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Exponentials of de Branges–Rovnyak
kernels
Shuhei Kuwahara and Michio Seto

Abstract. In this note, we give a new property of de Branges–Rovnyak kernels. As the main theorem,
it is shown that the exponential of de Branges–Rovnyak kernel is strictly positive definite if the
corresponding Schur class function is nontrivial.

1 Introduction

Let D be the open unit disk in the complex plane C, and let H∞ be the Banach algebra
consisting of all bounded analytic functions on D. Then, we set

S = {φ ∈ H∞ ∶ ∣φ(λ)∣ ≤ 1 (λ ∈ D)},

which is called the Schur class. For any function φ in H∞, it is well known that φ
belongs to S if and only if

1 − φ(λ)φ(z)
1 − λz

(1.1)

is positive semi-definite. This equivalence relation based on the properties of the Szegö
kernel is crucial in the operator theory on the Hardy space over D, in particular,
theories of Pick interpolation, de Branges–Rovnyak spaces and sub-Hardy Hilbert
spaces (see Agler–McCarthy [2], Ball–Bolotnikov [4], Fricain–Mashreghi [6], and
Sarason [14]). The kernel (1.1) is called the de Branges–Rovnyak kernel.

Before introducing our study, we should mention that not only the original de
Branges–Rovnyak kernel but also its variants have been studied by a number of
authors. For example, Zhu [16, 17] initiated the study on the kernel

1 − φ(λ)φ(z)
(1 − λz)2

(1.2)

in the Bergman space over D. The reproducing kernel Hilbert space induced by the
kernel (1.2) is called a sub-Bergman Hilbert space (see also Abkar–Jafarzadeh [1], Ball–
Bolotnikov [3], Chu [5], Nowak–Rososzczuk [11], and Sultanic [15]). Further, powers
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of the de Branges–Rovnyak kernel

( 1 − φ(λ)φ(z)
1 − λz

)
n

(n ∈ N)(1.3)

are naturally obtained from the theory of hereditary functional calculus for weighted
Bergman spaces on D (see Example 14.48 in [2] for the case where n = 2) and have
appeared also in p. 3672 of Jury [8].

Now, the purpose of this paper is to study the structure of the kernel

exp(t 1 − φ(λ)φ(z)
1 − λz

) (t > 0).(1.4)

Note that our kernel (1.4) is obtained by binding all kernels in (1.3) together. Thus,
we expect that new properties of the de Branges–Rovnyak kernel (1.1) are drawn out
from our kernel (1.4). In fact, as the main theorem, we will show that the exponential
of the de Branges–Rovnyak kernel is strictly positive definite if φ is nontrivial.

Here, we shall give some remarks on strictly positive definite kernels. In general,
it is not difficult to construct positive semi-definite kernels. On the other hand, for
strictly positive definite kernels, nontrivial methods depending on each case are
often needed (for example, see Micchelli [9]). Moreover, it might be worth while
mentioning that strictly positive definite kernels have received attention in machine
learning (see Rasmussen–Williams [13]).

This paper is organized as follows. In Section 2, basic properties of the reproducing
kernel Hilbert space expHt(φ) constructed from our kernel (1.4) are given. In Section
3, unbounded multipliers on expHt(φ) are introduced and studied. In Section 4, we
prove the main theorem.

2 Preliminaries

For t > 0, let Ht(φ) denote the reproducing kernel Hilbert space with kernel

tkφ(z, λ) = t 1 − φ(λ)φ(z)
1 − λz

(φ ∈ S),

and we will use notations tkφ
λ (z) = tkφ(z, λ) and H(φ) =H1(φ). Then, since

⟨tkφ
λ , tkφ

z ⟩Ht(φ) = tkφ(z, λ) = t−1⟨tkφ
λ , tkφ

z ⟩H(φ) ,

the trivial linear mapping f ↦ f from H(φ) onto Ht(φ) is bounded and invertible.
Particularly, Ht(φ) =H(φ) as vector spaces. In this section, we construct the expo-
nential of Ht(φ) and give its basic properties. The contents of this section are well
known to specialists. For example, see Exercise (k) in p. 320 of Nikolski [10] and
Chapter 7 in Paulsen–Raghupathi [12]. However, we give the details for the sake of
readers.
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2.1 Construction of expHt(φ)

Let Ht(φ)n be the reproducing kernel Hilbert space obtained by the pull-back
construction with the n-fold tensor product space

