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Abstract. Given a G-flow X, let Aut(G, X), or simply Aut(X), denote the group of
homeomorphisms of X which commute with the G action. We show that for any pair of
countable groups G and H with G infinite, there is a minimal, free, Cantor G-flow X so
that H embeds into Aut(X). This generalizes results of [2, 7].
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1. Introduction

Let G be an infinite countable group, and let X be a G-flow, that is, a compact Hausdorff
space equipped with a continuous G-action a: G x X — X. When the action a is
understood, we often write g - x or simply gx in place of a(g, x). Given G-flows X and
Y,a G-map ¢: X — Y is a continuous map which respects the G-actions. A bijective
G-map from X to itself is called an automorphism of the G-flow X, and we denote the
group of automorphisms of X by Aut(X) when the G-action is understood. Sometimes,
this group is called the centralizer of X. In this paper, we will be interested in the possible
centralizers of minimal G-flows, that is, those G-flows with every orbit dense.

The study of the centralizers of G-flows has been an active area of research, especially in
the case G = Z. Usually some constraint is placed upon the flows X under consideration,
for instance by demanding that X is a subshift over a finite alphabet (see, for instance,
[1, 3-5, 8]). More recently, interest has turned to just considering minimality with no
other constraints. Namely, does only the knowledge that X is a minimal G-flow place any
algebraic constraints on the possible groups that can appear as Aut(X)?

A natural constraint to place on X is that the underlying space of X be the Cantor space.
We call G-flows with this property Cantor flows. This is not much of a constraint at all,
since every countable group can act freely on Cantor space [9]. In [1], a construction is
given of a minimal Z-subshift whose automorphism group embeds QQ. Cortez and Petite
in [2] construct for every residually finite countable group H a minimal Cantor Z-flow X
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such that H embeds into Aut(X). Independently and using different techniques, Glasner
et al in [7] construct for any countable group G and any countable group H which embeds
into a compact group a free, minimal, Cantor G-flow X for which H embeds into Aut(X).
Recall that the G-flow X is free if for every x € X, the stabilizer Gy :={g € G : gx = x}
is trivial.

The goal of this paper is to prove the following theorem.

THEOREM 1.1. Let G and H be any countable groups with G infinite. Then there is a
minimal, free, Cantor G-flow X so that H embeds into Aut(X).

We may assume without loss of generality that H is also infinite. We also note that it
suffices to construct any minimal G-flow X, not necessarily free nor Cantor, so that H
embeds into Aut(X). If X is a minimal G-flow such that H embeds into Aut(X), then by
[7, Theorem 1.2], there is a minimal, free G-flow Y with X x Y also minimal. Then by
arguing as in [7, Theorem 11.5], we can find Z a suitable highly proximal extension of
X x Y which is homeomorphic to Cantor space and such that H still embeds into Aut(Z).
However, it seems very likely that the construction given here gives an essentially free
G-flow, in which case the appeal to [7, Theorem 1.2] is not needed.

We start with two preliminary sections. The first is on blueprints, a notion developed by
Gao, Jackson and Seward in [6]. The second discusses strongly irreducible subshifts. The
final section proves Theorem 1.1.

Notation. Our notation is mostly standard. The set N := {0, 1, 2, . . .} of natural numbers
contains zero. If f: X — Y is a function and § C X, we write f[S]:={f(s) :s € S},
and we write f|gs for the restriction of f to domain S.

2. Blueprints
The notion of a blueprint is developed by Gao, Jackson and Seward in [6] where, in
particular, it is proven that every group carries a non-trivial blueprint. To keep this paper
self-contained, we provide a proof of this. We delay the definition of a blueprint until we
have actually constructed one. Throughout this section, we will use the group G; the group
H will figure more heavily in the next section.

