable Poisson process whose arrival rate suddenly changes at a random time [14,15].

The basic framework of the change point detection theory has been applied to a wide
range of problems. (See, e.g., p. 1 of Poor and Hadjiliadis [15]). In particular, it has been
employed to analyze business decisions under a changing environment. Ryan and Lipp-
man [19] studied the optimal policy of exit from a project that suddenly starts generating a

https://doi.org/10.1017/S0269964813000363 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000363


124 H. Dharma Kwon

negative profit stream. In their model, the cumulative profit stream is modeled as a Brow-
nian motion with drift that suddenly drops in value at a random time. They employed
Shiryaev’s Bayesian formulation to obtain a threshold policy. However, their model did not
incorporate exponential discounting. Beibel and Lerche [3] considered a problem of finding
the optimal time to sell a stock whose growth rate suddenly changes at a random time. In
this problem, they modeled the price of the stock as a geometric Brownian motion and incor-
porated exponential discounting. Gapeev [9] also incorporated exponential discounting in a
problem of determining a sequence of stopping times that are as close as possible to multiple
change points.

Our paper is also related to Bayesian sequential decisions of technology adoption. Jensen
[10] studied the decision problem of a firm regarding adoption of a new technology when
its profitability is uncertain: the decision-maker observes a stream of random (Bernoulli)
signals that reflect the profitability of the new technology, and he sequentially updates his
belief regarding its profitability. The optimal policy is to adopt it when the probability
of high profit exceeds a threshold value. McCardle [12] and Ulu and Smith [23] extended
this model by incorporating the cost of acquiring signals per unit time. They obtained
an optimal policy characterized by two thresholds: adopt it if the probability exceeds the
upper threshold, and stop acquiring signals if it hits the lower threshold. Kwon and Lippman
[11] also investigated a Bayesian technology adoption and abandonment problem in which
the signal of profitability emanates from an on-going pilot project, and they studied the
comparative statics of time-to-decision with respect to uncertainty.

3. MODEL OF A SINGLE DISRUPTION

In this section, we first introduce the base model with a single disruption. Then we obtain
the optimal policy in Section 3.1 and investigate the model parameter regimes of our interest
in Section 3.2.

We consider an incumbent firm with an extant technology that earns a continuous
stream of profits v per unit time. At time t = 0, the firm starts out in an undisrupted state,
and a new technology that is potentially disruptive emerges. The new technology has not
yet found its footing in any market in the undisrupted state. At a random time τ1, which is
an exponential random variable with mean 1/λ1, the new technology becomes a disruptive
innovation by finding its way to a beach-head market (a strategically chosen initial target
market), and the incumbent firm becomes disrupted. Upon disruption, the failure of the firm
is not immediate. Instead, there is time to take remedial action. Specifically, failure takes
place at a time τ2 which has an exponential distribution with mean 1/λ2. We assume that τ1
and τ2 are mutually independent and that the arrival rates λ1 and λ2 are industry-specific
values that are known to the firm. We interpret τ1 + τ2 as the last opportune time for the
firm to respond and invest in the new technology. Once τ1 + τ2 has passed, entrants with the
new technology will have accumulated competitive advantage so that the incumbent firm
cannot avoid catastrophic failure. At the time failure happens, the net present value of the
firm’s future profit is reduced by w, which includes a partial or total loss of the future profit
stream and the cost of shutdown. To prevent failure, the firm can invest a fixed amount k
to adopt the new technology and recover the undisrupted state at any point in time before
the failure happens. Note that the firm’s investment in recovery can happen even before the
disruption sets in. In this section, we assume that disruption can happen only once.

For all positive times t > 0, there is always a non-zero probability that the firm is
disrupted, and the firm watches for signs of disruption at all times. The signs of disruption
initially do not directly influence the incumbent firm’s profit stream because the market for
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the disruptive innovation is separated from the incumbent’s market in the early stages of the
innovation. In this paper, we assume that the firm observes the process X = {Xt : t ≥ 0}
of the instantaneous market growth rate of the new technology; Christensen, Anthony, and
Roth [5] suggested that a substantially large instantaneous rate of increase of X is a sign
of a disruptive innovation. We model the process X as the Brownian motion

Xt = μt+ σBt,

where μ is interpreted as the average instantaneous increase of the growth rate of the market
for the new technology, B = {Bt : t ≥ 0} is a Wiener process, and σ is a constant which
quantifies the amount of noise in the market growth rate. Here, we set σ = 1 and take μ = 0
in the undisrupted state and μ = 1 in the disrupted state; the drift μ jumps from 0 to 1
at time τ1 and stays constant thereafter. (We can take a general value of σ and μ = h for
the disrupted state for some general value of h > 0, but we can always rescale Xt and the
time t such that h = 1 and σ = 1 for convenience of notation. The specific values of h and
σ do not affect our main results.) The firm knows the possible values that μ can take, but
it does not know the current state of μ nor can it observe the process B. We assume that
the process B is independent of τ2 and τ1. Finally, we assume that the firm is a maximizer
of the expected discounted profit with a discount rate r.

Let X, μ, and B be defined on a probability space (Ω,G,P). We also let F = {Ft : t ≥ 0}
denote the filtration generated by the observable process X. We define the process of the
posterior probability

Pt ≡ P({τ1 < t}|t < τ1 + τ2,Ft),

that the firm is in a disrupted state at time t given that the failure has not happened by
time t. Note that τ1 < t implies that disruption happened before time t, and that t < τ1 + τ2
implies that the failure has not happened by time t. In order to apply the optimal stopping
theory, we first need to obtain the stochastic differential equation (SDE) of the process
P = {Pt : t ≥ 0}.

Proposition 1: Given the prior P0 = p, the posterior process Pt is given by

Pt =
N(t)

N(t) + (1 − p)e−λ1t
,

where

N(t) ≡ exp
[(
Xt −

1
2
t

)
− λ2t

]{
p+ (1 − p)

∫ t

0

exp
[
−
(
Xv − 1

2
v

)
+ λ2v

]
λ1e

−λ1vdv

}
.

The SDE of Pt is given by

dPt = Pt(1 − Pt)dB̄t + (1 − Pt)(λ1 − λ2Pt)dt, (1)

where {B̄t,Ft, t ≥ 0} is a Wiener process given by

B̄t = Xt −
∫ t

0

E[μ|u < τ1 + τ2,Fu]du.

The SDE of Pt is expressed in terms of an observable Wiener process B̄ = {B̄t : t ≥
0} that can be constructed from the observable process X. In the SDE, the coefficient
Pt(1 − Pt) of dB̄t can be interpreted as the rate of diffusion of the process Pt. The drift
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term (the coefficient of dt) from Eq. (1) is (1 − Pt)(λ1 − λ2Pt), which represents the average
direction of the evolution of Pt over time. The drift increases in λ1 because λ1 is the arrival
rate of disruption, and the possibility of disruption tends to increase Pt. The other effect
that influences the drift term is that the longer you survive without failure, the less you
believe that the firm is in a disrupted state. This effect is enhanced if λ2 is larger or if Pt

is larger, and it explains why the drift decreases in λ2Pt.

