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Abstract. Given a G-flow X, let Aut(G, X), or simply Aut(X), denote the group of
homeomorphisms of X which commute with the G action. We show that for any pair of
countable groups G and H with G infinite, there is a minimal, free, Cantor G-flow X so
that H embeds into Aut(X). This generalizes results of [2, 7].
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1. Introduction
Let G be an infinite countable group, and let X be a G-flow, that is, a compact Hausdorff
space equipped with a continuous G-action a : G×X→ X. When the action a is
understood, we often write g · x or simply gx in place of a(g, x). Given G-flows X and
Y , a G-map ϕ : X→ Y is a continuous map which respects the G-actions. A bijective
G-map from X to itself is called an automorphism of the G-flow X, and we denote the
group of automorphisms of X by Aut(X) when the G-action is understood. Sometimes,
this group is called the centralizer of X. In this paper, we will be interested in the possible
centralizers of minimal G-flows, that is, those G-flows with every orbit dense.

The study of the centralizers of G-flows has been an active area of research, especially in
the case G = Z. Usually some constraint is placed upon the flows X under consideration,
for instance by demanding that X is a subshift over a finite alphabet (see, for instance,
[1, 3–5, 8]). More recently, interest has turned to just considering minimality with no
other constraints. Namely, does only the knowledge that X is a minimal G-flow place any
algebraic constraints on the possible groups that can appear as Aut(X)?

A natural constraint to place on X is that the underlying space of X be the Cantor space.
We call G-flows with this property Cantor flows. This is not much of a constraint at all,
since every countable group can act freely on Cantor space [9]. In [1], a construction is
given of a minimal Z-subshift whose automorphism group embeds Q. Cortez and Petite
in [2] construct for every residually finite countable group H a minimal Cantor Z-flow X
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such that H embeds into Aut(X). Independently and using different techniques, Glasner
et al in [7] construct for any countable group G and any countable group H which embeds
into a compact group a free, minimal, Cantor G-flow X for which H embeds into Aut(X).
Recall that the G-flow X is free if for every x ∈ X, the stabilizer Gx := {g ∈ G : gx = x}
is trivial.

The goal of this paper is to prove the following theorem.

THEOREM 1.1. Let G and H be any countable groups with G infinite. Then there is a
minimal, free, Cantor G-flow X so that H embeds into Aut(X).

We may assume without loss of generality that H is also infinite. We also note that it
suffices to construct any minimal G-flow X, not necessarily free nor Cantor, so that H

embeds into Aut(X). If X is a minimal G-flow such that H embeds into Aut(X), then by
[7, Theorem 1.2], there is a minimal, free G-flow Y with X × Y also minimal. Then by
arguing as in [7, Theorem 11.5], we can find Z a suitable highly proximal extension of
X × Y which is homeomorphic to Cantor space and such that H still embeds into Aut(Z).
However, it seems very likely that the construction given here gives an essentially free
G-flow, in which case the appeal to [7, Theorem 1.2] is not needed.

We start with two preliminary sections. The first is on blueprints, a notion developed by
Gao, Jackson and Seward in [6]. The second discusses strongly irreducible subshifts. The
final section proves Theorem 1.1.

Notation. Our notation is mostly standard. The set N := {0, 1, 2, . . .} of natural numbers
contains zero. If f : X→ Y is a function and S ⊆ X, we write f [S] := {f (s) : s ∈ S},
and we write f |S for the restriction of f to domain S.

2. Blueprints
The notion of a blueprint is developed by Gao, Jackson and Seward in [6] where, in
particular, it is proven that every group carries a non-trivial blueprint. To keep this paper
self-contained, we provide a proof of this. We delay the definition of a blueprint until we
have actually constructed one. Throughout this section, we will use the group G; the group
H will figure more heavily in the next section.

