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The effect of large-scale forcing on the second- and third-order longitudinal velocity
structure functions, evaluated at the Taylor microscale r = λ, is assessed in various
turbulent flows at small to moderate values of the Taylor microscale Reynolds
number Rλ. It is found that the contribution of the large-scale terms to the scale
by scale energy budget differs from flow to flow. For a fixed Rλ, this contribution
is largest on the centreline of a fully developed channel flow but smallest for
stationary forced periodic box turbulence. For decaying-type flows, the contribution
lies between the previous two cases. Because of the difference in the large-scale
term between flows, the third-order longitudinal velocity structure function at r = λ
differs from flow to flow at small to moderate Rλ. The effect on the second-order
velocity structure functions appears to be negligible. More importantly, the effect of
Rλ on the scaling range exponent of the longitudinal velocity structure function is
assessed using measurements of the streamwise velocity fluctuation u, with Rλ in
the range 500–1100, on the axis of a plane jet. It is found that the magnitude of the
exponent increases as Rλ increases and the rate of increase depends on the order n.
The trend of published structure function data on the axes of an axisymmetric jet and
a two-dimensional wake confirms this dependence. For a fixed Rλ, the exponent can
vary from flow to flow and for a given flow, the larger Rλ is, the closer the exponent
is to the value predicted by Kolmogorov (Dokl. Akad. Nauk SSSR, vol. 30, 1941a,
pp. 299–303) (hereafter K41). The major conclusion is that the finite Reynolds
number effect, which depends on the flow, needs to be properly accounted for before
determining whether corrections to K41, arising from the intermittency of the energy
dissipation rate, are needed. We further point out that it is imprudent, if not incorrect,
to associate the finite Reynolds number effect with a consequence of the modified
similarity hypothesis introduced by Kolmogorov (J. Fluid Mech., vol. 13, 1962,
pp. 82–85) (K62); we contend that this association has misled the vast majority of
post K62 investigations of the consequences of K62.
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1. Introduction
Kolmogorov’s transport equation for the second-order moment of the longitudinal

velocity increment δu (u, v and w are the velocity fluctuations in the x (streamwise), y
(lateral or transverse) and z (spanwise) directions, respectively) (Kolmogorov 1941b),
derived from the Navier–Stokes equation for homogeneous and isotropic turbulence
(HIT) after neglecting the unsteady (or ∂/∂t) term, is given by

− (δu)3 + 6ν
∂

∂r
(δu)2 =

4
5
εr, (1.1)

with δu(r) = u(x + r) − u(x), where r is the separation between two points in the x
direction; ε is the mean energy dissipation rate. The overline denotes time averaging.
The first term in (1.1) is the third-order structure function which is proportional to the
nonlinear transfer of turbulent energy at a scale r, while the second term represents
the viscous effect. The term on the right-hand side of (1.1) is proportional to the mean
energy dissipation rate ε (= ε iso = 15ν(∂u/∂x)2 if local isotropy is assumed, ν is the
kinematic viscosity of the fluid). This equation is of fundamental importance since
it is an equilibrium equation between second- and third-order moments. It represents
a mean turbulent energy balance for each scale r provided the Reynolds number is
sufficiently large and r is small compared with the integral length scale.

In small to moderate Reynolds number flows, this equation is usually not
satisfied except perhaps at small r since (1.1) does not contain the effect of the
non-homogeneity associated with large scales. An additional term or terms, here
identified for simplicity by the symbol Iu(r), which reflects the influence of the large
scales and may hence differ from flow to flow, needs to be added to (1.1) (Danaila,
Anselmet & Antonia 2002; Danaila, Antonia & Burattini 2004). A generalized form
of (1.1) can be expressed as

Iu(r)− (δu)3 + 6ν
∂

∂r
(δu)2 =

4
5
εr, (1.2)

which has been tested in various flows, e.g. decaying HIT (e.g. Danaila et al. 1999;
Antonia et al. 2000b), along the axis in the far field of an axisymmetric jet flow where
the flow satisfies self-preservation (Burattini, Antonia & Danaila 2005b; Thiesset,
Antonia & Djenidi 2014), along the centreline of a fully developed channel flow
(Danaila et al. 2001) and stationary forced periodic box turbulence (or SFPBT) (e.g.
Fukayama et al. 2000). Obviously, equation (1.1) can only be satisfied up to a
maximum separation which depends on the Reynolds number. For example, Danaila
et al. (1999) showed that (1.1) is satisfied only for r/η 6 5 (η = (ν3/ε)1/4) for
grid turbulence at Rλ = 66 (= u′λ/ν, where λ = u′/(∂u/∂x)′ and a prime denotes a
root-mean-square value), suggesting that Iu(r) contributes to (1.1) for r/η > 5. Since
(1.2) allows the dependence of the small-scale motion (SSM) on large-scale effects
to be quantified, it is worth exploring and characterizing this dependence, especially
in connection with the inertial range (IR). Since the IR is tenable only at very large
Rλ, it is more realistic to use the term scaling range (SR) at finite Rλ with the
caveat (Qian 1998) that the SR is not the IR. Noting that Antonia & Burattini (2006)
showed that very large values of Rλ (of the order of 106) are required before the
IR is unequivocally established in decaying-type flows, we shall hereafter refer to
the SR. The scale by scale energy budget used in Antonia & Burattini (2006) is for
decaying HIT.
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We recall that the analytical framework introduced by Kolmogorov (1941a,b),
widely known as K41, and its subsequent modification (Kolmogorov 1962) (or K62),
which accounts for the so-called ‘internal intermittency’ effect has had a tremendous
impact on turbulence research. A major outcome of the second similarity hypothesis
in K41 is the prediction of the famous IR (η� r� L; L is the integral length scale)

(δu∗)n =Cunr∗n/3, (1.3)

where Cun are universal (Kolmogorov) constants, the asterisk denoting normalization
by the Kolmogorov length scale and/or Kolmogorov velocity scale (uK = (νε)

1/4). A
major consequence of K62 is to modify (1.3) so that (δu∗)n is now given by

(δu∗)n ∼ r∗ζun, (1.4)

where ζun may depart from n/3 (e.g. Frisch, Sulem & Nelkin 1978; Antonia,
Satyaprakash & Hussain 1982b; Anselmet et al. 1984; She & Leveque 1994; Maurer,
Tabeling & Zocchi 1994; Sreenivasan & Antonia 1997).

We need to make it clear from the outset that, like K41, K62 requires Rλ→∞.
Since this is never achieved in either experiments or direct numerical simulations
(DNS), the finite Reynolds number (FRN) effect needs to be carefully assessed before
drawing any definitive conclusions regarding the validity of the anomalous scaling
predicted by K62 or, for that matter, the validity of the K41 predictions. When the
FRN effect prevails, and an SR exists, (δu∗)n can be expressed, over values of r within
the SR, as