3.1. Optimal Policy and Return Function

In this subsection, we define the firm’s objective function and obtain the optimal policy.
The firm’s cumulative discounted profit Π is given by

Π =
∫ min(T,τ1+τ2)

0

ve−rtdt+ χ{T<τ1+τ2}

[
e−rT (−k) +

∫ ∞

T

ve−rtdt

]

+ χ{T≥τ1+τ2}

[
e−r(τ1+τ2)(−w) +

∫ ∞

τ1+τ2

ve−rtdt

]
,

where T is the stopping time at which the firm recovers the undisrupted state by adopting
the new technology, and χ{·} is an indicator function. Note that Π is comprised of the profit
stream v per unit time from the current technology, the cost k of recovery, and the cost w
of failure. (In case failure happens, the term

∫∞
τ1+τ2

ve−rtdt is interpreted as the projected
discounted profit that the firm would have earned if failure had not happened. The cost w
of failure is interpreted as the amount of reduction in the discounted profit due to failure.)
Recall that we assume that v is constant, so we can re-express Π as

Π =
v

r
+ χ{T<τ1+τ2}e

−rT (−k) + χ{T≥τ1+τ2}e
−r(τ1+τ2)(−w).

For convenience, we drop the constant term v/r from the following objective function:

VT (t, p) = E(t,p)
[
χ{T<τ1+τ2}e

−rT (−k) + χ{T≥τ1+τ2}e
−r(τ1+τ2)(−w)

]
, (2)

where E(t,p)[·] ≡ E[·|t < τ1 + τ2, Pt = p] is the conditional expectation operator given that
t < τ1 + τ2 and Pt = p. The firm’s objective is to maximize VT (t, p) with respect to T . In
particular, we consider the class of stopping times of the form

T = inf{t > 0 : Pt �∈ C},

in which T is the exit time of the process P from an open interval C ⊂ (0, 1); in Proposition 2,
we show that the optimal policy T ∗ indeed belongs to this class of stopping times via
verification theorem.

From Proposition 1, the characteristic operator [13] for P is given as follows:

L ≡ 1
2
p2(1 − p)2∂2

p + (1 − p)(λ1 − λ2p)∂p. (3)

Now we introduce a linear operator A for VT (·, ·):

AVT (t, p) ≡ LVT (t, p) − (r + pλ2)VT (t, p), (4)

which will be used below to characterize VT (·, ·). The following Lemma is necessary for
establishing the optimality conditions of VT (·, ·):
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Lemma 1: The return function VT (·, ·) satisfies AVT (t, p) − pλ2w · e−rt = 0 for all p ∈ C.

To obtain the optimal stopping time T ∗, we consider a candidate stopping time T =
inf{t > 0 : Pt �∈ [0, p∗)}, which is the exit time from an interval of the form C = [0, p∗), and
find V (t, p) and a threshold p∗ ∈ (0, 1) that satisfy the following conditions:

AV (t, p) − pλ2w · e−rt = 0 for p < p∗ (5)

V (t, p∗) = −ke−rt (6)

∂pV (t, p∗) = 0. (7)

V (t, p) > −ke−rt for p < p∗ (8)

V (t, p) = −ke−rt for p ≥ p∗ (9)

AV (t, p) − pλ2w · e−rt < 0 for p ≥ p∗ (10)

By Theorem 10.4.1 of [13], once the solution V (t, p) to the conditions above is found, the
sufficient conditions for optimality are satisfied by the function V (t, p), and we are assured
that V (t, p) = supT∈T VT (t, p), where T is the set of all stopping times for X.

Proposition 2: (I) There exist a unique value of p∗ ∈ (0, 1) and a unique function V (t, p)
that satisfy Eqs. (5)–(10) if the inequality

w
λ2

(λ2 + r)
> k, (11)

is satisfied.
(II) Under the condition (11), the optimal policy is to recover the undisrupted state as

soon as the posterior Pt exceeds p∗, where p∗ solves Eqs. (5)–(10). Moreover, the optimal
return supT VT (t, p) is given by V (t, p) = e−rtV (p), where

V (p) = cφ

(
p

1 − p

)
+ V1(p) for p < p∗,

= −k otherwise,

and

c =
−k − V1(p∗)
φ(p∗/(1 − p∗))

,

φ(z) =
1

Γ(a) · (z + 1)

∫ ∞

0

e−uua−1

(
1 + u

z

2λ1

)b−a−1

du,

a = λ1 − λ2 −
1
2

+

√(
λ1 − λ2 −

1
2

)2

+ 2(λ1 + r),

b = 1 + 2

√(
λ1 − λ2 −

1
2

)2

+ 2(λ1 + r),

V1(p) = −w λ2(λ1 + rp)
(λ1 + r)(λ2 + r)

.

Here, Γ(·) is the Gamma function.

https://doi.org/10.1017/S0269964813000363 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000363


128 H. Dharma Kwon

The optimal policy is a threshold rule because the firm must adopt the new technology
only if the probability of disruption is sufficiently high. The condition given in Eq. (11)
ensures that the cost k of recovery must be sufficiently smaller than the cost w of failure so
that the firm has an incentive to invest in recovery.

Finally, in order to obtain the economic insight into the efficacy of the optimal recovery
policy, we inspect the probability of preventing the event of failure given the optimal stopping
time T ∗ and the current posterior P0 = p:

F (p) = E(0,p)[χ{T∗<τ1+τ2}].

Its complement probability 1 − F (p) is the probability that the failure eventually occurs
under the optimal policy. For future reference, we obtain the functional form of F (p) in the
following Lemma:

Lemma 2: The prevention probability F (·) is given by

F (p) = c′ · ψ
(

p

1 − p

)
for p < p∗,

= 1 otherwise,

where

c′ =
[
ψ

(
p∗

1 − p∗

)]−1

ψ(z) =
1

Γ(a′) · (z + 1)

∫ ∞

0

e−uua′−1

(
1 + u

z

2λ1

)b′−a′−1

du,

a′ = λ1 − λ2 −
1
2

+

√(
λ1 − λ2 −

1
2

)2

+ 2λ1,

b′ = 1 + 2

√(
λ1 − λ2 −

1
2

)2

+ 2λ1.

3.2. Large w and Small λ1 Limits

In this subsection, we investigate large w and small λ1 limits when the other parameters,
λ2, r, and k, are on the order of unity. For notational brevity, we define

ε ≡ k(λ2 + r)
wλ2

,

which is a small parameter in the large w limit. Because λ1 is also small, we have two small
parameters, and thus, we need to consider three different parameter regimes: ε� λ1, ε =
O(λ1), and ε� λ1. In this paper, we obtain analytical results on the regimes ε� λ1 � 1
and λ1 � ε� 1 and illustrate a numerical example of the regime ε = O(λ1).

Proposition 3: (I) In the small λ1 and small ε/λ1 limit, the threshold probability is
given by

p∗ =
kr

wλ2

[
1 +O

(
ε

λ1

)]
,
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and the optimal return at p = 0 is given by

V (0) = −k
[
1 +O

(
ε

λ1

)]
.

Under the optimal policy, the probability of eventual failure when p = 0 is given by

1 − F (0) =
λ2

2λ1
(p∗)2

[
1 +O

(
ε

λ1

)]
=
O(ε2)
λ1

. (12)

(II) In the small ε and small λ1/ε limit, the threshold probability is given by

p∗ =
b− a− 1
b− a− 2

ε[1 + o(1)], (13)

where a and b are given by Proposition 2(II). The optimal return at p = 0 is given by

V (0) = − wλ2λ1

r(λ2 + r)
[1 + o(1)].