The idea behind a blueprint is that, starting with a rapidly growing sequence A0, A1, . . .

of finite subsets of our group, we wish to pack translates of these into our group in such a
way that for any An ⊆ G in our sequence, translates of An appear ‘syndetically often’, that
is, without arbitrarily large gaps. However, the packings for Am ⊆ An need to be coherent,
so that a translate of Am does not touch the boundary of any translate of An. The example
of G = Z is perhaps too easy, since we can take the An to be intervals with lengths that
divide one another. The notion of a blueprint is most useful when we do not have prior
knowledge of the geometry of the group, or if the sets An we must use are constrained in
some way. A surprisingly good example to keep in mind is that of R2; granted, R2 is not a
countable group, but thinking of An ⊆ R2 as Euclidean balls of rapidly growing radius is
still informative, and most of the difficulties that pop up in full generality already appear
in this example.
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For this section we fix an exhaustion G =⋃
n An, where each An is finite, symmetric,

and contains the identity 1G ∈ G. We let A = {An : n ∈ N} denote this exhaustion. We
assume that each An is large enough to write An = A3

0 · A3
1 · · · A3

n−1 · Bn for some finite
set Bn containing 1G which we now fix. In particular, notice that A3

0 · · · A3
n−1 ⊆ An. Given

k < n, we set An(k) = A3
k · · · A3

n−1 · Bn. Notice that if k′ ≤ k, then An(k) ⊆ An(k
′). Also

notice that AkAn(k) ⊇ An.
If F ⊆ G is finite, we say that g, h ∈ G are F -apart if Fg ∩ Fh = ∅. We say that

S ⊆ G is F -spaced if every g 
= h ∈ S is F -apart.

Definition 2.1. An A-system of height n is a collection S = {S(0), . . . , S(n)} of subsets
of An defined by reverse induction as follows.
• S(n) = {1G}.
• If S(k + 1), . . . , S(n) have all been defined, we say that g ∈ An is k-admissible

for S if, letting � > k be least with Ak · g ∩ A� · S(�) 
= ∅, then there is h ∈ S(�)

with Ak · g ⊆ A�(k) · h. Write Ad(k, S) for the set of g ∈ An which are k-admissible
for S.

• S(k) is any maximal Ak-spaced subset of Ad(k, S) containing 1G.
For the last item, notice by reverse induction that 1G ∈ Ad(k, S) for each k < n.

Let us immediately clarify an important point about the set Ad(k, S).

LEMMA 2.2. Suppose g ∈ Ad(k, S). Then for any m > k with Ak · g ∩ Am · S(m) 
= ∅,
there is b ∈ S(m) with Ak · g ⊆ Am(k) · b.

Proof. We induct on m− k. When m− k = 1, the lemma follows from the definitions. If
m− k > 1, then consider the least � > k with Ak · g ∩ A�S(�) 
= ∅. Using item (2) of the
definition, there is h ∈ S(�) with Ak · g ⊆ A�(k) · h. If � = m we are done. If � < m, then
A� · h ∩ Am · S(m) 
= ∅, so by induction we can find b ∈ S(m) with A� · h ⊆ Am(�) · b.
Then Ak · g ⊆ A� · h ⊆ Am(�) · b ⊆ Am(k) · b.

For the moment, fix an A-system S of height n. Our first main goal is Proposition 2.6,
which shows that the sets S(k) are somewhat large.

LEMMA 2.3. Suppose g ∈ Ad(k, S). Then we have A2
k · g ∩ S(k) 
= ∅.

Proof. If A2
k · g ∩ S(k) were empty, then S(k) ∪ {g} would be a strictly larger Ak-spaced

subset of Ad(k, S).

LEMMA 2.4. Suppose � > k and h ∈ S(�). Then we have

A2
k · A�(k + 1) · h \ Ak · A�(k + 1) · h ⊆ Ad(k, S).

