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We show the existence and exact asymptotic behaviour of the unique solution
u ∈ C2(Ω) ∩ C(Ω̄) near the boundary to the singular nonlinear Dirichlet problem
−∆u = k(x)g(u) + λ|∇u|q , u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded domain
with smooth boundary in R

N , λ ∈ R, q ∈ [0, 2], g(s) is non-increasing and positive in
(0, ∞), lims→0+ g(s) = +∞, k ∈ Cα(Ω) is non-negative non-trivial on Ω, which may
be singular on the boundary.

1. Introduction and the main results

The purpose of this paper is to investigate the existence and exact asymptotic
behaviour of the unique classical solution near the boundary of the following model
problem:

−∆u = k(x)g(u) + λ|∇u|q, u > 0, x ∈ Ω, u|∂Ω = 0, (1.1)

where Ω is a bounded domain with smooth boundary in R
N (N � 1), λ ∈ R,

q ∈ [0, 2], g satisfies the condition that

(g1) g ∈ C1((0,∞), (0,∞)), g′(s) � 0 for all s > 0, and lims→0+ g(s) = +∞;

and k satisfies the condition that

(k1) k ∈ Cα(Ω), for some α ∈ (0, 1), is non-negative non-trivial on Ω.

The problem arises in the study of non-Newtonian fluids, boundary-layer phenom-
ena for viscous fluids, heterogeneous chemical catalysts, and in the theory of heat
conduction in electric materials (see [4, 7, 9, 19,21]).

The main feature of this paper is the presence of the three terms, the singular
term g(u), the convection term λ|∇u|q and the weight k(x), which may be singular
on the boundary.

The problem has been discussed in a number of works (see, for instance, [2–10,
12,15,16,18–22,24,25]). For λ = 0, problem (1.1) becomes

−∆u = k(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, (1.2)

for k ≡ 1 on Ω. Fulks and Maybee [7], Stuart [21] and Crandall et al . [4] showed
that problem (1.2) has a unique solution u ∈ C2+α(Ω)∩C(Ω̄). Moreover, Crandall
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et al . [4, theorems 2.2 and 2.5] showed that, if p ∈ C[0, a] ∩ C2(0, a] is the local
solution of the problem

−p′′(s) = g(p(s)), p(s) > 0, 0 < s < a, p(0) = 0, (1.3)

then there exist positive constants C1 and C2 such that

(I) C1p(d(x)) � u(x) � C2p(d(x)) near ∂Ω, where d(x) = dist(x, ∂Ω);

(II) |∇u(x)| � C2[d(x)g(C1p(d(x))) + p(d(x))/d(x)] near ∂Ω.

In particular, when g(u) = u−γ and γ > 1, u has the following properties:

(I1) C1[d(x)]2/(1+γ) � u(x) � C2[d(x)]2/(1+γ) near ∂Ω;

(I2) |∇u(x)| � C2[d(x)](1−γ)/(1+γ) near ∂Ω.

By constructing global subsolutions and supersolutions, Lazer and McKenna [16]
showed that (I1) continues to hold on Ω̄. Then u ∈ H1

0 (Ω) if and only if γ < 3.
This is a basic characteristic of problem (1.2). Moreover, in [16, § 4, ‘Remarks and
generalizations’], there is the following additional information.

(I3) If, instead of k ≡ 1 on Ω, we assume that 0 < c1 � k(x)ϕσ
1 (x) � c2 for

x ∈ Ω, where c1 and c2 are positive constants, σ ∈ (0, 2), and ϕ1 is the
first eigenfunction, corresponding to the first eigenvalue λ1 of the Laplace
operator with Dirichlet boundary conditions and γ > 1, then there exist
positive constants C3 and C4 (C3 is small and C4 is large) such that

C3[ϕ1(x)]2/(1+γ) � u(x) � C4[ϕ1(x)](2−σ)/(1+γ), ∀x ∈ Ω.

Most recently, in [24], the authors showed the existence and global optimal estimate
of the unique solution of problem (1.2) under

∫ ∞

1
g(s) ds < ∞.