Under the optimal policy, the probability of eventual failure when p = 0 is given by

1 − F (0) = 1 − Γ(a′)
Γ(b′ − 1)

(
p∗

2λ1

)1−b′+a′

[1 + o(1)] = 1 −O

(
λ1

ε

)b′−a′−1

. (14)

The analytical results of Proposition 3 are obtained from the asymptotic properties of
φ(·) in the limits ε/λ1 → 0 and λ1/ε→ 0, but it is difficult to obtain analytical insights
into the case in which ε and λ1 are comparable in size. Hence, we illustrate a numerical
example in Figures 1 and 2 for p∗ and 1 − F (0) in the regime 10−2 < λ1/ε < 101.8 when
ε = 10−2 and λ2 = r = k = 1. Figure 1 (the solid curve) demonstrates that p∗ is always of
order ε irrespective of the size of λ1. In contrast, 1 − F (0) strongly depends on the value of
λ1; 1 − F (0) is almost 1 for small λ1/ε and almost zero for large λ1/ε.

From Proposition 3 and Figure 1 (the solid curve), we observe that the optimal recovery
threshold p∗ is on the same order of magnitude as ε in the single-disruption model. This
result is intuitively straightforward; if the potential cost of failure is large, then the decision-
maker would take measures to prevent it at an early stage when the probability of disruption
is still very small.

As p∗ is a small number, one might navely expect that the probability of failure should
be also very small. On the contrary, we find two very different results for the probability of
failure in the limits ε/λ1 → 0 and λ1/ε→ 0. In the limit ε/λ1 → 0, our intuitive expectation
holds. The optimal policy is to recover the undisrupted state at p∗; because p∗ is a very
small number, the stopping time T ∗ for Pt to reach p∗ is also very small. Hence, there is
very little chance that failure occurs before T ∗. Moreover, the discounting (the difference
between e−rT∗

and 1) is negligible, and the expected return is very close to −k.
In the limit λ1/ε→ 0, we obtain an opposite result in Proposition 3(II). If λ1 is very

small, then the firm updates its posterior probability very slowly; intuitively, it is difficult
for the decision-maker to readily believe that an extremely rare event has happened. Math-
ematically, this effect of small λ1 can be seen from Eq. (1), in which the drift term is a
very small number or even a negative number when λ1 and Pt are small so that the rate of
increase of Pt is very low or even negative. Hence, even though p∗ is small, it takes a very
long time for Pt to reach p∗ simply because λ1 is small. As a result, there is a very high
probability that failure happens before Pt reaches p∗. Thus, contrary to our nave expecta-
tion, we arrive at the conclusion that the efficacy of the optimal policy is critically sensitive
to the value of the ratio ε/λ1.
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Figure 1. The threshold probability p∗ as a function of log10(λ1/ε).

Figure 2. The failure probability 1 − F (0) as a function of log10(λ1/ε).

4. MODEL OF RECURRENT DISRUPTION

Disruptive innovations are often recurrent events within an industry. For example, the disk
drive industry underwent a series of disruptive innovations [4]. Hence, we need to extend our
model to one with recurrent disruption and explore the robustness of our results obtained
in Section 3. In particular, the robustness of Proposition 3(I) is questionable if disruption is
recurrent. If the policy is to invest k at almost every moment in time to prevent failure, then
the cumulative discounted expected cost would amount to a very large number, possibly
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much larger than k. Thus, the frequency of recovery must be much lower than is prescribed
by Proposition 3(I), and the probability of failure might turn out to be much higher.

In this section, we incorporate the recurrence of disruption in our model. We model
the problem as a multi-epoch decision problem where each epoch begins in an undisrupted
state and ends either when the firm recovers the undisrupted state or when failure happens.
If failure happens, then the firm incurs a colossal loss w, terminates its operation, and exits
the market. If the firm recovers the undisrupted state before failure happens, then the next
epoch begins, and yet another new technology seeks a toehold in the economy to disrupt the
current technology. We assume that there are an infinite number of epochs, each of which
begins with a new technology that can be potentially disrupted by another technology. We
also assume that the potentially disruptive technology of each epoch emerges only after the
epoch commences. Hence, for each epoch, there is only one source of disruption.

Let ti denote the time measured from the beginning of an epoch labeled by i ∈ {1, 2, . . .}.
At ti = 0, the i-th epoch begins with a new technology that prevails in the market. At the
same time, another technology that is potentially disruptive is being developed by a rival
firm. The latter technology becomes disruptive at an exponential time τ1,i at an arrival rate
λ1; the disruption is followed by failure, which arrives at an exponential time τ2,i at a rate
λ2. Thus, the failure of epoch i happens at time ti = τ1,i + τ2,i. We assume that {τ1,i} and
{τ2,i} are mutually independent and i.i.d.

For each epoch i, the firm begins observing the process Xi = {Xi
t : t ≥ 0} of the market

growth rate of the new technology at time ti = 0. Similarly to the single-disruption model,
we model the market growth rate as Xi

ti
= μiti +Bi

ti
, where μi is the average increase rate

of the market growth rate of the new technology for epoch i, and Bi = {Bi
t : t ≥ 0} is a

Wiener process. At ti = 0, the value of μi starts out as 0, but μi jumps from 0 to 1 at
time ti = τ1,i and stays constant thereafter. For any positive ti, the firm does not know the
true value of μi, but it knows that μi is either 0 or 1. The firm continuously updates the
posterior probability

P i
ti
≡ P({τ1,i < ti}|ti < τ1,i + τ2,i,Fti

),

of disruption by observing the process Xi. Assuming that {Bi}i are i.i.d., we can directly
apply Proposition 1 and obtain the SDE of P i = {P i

t : t ≥ 0}:

dP i
t = P i

t (1 − P i
t )dB̄

i
t + (1 − P i

t )(λ1 − λ2P
i
t )dt,

where {B̄t,
i Ft, t ≥ 0} is a Wiener process given by

B̄i
t = Xi

t −
∫ t

0

E[μi|u < τ1,i + τ2,i,Fu]du.

Because P i satisfies the same SDE as the posterior process P of the single-disruption model,
they both share the same characteristic operator L given by Eq. (3).

Now we specify the objective function of the firm. The firm can recover the undisrupted
state by investing k at any point in time during an epoch. Let Ti denote the stopping time
of recovery for epoch i, and define

Ri(Ti) = χ{Ti<τ1,i+τ2,i}e
−rTi(−k) + χ{Ti≥τ1,i+τ2,i}e

−r(τ1,i+τ2,i)(−w),

which is the discounted cashflow of epoch i measured at some time ti ≥ 0. (Just as in
Section 3, we omit the profit stream v for brevity of notation). We let π = (T1, T2, . . .)
denote the policy of recovery for all epochs. Let T̂i = min(Ti, τ1,i + τ2,i) denote the stopping
time that marks the end of the i-th epoch. Let Sn ≡

∑n
i=1 T̂i denote the time (measured
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from t1 = 0) at which a new technology for the (i+ 1)-th epoch emerges, and let Kn ≡∏n
i=1 χ{Ti<τ1,i+τ2,i} denote the indicator function of the event that the firm survives the

n-th epoch without failure; Kn = 1 if the firm survives the first n disruptive innovations
without failure, and Kn = 0 otherwise. Then we can express the total discounted return as
follows:

Rπ ≡ R1(T1) +
∞∑

i=1

Ki exp[−rSi]Ri+1(Ti+1).