The idea behind a blueprint is that, starting with a rapidly growing sequence Ag, Ap, . . .
of finite subsets of our group, we wish to pack translates of these into our group in such a
way that for any A, € G in our sequence, translates of A, appear ‘syndetically often’, that
is, without arbitrarily large gaps. However, the packings for A,, € A, need to be coherent,
so that a translate of A,, does not touch the boundary of any translate of A,,. The example
of G = Z is perhaps too easy, since we can take the A, to be intervals with lengths that
divide one another. The notion of a blueprint is most useful when we do not have prior
knowledge of the geometry of the group, or if the sets A, we must use are constrained in
some way. A surprisingly good example to keep in mind is that of R?; granted, R? is not a
countable group, but thinking of A,, € R? as Euclidean balls of rapidly growing radius is
still informative, and most of the difficulties that pop up in full generality already appear
in this example.

https://doi.org/10.1017/etds.2020.128 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2020.128

312 A. Zucker

For this section we fix an exhaustion G = Un A;, where each A, is finite, symmetric,
and contains the identity 15 € G. We let A = {A,, : n € N} denote this exhaustion. We
assume that each A, is large enough to write A, = AS . A? . A,3171 - B,, for some finite
set B, containing 15 which we now fix. In particular, notice that A(3) . Afl_l C A,.Given
k <n,weset A, (k) = A --- A3 | - B,. Notice that if K’ < k, then A, (k) € A,(K'). Also
notice that Ay A, (k) 2 A,.

If F C G is finite, we say that g, h € G are F-apart if FgN Fh = ). We say that
S C G is F-spaced if every g #= h € S is F-apart.

Definition 2.1. An A-system of height n is a collection S = {S(0), . .., S(n)} of subsets

of A, defined by reverse induction as follows.

e S ={lg}

o If S(k+1),...,S8(m) have all been defined, we say that g € A, is k-admissible
Sfor S if, letting £ > k be least with Ag - gN Ay - S(£) # @, then there is h € S(£)
with Ag - g C Ag(k) - h. Write Ad(k, S) for the set of g € A,, which are k-admissible
for S.

e S(k) is any maximal Ag-spaced subset of Ad(k, S) containing 15.

For the last item, notice by reverse induction that 15 € Ad(k, S) for each k < n.

Let us immediately clarify an important point about the set Ad(k, S).

LEMMA 2.2. Suppose g € Ad(k, S). Then for any m > k with Ay - g N Ay, - S(m) # 0,
there is b € S(m) with Ay - g C Ay, (k) - b.

Proof. We induct on m — k. When m — k = 1, the lemma follows from the definitions. If
m — k > 1, then consider the least £ > k with Ay - g N A;S(£) # . Using item (2) of the
definition, there is 1 € S(£) with Ay - g € Ag(k) - h. If £ = m we are done. If £ < m, then
A¢-hN A, -S(m) # @, so by induction we can find b € S(m) with Ay -h C A, (£) - b.
Then Ay - g C Ap-h C A,(8)-b < Ay(k) - b. O

For the moment, fix an .A-system S of height n. Our first main goal is Proposition 2.6,
which shows that the sets S(k) are somewhat large.

LEMMA 2.3. Suppose g € Ad(k, S). Then we have A,% -g NSk #0.

Proof. If A% - g N S(k) were empty, then S(k) U {g} would be a strictly larger Ax-spaced
subset of Ad(k, S). O

LEMMA 2.4. Suppose £ > k and h € S(£). Then we have
A7 - Ag(k+1)-h\ Ag - Ag(k + 1) - h C Ad(k, S).

Proof. Fix g in the left-hand side. Then Ay -g C Ag(k) - h \ Ae(k + 1) - h. Towards a
contradiction, suppose there were some m, k <m < £, with A; - gN A, - S(m) # Q.
Suppose b € S(m) satisfies Ag - g N A, - b # (. Then since b € Ad(m, S), Lemma 2.2
implies that A, - b € A¢(m) - h. But since we have Ay - g N Ag(k+ 1) - h = @, this is a
contradiction. O
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Definition 2.5. Suppose F C G is finite, D € G, and let S € D. We say that S is
F-syndetic in D if for any g € G such that Fg C D, we have FgNS #@. If D =G,
we simply say that S is F'-syndetic. We say that S is syndetic if there is a finite F' C G so
that S is F-syndetic.