(δu∗)n =CFRN
un r∗αn, (1.5)

where CFRN
un and αn are likely to depend on the type of flow; αn can only be identified

with ζun when Rλ→∞. We believe that only estimates of αn, rather than ζun, have
been made prior to approximately 1997 (e.g. Antonia et al. 1982b; Anselmet et al.
1984; Maurer et al. 1994). Since 1997, there is significant evidence (e.g. L’vov &
Procaccia 1995; Qian 1997, 1998, 1999; Lindborg 1999; Pearson & Antonia 2001;
Antonia & Burattini 2006; Sagaut & Cambon 2008; Bos et al. 2012; Tchoufag,
Sagaut & Cambon 2012; Meldi & Sagaut 2013) that particular attention needs to be
paid to the FRN effect when assessing the SR scaling exponents of either velocity
spectra, e.g. φu(k1), where k1 is the one-dimensional wavenumber, pressure spectra,
Ep(k1), or velocity structure functions. For example, Pope (2000) (figure 6.29 in his
book) made a compilation of different values of the power-law exponent for φu(k1)

measured in grid turbulence and showed that the K41 −5/3 power-law scaling is
approached slowly as Rλ increases (see also Mydlarski & Warhaft 1996). Ishihara
et al. (2016) recently examined the three-dimensional energy spectrum for SFPBT
(Rλ= 723− 2297) and found that there is a FRN effect on the energy spectrum in the
SR. Ni & Xia (2013) examined the prefactors of (δu)2 and the energy spectrum in
the SR for various flows, e.g. in the central region of a cylindrical Rayleigh–Bénard
turbulent convection cell, an axisymmetric jet, a turbulent boundary layer and SFPBT
over a large range of Rλ(= 55–1450). They found that all prefactors of (δu)2 and
spectra in these flows depend on Rλ and the type of flow. Morrison, Vallikivi &
Smits (2016) examined (δu)3/(εr) and (δu)2/(εr)2/3 in the SR on the centreline of
a turbulent pipe flow for Rλ in the range 249–986. They found that both (δu)3/(εr)
and (δu)2/(εr)2/3 depend on Rλ. Antonia et al. (2015) have examined the dependence
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on Rλ of Sδu, the skewness of δu, viz. Sδu = (δu)3/(δu)2
3/2

, in several turbulent flows.
The data indicate that, for Rλ > 500, the rate at which Sδu decreases with increasing
r∗ diminishes for r∗ > 20 but over the SR, Sδu approaches a constant very slowly,
as required by K41. This constancy is still not quite attained at Rλ = 25 000 in
the eddy-damped quasi-normal Markovian (EDQNM) simulation of decaying HIT
of Bos et al. (2012). These results reinforce Antonia & Burattini’s (2006) finding
that, for decaying HIT, Rλ should probably exceed 106 before the IR is established
unequivocally and Qian’s (1997) prediction that Rλ should be higher than 104 in order
to have an IR wider than one decade. Tsuji & Ishihara (2003) measured pressure
spectra (Ep(k1)) on the centreline of a round jet over a large range of Rλ (=200–1250).
They showed that the K41 −7/3 power-law scaling for Ep(k1) is approached as Rλ
increases and is confirmed for Rλ > 600. Using EDQNM in decaying HIT, Meldi
& Sagaut (2013) further confirmed the FRN effect on the pressure spectrum and
revealed that Rλ ∼ 10 000 is needed before the pressure spectrum exhibits an IR with
an extension of one decade. However, the FRN effect on the SR scaling exponents of
structure functions, especially higher-order structure functions, has yet to be assessed
critically either via experiments or DNS. This assessment is the major objective of
this paper. We recall here that it is Anselmet et al.’s (1984) paper that provided
convincing evidence of the anomalous scaling, viz. αn deviates further from the K41
prediction (n/3) as n continues to increase. We also want to make it clear that we
are not disputing the estimates of αn obtained by these authors on the axis of a
round jet at one value of Rλ (= 835). These estimates have been widely accepted by
the turbulence research community and, as we will show later, are appropriate for
this particular flow and value of Rλ. Our concern is that the anomalous scaling or
departure of αn from K41, as described by Anselmet et al. (1984) and others (e.g.
Vincent & Meneguzzi 1991; Sreenivasan & Antonia 1997) have to be reinterpreted
in the light of the FRN effect.

This objective is tackled in two parts. In the first (§§ 4 and 5), we try to understand
analytically via scale by scale energy budget equations, how Iu(r) affects (δu∗)n (n= 2
and 3) when r = λ, a separation which is expected to reside near the lower end of
the SR (Antonia, Satyaprakash & Chambers 1982a; Danaila et al. 2002), in small to
moderate Rλ in the turbulent flows mentioned above. We should point out again that
a fully developed IR exists when Rλ is very large, if not infinite. When Rλ is not
sufficiently large, the SR cannot be identified with IR. Antonia & Burattini (2006)
showed clearly that (δu)3/(εr) approaches a plateau with a value 4/5, representative
of the IR, over an ever expanding range of separations r as Rλ increases, while at
the same time both the viscous term and Iu decrease to zero over the same range
of separations. They also showed that the maximum of (δu)3/(εr) occurs at r/λ' 1,
irrespective of Rλ, thus making our choice r = λ a meaningful way of assessing the
approach of (δu)3/(εr) to the asymptotic value of 4/5. Also, the selection r=λ avoids
the usual measurement difficulties associated with r = η; r = λ provides therefore a
means of quantifying with confidence the influence of Iu(r) on (δu∗)n. Since Iu(r) is
flow dependent, one expects that (δu∗)n at r= λ may differ among different flows for
a fixed value of Rλ.

In the second part (§ 6), the results obtained in the first part are tested against
experimental and numerical data for (δu)n obtained in several different flows; this is
important since the dependence of small-scale statistics on Rλ is inextricably linked,
via Iu(r), with that on the nature of the flow (possibly also different initial conditions
in the same flow). For example, on the axis of a plane jet, with Rλ in the range
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500–1100, where the mean shear is zero, we show that the FRN effect on the
SR scaling exponents of (δu)n is similar to that experienced by the SR power-law
exponents of φu(k1), Sδu and Ep(k). We stress that, in this part (§ 6), we focus on the
dependence of αn, as it appears in (1.5), on both Rλ and the type of flow. We believe
that this is more appropriate, if not more correct, than simply assigning values of
the power-law exponents of (δu)n to ζun (1.4). We believe this practice has led to a
major source of confusion in the literature.

The structure of the paper is as follows. The measurements are described briefly in
§ 2. Local isotropy is examined in § 3. In § 4, we derive a relation, at r= λ, between
(δu∗)n and the large-scale term Iu(r) in various turbulent flows. Results obtained in § 4
are tested against experimental and numerical data for (δu∗)n obtained in a wide range
of flows from small to moderate Rλ; they are presented in § 5. Then, the FRN effect
on SR scaling exponents of the longitudinal velocity structure functions at moderately
large Rλ (= 500–1100) measured on the axis of a plane jet is discussed and compared
with other flows, e.g. circular jet, wake and SFPBT, in § 6. Conclusions are given
in § 7.

2. Experimental details
The plane jet used in the present study issues from a two-dimensional contraction

of a wind tunnel. Since the experiment was originally carried out by Zhou, Antonia &
Chua (2005), a detailed description of the experimental conditions and measurement
techniques can be found in that paper. The tunnel comprises a single inlet 15 kW
centrifugal fan, which is able to deliver a maximum free stream velocity of
approximately 40 m s−1. After the fan outlet, the air enters a settling chamber
via a two-stage two-dimensional diffuser. Downstream of the settling chamber
(1.6 × 0.9 m2), which includes 6 evenly spaced wire-mesh screens and a 5 mm
aluminium honey comb, the flow enters a two-dimensional contraction (area ratio is
9.5) and exits in a laminar state. The contraction exit has a height d of 16.5 cm
and width h= 82.5 cm (aspect ratio is 5). The longitudinal axis of the contraction is
1.2 m above the floor of the laboratory. The main set of measurements was made at a
distance x= 36d downstream of the exit, at five values of the exit velocity Uj with a
one-component (spanwise) vorticity probe. The magnitude of Uj varies approximately
between 8 m s−1 and 24 m s−1. Correspondingly, the Reynolds number Rd = Ujd/ν
at the jet exit varies between 8.4× 104 and 2.6× 105. The corresponding Rλ range is
500–1100.