The objective of the firm is to maximize the expected value of Rπ given a prior probabil-
ity P0 = p that the first epoch is disrupted at time zero. Hence, the objective function is
written as

Vπ(p) ≡ Ep[Rπ],

where Ep[·] = E[·|P0 = p]. We let the optimal expected return be denoted by

V ∗(p) = sup
π
Vπ(p),

where the supremum is taken over all recovery policies of the form π = (T1, T2, . . .), in which
each Ti is a stopping time for the process Xi. Note that we focus on stationary policies
because {τ1,i} and {τ2,i} are i.i.d. In the following Proposition, we obtain the optimality
condition for V ∗(p) and the optimal policy [18].

Proposition 4: (I) The optimal expected return satisfies

V ∗(p) = sup
T∈T

Ep[YT ],

where T is the set of all stopping times for X, and

YT ≡ χ{T<τ1+τ2}e
−rT [−k + V ∗(0)] + χ{T≥τ1+τ2}e

−r(τ1+τ2)(−w).

(II) The optimal policy π∗ such that Vπ∗(p) = V ∗(p) is to recover the undisrupted state
of each epoch at T ∗ that satisfies

Ep[YT∗ ] = sup
T∈T

Ep[YT ].

The difference between the objective function of the single-disruption model in Eq. (2)
and the function V ∗(p) of the recurrent disruption model is that the cost k of recovery is
replaced by the net cost k − V ∗(0) of recovery.

Next we investigate the existence of the optimal solution V ∗(p) in the parameter regime
of our interest.

Proposition 5: For sufficiently small λ1, there exist a unique optimal threshold p∗ ∈ (0, 1)
and a unique optimal solution V ∗(p) if Eq. (11) is satisfied.

In order for p∗ to be less than 1, the cost w of failure must be significantly larger than
the net cost k − V ∗(0) of recovery. If λ1 is too large, then disruption happens much too
often, and the expected future cost |V ∗(0)| also takes a large value. Consequently, the ratio
of magnitudes of |w| to | − k + V ∗(0)| is closer to unity. Thus, p∗ < 1 only if λ1 is sufficiently
small.
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Now that we established the existence and the uniqueness of the optimal solution for
the recurrent disruption problem, we can compare the efficacy of the optimal policy for the
recurrent disruption model to that of the single disruption model.

We first inspect a numerical example of the dependence of p∗ and 1 − F (0) on λ1

in a single and recurrent disruption models in Figures 1 and 2, where λ2 = r = k = 1. In
Figure 1, we note dramatically different dependences of p∗ on λ1 between the two models. In
the single disruption model, the optimal threshold probability p∗/ε is slightly smaller in the
regime λ1 � ε than in the regime ε� λ1; this result is consistent with the intuition that
the firm should be more (less) proactive in preventing the failure when the arrival rate of
disruption is higher (lower). In the recurrent disruption model, in contrast, p∗/ε appears to
be increasing in λ1; in particular, the value of p∗/ε is large (about 8) when λ1 ≈ 70ε. In the
model of recurrent disruption, if the arrival of disruption is fast, the optimal recovery should
not take place too frequently; otherwise, the cumulative discounted cost would be too high.
Consequently, the optimal threshold p∗ for the recurrent disruption model must be much
higher (Figure 1). Because p∗ is higher, the probability 1 − F (0) of failure is also higher
(Figure 2) than that of the single-disruption model. Our numerical example demonstrates
that, if the arrival rate of disruption is not too low, the assumption of single-disruption can
lead to qualitatively inaccurate results when disruption is recurrent.

Next we analytically explore the parameter regimes ε = k(λ2 + r)/(wλ2) � λ1 � 1 and
λ1 � ε� 1.

Proposition 6: (I) In the small λ1 and small ε/λ1 limit, the optimal threshold probability
is given by

p∗ =

√
kλ1λ2

w

[
1 +O

(√
ε

λ1

)]
,

and the optimal return at p = 0 is given by

V ∗(0) = −
√
wkλ1λ2

r

[
1 +O

(√
ε

λ1

)]
.

Under the optimal policy, the probability of eventual failure at p = 0 for each epoch is given by

1 − F (0) =
kλ2

2

2w

[
1 +O

(√
ε

λ1

)]
= O(ε).

(II) In the small ε and small λ1/ε limit, the optimal threshold probability is given by

p∗ =
b− a− 1
b− a− 2

ε[1 + o(1))], (15)

where a and b are given by Proposition 2(II). The optimal return at p = 0 is given by

V ∗(0) = − wλ2λ1

r(λ2 + r)
[1 + o(1)]. (16)

Under the optimal policy, the probability of eventual failure at p = 0 for each epoch is given by

1 − F (0) = 1 − Γ(a′)
Γ(b′ − 1)

(
p∗

2λ1

)1−b′+a′

[1 + o(1)]. = 1 −O

(
λ1

ε

)b′−a′−1

. (17)

Note the similarities and differences between Propositions 6 and 3. In particular, Propo-
sitions 6(II) and 3(II) are essentially identical to each other, and hence, the results of the
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single-disruption model is robust in the recurrent-disruption extension if λ1 � ε� 1. When
λ1 is very small, the impact of the recurrent nature of disruption is negligible due to tem-
poral discounting, and hence, the recurrence of disruption does not alter the qualitative
features of the optimal policy or the optimal return.

In contrast, we note qualitative differences between Propositions 3(I) and 6(I) for the
other regime ε� λ1 � 1. First, the threshold probability p∗ for the recurrent-disruption
model is larger than that of the single-disruption model (roughly) by a factor of (

√
ε)−1.

The intuitive reason for a high p∗ is that, in the case of recurrent disruption, the cost of
recovery is too high if p∗ is too small because a small p∗ entails frequent recovery. Second,
the probability of failure for the recurrent-disruption model is larger (roughly) by a factor
of ε−1; this follows from the fact that the threshold p∗ of recovery is much larger. Lastly,
the optimal expected loss |V ∗(0)| for the recurrent-disruption model is larger than |V (0)|
for the single-disruption model (roughly) by a factor of (

√
ε)−1; this follows from the higher

probability of failure for each epoch. We conclude that the efficacy of the optimal policy is
significantly worse for the recurrent-disruption model if ε� λ1 � 1.

5. CONCLUSIONS

History of technological advances shows that even successful firms may fail spectacularly
in the face of disruptive innovations. On the other hand, many firms have successfully
adapted to disruptive innovations by responding to the sign of technological change in a
timely manner. For example, in contrast to Kodak, Fujifilm responded to the decline of the
photographic film market by successfully diversifying its business in a timely manner [8].
This paper provides a theoretical model and analysis of a firm facing disruption accompanied
by weak signals and followed by failure that causes a colossal monetary loss. In the model,
the firm watches for the signals of disruption and updates its belief regarding whether
the disruption has already happened or not. The firm can invest capital to recover the
undisrupted state at any point in time. In particular, we have focused on the case in which
disruption is slow to happen.

We find that the optimal policy is to recover the undisrupted state when the probability
of disruption exceeds an optimally chosen threshold. In the single-disruption model, as long
as the signals of disruption are sufficiently weak, the optimal threshold is small; it is inversely
proportional to the cost of failure (Figure 1). However, the probability of eventual failure
is strongly sensitive to the arrival rate of disruption; the failure probability is close to 1
when the arrival rate of disruption is very low while it is close to 0 when the arrival rate
of disruption is very high (Figure 2). Thus, in an industry where disruptive innovations are
very slow to happen, incumbent firms following the optimal policy still fail with very high
likelihood even without irrational complacency.