Ht(φ)⊗n =Ht(φ) ⊗⋯⊗Ht(φ)

and the n-dimensional diagonal map

Δn ∶ D→ D
n , λ → (λ, . . . , λ)

(for the pull-back construction, see Theorem 5.7 in [12]). We note that (tkφ
λ )⊗n ○ Δn =

(tkφ
λ )n is the reproducing kernel of Ht(φ)n . Let ⊕∞n=0Ht(φ)n denote the Hilbert

space with the inner product

⟨( f0 , f1 , . . .)⊺ , (g0 , g1 , . . .)⊺⟩⊕∞n=0Ht(φ)n =
∞

∑
n=0

1
n!
⟨ fn , gn⟩Ht(φ)n ,

where we set Ht(φ)0 = C. Moreover, we define the linear map � as follows:

� ∶
⎛
⎜
⎝

f0
f1
⋮

⎞
⎟
⎠
↦
∞

∑
n=0

1
n!

fn
⎛
⎜
⎝

⎛
⎜
⎝

f0
f1
⋮

⎞
⎟
⎠
∈ ⊕∞n=0Ht(φ)n

⎞
⎟
⎠

.

Proposition 2.1 The following statements hold:
(1) � is a map from ⊕∞n=0Ht(φ)n to Hol(D).
(2) ker � is closed.

Proof For any F = ( f0 , f1 , . . .)⊺ in ⊕∞n=0Ht(φ)n , we have

∣
m
∑

�=n+1

1
�!

f�(λ)∣ ≤
m
∑

�=n+1
∣ 1
�!

f�(λ)∣

≤
m
∑

�=n+1

1
�!
∥ f�∥Ht(φ)�∥(tkφ

λ )
�∥Ht(φ)�

≤ (
m
∑

�=n+1

1
�!
∥ f�∥2

Ht(φ)�)
1/2

(
m
∑

�=n+1

1
�!
∥(tkφ

λ )
�∥2

Ht(φ)�)
1/2

= (
m
∑

�=n+1

1
�!
∥ f�∥2

Ht(φ)�)
1/2

(
m
∑

�=n+1

1
�!
∥tkφ

λ ∥
2�
Ht(φ))

1/2

.(2.1)

Hence, ∑∞n=0
1

n!
fn(λ) converges uniformly on any compact subset of D. This con-

cludes (1). Next, let K be a compact set in D. Then, since

∥tkφ
λ ∥

2
Ht(φ) = t 1 − ∣φ(λ)∣2

1 − ∣λ∣2 ,
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there exists a constant CK > 0 such that

sup
λ∈K

∥tkφ
λ ∥

2n
Ht(φ) ≤ Cn

K .

Moreover, in (2.1), we essentially showed that

∣(�F)(λ)∣ ≤ ∥F∥⊕∞n=0Ht(φ)n exp
∥tkφ

λ ∥2
Ht(φ)

2
.(2.2)

Hence, we have

sup
λ∈K

∣(�F)(λ)∣ ≤ ∥F∥⊕∞n=0Ht(φ)n exp CK

2
.

Therefore, � is continuous. This concludes (2).

By Proposition 2.1, the pull-back construction can be applied to �.

Definition 2.1 We define expHt(φ) as the reproducing kernel Hilbert space
obtained by the pull-back construction with the linear map

� ∶ ⊕∞n=0Ht(φ)n → Hol(D).

2.2 Basic properties of expHt(φ)

We summarize basic properties of expHt(φ).

Proposition 2.2 expHt(φ) is a reproducing kernel Hilbert space consisting of holo-
morphic functions on D. More precisely, for any f in expHt(φ), there exists a vector
( f0 , f1 , . . . , )⊺ in ⊕∞n=0Ht(φ)n such that

f =
∞

∑
n=0

1
n!

fn

converges uniformly on any compact subset of D. Moreover,
(1) the following norm estimate holds:

∥ f ∥2
expHt(φ) ≤

∞

∑
n=0

1
n!
∥ fn∥2

Ht(φ)n ,

(2) the reproducing kernel of expHt(φ) is
∞

∑
n=0

1
n!
(tkφ

λ )
n = exp tkφ

λ ,

that is,

f (λ) = ⟨ f , exp tkφ
λ ⟩expHt(φ)

for any λ in D,
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(3) the following growth condition holds:

∣ f (λ)∣2 ≤ ∥ f ∥2
expHt(φ) exp(t 1 − ∣φ(λ)∣2

1 − ∣λ∣2 )

for any λ in D.