Moreover, assume g satisfies (g1) and the following conditions:

(g2) there exist positive constants C0, η0 and γ ∈ (0, 1) such that g(s) � C0s
−γ ,

for all s ∈ (0, η0);

(g3) there exist θ > 0 and t0 � 1 such that g(ξt) � ξ−θg(t), for all ξ ∈ (0, 1) and
all t ∈ (0, t0ξ];

(g4) the function

ξ ∈ (0,∞) → T (ξ) = lim
t→0+

g(ξt)
ξg(t)

is continuous;

and if k satisfies (k1) and there exist positive constants δ0, c0 and a positive non-
decreasing function h ∈ C(0, δ0) such that the following are satisfied:

(k2) lim
d(x)→0

k(x)
h(d(x))

= c0;
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(k3) lim
t→0+

h(t)g(t) = ∞;

Ghergu and Rǎdulescu [8] showed that the unique solution u of problem (1.2)
satisfies

lim
d(x)→0

u(x)
p(d(x))

= ξ0, (1.4)

where T (ξ0) = c−1
0 and p ∈ C1[0, a] ∩ C2(0, a](a ∈ (0, δ0)) is the local solution of

the problem

−p′′(s) = h(s)g(p(s)), p(s) > 0, 0 < s < a, p(0) = 0. (1.5)

For λ > 0 and k(x) ≡ 1 on Ω, there exist solutions to problem (1.1) (see [2, 5, 6, 9,
10,25]). When q = 2 and

lim
s→0+

sγg(s) < ∞, γ ∈ (0, 1),

Ghergu and Rǎdulescu [9] showed that the unique classical solution u has the fol-
lowing properties:

(II1) C1d(x) � uλ(x) � C2d(x), for all x ∈ Ω, where C1 and C2 are positive
constants depending on λ;

(II2) uλ ∈ C1,1−α(Ω̄).

Moreover, for λ = ±1, 0 < q < 2, k(x) ≡ 1 on Ω and the function g (0,∞) →
(0,∞) is locally Lipschitz continuous and decreasing, Giarrusso and Porru [10]
showed that, if g satisfies the following conditions:

(g5)
∫ 1

0
g(s) ds = ∞,

∫ ∞

1
g(s) ds < ∞;

(g6) let

G(t) =
∫ ∞

t

g(s) ds;

then there exist positive constants δ and M with M > 1 such that G(t) <
MG(2t), for all t ∈ (0, δ);

then the unique solution u has the properties:

(II3) |u(x) − p(d(x))| < βd(x), for all x ∈ Ω for 0 < q � 1;

(II4) |u(x) − p(d(x))| < βd(x)[G(p(d(x)))](q−1)/2, for all x ∈ Ω for 1 < q < 2;

where β is a suitable positive constant and p ∈ C[0,∞) ∩ C2(0,∞) is uniquely
determined by ∫ p(t)

0

ds√
2G(s)

= t, ∀t ∈ (0,∞). (1.6)

These imply that

lim
d(x)→0

u(x)
p(d(x))

= 1. (1.7)
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In particular, if g(u) = u−γ , γ > 1, then p(s) = cs2/(1+γ),

c =
[

(1 + γ)2

2(γ − 1)

]1/(1+γ)

,

then u satisfies

lim
d(x)→0

u(x)
[d(x)]2/(1+γ) =

[
(1 + γ)2

2(γ − 1)

]1/(1+γ)

. (1.8)

In this paper, we first consider the asymptotic behaviour of the classical solution
of problem (1.3) or (1.5) near to 0. Then, applying Ghergu and Rǎdulescu’s argu-
ment [8], and constructing comparison functions, we show that (1.4) and (1.7) still
hold for more general g(u) and k(x) in problem (1.1). We also show the existence
of classical solutions to problem (1.1).

Our main results are summarized in the following theorems.

Theorem 1.1. For 0 � q � 2, λ ∈ R, let g satisfy (g1), (g3), (g4) and let h ∈
C(0, δ0) satisfy the following condition:

(h0) h is non-increasing on (0, δ0) and limt→0+ h(t) = ∞.