PROPOSITION 2.6. The set S(k) C A, is A3-syndetic in Ap.

Proof. Suppose we have g € G with Az -g C A, If g € Ad(k, S), we are done by
Lemma 2.3, so assume this is not the case. Let £ > k be least with A - g N Ay - S(¥) #
@, and fix some h € S(¢) and f € Ay with fg € Ay - h. Notice that we cannot have
fg € Ay - Ag(k + 1) - h, as this would imply that g € Ad(k, S). In particular, for some
i €{2,3,4}, we have fg € A;; cAgtk+1) - h\ A};l -Ag(k+ 1) - h. In each case, we
can find fy € A7 with fofg € A7 - Ag(k+ 1) - h \ Ag - A¢(k + 1) - h. By Lemma 2.4, we
have fyfg € Ad(k, S), so by Lemma 2.3, we have A% - fofg NS(k) # @. We are done
once we note that Az - fof < A2~ O

We now investigate how to modify A-systems to create new ones. Definition 2.7 and
Proposition 2.8 give a method to restrict to a smaller system, while Definition 2.9 and
Proposition 2.10 allow us to print a smaller system inside a larger one.

Definition 2.7. Suppose g € S(m). Then (g - S)|m = {(g - S)|m(0), ..., (g S)|m(m)}
denotes the collection of subsets of A,, where for k < m we set

(& Smk) = (SE) N (Ap - )-8~

If g = 15, we simply write S|,.
PROPOSITION 2.8. (g - S)|nm is an A-system of height m.

Proof. We first note that (g - S)|,, (m) = {15} since S(m) is A,,-spaced. Then we proceed
by reverse induction on k < m. First we note that

Ad(k, (g - 8)lm) = (Ad(k, 8) N (A - 8)) - 8"

Then, if b, h € Ad(k,S) with Ay -bNA,-g=0 and A;-h C A, (k) - g, we have
Ar -bN Ay - h = . It follows that (S(k) N (A - g)) - g~ is a maximal Apg-spaced subset
of Ad(k, (g - S)|m). O

Definition 2.9. Let S be an A-system of height n. Let 7 be an .A-system of height m
for some m < n. Given g € S(m), we let (S, 7T, g) ={(S,T,2)(0),...,(S,T,2{n)}
denote the collection of subsets of A, where, for k < n, we have:

e (S5, T,9)k) =S8k)form <k <n;

o (S.T,90k)=SKk)\Ay,-2)U(T(@m)-g) fork <m.

PROPOSITION 2.10. (S, T, g) is an A-system of height n.

Proof. We proceed by reverse induction on k < n. For k > m there is nothing to prove.
For k < m, we observe that Ad(k, (S, T, g)) = (Ad(k, S) \ A, - g) UAd(k,T) - g. Then
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we note that S(k) \ A, - g and T (m) - g are Ag-apart. It follows that (S(k) \ A, - g) U
T (m) - g is a maximal Ag-spaced subset of Ad(k, (S, T, g))- O

We use Proposition 2.10 to construct particularly nice .4-systems.

Definition 2.11. Let S be an A-system of height n. We call S uniform if (g-S)|m =
(h-S8)|, forany g, h € S(m) and any m < n.

PROPOSITION 2.12. There is a sequence {S,, : n € N} of uniform A-systems such that S,
has height n and S,,|,, = Sy, for any m < n.