If we incorporate the recurrent nature of disruption, qualitatively different features can
emerge: the optimal threshold probability is much larger than that of the single-disruption
model for moderate arrival rates of disruption (Figure 1), and, consequently, the probability
of failure is significantly larger.

Our results have practical implications for enterprises facing disruptive innovations. In
planning an adoption of a possibly disruptive technology, an incumbent firm must quantify
the size of the projected cost of failure and the arrival rate of technological disruption
because the qualitative features of the optimal return and the efficacy of the optimal policy
strongly depend on the relative sizes of k/w and λ1. Moreover, the adoption plan has to take
account of the fact that disruption is recurrent, especially if λ1 � k/w. Finally, although
our model has been motivated by the problem of disruptive technological innovations, it is
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also applicable to any business or economic situations in which sudden catastrophic failure
takes place with weak forewarning signals.

Our results also have an empirical implication regarding the statistical relationship
between the rate of failure in the face of a disruptive innovation and the arrival rate of
disruption. For instance, our results suggest that fewer firms survive disruptive innovations
in an industry in which disruption is extremely slow to happen.
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APPENDIX

Proof of Proposition 1: We closely follow the derivation of SDE in Section 22, [14]. Let p
denote the prior probability that the firm is in the disrupted state at time 0. The probability
measure conditional on the prior p can be expressed as follows:

Pp = p

∫ ∞

0
P

0,uλ2e
−λ2udu+ (1 − p)

∫ ∞

0

(∫ ∞

0
P

v,uλ2e
−λ2udu

)
λ1e

−λ1vdv,
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where

P
v,u(X ∈ ·) ≡ P(X ∈ ·|τ1 = v, τ2 = u)

is a shorthand notation for conditional probability measure given that the disruption takes place
at time v and the failure takes place at time v + u. Then from the Bayes rule,

Pt ≡ Pp(τ1 ≤ t|t < τ1 + τ2,Ft) =
Pp(τ1 ≤ t < τ1 + τ2|Ft)

Pp(t < τ1 + τ2|Ft)
=
N

D
,

where

N = p

∫ ∞

t

dP0,u

dP∞,u
(t,Xt)λ2e

−λ2udu+ (1 − p)

∫ t

0

(∫ ∞

t−v

dPv,u

dP∞,u
(t,Xt)λ2e

−λ2udu

)
λ1e

−λ1vdv

and

D = p

∫ ∞

t

dP0,u

dP∞,u
(t,Xt)λ2e

−λ2udu+ (1 − p)

∫ t

0

(∫ ∞

t−v

dPv,u

dP∞,u
(t,Xt)λ2e

−λ2udu

)
λ1e

−λ1vdv

+ (1 − p)

∫ ∞

t

(∫ ∞

0

dPv,u

dP∞,u
(t,Xt)λ2e

−λ2udu

)
λ1e

−λ1vdv.

We define

Zt ≡ exp

[
Xt −

1

2
t

]
,

for t > 0. Following the procedure from p. 309 of [14], we identify that

dPv,u

dP∞,u
(t,Xt) =

{
Zt/Zv if v ≤ t

1 if v > t
,

and we obtain

N = p

∫ ∞

t
Ztλ2e

−λ2udu+ (1 − p)

∫ t

0

(∫ ∞

t−v

Zt

Zv
λ2e

−λ2udu

)
λ1e

−λ1vdv,

D = N + (1 − p)

∫ ∞

t

(∫ ∞

0
λ2e

−λ2udu

)
λ1e

−λ1vdv = N + (1 − p)e−λ1t.

From the expression Pt = N/D, we obtain the posterior Pt as a functional of Xt, and we can derive
the SDE in Eq. (1) using Ito’s formula. �

Proof of Lemma 1: We introduce a random variable Y given by

Y ≡ χ{T<τ1+τ2}e
−rT (−k) + χ{T≥τ1+τ2}e

−r(τ1+τ2)(−w) (A.1)

so that VT (t, p) = E(t,p)[Y ]. Now we consider a stopping time δ such that t+ δ < T , that is, t+ δ
is an exit time from an interval contained within C. Then we can write

Y = χ{τ1+τ2<t+δ}Y + χ{τ1+τ2≥t+δ}Y.

Our goal is to express VT (t, p) in terms of E(t,p)[VT (t+ δ, Pt+δ)] to derive the differential equation
AVT (t, p) − pλ2w · e−rt = 0.
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One of the terms of E(t,p)[Y ] is

E(t,p)[χ{τ1+τ2<t+δ}Y ]

= E(t,p)
{
χ{τ1+τ2<t+δ}

[
χ{T<τ1+τ2}e

−rT (−k) + χ{T≥τ1+τ2}e
−r(τ1+τ2)(−w)

]}
.

If τ1 + τ2 < t+ δ, then T > τ1 + τ2 is automatically satisfied, so we have

E(t,p)[χ{τ1+τ2<t+δ}Y ]

= E(t,p)[χ{τ1+τ2<t+δ}e
−r(τ1+τ2)(−w)]

= −we−rtE(t,p)

[
p

∫ δ

0
e−ruλ2e

−λ2udu+ (1 − p)

∫ δ

0
e−rvλ1e

−λ1v
∫ δ−v

0
e−ruλ2e

−λ2udu dv

]

We note that

E(t,p)[χ{τ1+τ2<t+δ}Y ]

E(t,p)(δ)
→ −wpe−rtλ2 as δ → 0.

The other term of E(t,p)[Y ] is

E(t,p)[χ{τ1+τ2≥t+δ}Y ] = E(t,p)[E[χ{τ1+τ2≥t+δ}Y |Ft+δ]]

= E(t,p)[χ{τ1+τ2≥t+δ}E[Y |Ft+δ; τ1 + τ2 ≥ t+ δ]]

= E(t,p)[χ{τ1+τ2≥t+δ}VT (t+ δ, Pt+δ)].

In the last line of the equation above, the only dependence on τ1 and τ2 is in the factor
χ{τ1+τ2≥t+δ}; hence, we can take its expectation with respect to τ1 and τ2:

E[χ{τ1+τ2≥t+δ}|Pt = p] = E[(χ{τ1≤t} + χ{τ1>t})χ{τ1+τ2≥t+δ}|Pt = p].

The first term is

E[χ{τ1≤t}χ{τ1+τ2≥t+δ}|Pt = p] = p

∫ ∞

δ
λ2e

−λ2udu = pe−λ2δ,

and the second term is

E[χ{τ1>t}χ{τ1+τ2≥t+δ}|Pt = p]

= (1 − p)

(∫ δ

0
λ1e

−λ1v
∫ ∞

δ−v
λ2e

−λ2udu dv +

∫ ∞

δ
λ1e

−λ1v
∫ ∞

0
λ2e

−λ2udu dv

)

= (1 − p) − (1 − p)

∫ δ

0
λ1e

−λ1v
∫ δ−v

0
λ2e

−λ2udu dv.

Thus, we have

E(t,p)[χ{τ1+τ2≥t+δ}Y ]

= E(t,p)[VT (t+ δ, Pt+δ)]

+ E(t,p)

{[
p(e−λ2δ − 1) − (1 − p)

∫ δ

0
λ1e

−λ1v
∫ δ−v

0
λ2e

−λ2udu dv

]
VT (t+ δ, Pt+δ)

}
.
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We note that the second term above divided by E(t,p)[δ] converges to

−pλ2VT (t, p)

as δ → 0 because VT (t+ δ, Pt+δ) is a bounded function. Finally, collecting all the terms that

constitute VT (t, p) and subtracting E(t,p)[VT (t+ δ, Pt+δ)], we obtain

−(L − r)VT (t, p) = lim
δ→0

VT (t, p) − E(t,p)[VT (t+ δ, Pt+δ)]

E(t,p)[δ]
= −pλ2[w · e−rt + VT (t, p)].