Proof. Fix g in the left-hand side. Then Ak · g ⊆ A�(k) · h \ A�(k + 1) · h. Towards a
contradiction, suppose there were some m, k < m < �, with Ak · g ∩ Am · S(m) 
= ∅.
Suppose b ∈ S(m) satisfies Ak · g ∩ Am · b 
= ∅. Then since b ∈ Ad(m, S), Lemma 2.2
implies that Am · b ⊆ A�(m) · h. But since we have Ak · g ∩ A�(k + 1) · h = ∅, this is a
contradiction.
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Definition 2.5. Suppose F ⊆ G is finite, D ⊆ G, and let S ⊆ D. We say that S is
F -syndetic in D if for any g ∈ G such that Fg ⊆ D, we have Fg ∩ S 
= ∅. If D = G,
we simply say that S is F -syndetic. We say that S is syndetic if there is a finite F ⊆ G so
that S is F -syndetic.

PROPOSITION 2.6. The set S(k) ⊆ An is A5
k-syndetic in An.

Proof. Suppose we have g ∈ G with A5
k · g ⊆ An. If g ∈ Ad(k, S), we are done by

Lemma 2.3, so assume this is not the case. Let � > k be least with Ak · g ∩ A� · S(�) 
=
∅, and fix some h ∈ S(�) and f ∈ Ak with fg ∈ A� · h. Notice that we cannot have
fg ∈ Ak · A�(k + 1) · h, as this would imply that g ∈ Ad(k, S). In particular, for some
i ∈ {2, 3, 4}, we have fg ∈ Ai

k · A�(k + 1) · h \ Ai−1
k · A�(k + 1) · h. In each case, we

can find f0 ∈ A2
k with f0fg ∈ A2

k · A�(k + 1) · h \ Ak · A�(k + 1) · h. By Lemma 2.4, we
have f0fg ∈ Ad(k, S), so by Lemma 2.3, we have A2

k · f0fg ∩ S(k) 
= ∅. We are done
once we note that A2

k · f0f ⊆ A5
k .

We now investigate how to modify A-systems to create new ones. Definition 2.7 and
Proposition 2.8 give a method to restrict to a smaller system, while Definition 2.9 and
Proposition 2.10 allow us to print a smaller system inside a larger one.

Definition 2.7. Suppose g ∈ S(m). Then (g · S)|m = {(g · S)|m(0), . . . , (g · S)|m(m)}
denotes the collection of subsets of Am where for k ≤ m we set

(g · S)|m(k) = (S(k) ∩ (Am · g)) · g−1.

If g = 1G, we simply write S|m.

PROPOSITION 2.8. (g · S)|m is an A-system of height m.

Proof. We first note that (g · S)|m(m) = {1G} since S(m) is Am-spaced. Then we proceed
by reverse induction on k < m. First we note that

Ad(k, (g · S)|m) = (Ad(k, S) ∩ (Am · g)) · g−1.

Then, if b, h ∈ Ad(k, S) with Ak · b ∩ Am · g = ∅ and Ak · h ⊆ Am(k) · g, we have
Ak · b ∩ Ak · h = ∅. It follows that (S(k) ∩ (Ak · g)) · g−1 is a maximal Ak-spaced subset
of Ad(k, (g · S)|m).

Definition 2.9. Let S be an A-system of height n. Let T be an A-system of height m

for some m < n. Given g ∈ S(m), we let (S, T , g) = {(S, T , g)(0), . . . , (S, T , g)(n)}
denote the collection of subsets of An where, for k ≤ n, we have:
• (S, T , g)(k) = S(k) for m ≤ k ≤ n;
• (S, T , g)(k) = (S(k) \ Am · g) ∪ (T (m) · g) for k < m.

PROPOSITION 2.10. (S, T , g) is an A-system of height n.

Proof. We proceed by reverse induction on k ≤ n. For k ≥ m there is nothing to prove.
For k < m, we observe that Ad(k, (S, T , g)) = (Ad(k, S) \ Am · g) ∪ Ad(k, T ) · g. Then
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314 A. Zucker

we note that S(k) \ Am · g and T (m) · g are Ak-apart. It follows that (S(k) \ Am · g) ∪
T (m) · g is a maximal Ak-spaced subset of Ad(k, (S, T , g)).