Proof. We proceed by (forward) induction. For n = 0 the unique .A-system of height zero
is vacuously uniform. Suppose Sy, . . ., S,—1 have been constructed. Let 7 := Ty be any
A-system of height n. For each k < n, we set

nm=7wﬂ( U &wTWO-

k<m<n
Note that the sets 7(0), ..., T(n — 1) are pairwise disjoint. Fix some enumeration of
Uk<n T (k) ={go,-..,8—1}, and for each i < r let ¢(i) < n be the unique index with

gi € T(p(i)). We repeatedly use Proposition 2.10 to define A-systems To, . .., 7. If T
has been built for some i < r, we set Tj11 = (Ti, Sy(i)» gi)- We thenset S, = 7;.. Then S,
is a uniform .A-system of height n as desired. O

Definition 2.13.
(1) A sequence S = {S, : n € N} constructed as in Proposition 2.12 will be called a
coherent sequence.

(2) Let S be a coherent sequence. The blueprint of S is the sequence {3 (n) :n e N},
where S(n) = Uy, Sy ().

PROPOSITION 2.14. Fix a coherent sequence §, and form its blueprint {g(n) :n e N}

(1) S’(n) D) g(n + 1), and each S’(n) is A,-spaced and Ag-syndetic.

(2) For any k <n, g€ g’(k), and h € g(n), we either have Ay -gNA,-h=10 or
Ag - g S An(k) - h.

(3) Foranyk <nandg,h € S_f(n), we have

SEN (A -9)-87" =Sk N (A, -h) -~
(4) Foreachn €N, we have |S(n) N Apy1| > |A2 - B,p1]/]A2|.

Remark. Compare this to [6]. In fact, we have constructed what they call a centered
blueprint.

Proof. (1) First, we note that forn + 1 < N we have Sy (n + 1) € Sy (n). To see this, fix
g € Sy(n + 1). Because Sy is uniform, we have that (g - Sy)|n+1 = Snln+1. In particu-
lar, since 1 € Sylu+1(n), we have 1 € (g - SW)lny1(n) = (Sn(n) N (Any1 - 8)) g7l
implying that g € Sy (n) as desired. From this, it follows that S(n) 2 S(n + 1).
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For the second claim, we note that for n < N we have Sy(n) C Sy+1(n) because S
is coherent. Each Sy (n) is A,-spaced and Ag—syndetic in Ay. It follows that §(n) is
Ap-spaced and Afl-syndetic.

(2) Find some N > n with g € Sy (k) and & € Sy (n). If k = n, the claim holds since
Sn(n) is Ap-spaced. If k < n, the claim holds since Sy is an A-system of height N.

(3) Find some N > n with g, h € Sy (n). Then as Sy is uniform, we have (g - Sy)|, =
(h - SN)|n, so in particular (g - Sy) | (k) = (h - Sy)|n(k), that is,

SNE)N(Ay-8) -8 = (Sn(k) N (A, -h)) - B

Since this is true for every large enough N, the result follows.
(4) The set S,41(n) is a maximal A,-spaced subset of Ad(n,S,+1) ={ge€G:
A, - g € A4} Note that Aﬁ - By+1 € Ad(n, Sy+1). The result follows. O

3. Strongly irreducible subshifts

In this section we work with the group H. If M is a compact space, then H acts on the
space M via the right shift, where, given g € H and x € M, we define g - x € M via
(g - x)(h) = x(hg). A subshift is any non-empty closed X C MH which is H-invariant.
Often, we will take M to be a finite set A; in this case we refer to A as an alphabet.
Let X € A be a subshift. If C C H is finite, the set of C-patterns of X is given by
Pc(X) = {x|c :x € X} C A€.If D C H is finite, sets Sy, S;  H are called D-apart if
DSoN DSy = 0.

Definition 3.1. Let D C H be finite. A subshift X C Af is D-irreducible if for any
So, S1 € H which are D-apart and any xo, x| € X, there is y € X such that y|s;, = x;]s;
for each i < 2. We sometimes say that y blends xols, and x1|s,. We say that X is strongly
irreducible if X is D-irreducible for some finite D € H.

Fact 3.2. Let A and B be finite sets. If X € A¥ is Dx-irreducible and ¥ € B¥ is
Dy-irreducible, then X x Y C (A x B)" is (Dx U Dy)-irreducible.

