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SUMMARY
This paper suggests an integrated navigation system for an unmanned ground vehicle operating in an
unknown cluttered environment. The navigator supports time-critical mobility making it possible for
a mobile robot to reach a target from the first attempt without the need for a dedicated exploration and
mapping stage. The robot only uses necessary and sufficient egocentric local sensory data collected
on its way to the target. The construction of the navigation structure revolves around key properties
of the harmonic potential field approach to motion planning. The robot’s trajectory is well-behaved
and direct-to-the-goal. It contains only the minimum number of detours necessary to accommodate
the sensory data and maintain the robot in a safe, goal-oriented state. The navigation structure is
developed and its theoretical basis is explained. Extensive experimental validation of its properties
and performance is carried-out using the X80 robotic platform.

KEYWORDS: Mobile robots; Autonomous robots; Navigation control; UGVs; Unmanned Ground
Vehicles; Time-critical mobility; Mobility generation; Motion planning; Joint planning and control;
Joint actuation and mapping.

List of symbols

HPF Harmonic potential field
TCM Time critical mobility
G-type Geno-type
P-type Pheno-type
V (X ) Harmonic potential
X , Ẋ (X ) Agent actual position and velocity vectors
Ẋr (X ) Agent reference velocity
λ Orientation vector of agent
XT Target position
E (X ) Guidance field
γX 0(X ) Hypothesis plan
� Operation perimeter
� Actual usable space
�̄ Believed to be usable known space
� Common components between actual and belief usable space (� = � ∩ �̄)
O Hazardous regions
Ō Believed to be hazardous regions
Os Safety events detected by the sensors at a certain instant in time
Oh Event retested in the on-demand, safety-based map (Oh ⊇ Os)
U () Control

* Corresponding author. E-mail: masoud@kfupm.edu.sa

https://doi.org/10.1017/S0263574718000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000401


1302 Sensor-based, time-critical mobility of autonomous robots in cluttered spaces

�r Region robot occupies at time t
�s Region sensed by robot at time t
P() Functional that measures the energy a guidance policy consumes
∇ Gradient operator
∇· Divergence operator
θ Agent orientation angle in 2D space
νc Tangential control speed of the robot in 2D space
ωc Angular control speed of the robot in 2D space
ν Tangential velocity of the robot in 2D space
ω Angular speed of the robot in 2D space
ωR, ωL Right and left wheel speeds of a differential drive robot
ωh, φ Driving wheel speed and steering angle of a car-like robot
�θ Angle between actual robot velocity and desired robot velocity in 2D space
ηd , ηc Cosine and sine �θ , respectively
S(t) Distance measurement signal from ultrasonic sensor
DSE(i, j) Discrete representation array covering � (i and j are the discrete space

indices)
� Spatial resolution of DSE(i, j)

1. Introduction
There is a growing interest in developing robotics aids to help first responders in firsthand evaluation
of incidents.1−3 The information obtained by such systems is critical and serves as the primary link
in a chain of information exchange that leads to making important decisions. To be useful, these
aids have to provide the human operator with situational awareness in a timely and constrained
manner. There are other strict and challenging properties this type of robots needs to satisfy.4 In a first
responder situation, a mobile robot should be able to move to a designated area in an unstructured and
unknown environment. Robot deployment cannot always rely on accurate maps since they are often
not available. The robot should be able to function under zero a priori knowledge without engaging in
time-consuming activities reserved for exploration and mapping only. The entire robot’s effort should
be dedicated to reaching the zone of interest using the necessary and sufficient information its sensors
pick-up while it is heading to the target. The robot should also be able to accommodate any available
a priori information in its database. This information is used to accelerate convergence and enhance
performance. Other requirements complicate the deployment of such robots. For example, a robot
of this type must have an agile and robust behavior that is communication-aware. First responders
are always risk averse. They tolerate no technology that increases the level of mission uncertainty.
Therefore, constraints on the behavior of the robot, which include a guarantee that it can reach the target
in a relatively intuitive and predictable manner, are necessary. A first responder environment is usually
hazardous. The probability of damage, even loss, is high. Therefore, a first responder robot should not
be too expensive. The above requirements represent a challenge not only to the procedures of using
these devices, but also to the existing paradigms for autonomous mobility generation themselves.

Mobility is a composite activity that emerges from the networking of basis activity modules
(Fig. 1). One of these modules is the sensing module, which is concerned with the acquisition of
environment data.5 The representation module creates a map by processing and structuring this data.6,7

A localization module8 establishes a correspondence between the information available at the agent’s
current location on the map with the actual information that exists at its location in the environment.
The guidance module provides the agent with the direction along which it has to proceed (a know what
to do signal) in order to reach the target.9,10 The control module11,12 converts the reference direction
into a control signal that is fed to the agent’s actuators (a know how to do signal). The norm seems to
study a linear stack of these modules (Fig. 2) assuming that their integration in one mobility system
is possible by individually optimizing the performance of each component.

The assumption that system-level reliability is achievable by making the components individually
reliable is questionable, to say the least. It is a well-known fact that reliable systems are constructible
from unreliable components13,14 and vice versa. There is a growing concern that a stacked, modularized
view of mobility can at best lead to an overly complicated system with modest performance. A mobility

https://doi.org/10.1017/S0263574718000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000401


Sensor-based, time-critical mobility of autonomous robots in cluttered spaces 1303

Fig. 1. Networked components of a mobility structure.

Fig. 2. Linearly stacked mobility modules.

system is more than its components. It also consists of a host structure to network its parts properly.
More importantly, the components must be interconditioned to enable the modules to operate as a
collective within the confines of the host structure. This leads to an overly complex joint design
problem. Many guidelines exist in the literature for constructing mobility structures.15−18 Despite the
intensive work on the integration of mobility modules, many issues relating to how they function are
open areas of research.

Algorithmic, sensor-based guidance procedures (e.g., the bug algorithm19,20) are usually prime
candidates when information about the environment is intermittent and scarce. They are provably
correct, model-free and provide directly usable information in the local reference frame of the robot.
However, many obstacles prevent their use in a practical situation. For example, the bug algorithm
requires a robot to move tangentially to an obstacle’s surface. Most realistic obstacles have rough
surfaces and their tangent may not exist. While the bug procedure can provide provably correct
guidance performance in two dimensional (2D) spaces, there are no guarantees that the kinodynamic
path the controller generates is provably correct. Most importantly, the trajectories are far from being
practical, let alone close to optimal.