We use Proposition 2.10 to construct particularly nice A-systems.

Definition 2.11. Let S be an A-system of height n. We call S uniform if (g · S)|m =
(h · S)|m for any g, h ∈ S(m) and any m ≤ n.

PROPOSITION 2.12. There is a sequence {Sn : n ∈ N} of uniform A-systems such that Sn

has height n and Sn|m = Sm for any m ≤ n.

Proof. We proceed by (forward) induction. For n = 0 the unique A-system of height zero
is vacuously uniform. Suppose S0, . . . , Sn−1 have been constructed. Let T := T0 be any
A-system of height n. For each k < n, we set

T (k) = T (k) \
( ⋃

k<m<n

Am · T (m)

)
.

Note that the sets T (0), . . . , T (n− 1) are pairwise disjoint. Fix some enumeration of⋃
k<n T (k) = {g0, . . . , gr−1}, and for each i < r let ϕ(i) < n be the unique index with

gi ∈ T (ϕ(i)). We repeatedly use Proposition 2.10 to define A-systems T0, . . . , Tr . If Ti

has been built for some i < r , we set Ti+1 = (Ti , Sϕ(i), gi). We then set Sn = Tr . Then Sn

is a uniform A-system of height n as desired.

Definition 2.13.
(1) A sequence 
S := {Sn : n ∈ N} constructed as in Proposition 2.12 will be called a

coherent sequence.
(2) Let 
S be a coherent sequence. The blueprint of 
S is the sequence { 
S(n) : n ∈ N},

where 
S(n) =⋃
N≥n SN(n).

PROPOSITION 2.14. Fix a coherent sequence 
S, and form its blueprint { 
S(n) : n ∈ N}.
(1) 
S(n) ⊇ 
S(n+ 1), and each 
S(n) is An-spaced and A5

n-syndetic.
(2) For any k ≤ n, g ∈ 
S(k), and h ∈ 
S(n), we either have Ak · g ∩ An · h = ∅ or

Ak · g ⊆ An(k) · h.
(3) For any k ≤ n and g, h ∈ 
S(n), we have

( 
S(k) ∩ (An · g)) · g−1 = ( 
S(k) ∩ (An · h)) · h−1.

(4) For each n ∈ N, we have | 
S(n) ∩ An+1| ≥ |A2
n · Bn+1|/|A2

n|.

Remark. Compare this to [6]. In fact, we have constructed what they call a centered
blueprint.

Proof. (1) First, we note that for n+ 1 ≤ N we have SN(n+ 1) ⊆ SN(n). To see this, fix
g ∈ SN(n+ 1). Because SN is uniform, we have that (g · SN)|n+1 = SN |n+1. In particu-
lar, since 1G ∈ SN |n+1(n), we have 1G ∈ (g · SN)|n+1(n) = (SN(n) ∩ (An+1 · g)) · g−1,
implying that g ∈ SN(n) as desired. From this, it follows that 
S(n) ⊇ 
S(n+ 1).

https://doi.org/10.1017/etds.2020.128 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.128


Minimal flows with arbitrary centralizer 315

For the second claim, we note that for n ≤ N we have SN(n) ⊆ SN+1(n) because 
S
is coherent. Each SN(n) is An-spaced and A5

n-syndetic in AN . It follows that 
S(n) is
An-spaced and A5

n-syndetic.
(2) Find some N ≥ n with g ∈ SN(k) and h ∈ SN(n). If k = n, the claim holds since

SN(n) is An-spaced. If k < n, the claim holds since SN is an A-system of height N .
(3) Find some N ≥ n with g, h ∈ SN(n). Then as SN is uniform, we have (g · SN)|n =

(h · SN)|n, so in particular (g · SN)|n(k) = (h · SN)|n(k), that is,

(SN(k) ∩ (An · g)) · g−1 = (SN(k) ∩ (An · h)) · h−1.