The remainder of this section discusses some examples of strongly irreducible flows
that we will use in the construction of the next section. Given a finite C € H,any S C H,
and y: S — A for some finite alphabet A, we say that y is C-spaced if y~'(a) C H is
C-spaced for every a € A.

LEMMA 3.3. Let C € H be finite, and let n = |C_1C|. Then, given any S C H (possibly
S =0) and C-spaced function §: S — {0, ...,n — 1}, there is a C-spaced function
y:H—{0,...,n—1}withy|s =6.

Proof. Enumerate H = {h; :i € N}. Set So =S and y9p=4. If S; € H and C-spaced
functions y;: S; — {0, ...,n — 1} have been determined, we set S;y; = S; U {h;}. If
h; € §;, then we set ;11 = y;. If h; € S;, then we note that |(C_1Ch,-) N S;| < n. The
inequality is strict since |C~'Ch;| = n and h; € (C~'Ch;) \ S;. In particular, we have

0,....,n =1\ yl(CT'Chi) N S;1 # 0.
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Choose y;+1(h;) to be anything from this non-empty set. We then set y = (J; ¥;. [
Definition 3.4. For any finite C € H and any n > |C’1C|, we set

Part(C,n) :={y €{0,...,n— 1 yfl(k) is C-spaced for each k < n}.
The argument in Lemma 3.3 shows that Part(C, n) is C-irreducible.

As a warm-up for the next definition, first suppose that C, D € H are finite. Let
X € Af be D-irreducible, and fix @ € Pc(X). Suppose S € H is DC-spaced. Then
by repeatedly using D-irreducibility, we can find x € X such that (& - x)|c = « for each
hes.

Definition 3.5. Let C, D C H be finite, let E C H be finite with DC C E, and let N >
|E~VE|. We define

Print(X, o, E, N) := {(x0, . . ., xn—1) € X" : there exists y € Part(E, N) forallh € H
such that (& - xy(h))|c = a}

C{(xg,...,xN_1) € XN :forall h € H there exists i < N
such that (h - x;)|c = «}.

In the notation, notice that C is implicit, as C = dom(«). Although D is implicit as
well via the assumption that X is D-irreducible, this is less important as E is presumed
to be suitably large. Notice that if (xg, ..., xy—1) € Print(X, «, E, N) as witnessed by
y € Part(E, N), then for any g € H, we have that g - (xg, ..., xy—1) = (g - X0, ..., 8"
xny—1) is in Print(X, o, E, N) as witnessed by g - y € Part(E, N).

PROPOSITION 3.6. Print(X, «, E, N) is E E~ D-irreducible.

Proof. Let (x0,...,xN—-1), (Y0, ..., Yn—1) € Print(X, &, E, N) as witnessed by y,,
vy € Part(E, N). Let Sy, S, C H be EE_ID—apart. Foreachi < N, we define

Se(i) =S U (| J{Ch : h € H with y,(h) =i and h € E~' DS, }),

and we define S (i) similarly. Note that Sy(i) € CE -IpS,, and similarly for Sy(i); in
particular, Sy (i) and S, (i) are D-apart since DC C E.

Since Part(E, N) is E-irreducible, we can find y € Part(DC, N) blending yx|g-ips,
and yy|g-1pg, . Notice that if & ¢ E~'D(S, U Sy), then Ch and S, U S are D-apart; if
we also have j/(h) =1, then Ch and S, (i) U Sy (i) are D-apart. Now for each i < N, find
zi € X which blends x;|s, ;) and y;ls, ) and satisfies (h - z;)|c = @ whenever y (h) =i.
Then (zo, . . ., zv—1) € Print(X, o, N) is as desired. O

4. The construction

In this section we construct a (G x H)-subshift X C 29*H which is essentially free (in
fact free) as an H-flow and minimal as a G-flow. This will prove Theorem 1.1. We will
often think of 29> as either the G-flow (2)C or as the H-flow (29)# as needed.
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However, to keep the roles of G and H clear, we use different notation. Given g € G and
x € 2971 we will write (g, x) instead of (g, 1) - x, and if h € H, we write & - x instead
of (1g, h) - X. We will first construct an H-flow Y = 1(1Ln Y, € 29%H Then we will set

X =(G,Y), where (G,Y) :={(g,y) : g € G,y € Y}. The main work in this section is
the construction of Y.