The alternative to algorithmic sensor-based methods is model-based techniques. To the best of the
authors’ knowledge existing model-based techniques, adopt the linearly stacked scheme in connecting
the mobility modules (Fig. 2). In particular, they seem to dissociate map-building activities from goal-
oriented mobility. In time critical mobility (TCM), dedicating time exclusively to exploration and map
building is not admissible. These methods attempt to objectify the navigation process in two ways.
First, they assume a world coordinate system that a robot has to relate its situation to. They also
seem to consider an accurate and full spatial characterization of the environment as a major factor in
the ability of an agent to project a successful mobility action. In a first responder situation, it is not
possible to accurately and (or) fully spatially characterize the components of an environment. It is
also difficult to transform reliably data back and forth between the local coordinates of the robot and
the global coordinates of the representation.

The trend of developing theoretical frameworks that depart from the linear stack approach and
jointly examine the construction of more than one mobility module is growing. Examples of this
are: simultaneous localization and mapping,21 direct guidance from sensory (observation) space,22

joint guidance and control.23 To the best of the authors’ knowledge, a theoretical framework that
jointly tackles all the modules needed for providing an autonomous agent with mobility does not
exist. Putting together a complete mobility system seems to be mainly dependent on the experience
of the designer.24,25

While a formal procedure for designing mobility systems seems currently out of reach, this work
focus on the role the planning module26−32 plays in order to provide an answer on how to tackle
TCM. Although a planner is only a component of a mobility system, it is the provider of the reference
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Fig. 3. Planning as a reference for mobility.

Fig. 4. Harmonic potential field-based guidance policy.

motion policy (Fig. 3) an agent needs to realize in order to function. If the mobility system is working
properly, the behavior of the agent will closely follow that reference. To support the construction of
a mobility system for a TCM, a planner must also have the ability to accommodate the manner in
which the other mobility modules function. In other words, there exist means of sensing, localization,
mapping and control which when used in the mobility system, the agent projects the desired behavior
provided by the planner. As shown in this paper, harmonic potential field-based (HPFs) planners33,34

are capable of playing this role.
An HPF can efficiently host the sensing, representation, guidance and control modules to create

an integrated, servo-level navigation action that suits time-critical missions. Experiments clearly
demonstrate a promising ability of the suggested HPF-based mobility system to utilize successfully,
virtually unprocessed, local, egocentric data even from difficult-to-use sensors such as ultrasonic
sensors.35 HPF-based planning techniques are efficient, versatile and provably correct means for
inducing context-sensitive, goal-oriented, intelligent and constrained behavior in an autonomous
agent. Despite their deep mathematical structure36 and strong relation to connectionist artificial
intelligence (AI) and hybrid AI,37−39 they are easily understood using simple physical processes
such as fluid flow,40−42 electric current movement43,44 and mechanical stress propagation in solids.45

A basic setting of the HPF approach was suggested by Connolly et al.46 who solved a Laplace
boundary value problem in the Dirichlet setting. There are different boundary conditions one may
use to generate the guidance field.47 Each one of these settings has distinct topological properties.48

Boundary conditions function to factor-in the context into the behavior of the agent. HPF-based
planners are better understood in the context of hybrid, partial differential equation – ordinary
differential equation systems (PDE-ODE).49 The PDE part of the system functions to create a dense
family of potential guidance plans (Fig. 4) for any situation the agent may be in (guidance policy).
On the other hand, the ODE component of the system has the much-limited role of selecting and
executing one of these plans. Harmonic functions have many useful properties for motion planning.
Most notably, a harmonic potential is also a Morse function50,51 and a general form of the potential
field-based navigation function suggested in ref. [52]. The HPF approach can operate in a model-
based and (or) sensor-based mode. It can also accommodate a variety of motion constraints. Hybrid
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Fig. 5. Evolution of an HPF-based guidance policy.

PDE-ODE systems operate in conformity with the artificial life (AL) approach to behavior synthesis.53

The process of morphogenesis54 is responsible for inducing a mission-compliant guidance structure
on the substrate of the vector guidance elements that is covering situation space (Fig. 5).

The HPF approach is an excellent paradigm for constructing motion-planning techniques. For
example, the HPF-based technique in ref. [55] makes it possible to jointly incorporate directional
constraints along with regional avoidance constraints in a provably correct manner to plan a path to a
target point. The variant of the HPF in ref. [56] provides a provably correct procedure for taking into
consideration inherent ambiguities that prevent the partitioning of an environment into admissible
and forbidden regions. The HPF approach has the ability to plan motion on discrete graphs.57 It
can also generate planning procedures that operate in a communication-aware mode.58 Experimental
assessment of the approach reveals that it is well-suited for guiding autonomous agents in challenging
real-life terrains.59 It demonstrates excellent ability to interface with other components of an integrated
navigation system.60 It is also extendable, in a provably correct manner, to the case of active intelligent
targets.61 There is a wide spectrum of techniques for computing a harmonic potential. Some of the
major numerical approaches for generating an HPF are the finite difference methods,62 the finite
element method 63 and the boundary element method (BEM). BEM is the fastest and can generate a
continuous, 2D harmonic potential in real time (a few milliseconds).64 Hardware computational means
of HPF do exist, for example, HPF-based neural nets.65,66 In addition, FPGA-based computational
means67 can generate an HPF on a 50 × 50 grid in less than 100 μs. Analog VLSI’s,68−71 which in
case of memristors,72,73 have the ability to generate an HPF in a fraction of a microsecond.

This paper describes the construction of a reliable and inexpensive servo-level mobility system
that is built around the properties of the HPF planning paradigm and suits time-sensitive mobility. A
safety-based representation of the environment74 is used that intertwines sensory data collection with
goal-oriented motion. The system is able to steer a mobile robot to a specified target along an obstacle-
free path in a fully unknown environment. It functions to keep the robot in a safe, goal-oriented state
and bypass the need to engage in a phase that is exclusively dedicated to exploration and mapping. The
work demonstrates that time critical-mobility, which suits a first responder situation, is possible from
the first attempt using impoverished egocentric sensing. An affordable robotics platform, the X80, is
used to extensively test the suggested mobility system. The test experiments use low-end sensing and
localization. Online data is collected using only one ultrasonic sensor (the front sensor of the X80).
Naïve dead-reckoning is used for localization, where the pose of the robot is computed by directly
integrating its linear and angular speeds. All processing is carried-out on-board a host computer.
Sensory and control signals are exchanged in real time between the host and the X80 platform using
a wireless communication link.