Proof By the definition of the norm and the inner product of expHt(φ), we have
conclusions.

3 Unbounded multipliers

We shall investigate into unbounded multipliers of expHt(φ).

Lemma 3.1 Let ψ be a function in Ht(φ). Then, for any function f in Ht(φ)n , ψ f
belongs to Ht(φ)n+1.

Proof We define the bounded linear operator τψ as follows:

τψ ∶Ht(φ)⊗n →Ht(φ)⊗n+1 , F ↦ ψ ⊗ F .

Then, the following diagram commutes:

Ht(φ)⊗n τψ����→ Ht(φ)⊗n+1

Δn
����

����
Δn+1

Ht(φ)n �����→
Mψ ∣Ht(φ)n

Ht(φ)n+1 ,

where Mψ denotes the multiplication operator with symbol ψ. This concludes the
proof.

Theorem 3.2 Let ψ be a function in Ht(φ). Then, the multiplication operator Mψ is
a densely defined closable linear operator in expHt(φ).

Proof Let F = ( f0 , f1 , . . . , fN , 0 . . .)⊺ be a vector having finite support in
⊕∞n=0Ht(φ)n . We set �F = f . Then,

ψ f = ψ
N
∑
n=0

1
n!

fn =
N
∑
n=0

1
n!

ψ fn =
N
∑
n=0

1
(n + 1)!

(n + 1)ψ fn =
N+1
∑
n=1

1
n!

nψ fn−1 ,

where we note that nψ fn−1 belongs to Ht(φ)n by Lemma 3.1. Hence, setting

G = (0, ψ f0 , 2ψ f1 , . . . , (N + 1)ψ fN , 0, . . .)⊺ ,

G belongs to ⊕∞n=0Ht(φ)n and �G = ψ f , that is, ψ f belongs to expHt(φ). Therefore,
Mψ is a densely defined linear operator in expHt(φ). Moreover, it is easy to see that
Mψ is closable.
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Corollary 3.3 Let ψ be a function in Ht(φ). Then the adjoint operator M∗ψ of Mψ

is a densely defined closed linear operator in expHt(φ), and every exp tkφ
λ is an

eigenfunction of M∗ψ . More precisely,

M∗ψ exp tkφ
λ = ψ(λ) exp tkφ

λ .

4 Main results

Let X be a set. A function k on X × X is called a strictly positive definite kernel on X
if k(x , y) = k(y, x) for any x and y in X and

n
∑

i , j=1
c i c j k(x j , x i) > 0

for any n in N, any (c1 , . . . , cn)⊺ in C
n ∖ {0} and any n distinct points x1 , . . . , xn in

X. For example, it is well known that

k(z, λ) = exp(λz)

is a strictly positive definite kernel on C. In fact, this is the reproducing kernel of the
Segal–Bargmann space. Now, we note that if φ = z2 then

e−1 exp( 1 − φ(λ)φ(z)
1 − λz

) = exp(λz).

Motivated by this observation, we shall give new examples of strictly positive definite
kernels. We consider the following three conditions: (C1) φ(0) = φ′(0) = 0, (C2)
φ(μ) = 0 for some μ in D ∖ {0}, (C3) the dimension of H(φ) is infinite.

We need the following lemma.

Lemma 4.1 Let λ1 , . . . , λn be n distinct points in D. Suppose one of (C1), (C2) and
(C3). Then there exists a function ψ in Ht(φ) such that ψ(λ i) ≠ ψ(λ j)(i ≠ j).

Proof Since Ht(φ) =H(φ) as vector spaces, it suffices to show the statement for
H(φ). First, we assume (C1). Then, since φ/z is in S by the Schwarz lemma and
(φ/z)(0) = 0, we have

(I − Tφ T∗φ )z = z − Tφ T∗φ/z T∗z z = z − Tφ T∗φ/z1 = z,

where Tφ denotes the Toeplitz operator with symbol φ on the Hardy space H2 over
D. Hence z belongs to H(φ), and we may take ψ = z.

Secondly, we assume (C2). Let μ be a nonzero zero point of φ. Then, we have

kφ
μ = (I − Tφ T∗φ )kμ = kμ .