If k satisfies (k1), (k2) and the following condition:

(k4) the linear problem

−∆u = k(x), u > 0, x ∈ Ω, u|∂Ω = 0, (1.9)

has a unique solution v0 ∈ C2+α(Ω) ∩ C(Ω̄) (see [11, ch. 4, theorems 4.3
and 4.9, problems 4.3 and 4.6, pp. 70, 71]);

then the unique solution uλ ∈ C(Ω̄)∩C2(Ω) to problem (1.1) satisfies (1.4), where
p ∈ C[0, a] ∩ C2(0, a] is the local solution of problem (1.5). In particular, if g(u) =
u−γ , γ > 0, k(x) ∼= c0(d(x))−β near the boundary and max{0, 1− γ} < β < 2, then
p(s) = cs(2−β)/(1+γ),

c =
(

(1 + γ)2

(2 − β)(γ + β − 1)

)1/(1+γ)

,

ξ0 = c
1/(1+γ)
0 , and uλ satisfies

lim
d(x)→0

uλ(x)
[d(x)](2−β)/(1+γ) =

[
c0(1 + γ)2

(2 − β)(γ + β − 1)

]1/(1+γ)

.

Remark 1.2. By (1.5), we see that the asymptotic behaviour (1.4) of uλ is inde-
pendent of λ|∇uλ|q.

Remark 1.3. For a proof of the existence of solutions to problem (1.5) with a ∈
(0, 1), see [1, corollary 2.1].

Remark 1.4. In addition to h(t) = t−β , β ∈ (0, 2), typical examples of singular
weight functions satisfying the above assumptions are

(i) h(t) = (t lnβ(1 + t))−1, β ∈ [0, 1);
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(ii) h(t) = (et − 1)−β , β ∈ (0, 2).

Remark 1.5. If h(t) = t−β , β � 2, then problem (1.1) may not have any classical
solution (see [24, theorem 1.2]).

Remark 1.6. In addition to g(u) = u−γ , γ > 0, typical examples of singularities
satisfying (g1), (g3), (g4) are

(i) g(u) = (u lnγ(u + 1))−1, γ � 0, T (ξ) = ξ−(2+γ);

(ii) g(u) = (eu − 1)−γ , γ > 0, T (ξ) = ξ−(1+γ);

(iii) g(t) = t−γ exp
(∫ a

t

y(s)
s

ds

)
, γ > 0, T (ξ) = ξ−(1+γ),

where a > 0, y ∈ C[0, a], y(0) = 0.

Remark 1.7. By (g1) and the comparison principles [11, theorems 10.1 and 10.2],
we see that problem (1.1) has at most one solution in C2(Ω) ∩ C(Ω̄) (see the
lemma 3.4).

Theorem 1.8. For 0 � q � 2, λ ∈ R, let g satisfy (g1), (g3), (g4) and k ≡ 1 on Ω.
If ∫ ∞

1
g(t) dt < ∞,

then the unique solution uλ ∈ C(Ω̄)∩C2(Ω) to problem (1.1) satisfies (1.7), where
p ∈ C[0,∞) ∩ C2(0,∞) is the unique global solution of problem

−p′′(s) = g(p(s)), p(s) > 0, s ∈ (0,∞),
p(0) = 0, lim

s→∞
p′(s) = b � 0.

}
(1.10)

In particular, if g(u) = u−γ , γ > 1, then uλ satisfies (1.8).

Theorem 1.9. Let g satisfy (g1) and lims→∞ g(s) = 0.

(I) If q = 2, k satisfies (k1) and (k4), then problem (1.1) has a unique solution
uλ ∈ C(Ω̄) ∩ C2(Ω) for every λ � 0.

(II) If k ≡ 1 on Ω, then problem (1.1) has a unique solution uλ ∈ C(Ω̄) ∩ C2(Ω)
in one of the following cases:

(i) q ∈ [0, 2], λ � 0;

(ii) q ∈ [0, 1), λ � 0;

(iii) q = 1, 0 � λ <
√

λ1.

Remark 1.10. It is not known in theorem 1.9(I) whether or not problem (1.1) has
a solution if q ∈ (0, 2) and, in theorem 1.9(II)(iii), whether or not

√
λ1 is exact.
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2. The exact asymptotic behaviour

First we give some preliminary considerations.