The one-component vorticity probe consists of one X-wire lying in the (x, y) plane,
straddled by a pair of parallel single hot-wires, each aligned in the z direction. All
hot-wires were etched from Wollaston (Pt-10 %Rh) wire to an active length lw of
200dw (dw is the wire diameter, here equal to 1.27 µm) to minimize end effects.
They were operated with in-house constant temperature anemometers at an overheat
ratio of 1.5. Output signals from the anemometers were passed through buck and
gain circuits and low-pass filtered at a cutoff frequency fc close to the Kolmogorov
frequency fK ≡ U/2πη. The filtered signals were sampled (12 bit analogue-to-digital
converter) at a frequency fs set equal to 2fc. The record duration was in the range
60–300 s. The separation between the parallel wires 1y is equal to 0.85 mm. For
all the Reynolds numbers considered here, lw/η lies between 1 and 2.4 whilst 1y/η
is in the range 3.5–7.7. The main flow parameters are given in table 1. Note that
the uncertainty in estimating λ is less than 4 % for all Rλ in table 1, which gives
us confidence that the position of λ has been estimated with sufficient accuracy. It
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Error
Uj U u′ ε iso λ for λ η fK fs Rλ lw/η 1y/η

(m s−1) (m s−1) (m s−1) (m2 s−3) (mm) (%) (mm) (kHz) (kHz)

7.66 2.96 0.74 1.00 11.12 1.0 0.24 1.95 5 550 1.00 3.54
11.63 4.77 1.14 3.46 9.51 1.6 0.18 4.30 8 696 1.39 4.72
14.52 6.60 1.58 9.20 7.82 2.9 0.14 7.60 16 826 1.78 6.07
19.57 8.23 1.95 17.12 7.05 3.2 0.12 11.05 20 914 2.08 7.08
23.54 10.00 2.35 26.78 6.81 3.8 0.11 15.01 25 1067 2.27 7.73

TABLE 1. Flow parameters on the axis of the plane jet.

will be seen later (figures 8–11) that λ is located near the lower end of the SR. The
same observation can be also made from figures 1–7 of Gotoh & Nakano (2003) for
SFPBT at Rλ= 460. Note that Rλ (= 500–1100) in table 1 is larger than that of Gotoh
& Nakano (2003). On the other hand, the ratio λ/η is in the range 46–62, which is
sufficiently large to support the choice of r= λ, as discussed in the introduction.

3. Local isotropy
A key assumption of K41 and K62 is that small-scale turbulence at sufficiently

high Rλ is statistically independent of the large scales. Kolmogorov assumed that the
small scales are isotropic in space and stationary in time. Following Monin & Yaglom
(2007), a well-known isotropic relation between second-order structure functions of
longitudinal and transverse velocity components is given by

(δv)2iso =

(
1+

r
2

d
dr

)
(δu)2. (3.1)

The isotropic relation between third-order structure functions is also given by Monin
& Yaglom (2007) (see also (Thiesset, Danaila & Antonia 2013a)) as

(δu)(δv)2iso =

(
1
6

d
dr

r(δu)3
)
. (3.2)

Figure 1 shows the ratios between calculated and measured second- and third-order
structure functions at Rλ= 550 and 1067, respectively. For both the second- and third-
order structure functions, the departure from local isotropy appears to be relatively
small in the dissipation range (r∗ < 20), the maximum departure being approximately
20 %. In the SR, although there is a systematic departure from local isotropy for both
the second- and third-order structure functions, there is also an improvement in local
isotropy as Rλ increases. The departure from local isotropy in the SR is reflected by
the inequality between βn ((δv)n∼ rβn) and αn (1.5). For example, β4= 1.05, whereas
α4≈ 1.34 at Rλ= 1067. Note that at r= λ figure 1, the departure from local isotropy
is within ±20 % at both the largest and smallest values of Rλ, thus justifying this
particular choice of r (= λ) in the analytical work of next section. We finally recall
that the main focus of the present paper is to address the finite Reynolds number effect
on the SR behaviour of (δu)n. Evidently, it would be desirable to further investigate
the FRN effect on local isotropy in the SR and the SR behaviour of the transverse
structure functions by further increasing Rλ.
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FIGURE 1. (Colour online) Ratios of isotropic and measured second- (red) and third-order
(black) structure functions in the dissipation range.C, Rλ = 1067;@, Rλ = 550. Solid line
indicates the isotropic ratio of 1. Dashed green lines indicate a departure of 20 % from the
isotropic value of one. Arrowed horizontal line indicates the extent of the scaling range.
The vertical arrows indicate the magnitudes of the Taylor microscale (λ/η) at Rλ = 550
(left) and 1067 (right) respectively.

4. Effect of Iu(r) on (δu∗)3 at r= λ

We first discuss the different forms of the term Iu(r) in (1.2) in different types of
flows.

(i) In decaying HIT, Iu(r) is the streamwise advection term for (δu)2 and is given
by (e.g. Danaila et al. 1999; Antonia et al. 2000b; Danaila et al. 2002, 2004)

Iu(r)=−
3
r4

∫ r

0
s4

[
U
∂(δu)2

∂x

]
ds, (4.1)

where s is a dummy variable, identifiable with the separation along x and U is the
(constant) mean velocity in the x direction.

(ii) Along the axis in the far field of an axisymmetric jet flow where the flow
satisfies self-preservation, Iu(r), which includes a streamwise advection term for (δu)2
and a production term, is given by (Burattini et al. 2005b; Thiesset et al. 2014)

Iu(r)=−
3
r4

∫ r

0
s4

[
U
∂(δu)2

∂x
+ 2

[
(δu)2 − (δv)2

] ∂U
∂x

]
ds. (4.2)

(iii) Along the centreline of a fully developed channel flow, Iu(r), which arises from
the turbulent transport of (δu)2 by the wall-normal velocity fluctuation v, is given by
(Danaila et al. 2001)

Iu(r)=−
6
r4

∫ r

0
s4

[
∂v(δu)2

∂y

]
ds. (4.3)
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(iv) For SFPBT, the forcing is usually concentrated at very low wavenumbers (i.e.
very large scales). For example, Iu(r) is given by (Fukayama et al. 2000)

Iu(r)= 2
21εin(ker)2r, (4.4)

where εin is the energy input rate due to external random forces concentrated at
wavenumber k∼ ke.

The scale by scale energy budget equations, with the various forms of Iu, have
already been satisfactorily validated over the range η6 r 6L against experimental and
numerical data in various turbulent flows. This has been reported for grid turbulence
(Danaila et al. 1999; Antonia et al. 2000b; Danaila et al. 2002, 2004; Antonia &
Burattini 2006), along the axis in the far field of an axisymmetric jet flow (Danaila
et al. 2004; Burattini, Antonia & Danaila 2005a), along the centreline of a fully
developed channel flow (Danaila et al. 2001, 2002; Fukayama et al. 2000). For this
reason, and to limit the length of this present paper, we only focus on the variation
of Iu(r) at r= λ on Rλ.