Since this is true for every large enough N , the result follows.
(4) The set Sn+1(n) is a maximal An-spaced subset of Ad(n, Sn+1) = {g ∈ G :

An · g ⊆ An+1}. Note that A2
n · Bn+1 ⊆ Ad(n, Sn+1). The result follows.

3. Strongly irreducible subshifts
In this section we work with the group H . If M is a compact space, then H acts on the
space MH via the right shift, where, given g ∈ H and x ∈ MH , we define g · x ∈ MH via
(g · x)(h) = x(hg). A subshift is any non-empty closed X ⊆ MH which is H -invariant.
Often, we will take M to be a finite set A; in this case we refer to A as an alphabet.
Let X ⊆ AH be a subshift. If C ⊆ H is finite, the set of C-patterns of X is given by
PC(X) = {x|C : x ∈ X} ⊆ AC . If D ⊆ H is finite, sets S0, S1 ⊆ H are called D-apart if
DS0 ∩DS1 = ∅.
Definition 3.1. Let D ⊆ H be finite. A subshift X ⊆ AH is D-irreducible if for any
S0, S1 ⊆ H which are D-apart and any x0, x1 ∈ X, there is y ∈ X such that y|Si

= xi |Si

for each i < 2. We sometimes say that y blends x0|S0 and x1|S1 . We say that X is strongly
irreducible if X is D-irreducible for some finite D ⊆ H .

Fact 3.2. Let A and B be finite sets. If X ⊆ AH is DX-irreducible and Y ⊆ BH is
DY -irreducible, then X × Y ⊆ (A× B)H is (DX ∪DY )-irreducible.

The remainder of this section discusses some examples of strongly irreducible flows
that we will use in the construction of the next section. Given a finite C ⊆ H , any S ⊆ H ,
and γ : S → A for some finite alphabet A, we say that γ is C-spaced if γ−1(a) ⊆ H is
C-spaced for every a ∈ A.

LEMMA 3.3. Let C ⊆ H be finite, and let n = |C−1C|. Then, given any S ⊆ H (possibly
S = ∅) and C-spaced function δ : S → {0, . . . , n− 1}, there is a C-spaced function
γ : H → {0, . . . , n− 1} with γ |S = δ.

Proof. Enumerate H = {hi : i ∈ N}. Set S0 = S and γ0 = δ. If Si ⊆ H and C-spaced
functions γi : Si → {0, . . . , n− 1} have been determined, we set Si+1 = Si ∪ {hi}. If
hi ∈ Si , then we set γi+1 = γi . If hi 
∈ Si , then we note that |(C−1Chi) ∩ Si | < n. The
inequality is strict since |C−1Chi | = n and hi ∈ (C−1Chi) \ Si . In particular, we have

{0, . . . , n− 1} \ γi[(C−1Chi) ∩ Si] 
= ∅.
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Choose γi+1(hi) to be anything from this non-empty set. We then set γ =⋃
i γi .

Definition 3.4. For any finite C ⊆ H and any n ≥ |C−1C|, we set

Part(C, n) := {γ ∈ {0, . . . , n− 1}H : γ−1(k) is C-spaced for each k < n}.
The argument in Lemma 3.3 shows that Part(C, n) is C-irreducible.

As a warm-up for the next definition, first suppose that C, D ⊆ H are finite. Let
X ⊆ AH be D-irreducible, and fix α ∈ PC(X). Suppose S ⊆ H is DC-spaced. Then
by repeatedly using D-irreducibility, we can find x ∈ X such that (h · x)|C = α for each
h ∈ S.

