
Math. Struct. in Comp. Science (2016), vol. 26, pp. 655–657. c© Cambridge University Press 2014

doi:10.1017/S0960129514000280 First published online 10 November 2014

General conditions for full abstraction

JOACHIM PARROW

Department of Information Technology

Uppsala University, Uppsala, Sweden

Email: joachim@it.uu.se

Received 24 January 2014; revised 8 April 2014

Full abstraction, i.e. that a function preserves equivalence from a source to a target, has

been used extensively as a correctness criterion for mappings between models of

computation. I here show that with fixed equivalences, fully abstract functions almost always

exist. Also, with the function and one of the equivalences fixed the other equivalence can

almost always be found.

1. Introduction

A function f : S → T is fully abstract with respect to equivalences �S and �T on S

and T respectively if, intuitively, f maps �S to �T. As discussed at length in Gorla and

Nestmann (2014), full abstraction has been used extensively as a correctness criterion when

comparing models for concurrency. They point out that on occasion the mere existence of

a fully abstract function has been considered evidence of relative expressiveness of such

models, and argue that this view can be dangerous. In this short paper, I support their

conclusion by showing that given any two elements of a triple (f,�S,�T), it is almost

always possible to find a third element to satisfy full abstraction. More precisely:

1. Given �S and �T, there exists f unless �T has strictly fewer equivalence classes than

�S.

2. Given f and �T there always exists �S.

3. Given f and �S, there exists �T unless f maps two �S-inequivalent elements to the

same element of T.

This in no way diminishes the value of a full abstraction result for a particular triple

under consideration. It can still be regarded as a correctness criterion, in the same way as

proving that a mapping between formalisms preserves deadlock or divergence properties.

My main point here is that in isolation such a result is not very informative if any one

component of the triple can be chosen freely.

2. Results

Definition 1. Let S and T be two sets. Let �S be an equivalence relation on S and �T be

an equivalence relation on T. Let f : S → T be a (total) function. Then (f,�S,�T) is fully

abstract if for all s1, s2 ∈ S it holds that

s1 �S s2 ⇔ f(s1) �T f(s2).

https://doi.org/10.1017/S0960129514000280 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000280


J. Parrow 656

We write S/�S to mean the set of equivalence classes of �S and [s]�S
to mean the

equivalence class of �S to which s belongs, and similarly for �T.

Theorem 1 (existence of f given �S and �T). Let S and T be sets with equivalence

relations �S and �T respectively. Then there exists a function f : S → T such that

(f,�S,�T) is fully abstract if and only if the cardinality of T/�T is greater than or equal

to the cardinality of S/�S.

Proof. (If). Assume the cardinality of T/�T is greater than or equal to the cardinality

of S/�S. Then there exists an injection g : S/�S → T/�T. Define f : S → T by letting

f(s) be an arbitrary member of g([s]�S
). In other words take the equivalence class of s,

apply g to it, and choose an arbitrary element. (To be strict this construction assumes the

axiom of choice.) Then (f,�S,�T) is fully abstract: if s1 �S s2 then [s1]�S
= [s2]�S

so by

construction f(s1) �T f(s2). If s1 ��S s2 then they belong to different equivalence classes

and g([s1]�S
) �= g([s2]�S

) since g is an injection, and since different equivalence classes are

disjoint we have f(s1) ��T f(s2).

(Only if). Assume (f,�S,�T) is fully abstract. Then for all equivalence classes S ∈ S/�S

it holds that for all s1, s2 ∈ S , f(s1) �T f(s2). So we can uniquely define g : S/�S → T/�T

by g(S) = T if for all s ∈ S it holds that f(s) ∈ T . Now assume two equivalence classes S1

and S2 such that g(S1) = g(S2). Then for s1 ∈ S1 and s2 ∈ S2 it holds that f(s1) �T f(s2),

so by full abstraction s1 �S s2, whence S1 = S2. Thus g is an injection, and proves that

the cardinality of T/�T is greater than or equal to the cardinality of S/�S.

Theorem 2 (existence of �S given f and �T). Let S and T be sets, �T an equivalence

relation on T, and f : S → T. Then there exists an equivalence relation �S on S such that

(f,�S,�T) is fully abstract.