After dividing by u3
K and taking r = λ, the term on the right-hand side of (1.2)

becomes
4

5u3
K
εr=

4
5
λ∗, (4.5)

while the second and third terms on the left-hand side of (1.2) become

−
(δu)3

u3
K

∣∣∣∣∣
r=λ

= Tλ, (4.6)

6ν
u3

K

∂(δu)2

∂r
= 6

∂(δu∗)2

∂r∗

∣∣∣∣∣
r=λ

= Vλ. (4.7)

After normalizing by Kolmogorov scales and taking r= λ, Iu(r) can be written, for
decaying HIT, as

Iu(λ
∗)=−

3
λ∗4

∫ λ∗
0

s∗4
[

U∗
∂(δu∗)2

∂x∗

]
ds∗. (4.8)

Iu(λ
∗) is not written here for other flows since it is simply the normalized form of

(4.2)–(4.4).
It is worth recalling that, by assuming self-preservation for decaying HIT, Iu(λ

∗) can
also be recast as

Iu(λ
∗)=

√
15
2

(
n− 1

n

)(∫ λ∗
0

s∗5
∂(δu∗)2

∂r∗
ds∗ + 2

∫ λ∗
0

s∗4(δu∗)2 ds∗
)

1
λ∗4Rλ

, (4.9)

where n is the power-law decay rate for u2, viz. u2 ∼ x−n. Strictly, complete self-
preservation or self-preservation at all scales is tenable in decaying HIT only when
Rλ→∞ (Djenidi & Antonia 2015). However, similarity based on Kolmogorov scales
should be applicable in some regions of any turbulent flow when r is sufficiently small,
e.g. Antonia, Djenidi & Danaila (2014). This justifies the use of Kolmogorov scales
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FIGURE 2. (Colour online) Dependence of Iu(λ
∗) on Rλ in different flows. p, grid

turbulence (Zhou & Antonia 2000);E and@ correspond to the data in circular and square
cylinder wakes respectively (Antonia, Zhou & Romano 2002b); SFPBT: u, (Fukayama
et al. 2000); ×, (Gotoh, Fukayama & Nakano 2002);c, channel centreline (Danaila et al.
2001);f, circular jet axis, estimates from the data of Xu, Antonia & Rajagopalan (2001).
The solid and dash-dotted curves correspond to the model for decaying HIT (Antonia &
Burattini 2006) and jet axis. The horizontal dashed line indicates a value of zero, i.e. the
value expected when there is no effect from the large scales.

in (4.9) at r = λ. Along the axis in the far field of the round jet, Iu(r∗) can be also
recast as

Iu(λ
∗)=

(
3
√

15
2+ R

)
R−1
λ (Γ

∗

1 + 4Γ ∗2 − 2Γ ∗3 )r
∗−4, (4.10)

where Γ ∗1 =
∫ r∗

0 s∗5∂(δu∗)2/∂r∗ds∗, Γ ∗2 =
∫ r∗

0 s∗4(δu∗)2ds∗, Γ ∗3 =
∫ r∗

0 s∗4(δv∗)2ds∗ (see also
the first term on the left-hand side of (2.17) in Thiesset et al. (2014)), at all scales,
not only at r= λ since complete self-preservation is satisfied.

Finally, equation (1.2) can be written, when r= λ, as

Iu(λ
∗)+ Tλ + Vλ = 4

5λ
∗, (4.11)

where Iu(λ
∗) differs from flow to flow and possibly from position to position in a

given flow. The main objective for deriving (4.11) is to assess the influence of Iu(λ
∗)

on (δu∗)n (n = 2 and 3 at r = λ, −(δu∗)3r=λ = Tλ) in the turbulent flows mentioned
above, i.e. decaying HIT, the centreline of a fully developed channel flow, the axis of
a turbulent round jet and SFPBT, for as wide a range of Rλ.

5. Results for (δu∗)n (n= 2 and 3 at r= λ, −(δu∗)3r=λ = Tλ)

Estimates of Iu(λ
∗) for the different flows considered in § 4 have been obtained

with experimental and numerical data and are shown in figure 2. Also included are
estimates inferred from the parameterized form of (δu∗)2 in decaying HIT (Kurien &
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Sreenivasan 2000; Antonia et al. 2003; Antonia & Burattini 2006), viz.

(δu∗)2 =
r∗2(1+ βr∗)(2c−2)

15(1+ αr∗2)c
, (5.1)

where α (= 30−3/2) is a measure of the cross-over between the dissipative and scaling
ranges, c = 1 − ζ/2 (ζ = 2/3 is the scaling range exponent without intermittency
correction) and β=L∗−1 (L is the integral length scale). For isotropic turbulence, λ∗=
151/4R1/2

λ and L∗ =Cε15−3/4R3/2
λ (Cε = 1 for decaying HIT). Here the correction for ζ

is not essential for estimating Iu(λ
∗), e.g. distributions of Iu(λ

∗) which correspond to
ζ = 2/3 and ζ = 0.71, the value used by Anselmet et al. (1984), are almost identical
(they are not shown here). This model has been tested in some detail by Antonia &
Burattini (2006); they showed that Rλ needs to exceed 106 before the IR is established
unequivocally. Note that an earlier version of this model was also tested extensively
(Antonia, Pearson & Zhou 2002a) in other flows. Following Monin & Yaglom (2007),
the well-known isotropic relation between (δu)2 and (δv)2 is given by (3.1). Relations
(5.1) and (3.1) allow Iu(λ

∗) to be estimated for the flow along the axis of a round jet.
All the parameters are chosen to be the same as in decaying HIT except for Cε which
is 0.75 (Mi, Xu & Zhou 2013); note that Cε has a negligible effect on the estimate of
Iu(λ

∗). Since the one-point energy budget in the intermediate wake of either a circular
cylinder (Thiesset, Antonia & Danaila 2013b) or square cylinder (Lefeuvre (2014),
private communication) is quite similar to that for decaying HIT, estimates of Iu(λ

∗) in
these two flows at x/d= 70, where d is the diameter of the cylinder, are also shown;
these values are estimated from the data of Antonia et al. (2002b).

Figure 2 indicates that Iu(λ
∗) varies markedly among different flows. For example,

it is smallest, if not negligible, for SFPBT, suggesting that this flow is most ideal for
examining scaling exponents of (δu)3 in the scaling range. Indeed, Moisy, Tabeling
& Willaime (1999), Antonia & Burattini (2006), Gotoh & Watanabe (2015) showed
that Rλ∼ 103 appears to be sufficient for the K41 4/5 law is approached in this flow.
Along the centreline of a fully developed channel flow, Iu(λ

∗) is largest of all cases
considered here. For decaying HIT and on the cylinder wake axis, the magnitude of
Iu(λ

∗) is in reasonable agreement with the prediction from the model of (5.1) for
decaying HIT. The prediction from the model for the round jet, in good agreement
with the magnitude of Iu(λ

∗) estimated from the data of Xu et al. (2001), is smaller
than in decaying HIT since an additional production term Iu(r) emerges on the left-
hand side of (4.2). In order to show how large a value of Rλ is needed for Iu(λ

∗)
to be negligible, figure 3(a) shows the predictions from the models for the round jet
and decaying HIT up to Rλ = 108. It is clear from this figure that, for both flows,
Rλ should exceed 108 for Iu(λ

∗) to become negligible. For Iu(λ
∗)/λ∗ in figure 3(b),

it approaches zero when Rλ > 105, beyond which the K41 4/5 law is approached
(Antonia & Burattini 2006). It is clear that, at r = λ (a scale which lies near the
start of the SR), the contribution of the large-scale terms to the scale by scale energy
budget in decaying-type flows can persist at high Rλ and this contribution is expected
to become larger as r increases beyond r = λ in the SR. However, it is well known
that for laboratory measurements, on the other hand, Rλ hardly ever exceeds 103;
exceptions are the experiments of Tabeling et al. (1996) and Belin et al. (1997) who
used low temperature helium in a cylindrical container between two counter-rotating
disks. In this flow, the maximum value of Rλ reached 5000.