Lemma 2.1 (Lazer and McKenna [17, lemma 2.1]). If g satisfies (g1), b > 0, then

lim
s→0+

∫ b

s
g(t) dt

g(s)
= 0. (2.1)

Lemma 2.2. Let q ∈ [0, 2] and g ∈ C1((0,∞), (0,∞)). If
∫ ∞

1
g(t) dt < ∞,

then problem (1.10) has a unique global solution p ∈ C[0,∞)∩C2(0,∞). Moreover,
if limt→0+ g(t) = ∞, then p has the following properties:

lim
s→0+

p′(s)
p′′(s)

= 0, lim
s→0+

(p′(s))q

p′′(s)
= 0. (2.2)

Proof. Note that, if p(s) is a positive global classical solution of problem (1.10) on
(0,∞), p(0) = 0 and p′′(s) < 0, then p′(s) is decreasing on (0,∞) and p′(s) > 0,
p(s) is increasing. Let lims→∞ p(s) = p0 ∈ (0,∞]. Multiplying equation (1.10) by
p′(s) and integrating on [s, t], we get

[p′(s)]2 = [p′(t)]2 + 2
∫ p(t)

p(s)
g(z) dz, s > 0. (2.3)

Let t → ∞ in (2.3). We then see that

[p′(s)]2 = b2 + 2
∫ p0

p(s)
g(z) dz, s > 0, (2.4)

which can be integrated on [0, t], yielding
∫ t

0

p′(s) ds√
b2 + 2

∫ p0

p(s) g(z) dz
=

∫ p(t)

0

dv√
b2 + 2

∫ p0

v
g(z) dz

= t, t > 0.

Let t → +∞. We then see that∫ p0

0

dv√
b2 + 2

∫ p0

v
g(z) dz

= +∞.

It follows, by p(s) > 0 on (0,∞) and
∫ ∞

1
g(t) dt < ∞,

that p0 = +∞. Thus,
∫ p(t)

0

dv√
b2 + 2

∫ +∞
v

g(z) dz
= t, t � 0. (2.5)
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Hence, defining p(t) on [0,∞) by (2.5), we see that p ∈ C[0,∞) ∩ C2(0,∞) is the
unique global solution of problem (1.10) with

lim
s→+∞

p(s) = +∞ and lim
s→+∞

p′(s) = b.

Moreover, for c > 0, by lemma 2.1 and (g1), we have

lim
t→0+

(p′(t))2

p′′(t)
= − lim

t→0+

b2 + 2
∫ c

p(t) g(s) ds + 2
∫ ∞

c
g(s) ds

g(p(t))

= − lim
u→0+

b2 + 2
∫ c

u
g(s) ds + 2

∫ ∞
c

g(s) ds

g(u)
= 0.

Since
0 < [p′(0)]2 = b2 + 2

∫ ∞

0
g(z) dz � ∞,

we see that

lim
t→0+

(p′(t))q

p′′(t)
= − lim

t→0+

(p′(t))2

p′′(t)
lim

t→0+

1
(p′(t))2−q

= 0, for 0 � q < 2;

and

lim
t→0+

p′(t)
p′′(t)

= lim
t→0+

(p′(t))2

p′′(t)
lim

t→0+

1
p′(t)

= 0.

This completes the proof.

Lemma 2.3. Let g satisfy (g1), and h satisfy (h0). If p ∈ C[0, a] ∩ C2(0, a] is the
local solution of problem (1.5), then (2.2) holds.

Proof. Since p(s) is a positive concave on (0, a] and p(0) = 0, then p′(0) ∈ (0,∞]
and we can choose a ∈ (0, 1) such that p′(s) > 0 on (0, a]. It follows by p′′(s) < 0
on (0, a] that p′(s) is decreasing on (0, a]. By ensuring that h is non-increasing,
multiplying equation (1.5) by p′(s) and integrating on [t, a], 0 < t < a, we get

(p′(a))2 + 2h(a)
∫ p(a)

p(t)
g(y) dy � (p′(a))2 + 2

∫ a

t

h(s)g(p(s))p′(s) ds

= (p′(t))2

� (p′(a))2 + 2h(t)
∫ p(a)

p(t)
g(y) dy,

It follows by lemma 2.1 and (g1), (h0) that

lim
t→0+

(p′(a))2 + 2h(t)
∫ p(a)

p(t) g(y) dy

h(t)g(p(t)

= (p′(a))2 lim
t→0+

1
h(t)

lim
u→0+

1
g(u)

+ 2 lim
u→0+

∫ p(a)
u

g(y) dy

g(u)
= 0,

https://doi.org/10.1017/S0308210500004522 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004522


216 Z. Zhang

i.e.

lim
t→0+

(p′(t))2

p′′(t)
= 0.