Definition 3.5. Let C, D ⊆ H be finite, let E ⊆ H be finite with DC ⊆ E, and let N ≥
|E−1E|. We define

Print(X, α, E, N) := {(x0, . . . , xN−1) ∈ XN : there exists γ ∈ Part(E, N) for all h ∈ H

such that (h · xγ (h))|C = α}
⊆ {(x0, . . . , xN−1) ∈ XN : for all h ∈ H there exists i < N

such that (h · xi)|C = α}.
In the notation, notice that C is implicit, as C = dom(α). Although D is implicit as
well via the assumption that X is D-irreducible, this is less important as E is presumed
to be suitably large. Notice that if (x0, . . . , xN−1) ∈ Print(X, α, E, N) as witnessed by
γ ∈ Part(E, N), then for any g ∈ H , we have that g · (x0, . . . , xN−1) = (g · x0, . . . , g ·
xN−1) is in Print(X, α, E, N) as witnessed by g · γ ∈ Part(E, N).

PROPOSITION 3.6. Print(X, α, E, N) is EE−1D-irreducible.

Proof. Let (x0, . . . , xN−1), (y0, . . . , yN−1) ∈ Print(X, α, E, N) as witnessed by γx ,
γy ∈ Part(E, N). Let Sx , Sy ⊆ H be EE−1D-apart. For each i < N , we define

Sx(i) = Sx ∪
( ⋃
{Ch : h ∈ H with γx(h) = i and h ∈ E−1DSx}

)
,

and we define Sy(i) similarly. Note that Sx(i) ⊆ CE−1DSx , and similarly for Sy(i); in
particular, Sx(i) and Sy(i) are D-apart since DC ⊆ E.

Since Part(E, N) is E-irreducible, we can find γ ∈ Part(DC, N) blending γx |E−1DSx

and γy |E−1DSy
. Notice that if h 
∈ E−1D(Sx ∪ Sy), then Ch and Sx ∪ Sy are D-apart; if

we also have γ (h) = i, then Ch and Sx(i) ∪ Sy(i) are D-apart. Now for each i < N , find
zi ∈ X which blends xi |Sx(i) and yi |Sy(i) and satisfies (h · zi)|C = α whenever γ (h) = i.
Then (z0, . . . , zN−1) ∈ Print(X, α, N) is as desired.

4. The construction
In this section we construct a (G×H)-subshift X ⊆ 2G×H which is essentially free (in
fact free) as an H -flow and minimal as a G-flow. This will prove Theorem 1.1. We will
often think of 2G×H as either the G-flow (2H )G or as the H -flow (2G)H as needed.
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However, to keep the roles of G and H clear, we use different notation. Given g ∈ G and
x ∈ 2G×H , we will write 〈g, x〉 instead of (g, 1H ) · x, and if h ∈ H , we write h · x instead
of (1G, h) ·X. We will first construct an H -flow Y = lim←− Yn ⊆ 2G×H . Then we will set
X = 〈G, Y 〉, where 〈G, Y 〉 := {〈g, y〉 : g ∈ G, y ∈ Y }. The main work in this section is
the construction of Y .

We start by fixing both an exhaustion G =⋃
n An as in §2 and a coherent sequence 
S

on G. We will adhere to the notation developed in §2 as much as possible. We will often
assume that each An+1 is suitably large compared to An to proceed as we need, especially
in regard to item 4 of Proposition 2.14. For each n ∈ N, the H -flow Yn will be a subshift
of (2An)H , and for m < n, the projection πn

m : Yn→ Ym will be the one induced by the
restriction map from 2An to 2Am . We also fix an exhaustion H =⋃

n Cn with each Cn

finite, symmetric, and containing the identity 1H ∈ H .
It will be helpful to ‘finitize’ the G-action as follows.

Definition 4.1.
(1) Suppose A ⊆ G and α ∈ 2A. Given g ∈ G, we let 〈g | α〉 ∈ 2Ag−1

be defined by
〈g | α〉(ag−1) = α(a) for a ∈ A. Note that 〈g0g1 | α〉 = 〈g0 | 〈g1 | α〉〉.