Problem setting is contained in Section 2. Section 3 discusses the belief-based, time-sensitive
mobility paradigm. Section 4 presents the representation, guidance and control modules used in
constructing the TCM mobility system along with the procedure used to integrate them into one
system. Section 5 provides a comprehensive set of sensor-based experiments carried out on the X80
UGV platform to demonstrate the capabilities of the approach. Conclusions are placed in Section 6.

2. Problem Setting
In the suggested mobility scenario, an emergency crew arriving at a certain location would only
provide a mobile robot with the perimeter of operation (�) and the target location in this perimeter
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Fig. 6. Differential drive (A) and car-like (B) robots.

both specified with respect to robots axis at its initial location. The mobility system is expected to
guarantee that the robot will safely reach the designated location in a timely and constrained manner.
The type of unmanned ground vehicles (UGVs) considered is described by⎡
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where x and y are the center of the robot in the local coordinates, θ is the orientation of the robot,
ν and ω are the tangential and angular speeds of the robot, respectively and U is the control signal
vector. The model in Eq. (1) accommodates a wide class of UGVs including the two important types
(Fig. 6): the differential drive robot (2) and the car-like robot (3) described by the system equations:⎡

⎣ẋ
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where ωL and ωR are the right- and left-wheel speeds of the differential drive robot, W is its width
and r is the wheels’ radius, ωh is the speed of the driving wheel of the car-like robot, φ is the steering
angle and L is the distance between the center of the driving wheels axis and the steering wheel.

The TCM system is required to synthesize the mobility policy (4)

Such that U (X, XT , �̄(t )) X ∈ �

lim
t→∞ X (t ) → X T ,

� ⊃ �r(t ) ∀t
and ‖γX o‖ < K · ‖X (0) − XT ‖ ,

(4)

where �r(t ) is the region occupied by the robot at time t, � is the actual unknown free space contained
in the perimeter, �̄ is the free space registered in the map of the robot at time t, K is a finite positive
number that is expected not to be much larger than unity and γX o is the trajectory (hypothesis plan)
of the agent from an initial starting point X0 to the target XT (5)

γX 0 = {X :
dγX 0

dt
= Ẋ (X (t )), γX 0(X (t0)) = X0}. (5)

3. On-Demand, Belief-Based, Time-Sensitive Mobility
While serious challenges face objective model-based techniques when dealing with a first responder
situation, subjective belief-based methods (Fig. 7) have a reasonable ability to handle the difficulties
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Fig. 7. Belief-based causality.

Fig. 8. Necessary and sufficient sensing relative to a mobility policy.

caused by the scarcity of information such a situation impose. This approach treats a representation
(a subjective map) as a self-referential belief that evolves under the influence of the sensory data
collected during mission execution. What guides the robot’s actions is a hypothesis plan that is a
member of a dense field of plans (guidance policy, Fig. 4) that is constructed given the belief the
agent has about its situation. By design, the guidance policy guarantees that at any location in the
space which the agent believe is capable of supporting motion, there exists a hypothesis plan to take
the robot to the target. If at a certain point in space the sensory feedback falsifies the hypothesis plan,
the agent switches to another hypothesis plan that will move it from its current location in space to
the target. A belief-based mobility system need only maintain continuity of action toward the goal
and ensure that the agent is always in a state where the components of the environment do not inhibit
its ability to function. Any environment component that does not adversely affect the ability of the
robot to act is considered as a do not care component whose presence, let alone geometry, need not
be factored in robot mobility. Enforcing the above two requirements enables an agent to carryout its
mission even if the environment in which it is operating is initially unknown.

Dedicating too much effort and resources to accurate characterization of the spatial confines of the
environment components (e.g., hazards, obstacles, etc.) is most probably the cause of many mobility
artifacts. In spatial navigation, task-centered safety, not whole domain geometry, is the enabler of
mobility. In the absence of information, space should be optimistically looked-at as a resource usable
in its entirety for supporting mobility. Mapping has to proceed in a safety-centered and on-demand
manner relative to the interim motion policy governing the agent’s behavior. The belief-based approach
to mobility acquires and process only the subset of environmental information needed to test the
validity of the hypothesis plan of action adopted by the robot. It is desirable that this set be necessary
and sufficient to carry out the task in an acceptable manner. Necessary and sufficient information
is concentrated around the hypothetical trajectory the robot attempts to move along to the target.
Intertwining goal-oriented actuation with sensing (Fig. 8) significantly reduces the requirement from
that of registering all components of space to registering only the local components surrounding the
1D trajectory of the robot (1D sensing). This subset of space that is cooperatively generated because
of interaction between actuation and sensing contains the necessary and sufficient information to
carryout the job, given the agent’s initial motion policy. As can be seen from Fig. 8, the subset of
information collected by the agent on its way to the target is usually sparse. It could even be the
empty set if the initial hypothesis plan that is constructed using zero knowledge of the components
of the environment happens to lay a safe path to the target. It ought to be mentioned that the above
deviates from the current mindset in navigation that considers 3D (or at least 2D) sensing essential
for attaining navigation competence.85

Considering a plan false depends on the online sensory feedback degrading confidence in the
safety of the location that the plan will lead the robot toward. If that happens, the potentially unsafe

https://doi.org/10.1017/S0263574718000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000401


1308 Sensor-based, time-critical mobility of autonomous robots in cluttered spaces

Fig. 9. World coordinates vs. subjective, robot-centered coordinates.

location is marked as a blocked region in the representation. The blocking causes reduction in the
confidence of the region’s local neighborhood to support motion. Consequently, the updated motion
policy discourages motion in these regions by steering the agent as far as possible from the blocked
zones.