Proof. Define �S by s1 �S s2 if f(s1) �T f(s2), then �S is an equivalence relation since

�T is one, and f is fully abstract by definition.

Definition 2. Let f be a function with domain S and �S an equivalence on S. Then f

respects �S if for all s1, s2 ∈ S it holds s1 ��S s2 ⇒ f(s1) �= f(s2).

Theorem 3 (existence of �T given f and �S). Let S and T be sets, �S an equivalence

relation on S, and f : S → T. Then there exists an equivalence relation �T on T such that

(f,�S,�T) is fully abstract if and only if f respects �S.

Proof. (If) Define �′
T by t1 �′

T t2 if there exist s1, s2 ∈ S such that f(s1) = t1, f(s2) = t2
and s1 �S s2. We first prove that �′

T is a partial equivalence relation on T. Obviously �′
T

is reflexive and symmetric on the image of f since �S is reflexive and symmetric. For

transitivity, assume t1 �′
T t2 and t2 �′

T t3. By the first equivalence there are s1, s2 ∈ S such

that f(s1) = t1, f(s2) = t2 and s1 �S s2. By the second equivalence there are s3, s4 ∈ S such

that f(s3) = t2, f(s4) = t3 and s3 �S s4. We have f(s2) = f(s3) = t2, thus since f respects

�S we get s2 �S s3, which through transitivity of �S gives that s1 �S s4, and thus by

definition of �′
T that t1 �′

T t3. In conclusion, �′
T is an equivalence on T restricted to the

image of f. Extend �′
T to �T on all of T by adding all members of T not in the image

of f to any equivalence class in �′
T. Thus �T is an equivalence on all of T. To establish

https://doi.org/10.1017/S0960129514000280 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000280


General conditions for full abstraction 657

full abstraction, direction ⇒ follows directly from the definition of �′
T. For direction ⇐

assume that f(s1) �′
T f(s2). Then there are s3 and s4 such that f(s3) = f(s1), f(s4) = f(s2)

and s3 �S s4. Since f respects �S we get s3 �S s1 and s4 �S s2. Since �S is an equivalence,

we conclude s1 �S s2.

(Only if) Let there be s1, s2 such that s1 ��S s2 and f(s1) = f(s2). Let �T be any

equivalence relation on T. Then since �T is reflexive, we have f(s1) �T f(s2), which with

s1 ��S s2 contradicts full abstraction.

3. Discussion

In retrospect, the theorems here appear so trivial and the proofs so obvious that it is almost

surprising they have not been presented previously. They were developed in January 2013

when reading early versions of Gorla and Nestmann (2014), and I am greatly indebted to

Gorla and Nestmann for discussions on the role of full abstraction in comparing models

of concurrency. In particular they refer to a result by Beauxis et al. (2008) that there is a

fully abstract encoding between Turing machines and finite automata with their respective

language equivalences. Their proof simply goes by lining up the equivalence classes, which

in both cases are countably many, and was an inspiration for Theorem 1 above.

My colleague Tjark Weber has formalized the definitions and proofs of Theorems 1–3

in the interactive theorem prover Isabelle/HOL. The proofs follow my sketches above

and comprise 187 lines (the pdf output file is four pages) of Isabelle code, and required

around six hours of his time. In this he also devised some small optimizations. The time

that I spent on this effort myself is hard to estimate since it was done intermittently over a

year, but it is surely not less than a week in total. It is an interesting observation that the

added effort of formalizing the proofs is comparatively small. The added value is twofold:

it establishes beyond doubt that the results are correct despite some sweeping statements

in the sketches, and it provides a basis for developments and variants. A conclusion is

that a theorem prover in projects such as this is a valuable and regrettably underused

tool.

References

Beauxis, R., Palamidessi, C. and Valencia, F. D. (2008) On the asynchronous nature of the asyn-

chronous pi-calculus. In: Degano, P., De Nicola, R. and Meseguer, J. (eds.) Concurrency, Graphs

and Models. Springer Lecture Notes in Computer Science 5065 473–492.

Gorla, D. and Nestmann, U. (2014) Full abstraction for expressiveness: History, myths and facts.

In this issue of Mathematical Structures in Computer Scinece.

https://doi.org/10.1017/S0960129514000280 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000280