(2) Suppose A ⊆ G is finite and z ∈ (2A)H . Then, for any g ∈ G, we define 〈g, z〉 ∈
(2Ag−1

)H where, for z ∈ (2A)H and h ∈ H , we have 〈g, z〉(h) = 〈g | z(h)〉. Again,
note that 〈(g0g1), z〉 = 〈g0, 〈g1, z〉〉.

(3) Note that if Z ⊆ (2A)H is an H -subshift, then 〈g, Z〉 := {〈g, z〉 : z ∈ Z} ⊆
(2Ag−1

)H is also an H -subshift.

Example 4.2. Suppose G = Z, and that A = {−10, . . . , 10}. Then, if α ∈ 2A and g = 5,
the domain of 〈5, α〉 is {−15, . . . , 5}. This might seem a little counterintuitive, but this
definition agrees with how we defined our shift action.

We build the flows Yn by induction, and we set Y0 = (2A0)H . Trivially, Y0 is {1H } :=
D0-irreducible. Suppose Y0, . . . , Yn−1 have been constructed, where each Yk is an
H -subflow of (2Ak )H , and are all Dn−1-irreducible for some finite symmetric Dn−1 ⊆ H .
Fix some finite En−1 ⊆ H with Dn−1Cn−1 ⊆ En−1. For each k < n, set

Sn(k) = Sn(k) \
( ⋃

k<m<n

Am · Sn(m)

)
.

Notice that Sn(n− 1) = Sn(n− 1) = 
S(n− 1) ∩ An. For k < n, set Tn(k) = Ak · Sn(k).
We also set Tn(n) := An \⋃

k<n Tn(k). To define Yn, we will first define a subshift
Zn ⊆ (2Tn(n−1))H . We will then put

Yn := (2Tn(n))H × Zn ×
n−2∏
k=0

∏
g∈Sn(k)

〈g−1, Yk〉.

Since An = Tn(n) ∪ Tn(n− 1) ∪⋃
0≤k≤n−2 Tn(k), we see that Yn ⊆ (2An)H as desired.

We note that Yn will be strongly irreducible as long as Zn is.
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Let r := |Sn(n− 1)| = | 
S(n− 1) ∩ An|. How large does r need to be? Consider the set
PCn−1(Yn−1) := {α0, . . . , α�−1} ⊆ (2An−1)Cn−1 . We will want to ensure that

r > |E−1
n−1En−1| · 2|An−1×Cn−1|.

Using part (4) of Proposition 2.14, we see that as long as An is suitably large compared to
An−1, r will satisfy this inequality.

Having fixed � = |PCn−1(Yn−1)|, the size of r allows us to find disjoint sets
Fi ⊆ Sn(n− 1) for each i < � with |Fi | = |E−1

n−1En−1| := q, while ensuring that
F� := Sn(n− 1) \⋃

i<� Fi 
= ∅. We also demand that 1G ∈ F�. For i < �, write
Fi = {gi

0, . . . , gi
q−1}.

Recall the flow Print from the previous section. We define a map

�i : Print(Yn−1, αi , En−1, q)→ (2An−1·Fi )H = (2An−1·gi
0)H × · · · × (2An−1·gi

q−1)H

via �i((x0, . . . , xq−1)) = (〈(gi
0)
−1, x0〉, . . . , 〈(gi

q−1)
−1, xq−1〉). Note that �i is injec-

tive. We set Qi = Im(�i).
We then set

Zn =
∏
g∈F�

〈g−1, Yn−1〉 ×
∏
i<�

Qi .

Note that Zn is strongly irreducible; hence Yn is as well.
We will need the following lemma. For any B ⊆ An, we let πn

B : (2An)H → (2B)H

denote the restriction map. If B = Am, we simply write πn
m instead of πn

Am
.

LEMMA 4.3. If g ∈ Sn(n− 1), then πn
An−1·g[Yn] ⊆ 〈g−1, Yn−1〉.