The subset of space that the guidance policy intends to direct the robot through is assessed using the
local, egocentric sensor field of the robot. Timely assessment of that region requires either relaxing the
accuracy of the estimates or utilizing specialized fast hardware to produce high-precision estimates
in a timely manner. Since hardware affordability is an issue, the latter is not an option. Making the
robot block any zone that generates a reasonable level of suspicion of being unsafe is a simple and
effective way of achieving this objective. It is faster and more reliable than attempting to determine
accurately the boundary of the unsafe regions. While conservatively using the sensory data to assess
the safety of a location may cause the loss of potentially usable safe space, it highly enhances the
robot’s safety and significantly reduces the amount of computations. It also enables the utilization of
inexpensive local sensing (e.g., ultrasonic sensing) in generating practical robot mobility. Successful
mobility only requires that the sensor interpretation process does not falsely place the agent under
the belief that it is surrounded by hazard and isolated from the target. In other words, if �̄ is the safe
space that the robot believes it can move through and � is the actual space that the robot can move
through, these spaces need only to satisfy the conditions (6)

� = � ∩ �̄

XT ∈ �
(6)

and � is a connected region.
This is by no means a restrictive assumption since one may initially select �̄ as the whole perimeter

set (�) in which the robot may operate. Experiments show that losing the ability to reach the target due
to the accumulation of false positive hazardous space is unlikely to happen even if the robot initially
has no information about its content. In the unlikely event that this happens, simple countermeasures,
e.g., resetting �̄ to � , are enough to rectify the problem.

Another issue related to subjectivity is the construction of a reference coordinate system for logging
the sensory data and indexing the components of the representation. In a first responder situation,
the environment is unlikely to support the construction of a reasonably reliable global, reference
coordinate system. The environment is also expected to be GPS-denied and (or) RF-challenged,
preventing localization through radio navigation. The only feasible option in this case is for the robot
to operate in a self-referential coordinate system (Fig. 9). The location of the agent from which it starts
to explore a certain region in space is selected as the origin of the subjective coordinate system. The
principal axis of the robot may be selected as one axis of the coordinate system (the positive x-axis),
while the other axis is selected to form a right-hand orthogonal coordinate system. The subjective,
self-referential frame of reference makes it possible to synthesize action and log sensory data directly
in the local coordinates of the robot bypassing the need to do any transformation.
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Fig. 10. On-demand, mobility-dependant and safety-based representation.

It is clear that the suggested mapping procedure and goal-oriented mobility are interrelated. The
initial policy of action, that is based on the agent’s initial belief of what the environment contains,
determines how much sensing and computation are needed to get the job done. This interrelation gives
rise to the concept of on-demand, safety-based mapping (Fig. 10). As seen in Fig. 8, if by chance the
agent starts motion from a position where the trajectory assigned by the actuation policy is feasible,
the sensors will record no safety-related events. Hence, there is no need for data processing and action
adjustment. The agent will reach the target with its initial belief and actuation policy unadjusted.
The interconnection between sensing and belief-based goal-oriented mobility can guarantee that a
potentially reachable target is attainable. It also uses the necessary and sufficient information for doing
so given the initial belief of the agent. This, in turn, means that the adjustments to the actuation policy
are necessary and sufficient for executing the task.

To support the above, the actuation module must generate a whole-domain actuation policy
providing a control command for every possible point covered by the representation. This policy
has to be optimal, in some sense, given the amount of information that is initially available to the
agent. For example, when no information is available, the agent assumes that the perimeter (�) is
fully usable for navigation. The actuation policy will drive the robot to the target along a straight line.
The disruption to the actuation policy due to the accommodation of newly discovered environment
components has to be kept to the minimum needed to preserve agent’s safety and its ability to continue
seeking the goal. The ability to operate in this manner enables one to make the statement that the effort
the robot projects to reach the target is optimal, given the initial information. Requiring minimum
disruption to the actuation policy by the sensory data is a key factor in solving important problems
facing the sensor-based operation of a mobile robot. It adds a strong element of predictability to
mobility in unknown spaces, an issue that is crucial in a first responder situation.

Restricting the data intake of the mobility system to that provided by impoverished sensing does
result in a system level problem. The cause of this problem is the incompatibility of the nature of the
sensors with the nature of the actuators. The output of an impoverished sensor is always noisy and
intermittent (undefined on random time intervals). On the other hand, the actuation signal should be
well-behaved and available all the time (Fig. 11). Treating a representation as an evolving, whole-
domain belief that is converted into whole-domain guidance by the HPF approach creates a strong
buffer between sensing and actuation and bypasses this problem.

4. Mobility System Components
This section presents the mapping, guidance and control components used to build the TCM system.
The presentation emphasizes the collective and distributed nature in which the agent maintains a safe,
goal-oriented state.

4.1. On-demand, safety-based mapping
On-demand mapping makes use of the fact that if an agent is always in a goal-oriented state, not all
the content of the environment is relevant for executing the mission. The only components that matter
are those that inhibit the execution of the hypothesis plans the agent selects from the motion policy.
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Fig. 11. Conflicting nature of sensing and actuation.

Fig. 12. On-demand, safety-based sensing.

The motion policy need only guarantee the agent’s safety and continuity of action given the belief of
what the environment contents are. Sensory feedback continuously and locally assesses the validity
of the selected hypothesis plan. The sensor cover must contain the region that the agent is going to
occupy in the immediate future (Fig. 12). Whenever the validity of a hypothesis plan is in question,
the offending environment component is mapped into the belief-based safety map. The map is then
processed to create a motion policy that would transfer the agent to another hypothesis plan whose
deficiency is still unconfirmed. The successful testing of a hypothesis plan in a manner that allows
the agent to recover from a possible safety event depends on the ability to sense the region where the
plan will drive the robot toward in the immediate future. Reasonably, accurate determination of this
region is not difficult if the agent knows its current state and the action that it is going to assume in
the near future. The environment components within the sensory zone that are identified as inhibitors
of mobility are considered necessary information that is added to the evolving representation. Along
with focusing sensory activities on the region that the robot is going to occupy in the near future,
the system conservatively registers the hazardous components of the environment in that region if
they exist. The following explains in more details the construction of the on-demand, safety-centered
representation.

Let �r (X (t )) be the region which the robot occupies at time t and �s(X (t )) be the region covered
by the sensors of the robot at time t . Let O be the region at which the contents of the environment
inhibit the operation of the robot and Os(t) the unsafe regions detected by the sensors at time t. Also,
let Ō be the subset of space the representation marks as unsafe. Notice that this set can be the empty
set if the robot has no initial information about the environment. It is assumed that a reasonably
accurate estimate of the immediate future space which the agent is going to occupy (�r (X (t + �T )))
is possible using the mobility policy of the agent and its state. It is necessary and sufficient that the
sensors of the robot cover that zone (7)

�s(X (t )) ⊇ �r (X (t + �T )). (7)

The safety representation is constructed as follows (8): let

Os(t ) = O ∩ �s(X (t )). (8)
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Fig. 13. Safety-sensitive guidance – HPF Dirichlet setting.