The other results follow by the same proof of lemma 2.2.

Lemma 2.4 (Ghergu and Rǎdulescu [8, lemma 2.1]). If g satisfies (g3) and (g4),
then the function

T (ξ) = lim
t→0+

g(ξt)
ξg(t)

is decreasing on (0,∞) and limξ→0+ T (ξ) = +∞.

Proof of theorems 1.1 and 1.8. Let uλ ∈ C2+α(Ω) ∩ C(Ω̄) be the unique solution
of problem (1.1) for every λ ∈ R. In the following, when k ≡ 1 on Ω, we set h ≡ 1
on (0, δ0). Define ψ : (0,∞) → (0,∞) by

ψ(ξ) = lim
d(x)→0

k(x)g(ξp(d(x)))
ξh(d(x))g(p(d(x)))

, ∀ξ > 0.

The definition implies that ψ(ξ) = c0T (ξ), for all ξ > 0. Set ξ0 = ψ−1(1), i.e.
T (ξ0) = c−1

0 . Let ε ∈ (0, 1
2 ), ξ1ε and ξ2ε be such that ψ(ξ1ε) = 1 − 2ε and ψ(ξ2ε) =

1+2ε. Lemma 2.4 implies that ξ1ε > ξ2ε > 0. We can further choose ε small enough
that ξ0/2 < ξ2ε < ξ1ε < 2ξ0. Fix ε for any δ > 0, where we define Ωδ = {x ∈ Ω :
d(x) � δ}. For every λ ∈ R, by the regularity of ∂Ω and lemmas 2.2 and 2.3, we
can choose δ sufficiently small such that

(i) d(x) ∈ C2(Ωδ);

(ii) ∣∣∣∣ p′(s)
p′′(s)

∆d(x) + λξq−1
iε

(p′(s))q

p′′(s)

∣∣∣∣ < ε, ∀(x, s) ∈ Ωδ × (0, δ), i = 1, 2;

(iii)

ξ2εh(d(x))g(p(d(x)))
g(ξ2εp(d(x)))

(ψ(ξ2ε) − ε) < k(x) <
ξ1εh(d(x))g(p(d(x)))

g(ξ1εp(d(x)))
(ψ(ξ1ε) + ε),

for all x ∈ Ωδ, i = 1, 2.

For any x ∈ Ωδ, we define ūε = ξ1εp(d(x)) and u
¯ε = ξ2εp(d(x)). It follows by

|∇d(x)| = 1 that

∆ūε(x) + k(x)g(ūε(x)) + λ|∇ūε(x)|q

= k(x)g(ξ1εp(d(x))) + ξ1εp
′(d(x))∆d(x) + ξ1εp

′′(d(x)) + λξq
1ε(p

′(d(x))q

= ξ1εh(d(x))g(p(d(x)))

×
[

k(x)g(ξ1εp(d(x)))
ξ1εh(d(x))g(p(d(x)))

− 1 − p′(d(x))
p′′(d(x))

∆d(x) − λξq−1
1ε

(p′(d(x)))q

p′′(d(x))

]

� ξ1εh(d(x))g(p(d(x)))

×
[
(ψ(ξ1ε) + ε) − 1 − p′(d(x))

p′′(d(x))
∆d(x) − λξq−1

1ε

(p′(d(x)))q

p′′(d(x))

]

� 0

https://doi.org/10.1017/S0308210500004522 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004522


Dirichlet problem with a convection term 217

and

∆u
¯ε(x) + k(x)g(u

¯ε(x)) + λ∇|u
¯ε(x)|q

= k(x)g(ξ2εp(d(x))) + ξ2εp
′(d(x))∆d(x) + ξ2εp

′′(d(x)) + λξq
2ε(p

′(d(x))q

= ξ2εh(d(x))g(p(d(x)))

×
[

k(x)g(ξ2εp(d(x)))
ξ2εh(d(x))g(p(d(x)))

− 1 − p′(d(x))
p′′(d(x))

∆d(x) − λξq−1
2ε

(p′(d(x)))q

p′′(d(x))

]

� ξ2εh(d(x))g(p(d(x)))

×
[
(ψ(ξ2ε) − ε) − 1 − p′(d(x))

p′′(d(x))
∆d(x) − λξq−1

2ε

(p′(d(x)))q

p′′(d(x))

]

� 0.