Estimates of Vλ for the flows considered in figure 2 are shown in figure 4. Also
included are estimates inferred from (5.1). Since the one-point energy budget along
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FIGURE 3. (Colour online) Dependence of Iu(λ
∗) (a) and Iu(λ

∗)/λ∗ (b) on Rλ in decaying
HIT (solid curve) and along the axis of a circular jet (dashed curve). Both curves are
estimated from the models ((5.1) is introduced in (4.9) to obtain Iu(λ

∗) in decaying HIT;
(5.1) and (3.1) are introduced in (4.10) to obtain Iu(λ

∗) along the axis of a circular jet).
The horizontal dashed line indicates a value of zero, i.e. the value expected when there
is no effect from the large scales.
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102 103

FIGURE 4. (Colour online) Dependence of Vλ, the normalized ‘viscous’ term in
(1.2), on Rλ in different flows. p, grid turbulence (Zhou & Antonia 2000); E and
@ correspond to the data in circular and square cylinder wake respectively (Antonia et al.
2002b); c, channel centreline (Tang et al. 2015a); f, pipe axis (Antonia & Pearson
2000); SFPBT: u, Fukayama et al. (2000); ×, Gotoh et al. (2002). The solid curve
corresponds to the model for decaying HIT (Antonia & Burattini 2006). The horizontal
dashed line indicates a value of zero, i.e. the value expected when there is no effect from
the small scales.
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FIGURE 5. (Colour online) Rλ dependence of (δu∗)2 in different flows at r = λ.p, grid
turbulence (Zhou & Antonia 2000); c, channel centreline (Tang et al. 2015a); E, pipe
axis (Antonia & Pearson 2000).

the axis of a pipe is quite similar to that on the channel centreline, estimates of
Vλ on the axis of the pipe are also shown (Antonia & Pearson 2000). In contrast
to Iu(λ

∗) in figure 2, the values of Vλ (see figure 4) in different flows are closer
together and appear to be independent of the flow. However, it is somewhat surprising
that, for decaying-type flows, Vλ is close to Iu(λ

∗) (see figure 2) suggesting that the
viscous term and the large-scale term Iu(λ

∗) have comparable contributions (see also
figure 7) to the scale by scale energy budget equation in these flows at r= λ; this can
also be seen from the results of Antonia & Burattini (2006). In SFPBT, the viscous
term is significantly larger than the large-scale forcing term Iu(λ

∗) (i.e. Iu(λ
∗) < Vλ)

when the external forcing is concentrated at very low wavenumbers (i.e. very large
scales). In contrast, on the centreline of a fully developed channel flow, the large-scale
term Iu(λ

∗) makes a larger contribution to the energy budget than the viscous term at
low Rλ. Estimates from the model (5.1) collapse reasonably well with the data from
grid turbulence over the range 30< Rλ < 100. In similar manner to Iu(λ

∗) (figure 2),
figure 4 shows that Rλ also needs to be large before Vλ can be neglected, suggesting
that the viscous term contributes to the budget at r= λ from small to moderate Rλ.

The main message of figure 2 is that, at r=λ, the contributions from the large-scale
forcing term to the scale by scale energy budget equation differ from flow to flow
at small to moderate Rλ. Thus, Tλ (see (4.6)) at r = λ may also differ from flow to
flow at small to moderate Rλ. Although it appears to be independent of the flow, the
viscous term has comparable contributions to that of the large-scale term in decaying-
type flows. The effect of Iu(λ

∗) on Tλ and (δu∗)2 is discussed below.
Figure 5 shows (δu∗)2 for three of the flows considered in § 4. No data are available

at low Rλ for SFPBT and along the jet axis. Also included are estimates inferred from
the data measured along the axis of a pipe. It is clear that (δu∗)2, like the viscous term
Vλ (see figure 4), is nearly independent of the flow.

As shown in figures 2 and 4, and although Vλ appears to be independent of the flow,
Iu(λ

∗) differs from flow to flow at small to moderate Rλ. Accordingly, Tλ also differs

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

21
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.218


Finite Reynolds number effect on the scaling range behaviour 353

50 100 150 200
2

4

6

8

10

12

14

16(a) (b)

50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIGURE 6. (Colour online) (a) Rλ dependence of Tλ (= −(δu∗)3|r=λ) in different flows.
p, grid turbulence (Zhou & Antonia 2000); SFPBT:u, Fukayama et al. (2000);c, channel
centreline (Tang et al. 2015a); E, pipe axis (Antonia & Pearson 2000). (b) Tλ/λ∗ (=
−(δu∗)3|r=λ/λ∗) symbols correspond to (a).

in different flows over the same range of Rλ. The smallest values of Tλ occur on
the axis of the pipe. In decaying grid turbulence, Tλ is larger than along the channel
centreline, which is consistent with the smaller values of Iu(λ

∗) (figure 2) in the former
flow. The largest value occurs for SFPBT; this is consistent with the smallest values
of Iu(λ

∗) in figure 2. We should stress that Tλ/λ∗ must approach the K41 4/5 law
as Rλ continues to increase (Antonia & Burattini 2006) and the way the 4/5 law is
approached should become flow dependent as suggested in figure 6(b).

In order to highlight the effect of the small scales and the large scales on Tλ/λ∗, the
distributions in figures 3(b), 4, and 6(b) are replotted in figure 7. It can be seen from
this figure that Tλ/λ∗ must eventually dominate over the other two terms (viscous term
and large-scale term) as Rλ becomes large enough. Overall, figure 7 strongly supports
the idea that the large-scale forcing (or FRN effect), which differs from flow to flow,
has a significant effect on Tλ at small to moderate Rλ. This effect is expected to be
amplified as r increases beyond r= λ in the SR. It is similar to the FRN effect on the
SR power-law exponents of φu(k1), Sδu and Ep(k1) as mentioned in the Introduction.
In the next section, we examine the FRN effect on the SR scaling exponents of the
longitudinal velocity structure functions at large Rλ (= 500–1100) on the axis of a
plane jet.

6. SR scaling exponents of velocity structure functions

In §§ 4 and 5, we have focused on low-order moments because there is an
analytical framework, based on (1.2), to describe the relation between (δu)2 and (δu)3.
This section will focus primarily on the higher-order moments and the SR scaling
exponents of (δu)n. For the higher-order moments, it would be desirable to consider
their transport equations which may allow an analytical estimate of the large-scale
forcing effect (or FRN effect) on (δu)n, as is done in §§ 4 and 5 for low-order
moments. Although these equations are available, e.g. Hill (2001), evaluating the
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FIGURE 7. (Colour online) Dependence of Iu(λ
∗)/λ∗, Tλ/λ∗ (the symbols are as in

figure 6), and Vλ/λ∗ on Rλ in different flows. The horizontal dashed line indicates a value
of zero, i.e. the value expected when there is no effect from the small scales and the large
scales.

large-scale forcing effect is not straightforward. For example, the equation relating
third- and fourth-order moments involve a pressure gradient velocity–velocity structure
function, which we are only able to evaluate by making further assumptions. For this
reason, we focus in this section on the SR behaviour of (δu)n although transport
equations for n> 2 are outside the scope of this paper.