Depending on the level of confidence needed to exclude hazardous region, construct an enlarged
region (Oh(t)) that contains Os(t) (9)

Oh(t ) ⊇ Os(t ). (9)

Finally, add the enlarged region to the safety representation (10)

Ō(t + �T ) = Ō(t ) ∪ Oh(t ). (10)

4.2. The HPF-based guidance module
The HPF planner in the Dirichlet setting is selected for generating the goal-seeking guidance action
for the mobility system. The generating BVP is (11)

solve : ∇2V (X ) ≡ 0 X ∈ �

subject to : V (X ) = 1 at X = O and V (XT ) = 0,

Ẋ = −∇V (X ) X (0) ∈ �,

(11)

where V is the harmonic potential, ∇2 is the Laplace operator, ∇ is the gradient operator, O is the
hazardous space, � is the usable space (� = � − O), � is the operation perimeter and XT is the
target point.

Connolly showed that a harmonic potential provides a probabilistic measure of collision.75 Setting
V (X ) = 1 at the hazardous regions is equivalent to indicating to the system that collision at that location
in space is expected with probability = 1. The Dirichlet setting accommodates this information, in
a safety-aware manner, to construct the guidance policy (Fig. 13). The policy instructs the agent to
increase strictly its distance away from the regions where collision is eminent (i.e., move strictly
along the normal path away from the obstacle). The guidance policy enhances the safety of the
agent by continuously steering it to the target along directions that lead to maximum decrease in the
collision probability. From a safety point of view, the approach yields results comparable to those of
a Vornoi-based approach.76

Online computation of the guidance policy is a challenging issue. This is due to the requirement
that the policy fully covers the representation grid. The dimensions of a practical representation grid
used by an autonomous agent are usually in hundreds even thousands of pixels. The information in
the representation grid has to be processed in real time by the agent’s modest, on-board computational
means. This makes online re-computation of the guidance policy difficult each time the representation
is adjusted. Harmonic potential-based guidance policies have a non-committal nature and do not suffer
from this problem. A change in an HPF-based guidance policy due to local updates does not globally
propagate through space. Rather, it remains effectively confined to the local vicinity of the change.
Figure 14 shows an HPF-based navigation policy and the same policy updated with a point obstacle. It
also shows a plot measuring the difference between the guidance fields in both cases. As can be seen,
the change in the guidance policy rapidly drops away from the updated region. It is straightforward to
prove this property mathematically. According to the harmonic superposition principle, the difference
between the two harmonic functions before and after the update is a harmonic function. This harmonic
function is also subject to Dirichlet boundary conditions with zero value at the old boundaries and a
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Fig. 14. HPF localizes disturbance of in guidance policies.

Fig. 15. HPF-based guidance policies retain smoothness when sensing is noisy.

positive constant at the point of local update. It is obvious that the surface surrounding the updated
region is much smaller than the surface of the previously existing regions. A simple application of
the divergence theorem shows that the difference potential will rapidly drop as one moves away from
the area of the change.

The consequence of the above is that a local representation update will only yield a local guidance
policy update. In other words, the computational burden needed to generate the updated policy under
the influence of the sensory data is decoupled from the size of the representation grid. Instead, it is
coupled to the size and frequency of the updates. As mentioned earlier, several efficient means do exist
for whole domain computation of the HPF-based guidance field. The ability to generate the modified
guidance policy through spatially localized computation has a pronounced effect on the ability to
reduce system complexity and enhance its performance. Another consequence of the quick fading
of update-induced disturbance in the mobility policy is that the disruptive effect of noisy sensing on
motion is marginalized (Fig. 15).

An HPF-based guidance produces a least action motion policy. This directly follows from the
Dirichlet principle77 where Eq. (11) is a minimizer of the energy functional (12)

P(X ) =
∫
�

|∇V (X )|2dX X ∈ �. (12)

This in turn means that an HPF-based guidance policy can be adjusted with minimum disruption to
the modified guidance field. Moreover, one can make the statement that the behavior generated is
optimal, given the amount of information initially provided to the robot about its environment.

4.3. Control policy from guidance policy
The guidance stage provides, at any given location in space, the corresponding direction along which
the robot must move if it is to reach its target. An agent has to actualize this reference direction by
deploying its actuators. The system equation that governs the relation between motion and actuation
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Fig. 16. Virtual velocity attractor approach for converting an HPF-based guidance element into a control signal.

Fig. 17. On-demand control policies from HPF-based guidance polices and a virtual velocity synchronizer.

for a large class of mobile agents is (13)

[
Ẋ
λ̇

]
=

[
T (λ)

F (λ,U )

]
, (13)

where X is the location vector of the agent, λ is its orientation vector and U is a vector that contains the
control variables. Making guidance and control coalesce to produce the desired mobility pattern is an
excessively complex, joint design problem. The method in ref. [21] suggests an approach to manage,
in a provably correct manner, the complexity of generating a control policy that is in aim with an
HPF-based guidance policy. The approach indirectly controls the spatial variables by controlling their
time derivatives. It uses the HPF-based guidance policy as a reference velocity field (Ẋr) for the agent.
At each position in space, the control acts to align the velocity of the agent (Ẋ ) with the corresponding
reference velocity (Fig. 16). If the actual velocity of the agent and the reference velocity from the
guidance field are initially in phase, the kinodynamic trajectory, which evolves under the influence
of the control, is identical to the kinematic trajectory marked by the guidance field. In effect, the
combination of the guidance policy and the synchronization control is equivalent to an on-demand
control policy that generates the actuation signal when and where it is needed (Fig. 17).

The above procedure tackles static guidance policies, where the environment is a priori known
and the policy does not change during the robot’s operation. In a TCM situation, the guidance policy
keeps changing under the influence of the sensors. As a result, the guarantees that the synchronization
method can prevent collision are no longer valid. One way of using the method in a provably correct
manner is to require the robot to stop each time the guidance policy gets updated. The robot then
re-aligns itself along the new reference velocity. Frequent stopping is at odds with the requirement
that the robot exhibits time-sensitive mobility. It also leads to excessive energy consumption,78,79

increases unpredictability of the robot’s behavior and places considerable stress on its hardware.
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Fig. 18. Safety-aware control generating.