It follows by (g1) and the maximum principle [11, theorem 10.1] that

ξ2εp(d(x)) = u
¯ε(x) � uλ(x) � ūε(x) = ξ1εp(d(x)), ∀x ∈ Ωδ.

Let ε → 0. We then see that

lim
d(x)→0

uλ(x)
p(d(x))

= ξ0.

This completes the proof.

3. Existence of solutions

First we introduce a sub–supersolution method with a boundary restriction (see [6,
25]).

We consider the following more general problem:

−∆u = f(x, u,∇u), u > 0, x ∈ Ω, u|∂Ω = 0, (3.1)

where f(x, s, η) satisfies the following two conditions:

(D1) f(x, s, η) is locally Hölder continuous in Ω × (0,∞) × R
N and continuously

differentiable with respect to the variables s and η;

(D2) for any Ω1 ⊂⊂ Ω and any a, b ∈ (0,∞) with a < b, there exists a correspond-
ing constant C = C(Ω1, a, b) > 0 such that

|f(x, s, η)| � C(1 + |η|2), ∀x ∈ Ω̄1, ∀u ∈ [a, b], ∀η ∈ R
N .

Definition 3.1. A function u
¯

∈ C2+α(Ω)∩C(Ω̄) is called a subsolution of problem
(3.1) if

−∆u
¯

� f(x, u
¯
,∇u

¯
), u

¯
> 0, x ∈ Ω, u

¯
|∂Ω = 0. (3.2)

Definition 3.2. A function ū ∈ C2+α(Ω)∩C(Ω̄) is called a supersolution of prob-
lem (3.1) if

−∆ū � f(x, ū, ∇ū), ū > 0, x ∈ Ω, ū|∂Ω = 0. (3.3)

We have the following basic existence result.
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Lemma 3.3 (Cui [6, lemma 3]). Suppose problem (3.1) has a supersolution ū and
a subsolution u

¯
such that u

¯
� ū on Ω. Then problem (3.1) has at least one solution

u ∈ C2+α(Ω) ∩ C(Ω̄) in the ordered interval [u
¯

, ū].

At the same time, we use the following basic unique result.

Lemma 3.4 (Theorems 10.1 and 10.2 in [11]). If f(x, s, η) satisfies the two condi-
tions that

(D3) f is non-increasing in s for each (x, η) ∈ Ω × R
N ;

(D4) f is continuously differentiable with respect to the η variables in Ω × (0,∞)×
R

N ;

then problem (3.1) has at most one solution in C2+α(Ω) ∩ C(Ω̄).

For the following convenience, we denote

|u|∞ = max
x∈Ω̄

u(x), u ∈ C(Ω̄).

Now we apply the lemmas to consider the existence and uniqueness of solutions
to problem (1.2), which is the corresponding to the result in [23] for Ω = R

N .

Lemma 3.5. Let k ∈ Cα(Ω) be non-negative and non-trivial on Ω. If g satisfies the
condition that

(g11) g ∈ C1((0,∞), (0,∞)), g′(s) � 0 for all s > 0,

then problem (1.2) has a unique solution u ∈ C2+α(Ω) ∩ C(Ω̄) if and only if prob-
lem (1.9) is solvable.

Proof. Let

H(u) =
∫ u

0

1
g(s)

ds for u � 0.

It follows that H : [0,∞) → [0,∞) is strictly increasing and

H ′(u) =
1

g(u)
for u > 0.

Let ū(x) = H−1(v0(x)), x ∈ Ω, where H−1 denotes the inverse function of H, and
v0 is the unique classical solution of problem (1.9). We see that ū|∂Ω = 0 and

−∆ū +
g′(ū)|∇ū|2

g(ū)
= k(x)g(ū), x ∈ Ω.

It follows by (g11) that
−∆ū � k(x)g(ū), x ∈ Ω,

i.e. ū = H−1(v0) is a supersolution of problem (1.2).
On the other hand, hypothesis (g11) implies that lims→0+ g(s) ∈ (0,∞], so

lim
s→0+

g(s)
s

= +∞.
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There then exists c0 ∈ (0, 1) such that

g(c0|v0|∞)
c0

� 1.