Thus, AVT (t, p) − pλ2w · e−rt = 0 is satisfied. �

Proof of Proposition 2: (I) We first find a solution to Eq. (5) of the form V (t, p) = e−rtV (p)
where V (p) satisfies AV (p) − pλ2w = 0 for p < p∗. We separate V (·) into two parts: V0(·) and
V1(·), where V0(·) satisfies AV0(p) = 0 and V1(·) satisfies AV1(p) − pλ2w = 0. It is straightforward
to verify that

V1(p) = −w λ2(λ1 + rp)

(λ1 + r)(λ2 + r)
.

The equation AV0(p) = 0 can be re-expressed as follows:

1

2
p2(1 − p)2V ′′

0 (p) + [λ1(1 − p) − λ2p(1 − p)]V ′
0(p) − (r + λ2p)V0(p) = 0.

For convenience, we introduce a variable z ≡ p/(1 − p) and re-express the differential equation
above in terms of z and derivatives with respect to z as follows:

V ′′
0 (z) + 2

[
1

z + 1
+

(λ1 − λ2)

z
+
λ1

z2

]
V ′

0(z) − 2

[
r

z2
+

λ2

z(z + 1)

]
V0(z) = 0,

where V ′′
0 (z) ≡ d2V0(z)/dz

2 and V ′
0(z) ≡ dV0(z)/dz. To solve the differential equation, we use

13.1.35 and 13.1.37 of [1] by substituting

A = a = λ1 − λ2 − 1

2
+

√(
λ1 − λ2 − 1

2

)2

+ 2(λ1 + r),

b = 1 + 2

√(
λ1 − λ2 − 1

2

)2

+ 2(λ1 + r),

f(z) = ln(z + 1),

h(z) =
2λ1

z
,

and the solution is given by V0(z) = c · φ(z) for some constant c, where

φ(z) =
z−a(2λ1)

a

z + 1
U(a, b,

2λ1

z
) =

1

Γ(a) · (z + 1)

∫ ∞

0
e−uua−1

(
1 + u

z

2λ1

)b−a−1

du.

Here U(·, ·, ·) is the Kummer’s function (13.1 of [1]) that takes finite values as z → 0, and its integral
representation is given by 13.2.5 of [1].
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We re-expressing V1(·) as a function of z as

V1(p) = Ṽ1(z) = −wλ2[λ1 + rz/(z + 1)]

(λ1 + r)(λ2 + r)
,

so that we can express the candidate solution V (·) in terms of z as

V (p) = c · φ(z) + Ṽ1(z).

Eqs. (6) and (7) combined are equivalent to the following pair of equations:

c · φ(z∗) + Ṽ1(z
∗) = −k,

c · φ′(z∗) + Ṽ ′
1(z∗) = 0,

where z∗ ≡ p∗/(1 − p∗). These two conditions lead to the following equations:

c =
−k − Ṽ1(z

∗)
φ(z∗)

,

[−k − Ṽ1(z
∗)]φ′(z∗) − φ(z∗)[−k − Ṽ1(z

∗)]′ = 0. (A.2)

Because φ(·) is positive definite, Eq. (A.2) is equivalent to the following equation:

(
−k − Ṽ1(z

∗)
φ(z∗)

)′
= 0. (A.3)

For notational convenience, we introduce the following functions:

n(z) = (z + 1)(−k − Ṽ1(z))

d(z) =
1

Γ(a)

∫ ∞

0
e−uua−1

(
1 + u

z

2λ1

)b−a−1

du (A.4)

g(z) =
n(z)

d(z)
,

so that we can succinctly express Eq. (A.3) as

g′(z∗) = 0.

We first assume that c > 0, which is possible for sufficiently large values of z∗ as long as Eq. (11)
is satisfied. (We will justify the condition c > 0 later). We prove that there exists a unique solution
to g′(z) = 0 in the set G ≡ {z : g(z) > 0}. (Because we have n(z∗) > 0 from the assumption that
c > 0, we focus on the region of z in which n(z) > 0, or equivalently, g(z) > 0.) In particular, we
show that g(z) achieves its positive maximum at z∗ ∈ (0,∞) if the inequality (11) is satisfied. To
do so, it is sufficient to prove the following statements: (i) g(z) > 0 for sufficiently large z; (ii) g′(z)
changes its sign from positive to negative at most once in the set G; (iii) g′(z) > 0 for some z ∈ G;
and (iv) g(z) → 0 as z → ∞.

(i) Because of the inequality (11), n(z) is an increasing linear function, and hence, n(z) > 0 is
satisfied for sufficiently large z. The statement (i) follows because d(z) > 0 for all z ∈ [0,∞).

(ii) We first note that d′′(z) > 0 from the integral representation of Eq. (A.7) because b− a−
2 > 0 for all model parameters, which is straightforward to prove. Next we use the relation

[d(z)2g′(z)]′ = −n(z)d′′(z) < 0,

which implies that d(z)2g′(z) is a strictly decreasing function in the set G. Thus, g′(z) changes its
sign from positive to negative at most once in the set G.
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(iii) Suppose g(0) < 0. From the fact that n(z) is an increasing linear function of z, there is
some y > 0 such that g(z) < 0 for z < y and g(z) > 0 for z > 0. Hence, g′(z) > 0 for some z > y
by the mean value theorem.

If g(0) > 0, it is sufficient to prove that g′(0) > 0. From the definition of g(·), it is
straightforward to show that

g′(0) =
d(0)n′(0) − n(0)d′(0)

d(0)2
=
rk

λ1
> 0.

(iv) In the large-z limits,

d(z) =
Γ(b− 1)

Γ(a)

(
z

2λ1

)b−1−a

[1 + o(1)] ,

so g(z) approaches zero from above as z2+a−b in the limit z → ∞ because 2 + a− b < 0.
Now we come back to the question regarding the sign of c and show that Eq. (8) is satisfied

if and only if c > 0. We note that Eqs. (6), (7), and (8) lead to two conditions c · d′(z∗) = n′(z∗)
and c · d(z) > n(z) for z < z∗. Because d(·) is strictly convex and n(·) is linear, the two conditions
can be satisfied if and only if c > 0.

Finally, Eq. (10) translates into

A(−k) − pλ2w = k(r + pλ2) − pλ2w = pλ2(k − w) + kr < 0 for all p ≥ p∗. (A.5)

From Eq. (11), we know that k < w, so the condition (A.5) is equivalent to A(−k) − pλ2w < 0
at p = p∗. From conditions (8), (6), and (7), we have V (p) > −k for all p < p∗, V (p∗) = −k, and
V ′(p∗) = 0. Using the expression V (p) = cφ(p/(1 − p)) + V1(p) and the fact that d2V1(p)/dp

2 = 0,
we obtain the following:

lim
p↑p∗

[AV (p) − pλ2w] = lim
p↑p∗

{
1

2
p2(1 − p)2

d2

dp2

[
cφ

(
p

1 − p

)]
+ A(−k) − pλ2w

}
. (A.6)

From the expression of φ(·), we obtain its second derivative with respect to p as follows:

d2

dp2
φ(z) =

d2

dp2

[
1

z + 1
d(z)

]
= (z + 1)d′′(z) > 0.