Proof. To see this, first note that if g ∈ F�, we have πn
An−1·g[Yn] = 〈g−1, Yn−1〉 straight

from the definition of Zn. If g ∈ Fi = {gi
0, . . . , gi

q−1} for some i < �, say that g = gi
j for

some j < q. Suppose y ∈ Yn. Then, setting z = πn
An−1·Fi

(y), we have z ∈ Qi = Im(�i).
If (x0, . . . , xq−1) ∈ Print(Yn−1, αi , En−1, q) is such that �i(x0, . . . , xq−1) = z, then we
have that πn

An−1·g(z) = 〈g−1, xj 〉. Since xj ∈ Yn−1, we have the result.

COROLLARY 4.4. If g ∈ Sn(k) for k < n, then πn
Ak ·g[Yn] ⊆ 〈g−1, Yk〉.

Proof. We induct on n− k for every n simultaneously. If n− k = 1, the result follows
from Lemma 4.3. If g ∈ Sn(k), then πn

Ak ·g[Yn] = 〈g−1, Yk〉 straight from the definition
of Yn. If g ∈ Sn(k) \ Sn(k), then there is m with k < m < n so that g ∈ Am · Sn(m).
In particular, let h ∈ Sn(m) be such that g ∈ Am · h. By the induction hypothesis,
we have πn

Am·h[Yn] ⊆ 〈h−1, Ym〉. Now notice that since 
S is a coherent sequence, we
have gh−1 ∈ Sm(k). By the induction hypothesis, we have πm

Ak ·gh−1 [Ym] ⊆ 〈hg−1, Yk〉.
Putting everything together, we have πn

Ak ·g[Yn] = πm
Ak ·gh−1 [〈h, πn

Am·h[Yn]〉] ⊆ Yk as
desired.

We now set Y = lim←− Yn ⊆ 2(
⋃

n An)×H = 2G×H , where the inverse limit is taken along
the maps πn

m, and we set X = 〈G, Y 〉. If B ⊆ G, we let πB : 2G×H → (2B)H denote the
restriction map. If B = An, we simply write πn instead of πAn .
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PROPOSITION 4.5. X is essentially free as an H -flow and minimal as a G-flow.

Remark. Note that this immediately implies that X is in fact free as an H -flow, since each
h ∈ H acts as an automorphism of the minimal G-flow X.

Proof. We note that each Yn is essentially free, since πn
0 [Yn] = Y0 = (2A0)H . Hence Y is

essentially free, from which it follows that 〈G, Y 〉 is essentially free as an H -flow.
To show that X is G-minimal, fix x, y ∈ Y , and fix an open V � y. We need to

show that the visiting set Vis(x, V ) := {g ∈ G : 〈g, x〉 ∈ V } is syndetic. We may assume
that V = {z ∈ Y : z|An−1×Cn−1 = y|An−1×Cn−1 = αi}, where we use notation (αi , Qi , etc.)
defined the construction of Yn from Yn−1.

Pick any g ∈ 
S(n). Fix some N ≥ n so that g ∈ SN(n). Then since πN(x) ∈ YN , we
have

〈g, x〉|An×H = 〈g, πAn·g(x)〉 = 〈g, πN
An·g(πN(x))〉 ∈ Yn

by Corollary 4.4. It follows that 〈g, x〉|(An−1·Fi)×H ∈ Qi . By the definition of Print, there
is j < q with

〈gi
j , 〈g, x〉〉|An−1×Cn−1 = 〈gi

j · g, x〉 = αi .

It follows that gi
j · g ∈ Vis(x, V ). Since g was an arbitrary element of 
S(n), an

A5
n-syndetic set, and since Fi ⊆ Sn(n− 1) ⊆ An, we see that Vis(x, V ) is A6

n-syndetic as
desired.

One drawback of the techniques used in this paper is the asymmetry between the roles
of G and H . For example, the following ‘symmetric’ version of the result remains open.

Question 4.6. Let G and H be countable infinite groups. Is there a free (G×H)-flow
which is simultaneously a minimal G-flow and a minimal H -flow?
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