Fig. 19. Controller aligns guidance signal with robot’s velocity.

Provably correct adjustment of the virtual velocity synchronization approach to deal with online
sensory updates is possible. It makes the use of a safety-based interpretation of the relative orientation
of the robot’s velocity with respect to the reference velocity from the guidance policy. If the velocity
of the robot is in phase with the reference velocity, the robot is in a low-risk state (Fig. 18). On the
other hand, if the velocities are in an antipodal configuration, the robot is in a high-risk state. It is
important to notice that only the tangential component of the robot’s speed has significant influence on
safety. The effect of the angular component is marginal, even negligible (if the robot has a cylindrical
frame). Based on the above, it is possible to reduce the probability of collision, even eliminate it, if
the synchronizing controller properly modulates the tangential velocity of the robot. The modulation
process sets the tangential velocity at maximum when the robot is perfectly aligned with the reference
velocity. The velocity is set at a minimum, preferably zero, when the robot and the reference velocity
are in an antipodal configuration.

The development of the safety-aware, on-demand navigation control policy uses a version of the
velocity synchronization approach designed for use with UGVs.80 The following presents a practical
variant of the method in ref. [80] for aligning the robot’s velocity with the desired one in the presence
of sensory update. The procedure for generating the mobility control signal involves three issues. The
issues are safety, hardware friendliness and computation in the local coordinates of the robot.

First, the sine (ηc) and cosine (ηd ) of the angle between (Fig. 19) the velocity of the robot and the
guidance vector (�θ) along with the straight line distance to the target (dst) are computed (14)

ηd = cos(�θ ) = Ex·ẋ+Ey·ẏ√
ẋ2+ẏ2

,

ηc = sin(�θ ) = Ex·ẏ−Ey·ẋ√
ẋ2+ẏ2

,

dst =
√

(x − xT )2 + (y − yT )2.

(14)

A control angular actuation signal (ωc) must function to synchronize the actual robot speed with
the desired guidance vector. A form of the angular synchronizing signal (Fig. 20(a)) is (15)

ωc = ωd ·

⎡
⎢⎣

ηc ηd > 0

+1 ηc > 0&ηd < 0

−1 ηc < 0&ηd < 0

, (15)
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Fig. 20. Desired tangential and angular control velocities of the robot, respectively.

where ωd is the maximum desired angular speed the robot should assume. A control tangential robot
speed (νc) should be maximum when the robot is in phase with the guidance vector. This speed should
gradually drop as the speed gets out of phase with guidance. νc should drop to zero when the robot’s
speed and guidance are in an antipodal configuration which is created by the detection of an event
that endangers the safety of the robot (Fig. 20(b)). The robot should start to slow-down when it is at
an Rc distance from the target. Its value should be zero at the target location. The speed may have the
form (16)

νc = vd ·

⎡
⎢⎣

(ηd + 1)/2 ηd < 0

1 − (|ωc/ωd|)/2 ηd ≥ 0

dst/Rc dst ≤ Rc

, (16)

where vd is the maximum tangential speed the robot should assume. We observed that even a constant
νc with a decelerating target approach profile will produce satisfactory results.

After computing the desired angular and tangential speeds, the control signal is generated as (17)

U = Q

([
νc
ωc

])
= G−1

([
νc
ωc

])
. (17)

Figure 21 shows the overall structure for converting guidance to control.

4.4. The TCM mobility workflow
This section suggests a structure for TCM that is describe by the flowchart in Fig. 22 for integrating the
mobility modules in one system. The structure is self-contained where the only piece of information
it needs from the external user is where the target is located in the local coordinates of the robot.
It provides the robot with full autonomous capabilities without any restrictive assumptions on the
robot’s space.

Initialization of the structure starts by specifying the coordinates one may use in indexing the
representation. The perimeter of the map is a square domain of width D. A Cartesian coordinate
system (x, y) is assumed so that the origin is at the center of the domain. Initially, the robot is assumed
to lie at the origin (x = 0, y = 0) of the local coordinates. The positive x-axis is aligned with the
principal axis of the robot (θ(0) = 0). The target of the robot is supplied to the mobility structure in
the local coordinates of the robot.

The data intake of the structure is from one ultrasonic sensor that is placed in front of the robot and
aligned along its principal axis. The continuous output from the sensor (S(t)) provides a measurement
of the distance between the sensor and the closest obstacle that lies along the principal axis of the
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Fig. 21. The suggested, hardware-friendly controller.

robot. A maximum reading (2.55 m for the X80) is an indicator that either no obstacle exists along
the principal axis or the obstacle is out of sensor range.

The map is recorded on a uniform rectangular grid with a resolution � and is stored in an N ×N
matrix DSE(i, j) (� = D/N). If and entry in DSE(i, j) is marked by 1, the location indexed by i and
j is considered unsafe. If it is marked by 0, the location is considered possibly safe. DSE is initialized
as (18)

DSE(1, k) = DSE(N, k) = DSE(k, 1) = DSE(k, N ) = 1 k = 1, .., N,

DSE(i, j) = 0 i = 2, .., N − 1, j = 2, .., N − 1.
(18)

At a certain instant in time, given a robot’s pose (x, y, θ), DSE is populated as follows (19):

Io =
[

x + (S + W/2) · cos(θ + δ)

�

]
, Jo =

[
y + (S + W/2) · sin(θ + δ)

�

]
DSE(Io + m, Jo + n) = 1 n = −Im, . . . , Im, m = Im, . . . , Im

N > Io + m > 1, N > Jo + n > 1,

(19)

where Im is a non-negative integer used as a safety margin surrounding the sensed obstacle location,
[X ] is the rounding integer function of the real number X , 1 >> δ > 0 and m, n are positive integers
used to specify a safety zone around the point (Io, Jo).

Given the initial information that is available, the guidance field is globally computed. If no obstacles
are within the sensor range of the robot, the pre-computed guidance information is used. If a new
obstacle facing the robot is detected, it is mapped using the procedure in (19) and the guidance field is
recomputed around the detected component. The pose of the robot in the local coordinates is updated
using its wheels’ speeds. This information is combined with the guidance signal to compute the
control signals. Since the procedure for constructing the navigation control is provably correct, the
robot should not stop until the target is reached. If the robot stops short of reaching its target, then the
cause of the problem has to be the field computation stage. Since there is no motion, computing the
guidance field in real time is no longer important. Therefore, the mobility structure invokes the full
field computation stage to correct this problem.
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Fig. 22. The ultrasonic navigation control structure.