Let u
¯

= c0v0. We see that

−∆u
¯

= c0k(x) � k(x)g(c0|v0|∞) � k(x)g(u
¯
), x ∈ Ω,

i.e. u
¯

= c0v0 is a subsolution of problem (1.2). Moreover, we see that

H(c0v0(x)) =
∫ c0v0(x)

0

1
g(s)

ds � c0v0(x)
g(c0|v0|∞)

� v0(x), x ∈ Ω,

i.e. u
¯

� ū on Ω. By lemma 3.3, we see that problem (1.2) has at least one solution
u ∈ C2+α(Ω) ∩ C(Ω̄) in ordered interval [u

¯
, ū]. And the uniqueness follows by

lemma 3.4.
Inversely, let problem (1.2) have a solution u ∈ C2+α(Ω) ∩ C(Ω̄), and let c1 =

g(|u|∞). It follows by (g11) that

−∆u = k(x)g(u) � c1k(x), x ∈ Ω,

i.e. u/c1 is a supersolution of problem (1.9) and 0 is a subsolution of problem (1.9).
It follows by lemma 2.1 and the Höpf strong maximum principle (see [11, theo-
rem 3.5,p. 35]) that the linear problem (1.9) is solvable. The proof is complete.

Proof of theorem 1.9. We first consider the following problem:

−∆u = k(x)g(u) + λ|∇u|2 + σ, u > 0, x ∈ Ω, u|∂Ω = 0, (3.4)

where σ is a non-negative constant.
The change of variable v = eλu − 1 transforms problem (3.4) into the equivalent

one:

−∆v = k(x)(v + 1)hλ(v) + λσ(v + 1), v > 0, x ∈ Ω, v|∂Ω = 0, (3.5)

where hλ(s) = λg(λ−1 ln(s + 1)) and s > 0.
Fix λ > 0. We then see by (g1) and lims→∞ g(s) = 0 that hλ is non-increasing

on (0,∞) and that

lim
s→0+

(s + 1)hλ(s) = +∞, lim
s→∞

(1 + s)hλ(s)
s

= 0.

So there exist positive constants Cλ and cλ with cλ < |v0|−1
∞ such that

(s + 1)hλ(s) � 2hλ(s) + cλs + Cλ, ∀s > 0. (3.6)

Let vλ1 ∈ C(Ω̄)∩C2(Ω) be the solution of the following problem (see lemma 3.5):

−∆v = 2k(x)hλ(v), v > 0, x ∈ Ω, v|∂Ω = 0. (3.7)

Let

Mλ =
cλ|v1|∞ + Cλ

1 − cλ|v0|∞
and vλ2 = Mλv0.
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We then have that

−∆vλ2 = Mλk(x)
� k(x)(Cλ + cλ|vλ1|∞ + cλMλ|v0|∞)
� k(x)[Cλ + cλ(vλ1 + vλ2)], x ∈ Ω.

(I) σ = 0. We see by (3.6) that v̄λ = vλ1 + vλ2 satisfies

−∆v̄λ = 2k(x)hλ(vλ1) + Mλk(x)
� k(x)[2hλ(vλ1 + vλ2) + cλ(vλ1 + vλ2) + Cλ]
� k(x)(v̄λ + 1)hλ(v̄λ), x ∈ Ω,

i.e. v̄λ = vλ1 + vλ2 is a supersolution of problem (3.5).
Obviously, the solution v

¯λ of the problem (lemma 3.5)

−∆v = k(x)hλ(v), v > 0, x ∈ Ω, v|∂Ω = 0, (3.8)

is a subsolution of problem (3.5) and v
¯λ � vλ1 � v̄λ on Ω. Thus, problem (3.5)

has at least one solution vλ ∈ C(Ω̄) ∩ C2(Ω) in ordered interval [v
¯λ, v̄λ] for each

fixed λ > 0, i.e. problem (1.1) has a solution uλ ∈ C(Ω̄) ∩ C2(Ω) for each λ > 0
and q = 2.