By Eq. (A.6) and the fact that AV (p) − pλ2w = 0 for all p < p∗, we obtain

A(−k) − pλ2w = −1

2
p2(1 − p)2

d2

dp2

[
cφ

(
p

1 − p

)]
< 0 for p = p∗.

(II) Let V ∗(t, p) = supT VT (t, p) be the supremum return function and let C∗ = [0, p∗), where
p∗ is given by (I). We let T ∗ = inf{t > 0 : Pt �∈ C∗} denote the exit time of Pt from C∗. Our goal
is to prove that V ∗(t, p) = V (t, p) = VT∗(t, p). Because V ∗(t, p) is a bounded function, we can use
the same argument as in the proof of Proposition 7.1 in [6] to conclude that VT∗(t, p) = V (t, p).
By Theorem 10.4.1 (variational inequalities) of [13], statement (I) implies that V (t, p) ≥ V ∗(t, p).
From the fact that V ∗(t, p) ≥ VT∗(t, p), it follows that V ∗(t, p) = V (t, p). �

Proof of Lemma 2: We note that F (p) = E(0,p)[Y ], where Y is the random variable given by
Eq. (A.1) from the proof of Lemma 1 if we set r = 0, k = −1, and w = 0. Thus, by Lemma 1, F (p)
satisfies

LF (p) − pλ2F (p) = 0 for p < p∗,

along with the condition that F (p) ≤ 1 for p < p∗ and the boundary condition F (p∗) = 1. It follows
that F (p) has the same functional form as V0(p) defined in the proof of Proposition 2 except that
r = 0, and the statement of the Lemma follows. �
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Proof of Proposition 3: (I) We search for the optimal threshold p∗ of order O(ε). The search
is complete once we find such a solution because of the uniqueness of the optimal solution by
Proposition 2.

Using the notation adopted by the proof of Proposition 2, we obtain the following expressions
in the limit z/λ1 → 0:

d(z) = 1 +
z

λ1
(λ1 + r) +

1

2

(
z

λ1

)2

(λ1 + r)(λ2 + r) +O

(
z

λ1

)3

, (A.7)

from 13.5.2 of [1]. The equation for p∗ (or z∗) can be written as d(z∗)/d′(z∗) = n(z∗)/n′(z∗) from
the proof of Proposition 2, and its asymptotic form is given by

λ1

λ1 + r

[
1 +

z∗

λ1
(λ1 − λ2) +O

(
z∗

λ1

)2
]

=
λ1/(λ1 + r) − ε

1 − ε
+ z∗,

from which we obtain

z∗ = ε
r

λ2 + r

[
1 +O

(
ε

λ1

)]
,

and p∗ = z∗/(z∗ + 1) follows. By Proposition 2,

V (0) = cφ(0) + V1(0)

=
wλ2λ1

λ2 + r

[
1

λ1 + r
− ε

λ1
+O

(
ε

λ1

)2
]
− wλ2λ1

(λ2 + r)(λ1 + r)
= −k

[
1 +O

(
ε

λ1

)]
,

Here the asymptotic expression of φ(·) is derived from φ(z) = d(z)/(z + 1) and Eq. (A.7).
Finally, by Lemma 2,

F (0) =
ψ(0)

ψ(z∗)
= 1 − 1

2
λ1λ2

(
z∗

λ1

)2

+O

(
z∗

λ1

)3

,

from which Eq. (12) follows.
(II) Similarly to the proof of (I), we search for the optimal threshold p∗ of order O(ε). If p∗ (or

z∗) is of order O(ε), then z∗/λ1 is a large number in the limit that we consider. Thus, we inspect
the asymptotic behavior of d(z) in the limit z/λ1 → ∞:

d(z) =
Γ(b− 1)

Γ(a)

(
z

2λ1

)b−a−1

[1 + o(1)],

from 13.5.6-8 of [1]. The equation for p∗ (or z∗) can be written as d(z∗)/d′(z∗) = n(z∗)/n′(z∗)
from the proof of Proposition 2, and its asymptotic form is given by

z∗

b− a− 1
[1 + o(1)] =

λ1/(λ1 + r) − ε

1 − ε
+ z∗, (A.8)

from which we obtain Eq. (13) by p∗ = z∗/(z∗ + 1).
By Proposition 2,

cφ(0) =
wλ2λ1

λ2 + r

(
1

λ1 + r
− ε

λ1
+ (1 − ε)

z∗

λ1

)
Γ(a)

Γ(b− 1)

(
z∗

λ1

)a+1−b

[1 + o(1)].

Because a+ 2 − b < 0, we obtain the limiting behaviors (ε/λ1)
a+2−b → 0 as ε/λ1 → ∞, and hence,

we arrive at the asymptotic behavior of V (0) = cφ(0) + V1(0) = V1(0)[1 + o(1)].
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Finally, by Lemma 2,

F (0) =
ψ(0)

ψ(z∗)
=

Γ(a′)
Γ(b′ − 1)

(
z∗

λ1

)a′+1−b′

[1 + o(1)],

from which Eq. (14) follows. �

Proof of Proposition 4: We closely follow the proofs of Theorems 2.1 and 2.2 from Chapter II
of [18]. (I) Let π be an arbitrary policy that chooses to recover the undisrupted state at a series
of stopping times T1, T2, T3, . . ., where Tn is the recovery time for the n-th epoch. Let Wπ be the
return from the policy of recovery at stopping times T2, T3, . . ., measured at the time the new
technology for the second epoch emerges, that is, it is the return from the policy π starting from
time t2 = 0 in the second epoch. Then we have

Vπ(p) = Ep
{
χ{T1<τ1+τ2}e

−rT1 [−k +Wπ(0)] + χ{T1≥τ1+τ2}e
−r(τ1+τ2)(−w)

}
.

From the fact that Wπ(0) ≤ V ∗(0), we have the following inequalities:

Vπ(p) ≤ Ep
{
χ{T1<τ1+τ2}e

−rT1 [−k + V ∗(0)] + χ{T1≥τ1+τ2}e
−r(τ1+τ2)(−w)

}
= Ep[YT1 ] ≤ sup

T∈T
Ep[YT ].

The inequality above implies that V ∗(p) ≤ supT∈T E
p[YT ]. It remains to prove the opposite

inequality.
From Proposition 2, there exists T ∗ ∈ T such that Ep[YT∗ ] = supT∈T E

p[YT ] because V ∗(0)
is simply a deterministic constant. Let π be a particular policy such that the recovery time for
the first epoch is T ∗ and the subsequent recovery times are such that Wπ(0) ≥ V ∗(0) − δ for some
arbitrarily small number δ > 0. Then we obtain

Vπ(p) ≥ Ep{χ{T∗<τ1+τ2}e
−rT∗

[−k + V ∗(0)] + χ{T∗≥τ1+τ2}e
−r(τ1+τ2)(−w)}

− δEp{χ{T∗<τ1+τ2} exp[−rT ∗]}.

From the fact that V ∗(p) ≥ Vπ(p) and that δ is arbitrary, we obtain V ∗(p) ≥ supT∈T E
p[YT ].