5. Implementation and Experiments
This section demonstrates the experimental feasibility of the TCM structure suggested in the previous
sections. The test emphasizes affordable commercial hardware, inexpensive sensing and low-end
processing.

5.1. Physical setting
The platform used is the X80 differential drive robot81 manufactured by Dr. Robot Inc. Only one of
the six ultrasonic sensors of the robot, the front sensor, is used in recording the environment (Fig. 23).
The main lobe of the sensor coincides with the principal axis of the robot. Readings from the sensor
are used directly without processing. Cable drums are used in constructing the environment (Fig. 24).
The curved surface of these units causes significant ultrasonic signal distortion.

The mobility system resides onboard a remote Pentium I5 host running MS Windows 7 (Fig. 25).
The exchange of hard-time sensory and actuation data between the platform and the host is carried-out
via wireless IP at a 7 Hz update rate. C# is used for programming. Wireless signals in a restricted
cluttered environment suffer from fast fading (Fig. 26) and causes random momentary interruption of
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Fig. 23. The X80 UGV platform, only the front sensor used in mapping the environment.

Fig. 24. Test environment, partially built from cable drums.

Fig. 25. Sensor and actuator signal exchange between X80 and remote host via a wireless link.

the wireless communication link. Moreover, MS Windows 7 is not a real-time operating system and
is highly likely to cause random delays in the servo-link.

Multi-resolution grids82 can accurately record an environment and maintain an acceptable grid size.
However, a simple evenly spaced grid is used to record the sensory data. Advanced deadreckoning
techniques,83 even precise optical deadreckoning,84 do exist. However, here, the system uses basic
deadreckoning by directly computing the robot’s pose from its wheels’ speeds (20) with no processing
or filtering (21)

[
ν

ω

]
=

[
r
2

r
2

r
W

−r
W

][
ωR

ωL

]
, (20)

νx = v · cos(θ ), vy = sin(θ )
x(t + �T ) = x(t ) + �T · νx(t ),
y(t + �T ) = y(t ) + �T · νy(t ),
θ (t + �T ) = θ (t ) + �T · ω(t ) x(0) = 0, y(0) = 0, θ (0) = 0.

(21)
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Fig. 26. Fast fading in constricted cluttered environment can randomly cause wireless signal outage.

Fig. 27. Adopted test causality of the mobility system.

Figure 27 describes the causality of the mobility system that is used in the experiments. This
stringent causality forces the harmonic planner to be the source of any action the robot takes. The
causality does not allow use of fast reactive corrective action derived from any other module (e.g.,
the sensing stage). In effect, such usage forces the robot to operate in a cognitive mode all the
time.

The above setting for experimentally testing the suggested structure can seriously disrupt the
ability of the mobility system to register and process the environment data. It can also undermine
the ability of the robot to take the right action and even cripple this ability altogether when fading
causes an outage in the wireless link. It is to be noticed that these conditions are imposed for test
purpose only. Better hardware, sensing, filtering and on-board processing may be used if the situation
permits.

5.2. Experimental results
The suggested structure was thoroughly tested by simulation. However, only experimental results
based on the X80 platform are reported. Emphasis is placed on sensor-based results under zero a priori
information about the environment. Selected tests demonstrate the characteristics and capabilities of
the mobility structure.

5.2.1. Effect of false positive obstacles. This example demonstrates the effect of false detection of
environment components on both the ability of the robot to reach its target and the quality of its
trajectory. Spurious reflections from raw ultrasonic sensing have the potential to cause erratic behavior.
There is also the possibility that an accumulation of these reflections in the representation may cause
the belief that the target is unreachable. Figure 28 shows snapshots along with the trajectory of the
robot moving to its target. The robot is initially facing the target and has a direct, unobstructed path to
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Fig. 28. Trajectory to the target, obstruction-free, initial angle = 0.

Fig. 29. Final guidance policy and environment registration corresponding to Fig. 28.

Fig. 30. Trajectory to the target, obstruction-free, initial angle = 90.

its destination. The robot moves directly along a straight line to the target. Figure 29 shows the final
guidance field along with the safety events that the sensor discovered. As can be seen, the sensors did
not register any safety event during the trip to the target.

Wide turns by the robot can significantly increase false registrations by the ultrasonic sensors.
Figure 30 shows snapshots and the trajectory the robot takes to the target. The robot is in the same
position as in Fig. 28 with the exception that its heading makes a 90◦ angle with respect to the target.
The robot’s initial heading is 90◦ out of phase with the guidance vector. This forces the robot to
make a large turn in order to synchronize with guidance. Figure 31 shows the final guidance field
superimposed on sensor registration. One can observe that false registrations blocks 50% of the
passage to the target. Despite this large error in recording the environment, the robot still moves to the
target along a well-behaved trajectory experiencing only minor deviation from the direct trajectory in
Fig. 28.

Figure 32 shows the ultrasonic sensor activities versus time. Figure 33 shows the linear velocity
and the angular velocity of the robot, respectively. Notice that after the short transient period needed
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Fig. 31. Final guidance policy and environment registration corresponding to Fig. 30.

Fig. 32. Sensor activities corresponding to trajectory in Fig. 30.

Fig. 33. Tangential and angular velocities corresponding to the trajectory in Fig. 30.

for the robot to synchronize with the guidance signal, the linear velocity remains around a constant
value. The mobility system also maintains the angular velocity close to zero. Figure 34 shows the
control velocity signal of the right and left wheels of the robot. The control signals are steady and
well-behaved.

5.2.2. Obstacle course: Sensor-based. An obstacle course made of cable drums is placed between
the robot and the target. The obstacles force the robot to change both curvature and orientation. The
robot has zero a priori information about the environment. Figure 35 shows snapshots of the robot
along with the corresponding trajectory. The trajectory is well-behaved and moves directly to the
target except for a minor detour at the start of motion. Figure 36 shows the final guidance field with
the sensed hazardous zone. Although the belief safety map significantly differs from the physical

https://doi.org/10.1017/S0263574718000401 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718000401


1322 Sensor-based, time-critical mobility of autonomous robots in cluttered spaces

Fig. 34. Actuation signals corresponding to the trajectory in Fig. 30.

Fig. 35. Trajectory to the target, obstacle course and sensor-based.