We start by fixing both an exhaustion G =  J,, A, as in §2 and a coherent sequence S
on G. We will adhere to the notation developed in §2 as much as possible. We will often
assume that each A, 4 is suitably large compared to A, to proceed as we need, especially
in regard to item 4 of Proposition 2.14. For each n € N, the H-flow Y, will be a subshift
of (2A")H , and for m < n, the projection n),: ¥, — Y, will be the one induced by the
restriction map from 24n to 24m_ We also fix an exhaustion H = Un C, with each C,
finite, symmetric, and containing the identity 1y € H.

It will be helpful to ‘finitize’ the G-action as follows.

Definition 4.1.

(1) Suppose A € G and « € 24. Given g € G, we let (g | a) € 248" be defined by
(¢ |a)(ag™") = a(a) fora € A. Note that (gog1 | &) = (go | (g1 | @)).

(2) Suppose A C G is finite and z € (24)¥. Then, for any g € G, we define (g, z) €
48"V H where, for z € (24)H and h € H, we have (g, z)(h) = (g | z(h)). Again,

note that ((gog1), z) = (go, (g1, 2))-
(3) Note that if Z < 24" is an H-subshift, then (g, Z) :={(g,z):z€ Z} C
(24¢7")H is also an H-subshift.

Example 4.2. Suppose G = Z, and that A = {—10, . . ., 10}. Then, if « € 24 and g=>5,
the domain of (5, ) is {—15, ..., 5}. This might seem a little counterintuitive, but this
definition agrees with how we defined our shift action.

We build the flows Y, by induction, and we set Yo = (240)H_ Trivially, Yy is {15} :=
Dy-irreducible. Suppose Yy,...,Y,—1 have been constructed, where each Y; is an
H -subflow of (2Ak)H , and are all D,,_1-irreducible for some finite symmetric D,,_1 € H.
Fix some finite E,,_1 € H with D,,_1C,_; € E,,_1. Foreach k < n, set

Su(k) = Sp(k) \ ( U 4 ~sn<m>).

k<m<n

Notice that S,(n — 1) = S,(n — 1) = S(n — 1) N A,,. For k < n, set T, (k) = Ay - S, (k).
We also set T,(n) := Ay \ U, Tn(k). To define Y,, we will first define a subshift
Z, € 2T@=D)H We will then put

n—2
Vo= @Y s zy s [T [T (67" Y.
k=0 geS, (k)

Since A, =T,(n) UT,(n — 1)U UOSkSn—Z T, (k), we see that ¥, € (24n)H as desired.
We note that Y;, will be strongly irreducible as long as Z,, is.
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Letr :=|S,(n — 1| = |5‘(n — 1) N A,|. How large does r need to be? Consider the set
Pc, \(Yy—1) :={ag, ..., 001} C (2A"*1)C"*1. We will want to ensure that

r> |E,1__11En71| .2l An—1XCrl

Using part (4) of Proposition 2.14, we see that as long as A, is suitably large compared to
A, 1, r will satisfy this inequality.

Having fixed € =|Pc, ,(Y,—1)|, the size of r allows us to find disjoint sets
F; € Sy(n—1) for each i < ¢ with |Fi| =|E, ' E,_i|:=¢q, while ensuring that
Fo:=S,(n — 1)\U1<e Fi #0. We also demand that 1g € Fy. For i < £, write
Fi = {g()’ . ’gq_li

Recall the flow Print from the previous section. We define a map

®; 1 Print(Yo_y, @i, En_1, q) — QA-1FyH — A8y H o 5 (pAn-185-1)H

via @;((x0, . ... xq-1)) = ((g) ", x0), . . -, <(g;']_1)—1, xg—1)). Note that ®; is injec-
tive. We set Q; = Im(®;).
We then set

Zy=[]te " i) x[] Q-

g€k, i<t
Note that Z, is strongly irreducible; hence Y, is as well.
We will need the following lemma. For any B C A,, we let 7jy: 24 — (28)H
denote the restriction map. If B = A,,, we simply write 7, instead of ngm.