Hence, (1 − μz)−1 belongs to H(φ), and we may take ψ = (1 − μz)−1.
Thirdly, we assume (C3). Then, by Lemma 31.2 in [6], the family {kφ

λ j
∶ 1 ≤ j ≤ n} is

minimal. Hence, we have that dim span{kφ
λ j
∶ 1 ≤ j ≤ n} = n. Let T be the linear map
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defined as follows:

T ∶ span{kφ
λ j
∶ 1 ≤ j ≤ n} → C

n , f ↦ ( f (λ1), . . . , f (λn)).

Then, it is easy to see that ker T = {0}. Hence, there exists a function ψ in H(φ) such
that ψ(λ i) ≠ ψ(λ j)(i ≠ j).

Theorem 4.2 Let φ be a function in S. If φ satisfies one of (C1), (C2) and (C3), then
the kernel

kt(z, λ) = exp(t 1 − φ(λ)φ(z)
1 − λz

) (t > 0)

is strictly positive definite.

Proof It suffices to show that {exp tkφ
λ j
}n

j=1 is linearly independent for any n in N

and any n distinct points λ1 , . . . , λn in D. Suppose that

n
∑
j=1

c j exp tkφ
λ j
= 0

for some n in N, some n distinct points λ1 , . . . , λn in D, and some c1 , . . . , cn in C.
Then, for any function ψ in Ht(φ), by Corollary 3.3 and the assumption, we have

⎛
⎜⎜⎜⎜
⎝

1 ⋯ 1
ψ(λ1) ⋯ ψ(λn)
⋮ ⋮ ⋮

ψ(λ1)
n−1

⋯ ψ(λn)
n−1

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

c1 exp tkφ
λ1

c2 exp tkφ
λ2

⋮
cn exp tkφ

λn

⎞
⎟⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

∑n
j=1 c j exp tkφ

λ j

∑n
j=1 ψ(λ j)c j exp tkφ

λ j

⋮
∑n

j=1 c jψ(λ j)
n−1

exp tkφ
λ j

⎞
⎟⎟⎟⎟⎟
⎠

=
⎛
⎜⎜⎜⎜
⎝

∑n
j=1 c j exp tkφ

λ j

M∗ψ ∑n
j=1 c j exp tkφ

λ j

⋮
(M∗ψ)n−1 ∑n

j=1 c j exp tkφ
λ j

⎞
⎟⎟⎟⎟
⎠

= 0.

Further, by Lemma 4.1, there exists a function ψ in Ht(φ) such that

∏
1≤i< j≤n

(ψ(λ i) − ψ(λ j)) ≠ 0.

Then, the Vandermonde matrix

⎛
⎜⎜⎜⎜
⎝

1 ⋯ 1
ψ(λ1) ⋯ ψ(λn)
⋮ ⋮ ⋮

ψ(λ1)
n−1

⋯ ψ(λn)
n−1

⎞
⎟⎟⎟⎟
⎠
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is nonsingular. Therefore, we have that

⎛
⎜⎜⎜⎜
⎝

c1 exp tkφ
λ1

c2 exp tkφ
λ2

⋮
cn exp tkφ

λn

⎞
⎟⎟⎟⎟
⎠
= 0.

This concludes that c1 = ⋯ = cn = 0.

The well-known fact mentioned at the beginning of this section is included in
Theorem 4.2.

Corollary 4.3 The kernel function

k(z, λ) = exp(λz)

is strictly positive definite on C.

Proof For any n distinct points λ1 , . . . λn in C, we set R = max1≤ j≤n ∣λ j ∣ + 1. Then
λ1/R, . . . λn/R are in D. Hence, by Theorem 4.2 in the case where φ = z2 and t = R2,
we have

n
∑

i , j=1
c i c j exp(λ i λ j) = e−R2 n

∑
i , j=1

c i c j exp(R2 + λ i λ j)

= e−R2 n
∑

i , j=1
c i c j exp(R2(1 + (λ i/R)(λ j/R)))

= e−R2 n
∑

i , j=1
c i c j exp

⎛
⎝

R2 1 − φ(λ i/R)φ(λ j/R)
1 − (λ i/R)(λ j/R)

⎞
⎠
> 0

for any (c1 , . . . , cn)⊺ in C
n ∖ {0}.

Although the next result is just a simple consequence of Theorem 4.2, from the
viewpoint of the theory of model spaces (see Garcia–Mashreghi–Ross [7]), it will be
worth while mentioning it as a theorem.

Theorem 4.4 Let φ be an inner function. If φ is neither a constant nor e iθ z, then the
kernel

kt(z, λ) = exp(t 1 − φ(λ)φ(z)
1 − λz

) (t > 0)

is strictly positive definite.
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