Fig. 36. Final guidance policy and environment registration corresponding to Fig. 35.

environment, the resulting trajectory accommodates well the geometry of the environment. Figure 37
shows snapshots of the guidance fields at different instants in time with the hazard zones superimposed
on it. One can easily notice the incremental and non-committal nature the HPF-based guidance
policy.

Figure 38 shows the signal from the ultrasonic sensor, which is discontinuous and unavailable more
than 50% of the duration of the mission. Figure 39 shows the tangential and angular velocities of the
robot. The behavior of these velocities closely follows the pattern in the previous cases. After a short
transient period, the control signal synchronized the robot with the guidance signal. The tangential
velocity of the robot converges to a narrow band around a constant value and the angular velocity
stays around zero. The control signals are in Fig. 40. As can be seen, the right and left velocities of
the robot are well-behaved.
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Fig. 37. Snapshots of the guidance policy and environment registration corresponding to Fig. 35.

Fig. 38. Sensor activities corresponding to trajectory in Fig. 35.

5.2.3. Obstacle course: Model-based. Although the mobility system can function even if the
environment is totally unknown, it has the ability to accommodate a priori information if it is available
to enhance performance. The obstacle course example is repeated with no online sensory acquisition.
Here, the initial belief-based representation contains some components of the environment. Figure 41
shows snapshots of the robot and the corresponding trajectory. Figure 42 shows the trajectory
superimposed on the guidance field and the a priori information contained in the representation.
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Fig. 39. Tangential and angular velocities corresponding to the trajectory in Fig. 35.

Fig. 40. Actuation signals corresponding to the trajectory in Fig. 35.

Fig. 41. Trajectory to the target, obstacle course and model-based.

As can be seen, the trajectory is well-behaved, keeps good clearance from the obstacles and is almost
optimal.

Figure 43 shows the tangential and angular velocities of the robot; previous observations hold.
Figure 44 shows the actuation signals. Well-behaved actuation signals resulted with a dynamic range
less than that of their sensor-based counterpart. More importantly, the use of partial a priori information
did not only improve the quality of the trajectory and reduced stress on the actuator, it also considerably
speeded-up mission execution. In the sensor-based case, it took the robot almost 60 s to reach the
target compared to 30 s for the case utilizing partial a priori information.

5.2.4. Traps. The guidance and control modules are provably correct. Theoretically speaking, the
mobility system should be able to navigate any environment regardless of its geometry or topology.
If the target is potentially accessible and the robot is not able to reach it, an implementation issue
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Fig. 42. Guidance policy and environment registration corresponding to Fig. 41.

Fig. 43. Tangential and angular velocities corresponding to the trajectory in Fig. 41.

Fig. 44. Actuation signals corresponding to the trajectory in Fig. 41.

is the one responsible for the failure. Many researchers consider trap situations as a strong test of
the capabilities of a mobility system. In this example, an explicit trap is constructed and the robot is
initially oriented in an opposite direction to the target, 180◦ out of phase with guidance. Figure 45
shows snapshots of the robot and the trajectory along which it moved to the target. Figure 46 shows
the trajectory superimposed on the final guidance field and the discovered environments components.
Figure 47 shows snapshots of the guidance field at different instants in time. The signal from the
ultrasonic sensor is in Fig. 48, the tangential and angular velocities of the robot are in Fig. 49 and
the actuation signals are in Fig. 50. As can be seen, the robot successfully dealt with this situation.
The trajectory, differential properties and control signals behaved in a manner similar to the previous
environment settings. Different robot orientations (Figs. 51 and 52) yielded results similar to those in
Fig. 45.
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Fig. 45. Trajectory to the target, trap, angle = 180.

Fig. 46. Final guidance policy and environment registration corresponding to Fig. 45.

5.2.5. Modulated versus constant tangential velocities. The mobility system distributes safety on its
modules where safety at the system level is an emergent state. Safety is introduced in the actuation
module by requiring the control signal to modulate the tangential velocity of the robot based on its
relative heading with respect to the guidance signal. The mobility system is tested for the case when
guidance is converted directly to control without modulating the tangential speed. The results with no
modulation are satisfactory. However, the robot is more hyperactive compared to the modulated
case. This example demonstrates the positive impact velocity modulation has on mobility as a
whole. A simple environment created from one cable drum is used in the comparison between the
modulated and un-modulated cases. Figures 53 and 54 show robot snapshots and corresponding
trajectories for the unmodulated and modulated cases, respectively. Figure 55 shows the sensor
activities and Fig. 56 shows the control signals for the unmodulated and modulated cases, respectively.
The trajectory produced by modulating the tangential velocity has less fluctuation and keeps better
distance away from the obstacles. One can also notice that the modulated case has less sensory
activities and the dynamic range of the control signals is lower for the modulated case compared to
the unmodulated one. The trip time for the modulated case (25 s) is less than that for the unmodulated
case (35 s).

6. Conclusions
This paper provides a proof of principle that TCM is possible using affordable hardware, modest
sensing and does not require a dedicated exploration and mapping stage. It also demonstrates that
the HPF approach to planning is suitable for sensor-based motion planning at the servo-level of a
mobile robot. The work in this paper provides a strong reason to re-examine the belief that accurate,
spatial mapping is a prerequisite for navigating satisfactorily an unstructured environment. A properly
designed mobility system can provide a good performance, even if the map is incomplete and
inaccurate. The work also provides a good reason to consider seriously the issue of joint design
of mobility modules as a means of obtaining reliable system performance at a reasonable hardware
cost.
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Fig. 47. Snapshots of the guidance policy and environment registration corresponding to Fig. 45.

Fig. 48. Sensor activities corresponding to trajectory in Fig. 45.

Fig. 49. Tangential and angular velocities corresponding to the trajectory in Fig. 45.
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Fig. 50. Actuation signals corresponding to the trajectory in Fig. 45.

Fig. 51. Trajectory to the target, trap, angle = 90.

Fig. 52. Trajectory to the target, trap, angle = 0.

Fig. 53. Trajectory to the target, constant tangential velocity.
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Fig. 54. Trajectory to the target, modulated tangential velocity.

Fig. 55. Sensor activities, constant (Fig. 53) and modulated velocity (Fig. 54) cases, respectively.

Fig. 56. Actuation signals, constant (Fig. 53) and modulated velocity (Fig. 54) cases, respectively.
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