6.1. Plane and circular jets
Figures 8–10 show the fourth-, sixth- and eighth-order structure functions in the
scaling range measured on the axis of a plane jet at Rλ= 550 (red) and 1067 (black),
respectively. For clarity, distributions for only two values of Rλ are shown but we
emphasize that the variation of (δu∗)n with Rλ is systematic for all values of n.
In each case, dashed lines are least squares fits across the SR: 60 < r∗ < 350 and
70< r∗< 400 for Rλ= 550 and 1067, respectively. For the purpose of comparison, the
SR at each Rλ is fixed (65< r∗< 400, see figure 11). There is a clear Rλ dependence
of the scaling exponents for all the fourth-, sixth- and eighth-order structure
functions. Figure 11 shows compensated fourth-, sixth- and eighth-order structure
functions which correspond to figures 8–10, i.e. (δu∗)4r∗−1.24 and (δu∗)4r∗−1.34 (solid
curves), (δu∗)6r∗−1.66 and (δu∗)6r∗−1.87 (dashed curves), (δu∗)8r∗−1.95 and (δu∗)8r∗−2.45

(dash-dotted curves). It can be seen from this figure that all distributions exhibit an
approximate plateau in the SR, thus confirming the Rλ dependence of the scaling
exponents for all the 4th, 6th and 8th-order structure functions shown in figures 8–10.
Also included in figure 11 are the distributions of (δu∗)2r∗−2/3 and (δu∗)3r∗−α3

(α3 = 0.94 and 1) at Rλ = 550 and 1067, respectively. As expected, the SR value for
(δu∗)3 approaches 4/5 (K41) as Rλ increases. (δu∗)2r∗−2/3 also exhibits an approximate
plateau (both for the present data and the data of Anselmet et al. (1984)) on the axis
of a circular jet, suggesting a Rλ independence of the exponent for (δu∗)2 over the
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FIGURE 8. (Colour online) Fourth-order structure functions for Rλ = 550 (red) and
1067 (black). Dashed lines (∼ r∗1.24 and ∼ r∗1.34) are least squares fits over the SR,
corresponding to Rλ= 550 (red) and 1067 (black) respectively. The arrowed horizontal line
indicates the extent of the SR. The vertical arrows indicate the magnitudes of the Taylor
microscale (λ/η) at Rλ = 550 (upward arrow) and 1067 (downward arrow) respectively.

present Rλ range. Note that the value of 2/3 has been obtained by the same method
used to determine all the other exponents αn, i.e. by visually choosing the value of α2

which gives the ‘best’ plateau when plotting (δu∗)2r∗−α2 versus r∗. A slightly larger
magnitude (≈ 0.7), constant over this range of Rλ, was estimated by Antonia, Pearson
& Zhou (2000a) using the same plane jet data after fitting the measured values of
(δu)2 to the relation for (δu)2 developed by Batchelor (1951), viz. equation (4.1) with
β = 0, to describe both the dissipative and scaling ranges. Clearly, the magnitude of
α2 shows a sensitivity to the method used for its determination. With the present
method, there is no collapse in the SR (figure 11), suggesting that the Kolmogorov
constant CK ((δu∗)2 = CKr∗2/3) has not yet been attained by the data. Note that the
FRN effect on the low-order moments of (δu∗)n is consistent with the observations by
Pearson & Antonia (2001) over a large range of Rλ (40< Rλ < 4250). Although not
shown here, the Rλ dependence of the SR exponents for the fifth- and seventh-order
structure functions is also observed. This underlines that the FRN effect across the
SR must be assessed carefully before attempting to test either K41 or K62.

Figure 13, which illustrates the dependence of α4 on Rλ, shows that α4 continues
to increase as Rλ increases and eventually seems to approach a constant value, which
is close to 4/3, the prediction of K41 ((1.3) with n= 4). Evidently, even larger values
of Rλ are required to establish this unequivocally. We recall here that the fourth-order
velocity structure functions in isotropic turbulence can be written solely in terms of the
pressure structure function (derived from the Navier–Stokes equation) (Hill & Wilczak
1995; Vedula & Yeung 1999; Pearson & Antonia 2001)

Dp(r) = −
1
3

D1111(r)+
4
3

r2
∫
∞

r
y−3
[D1111(y)+Dχχχχ(y)− 6D11γ γ (y)] dy

×
4
3

∫ r

0
y−1
[Dχχχχ(y)− 3D11γ γ (y)] dy, (6.1)
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FIGURE 9. (Colour online) Sixth-order structure functions for Rλ = 550 (red) and 1067
(black). Dashed lines (∼r∗1.66 and ∼r∗1.87) are least squares fits over the SR, corresponding
to Rλ= 550 (red) and 1067 (black) respectively. The arrowed horizontal line indicates the
extent of the SR. The vertical arrows indicate the magnitudes of the Taylor microscale
(λ/η) at Rλ = 550 (upward arrow) and 1067 (downward arrow) respectively.
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FIGURE 10. (Colour online) Eighth-order structure functions for Rλ= 550 (red) and 1067
(black). Dashed lines (∼r∗1.95 and ∼r∗2.45) are least squares fits over the SR, corresponding
to Rλ= 550 (red) and 1067 (black) respectively. The arrowed horizontal line indicates the
extent of the SR. The vertical arrows indicate the magnitudes of the Taylor microscale
(λ/η) at Rλ = 550 (upward arrow) and 1067 (downward arrow) respectively.

where Dp(r) is the pressure structure function, D1111(r) (= (δu)4) is the fourth-order
longitudinal velocity structure function, χ and γ stand for 2 or 3. The only assumption
for deriving (6.1) is that the turbulence is locally homogeneous and isotropic. Equation
(6.1) indicates that, in the SR, if D1111(r) varies like r4/3, Dp(r) should also vary like
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FIGURE 11. (Colour online) Compensated structure functions which correspond to
figures 8 (α4 = 1.24 and 1.34), 9 (α6 = 1.66 and 1.87) and 10 (α8 = 1.95 and 2.45)
respectively. Note that, as in figures 8–10, the red and black curves correspond to Rλ=550
and 1067 respectively. The arrowed horizontal line indicates the extent of the scaling range.
The vertical arrows indicate the magnitudes of the ratio λ/η at Rλ=550 (downward arrow)
and 1067 (upward arrow) respectively. Circles correspond to (δu∗)6r∗−α6 with α6 = 1.64,
which is re-estimated from figure 10(b) of Anselmet et al. (1984) over what we consider
to be a more appropriate SR (50< r∗< 400) than that (20< r∗< 150) used in their paper
(Rλ = 835); squares correspond to (δu∗)2r∗−2/3 of Anselmet et al. (1984). Also included
are (δu∗)2r∗−2/3 and (δu∗)3r∗−α3 (α3 = 0.94 and 1) at Rλ = 550 (red) and 1067 (black).
Blue and green dashed horizontal lines correspond to 4/5 and 2 respectively.

r4/3, for conformity with K41. Therefore, the spectrum Ep(k1), which corresponds
to Dp(r), should behave as k−7/3

1 (K41). As mentioned in the Introduction, Tsuji &
Ishihara (2003) measured pressure spectra on the centreline of a circular jet over
a large range of Rλ (= 200–1250). They found that the −7/3 power-law scaling
is approached as Rλ increases and actually reached for Rλ > 600. In fact, Rλ may
need to exceed 1000 if a polynomial fit is applied to the data in figure 4 of Tsuji
& Ishihara (2003), see the present figure 12. Using EDQNM simulations in freely
decaying homogeneous isotropic turbulence, Meldi & Sagaut (2013) further confirmed
the FRN effect on the pressure spectrum and revealed that Rλ ∼ 10000 is needed
before a one-decade SR can be observed in the pressure spectrum with a K41 -7/3
scaling. Figure 13 indicates that on the axis of both plane and circular jets a 4/3
power-law scaling, consistent with observations for Ep(k1) reported in other flows
(Tsuji & Ishihara 2003; Meldi & Sagaut 2013), is also approached as Rλ increases,
and appears to be confirmed for Rλ ≈ 900 on the axis of the plane jet. Another
important aspect of figure 13 is that the distribution of α4, like that of Tλ in figure 6,
differs between the plane jet and circular jet. This difference reflects variations in the
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FIGURE 12. (Colour online) Scaling exponents for the pressure spectrum Ep(k1). Symbols
are reproduced from figure 4 of Tsuji & Ishihara (2003). The red curve is a third-order
polynomial fit. The dashed line indicates the 7/3 power-law scaling predicted by K41.

contributions from different mechanisms taking place at large scales and vindicates
our earlier contention that the way the 4/3 power-law scaling is approached is flow
dependent.