LEMMA 4.3. If g € Sy(n — 1), then )y [Ya] S (g7, Y1)

Proof. To see this, first note that if g € Fy, we have ng [Y 1=(g" " Yut) straight
from the definition of Z,,. If g € F; = {gé, c ,gq 1) for some i < £, say that g = g for
some j < g. Suppose y € Y,. Then, setting z = NAH_]_Fl_ (y), we have z € Q; = Im(<I> ).
If (xo, ..., x4-1) € Print(Y,,—1, a;, E,—1, q) is such that ®; (xo, . . ., x4—1) = z, then we

have that ”/rinfyg () = (g7, xj). Since x; € Y, 1, we have the result. O

COROLLARY 4.4. If g € S5, (k) for k < n, then nzk.g[Yn] C (g_l, Yi).

Proof. We induct on n — k for every n simultaneously. If n — k =1, the result follows
from Lemma 4.3. If g € S, (k), then 7} [Y 1=( ", v) straight from the definition
of ¥,. If g € S, (k) \ S,(k), then there 1s m with k <m < n so that g € A, - S,(m).
In particular let h € S,(m) be such that g € A, - h. By the induction hypothesis,
we have 7"} A alYal S (A~ 1Y,,). Now notice that since S is a coherent sequence, we

have gh € S, (k). By the induction hypothesis, we have 71 hygh- Y] € (hg™ 1 , Y.

Putting everything together, we have nAAg[Y] A eh- ][(h JTAm.h[Y DIC Y, as
desired. O

We now set Y = lgl Y, € 2Un AxH — 2GxH \yhere the inverse limit is taken along
the maps 72, and we set X = (G, Y). If B C G, we let g : 26*# — (28)H denote the
restriction map. If B = A,,, we simply write 7, instead of 4, .
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PROPOSITION 4.5. X is essentially free as an H -flow and minimal as a G-flow.

Remark. Note that this immediately implies that X is in fact free as an H-flow, since each
h € H acts as an automorphism of the minimal G-flow X.

Proof. We note that each Y, is essentially free, since g [Y,] = Yo = (240)H Hence Y is
essentially free, from which it follows that (G, Y) is essentially free as an H-flow.

To show that X is G-minimal, fix x, y € Y, and fix an open V > y. We need to
show that the visiting set Vis(x, V) := {g € G : (g, x) € V} is syndetic. We may assume
that V. ={zeY :zla, ,xc,; = Yla,_xc,, = @i}, where we use notation (¢;, Q;, etc.)
defined the construction of Y,, from Y,,_.

Pick any g € §(n). Fix some N > n so that g € Sy(n). Then since my(x) € Yy, we

have

(8 X) A, xh = (8 Ta, g (X)) = (g, 7y (TN (X)) € Yy

by Corollary 4.4. It follows that (g, x)|(a,_,.F;)x# € Qi. By the definition of Print, there
is j < g with

(85 (8 X4,y xCoy = (8- 8, %) = @i,

It follows that gii -g € Vis(x, V). Since g was an arbitrary element of g(n), an
AZ—syndetic set, and since F; € S,(n — 1) C A,,, we see that Vis(x, V) is Ag—syndetic as
desired. O]

One drawback of the techniques used in this paper is the asymmetry between the roles
of G and H. For example, the following ‘symmetric’ version of the result remains open.

Question 4.6. Let G and H be countable infinite groups. Is there a free (G x H)-flow
which is simultaneously a minimal G-flow and a minimal H-flow?
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