(II) We can re-write the optimality condition for V ∗(p) as follows:

V ∗(p) = Ep[χ{T∗<τ1+τ2}e
−rT∗

(−k) + χ{T∗≥τ1+τ2}e
−r(τ1+τ2)(−w)]

+ Ep{χ{T∗<τ1+τ2} exp[−r(T ∗ + e)]}V ∗(0). (A.9)

By the argument of the proof of Proposition 2, the stopping time T ∗, if it exists, is char-
acterized by an upper threshold p∗ with respect to the posterior Pt; if p < p∗, then we have
Ep{χ{T∗<τ1+τ2} exp[−rT ∗]} ≡ αp ∈ (0, 1). The term V ∗(0) in Eq. (A.9) can be replaced by the
following:

V ∗(0) = E0[χ{T∗<τ1+τ2}e
−rT∗

(−k) + χ{T∗≥τ1+τ2}e
−r(τ1+τ2)(−w)] + α0V

∗(0).

Repeating the substitution n times, we can identify V ∗(p) as the return from the policy of recov-
ering each epoch at T ∗ for n times and getting a final reward of V ∗(0) at the end, which is
discounted by the factor of αpα

n−1
0 . Thus, in the limit n→ ∞, the policy of recovery at T ∗

yields V ∗(p). �
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Proof of Proposition 5: Let x represent the candidate for the value of V ∗(0) that satisfies

V ∗(0) = E0
{
χ{T∗<τ1+τ2}e

−rT∗ [
−k + V ∗(0)

]
+ χ{T∗≥τ1+τ2}e

−r(τ1+τ2)(−w)
}
, (A.10)

where T ∗ satisfies Ep[YT∗ ] = supT∈T E
p[YT ] as in Proposition 4 (II). Define

f(x) ≡ sup
T∈T

E0[χ{T<τ1+τ2}e
−rT∗

(−k + x) + χ{T≥τ1+τ2}e
−r(τ1+τ2)(−w)],

then the equation for V ∗(0) reduces to x = f(x). (It is straightforward to verify that f(·) is con-
tinuous by Proposition 2). It is obvious that f(0) < 0, so x > f(x) for x = 0. Moreover, by the

envelope theorem, df(x)/dx = E0[χ{T<τ1+τ2}e
−rT∗

] < 1, and hence, the solution to x = f(x) is
unique if it exists.

For the optimal threshold p∗ ∈ (0, 1) to exist such that Ep[YT∗ ] = supT∈T Ep[YT ] for T ∗ =
inf{t > 0 : Pt �∈ [0, p∗)}, the following condition must be satisfied:

w
λ2

(λ2 + r)
> k − V ∗(0),

which is derived from Eq. (11). It implies that p∗ = 1 (the optimal policy is to never recover
the undisrupted state) if −V ∗(0) = −k + wλ2/(λ2 + r). Hence, if x = k − wλ2/(λ2 + r), which is
negative by the assumption Eq. (11), we obtain

f(x) = E0[e−r(τ1+τ2)(−w)] = (−w)
λ2λ1

(λ1 + r)(λ2 + r)
.

For sufficiently small values of λ1, the above value is greater than x because x < 0. Thus, we obtain
x > f(x) for x = 0 and x < f(x) for x = k − wλ2/(λ2 + r) < 0, and it follows that there exists a
unique solution to x = f(x) for some x between k − wλ2/(λ2 + r) and 0. �

Proof of Proposition 6: For notational convenience, we introduce a new parameter:

ζ =
|V ∗(0) − k|(λ2 + r)

|w|λ2
.

(I) We first note that Proposition 2 exactly applies to the optimal solution V ∗(p) except that k is
replaced by k − V ∗(0). Our goal is to find the optimal threshold p∗ or z∗ = p∗/(1 − p∗). In order
to find the solution, it is useful to make an assumptions about the solution and confirm that these
assumptions are satisfied by the solution obtained. Hence, we assume that z∗/λ1 	 1 and check
to see if there exists a solution V ∗(0) of Eq. (A.10) that satisfies this condition. Once we find one
solution V ∗(0), because of the uniqueness of the solution to Eq. (A.10), there would be no other
solution.

The equation for the optimal threshold z∗ can be obtained by a similar procedure to that of
the proof of Proposition 2. Define

m(z) =
[
−k + V ∗(0)

]
(z + 1) + w

λ2[λ1(z + 1) + rz]

(λ1 + r)(λ2 + r)
,

which is the same as n(z) in proof of Proposition 2 except that k is replaced by k − V ∗(0). By the
same argument used in the proof of Proposition 2, the optimal threshold is given as the solution to
d(z∗)/d′(z∗) = m(z∗)/m′(z∗), where d(z) is defined in the proof of Proposition 2. The small-z/λ1

expansion of d(z) is exactly given by Eq. (A.7). From the equation d(z∗)/d′(z∗) = m(z∗)/m′(z∗),
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we obtain

z∗

λ1
=

ζ

λ1

r

(r + λ2)(1 − ζ)
+O

(
ζ

λ1

)2

.

From the equation for V ∗(0) in (A.10), we have

V ∗(0) =
m(z∗)
d(z∗)

d(0) − w
λ2λ1

(λ1 + r)(λ2 + r)
=
[
−k + V ∗(0)

] [
1 − z∗

r

λ1
+O

(
ζ

λ1

)2
]
,

from which we obtain

− V ∗(0)r

[
z∗

λ1
+O

(
ζ

λ1

)2
]

= k. (A.11)

Hence, k/|V ∗(0)| is of order O(ζ/λ1). From the definition of ζ and the fact that k = V ∗(0)O(ζ/λ1),
Eq. (A.11) is re-expressed as

{
[V ∗(0)]2 − k

λ1λ2

r2
w

}[
1 +O

(
ζ

λ1

)]
= 0,

and we obtain

V ∗(0) = −
√
wkλ1λ2

r
·
[
1 +O

(
ζ

λ1

)]
.

We can confirm that

ζ

λ1
=

1

r

√
kλ2

wλ1

(λ2 + r)

λ2

[
1 +O

(√
ε

λ1

)]
,

and hence, ζ/λ1 = O(
√
ε/λ1), which is a small parameter. Because z∗/λ1 = O(ζ/λ1), our

assumption z∗/λ1 	 1 is consistent with the solution of V ∗(0) that we obtained.
Finally, the probability of eventual failure can be obtained from Lemma 2 as follows:

1 − F (0) =
λ2

2λ1
(z∗)2

[
1 +O

(
ζ

λ1

)]
.

(II) Following the same argument as in the proof (I), we first make an assumption about the
solution V ∗(0) and justify it later. Assume that z∗/λ1 � 1 for the moment. By the definition of ζ
and from the fact that λ1 	 ε, we also have λ1 	 ζ irrespective of the magnitude of V ∗(0). Then
we can exactly follow the proof of Proposition 3(II) except that ε is replaced by ζ. From Eq. (A.8),
we obtain

z∗ =
b− a− 1

b− a− 2
· ζ − λ1/(λ1 + r)

1 − ζ
[1 + o(1)] =

b− a− 1

b− a− 2
· ζ

1 − ζ
[1 + o(1)] .

Thus, z∗ is at least as large as O(ζ), and the assumption z∗/λ1 � 1 is justified.
Now we inspect the magnitude of V ∗(0). Using the asymptotic property of φ(·) and the same

argument as in the proof of Proposition 3(II), we obtain Eq. (16). Because V ∗(0)/k = O(λ1/ε) 	 1,
we have ζ = ε · (1 + o(1)).

Finally, from the fact that both ζ and z∗ are of order O(ε) and using Lemma 2, we obtain
Eq. (17). �
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