Figures 14 and 15 show the variation with Rλ of α6 and α8 along the axis of both
plane and circular jets. In each flow, α6 and α8 increase as Rλ increases. Further,
the distributions for both α6 and α8 differ between the plane jet and the circular jet.
However, the values of 2 and 8/3 predicted by (1.3) for n= 6 and n= 8, respectively,
are not approached, even for Rλ= 1067. On the other hand, the magnitudes of α4, α6
and α8 shown in figures 13–15 intersect the predictions by the intermittency model of
She & Leveque (1994), log-normal model (K62) and the β-model (Frisch et al. 1978)
with µ = 0.2, suggesting that it is simply incorrect to use K62 to ‘model’ the FRN
effect. For the present plane jet data (550 6 Rλ 6 1067), it is almost evident that any
uncertainty in the position r= λ will not affect any of the results (associated with the
FRN effect). It can be seen from figure 11 that, over the SR, the black (Rλ = 1067)
and red (Rλ = 550) lines are essentially horizontal to each other. The rate of change
with Rλ of (δu∗)nr∗−αn is therefore unlikely to change across the SR and cannot be
affected by the small uncertainty in λ (the error in λ has been included in table 1; the
maximum uncertainty is approximately 4 % at the largest Rλ). Figure 11 implies that
the FRN effect will be unchanged between r=λ and perhaps even beyond r=5λ (near
the upper end of SR). Finally, the dependence on Rλ of αn (n= 2− 8) for Rλ = 550
and 1067 on the axis of the plane jet is shown in figure 16. A number of comments
can be made with regard to figure 16.

(i) It is clear that the scaling exponent, for each n, increases noticeably with
increasing Rλ. Since the measurements are carried out in the same flow and at the
same location, this trend can only be attributed to the FRN effect. This effect can
also be seen in Hao et al.’s (2008) distributions of the transverse velocity structure
functions along the centreline of a wake at x/d = 75 when Rλ increases from 120
to 320. These authors reported essentially no Rλ dependence for the SR exponents
associated with the longitudinal structure functions. However, these exponents were
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FIGURE 13. (Colour online) Dependence of α4 on Rλ on the axis of the plane jet (u) and
circular jet (+ and × are estimated from Antonia et al. (1982a) and Pearson & Antonia
(2001) respectively, see figure 19 for more details). The blue dashed line indicates the
4/3 power-law scaling predicted by (1.3) with n = 4. The red dashed line indicates the
log-normal model (K62) αn = n/3 − µn/18(n − 3) with µ = 0.2. The black dashed line
indicates the β-model (Frisch et al. 1978) αn= n/3−µ/3(n− 3) with µ= 0.2. The green
dashed line indicates the intermittency model of She & Leveque (1994), αn= n/9+ 2[1−
(2/3)n/3]. The black (plane jet) and red (circular jet) curves are second-order polynomial
fits.
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FIGURE 14. (Colour online) Dependence of α6 on Rλ on the axis of the plane jet.
Symbols and lines same as in figure 13; + is estimated from Anselmet et al. (1984).

estimated with the extended self-similarity method (ESS) (Benzi et al. 1993), which
is incorrect for at least two reasons. First, ESS extends the scaling range down to
the Kolmogorov scale (Benzi et al. 1993), whereas figures 8–11 clearly show that
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FIGURE 15. (Colour online) Dependence of α8 on Rλ on the axis of the plane jet.
Symbols and lines same as in figure 13.
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FIGURE 16. Scaling exponents on the axis of the plane jet at Rλ= 550 (A) and 1067 (C).
Solid line is the K41 prediction, i.e. αn = n/3, equation (1.3).

SR only starts approximately at r = λ. Second, the exponents estimated by ESS are
relative to |δu|3 which depends on Rλ (Antonia & Burattini 2006). Figure 17 shows
the distributions of (δu∗)6 as a function of |δu∗|3 at Rλ = 550, 696, 826, 914 and
1067 respectively (α6 ≈ 1.74 for all cases). Consequently, ESS masks the FRN effect.
The FRN effect on the SR scaling exponents of (δu)n can also be easily observed
from the wake data of Antonia et al. (2002b) at x/d = 70 when Rλ increases from
160 to 280; this will be briefly discussed later (in the context of figure 20).

(ii) For n> 3 at a fixed Rλ, the larger n is, the larger is the departure from the n/3
(K41) scaling.
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FIGURE 17. (Colour online) Distributions of (δu∗)6 as a function of |δu∗|3 on the axis of
the plane jet at Rλ = 550, 696, 826, 914 and 1067; the arrow indicates the direction Rλ
increases.

(iii) For n> 3, the ‘anomalous’ scaling, or departure of αn from n/3, decreases as
Rλ increases, thus strongly underlining that the FRN effect cannot be ignored.

(iv) The so-called intermittency correction or intermittency exponent µ, when
estimated via the autocorrelation function ε(x)ε(x+ r) ∼ (L/r)µ (ε is the one-
dimensional surrogate ε=15ν(∂u/∂x)2), increases with increasing Rλ before eventually
approaching a value of 0.2 at sufficiently large Rλ. Cleve et al. (2004) made a
compilation of values of µ in various turbulent flows; they are shown in figure 18
without identifying the individual sources. For the flow along the axis of the plane
jet, estimates of µ via the autocorrelation function are nearly constant with a value
of 0.17 (see also Praskovsky & Oncley 1994), in agreement with the data reported in
other flows at large Rλ. Figure 16 (see also figure 14) shows that 2− α6, which has
also been identified by many investigators with µ, not only decreases as Rλ increases,
but also differs between the plane jet and circular jet at a fixed Rλ. It is worth
recalling that Frisch et al. (1978) conjectured that (δu)6 and dissipation correlation
function ε(x)ε(x+ r) are related by

(δu)6/r2
∼ ε(x)ε(x+ r). (6.2)

Clearly, there is an inconsistency between the left- and right-hand sides of (6.2), at
least when Rλ is not sufficiently large. It would seem that the use of the right-hand
side can lead to a universal value of µ and could be retained for such a purpose.
This is perhaps not surprising since ε is related to the nearly homogeneous and
isotropic small scales, whilst the increment δu, when r lies in the SR, is affected
by the inhomogeneous and anisotropic large scales. The left-hand side of (6.2) is
therefore affected by the FRN effect and nature of the flow. The trend of our data
implies that (δu)6 (or α6) could finally go to K41, provided Rλ is sufficiently large;
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FIGURE 18. (Colour online) Intermittency exponent µ inferred from the autocorrelation
function ε(x)ε(x+ r),u, along the axis of the plane jet;p, figure 3 of Cleve et al. (2004)
without identifying the sources. Values of 2−α6 are also shown for the plane jet (u) and
circular jet (f).

in that case, one expects that, just as for (δu)3, there should be no intermittency
correction for (δu)6; this expectation merits further investigation. In any case, the
FRN effect, which depends on the flow, needs to be properly accounted for before
one can decide if K41 is valid or whether intermittency corrections to K41, such as
introduced by K62, are needed.