(II) σ > 0 and k ≡ 1 on Ω. In this case we see that v0 ∈ C1(Ω̄) ∩ C2+α(Ω) is the
unique solution of the problem

−∆v = 1, v > 0, x ∈ Ω, v|∂Ω = 0. (3.9)

Let 0 < λσ < λ1. We can then choose cλ in (3.6) such that cλ < λ1 − λσ. It
follows by [14, theorem 3.2, p. 128] and [13, p. 1363] that the problem

−∆v = (λσ+cλ)v+λσ+Cλ+(λσ+cλ)|vλ1|∞, v > 0, x ∈ Ω, v|∂Ω = 0, (3.10)

has a unique solution vλ3, where vλ1 is the unique solution of problem (3.7) with
k ≡ 1 on Ω. Then v̄λ = vλ1 + vλ3 satisfies

−∆v̄λ = 2hλ(vλ1) + (λσ + cλ)vλ3 + λσ + Cλ + (λσ + cλ)|vλ1|∞
� 2h(vλ1 + vλ3) + (λσ + cλ)(vλ3 + vλ1) + Cλ + λσ

� (v̄λ + 1)hλ(v̄λ) + λσ(v̄λ + 1), x ∈ Ω,

i.e. v̄λ = vλ1 + vλ3 is a supersolution of problem (3.5). Obviously, the unique solu-
tion v

¯λ of the problem (3.8) with k ≡ 1 on Ω is a subsolution of problem (3.5) and
v
¯λ � vλ1 � v̄λ on Ω. Thus, problem (3.5) has at least one solution v ∈ C(Ω̄)∩C2(Ω)
in the ordered interval [v

¯λ, v̄λ], i.e. problem (3.4) has a solution uλ ∈ C(Ω̄) ∩ C2(Ω)
for k ≡ 1 on Ω, q = 2 and σ > 0 with 0 < λσ < λ1.

When 0 < q < 2, for an arbitrary positive constant C, we have the basic inequal-
ity [25, proof of theorem 1.2, p. 922]

sq � s2C1−q/2 + Cq/2, ∀s � 0. (3.11)

We now consider the following problem:

−∆v = g(u) + λCq/2−1|∇u|2 + λCq/2, u > 0, x ∈ Ω, u|∂Ω = 0. (3.12)
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Let
λCq/2(λCq/2−1) = λ2Cq−1 < λ1. (3.13)

By the above proof, we see that problem (3.12) has a unique solution ūλ, which is a
supersolution of problem (1.1) and that the solution u0 to problem (1.2) with k ≡ 1
on Ω is a subsolution of problem (1.1). It follows by the maximum principle that
u0 � ūλ on Ω. Problem (1.1) then has at least one solution uλ ∈ C(Ω̄) ∩ C2(Ω) in
the ordered interval [u0, ūλ].

Now we analyse the inequality (3.13). Given every λ > 0, for q = 1, we can
choose λ <

√
λ1 such that (3.13) holds and, for q ∈ (0, 1) ∪ (1, 2), we can choose

C < (λ1/λ2)1/(q−1) such that (3.13) holds, i.e. problem (1.1) has one solution uλ ∈
C(Ω̄) ∩ C2(Ω) for k ≡ 1 on Ω and for one of the following cases:

(ii) q ∈ [0, 1), λ � 0;

(iii) q = 1, 0 � λ <
√

λ1.

When λ < 0, it is obvious that u0 is a supersolution of problem (1.1), where u0 is
the solution of problem (1.2). Besides, for fixed λ < 0, we can see, by the fact that

lim
s→0+

s − λsq|∇v0|q∞
g(s|v0|∞)

= 0,

that there exists a positive constant bλ such that bλ < c0 and

s − λsq|∇v0|q∞ � g(s|v0|∞),∀s ∈ (0, bλ),

where v0 is the solution of problem (3.9).
It follows that u

¯λ = cλ1v0 satisfies

−∆u
¯λ(x) = cλ1 � g(cλ1|v0|∞) + λcq

λ1|∇v0(x)|q

� g(u
¯λ(x)) + λ|∇u

¯λ(x)|q, x ∈ Ω,

where cλ1 ∈ (0, bλ), i.e. u
¯λ = cλ1v0 is a subsolution of problem (1.1). By the proof of

lemma 3.5, we see that u
¯λ � c0v0 � u0 on Ω. Thus, problem (1.1) has at least one

solution uλ ∈ C(Ω̄)∩C2(Ω) for every λ < 0. The uniqueness follows by lemma 3.4.
This completes the proof.
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