Estimates of αn for n = 4, 6, 8 on the axis of the circular jet (from figure 6 of
Antonia et al. 1982a) at Rλ ∼ 400 (these values of αn are averaged from estimates
of αn at three slightly different values of Rλ (379, 388, 412)) and at Rλ = 966 are
shown in figure 19. Estimates, based on the round jet data of Pearson & Antonia
(2001) at Rλ = 485, are also shown. It is obvious that the trend observed on the axis
of the plane jet (figure 16) can also be seen in figure 19. In particular, the magnitude
of α6 at Rλ = 852, which we have re-estimated from figure 10(b) of Anselmet et al.
(1984) over what we consider to be a more appropriate SR (50< r∗ < 400) than that
(20 < r∗ < 150) used in their paper (the compensated (δu∗)6r∗−α6 with α6 = 1.64 is
shown in figure 11), is slightly smaller than that at Rλ = 966 due to the smaller Rλ
in Anselmet et al.’s (1984) experiment.

6.2. Wake and SFPBT
Further, the FRN effect on αn on the centreline of a wake at x/d = 70 can be also
observed in figure 20. Frisch (1995) (section 8.4 of his book) demonstrated that the
dependence of even-order exponents α2n on n should be concave based on the Hölder
inequality and assuming the existence of such exponents. It can be seen from figure 20
that α2n versus n is convex on the centreline of a wake, implying that the structure
functions in the wake do not have a well-defined scaling range. This is not surprising
since Rλ(= 160 − 280) in the wake is significantly smaller than in the plane and
circular jet flows (Rλ = 400− 1100). It is nonetheless of interest to include the wake
data since the FRN effect on αn is more emphatically observed in this flow.
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FIGURE 19. (Colour online) Scaling exponents at Rλ ∼ 400 (A) and Rλ = 966 (C) on the
axis of the circular jet. They are estimated from figure 6 of Antonia et al. (1982a). The
+ is re-estimated from figure 10(b) of Anselmet et al. (1984) in the SR (50< r∗ < 400)
at Rλ = 835; × are estimated from Pearson & Antonia (2001) at Rλ = 485. Solid line is
the K41 prediction (αn = n/3), equation (1.3).
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FIGURE 20. Scaling exponents at Rλ = 160 (A) and Rλ = 280 (C) on the centreline of a
circular cylinder wake at x/d = 70. They are estimated using the data of Antonia et al.
(2002b). Solid line is the K41 prediction (αn = n/3), equation (1.3).

For SFPBT, Ni & Xia (2013) examined the prefactors of (δu)2 and the energy
spectrum, with the data of Gotoh et al. (2002) (Rλ= 70–460), in the SR. They found
that these prefactors depend on Rλ. As discussed in the context of figure 2, Iu(λ

∗) for
SFPBT also shows a dependence on Rλ. However, the weak contribution of Iu(λ

∗)

in the SR suggests that SFPBT is most ideal for examining scaling exponents of
(δu)3. As shown by Moisy et al. (1999), Antonia & Burattini (2006), and Gotoh &
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Watanabe (2015), Rλ ∼ 103 appears to be sufficient for the 4/5 law to be obtained
in this flow. For the higher-order SR scaling exponents of (δu)n (n> 3), Gotoh et al.
(2002) found that α4= 1.29± 0.03, α6= 1.77± 0.04 and α8= 2.17± 0.07 respectively
at Rλ = 460 (kmaxη = 0.96). In a recent paper, Gotoh & Watanabe (2015) obtained
α4= 1.320± 0.004 , α6= 1.810± 0.004 and α8= 2.196± 0.002; they evaluated these
exponents with good accuracy and high mesh resolution at Rλ= 805 (kmaxη> 1.4). The
results show an unmistakable FRN effect on αn for SFPBT. Also, figure 5(b) of Peters
et al. (2016) shows α5 both as a function of r∗ and Rλ (= 88, 119, 184, 215, 331,
529 and 754 respectively) for SFPBT; the corresponding (δu∗)5 has been reported by
Boschung et al. (2016). We can observe from figure 5(b) of Peters et al. (2016) that
α5 increases from about 1.50 to 1.56 as Rλ increases from 529 to 754 (80< r∗< 250)
although their data appear to show that there is not a distinct SR when Rλ6 331 (the
α5 distributions have no discernible plateau). All these results show a FRN effect on
αn for SFPBT, as observed in plane and circular jets and wakes (figures 16, 19–20).
However, unlike the plane and circular jets, αn (n > 3) increases at a much slower
rate for SFPBT, e.g. α8 only increases from 2.17 to 2.195 as Rλ increases from 460
to 805. For the plane jet, α8 increases from 1.95 to 2.16 as Rλ increases from 550
to 826 (see figure 15). Nevertheless, it is clear that figures 19–20 and the data for
SFPBT provide further strong support for our contention that the FRN effect must be
carefully accounted for.

As pointed out in the Introduction, both K41 and K62 require Rλ→∞. When the
Reynolds number is finite one may expect that over the SR, (δu∗)n can be expressed
as (1.5) In this section, we have shown that, for n > 3, the tendency is for αn to
increase. It is as yet unclear whether αn will approach the value of n/3 as predicted
by K41 or whether it will continue to depend on Rλ. In § 5, it was found that CFRN

un ,
for n= 3, also approaches the K41 constant (i.e. 4/5) although the way this constant
is approached is flow dependent. For n> 3, K41 do not predict exact values for Cun.
However, it can be seen from figure 11 that CFRN

un (= (δu∗)nr∗−αn) for n>3 also depends
on Rλ. It is worth recalling that all flows considered here (along the axis in the far
field of circular & plane jets, grid turbulence, etc.) fall in the ‘energy equilibrium’
group, in the sense used by Valente & Vassilicos (2012), Hearst & Lavoie (2014),
Vassilicos (2015), Obligado, Dairay & Vassilicos (2016). In the near-field region of
a cylinder wake, jet and grid turbulence (see for example Valente & Vassilicos 2012;
Hearst & Lavoie 2014; Vassilicos 2015; Obligado et al. 2016), several large-scale
effects may coexist (production due to mean shear, production due to interactions
between coherent motions, turbulent/pressure diffusion and so on) thus leading to non-
equilibrium flows. It is expected that these large-scale effects will affect the behaviour
of the velocity structure functions since they contribute to the FRN effect.

7. Concluding discussion

The effect of the large-scale forcing on (δu∗)n (n= 2, 3) at r= λ has been assessed
in various turbulent flows at small to moderate Rλ. We have focused on r = λ since
this separation is sufficiently large to be at the lower end of the SR and, perhaps more
importantly, it is located near where the normalized transfer of energy, i.e. −(δu∗)3

is maximum. The section r = λ provides an appropriate means of quantifying the
influence of the inhomogeneous term Iu(r) (see § 4) on (δu∗)n (n = 2, 3) especially
since the departure from local isotropy (figure 1) at r = λ is reasonably small. The
results show that the contribution of Iu(r) to the scale by scale energy budget differs
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from flow to flow. For a fixed Rλ, the contribution is largest on the centreline of a
fully developed channel flow and smallest for SFPBT. For decaying-type flows, the
contribution lies between these two cases. Because of the difference in Iu(r) in each
flow, Tλ (=−(δu∗)3r=λ) differs from flow to flow over the range of Rλ covered in this
study although its effect on (δu∗)2 at r= λ appears to be negligible.

The FRN effect on the SR scaling exponents of (δu)n has been examined using
measurements of u at moderately large Rλ (= 500–1100) on the axis of a plane jet.
The main feature of figures 13–15, 16, 19 and 20 is that the magnitude of αn depends
not only on Rλ, but also on the flow. This behaviour suggests that the FRN effect
needs to be properly accounted for before making meaningful assessments with regard
to K41 and K62. Both K41 and K62 require local homogeneity and isotropy and Rλ to
be very large. We have underlined in various sections of the text that it is imprudent,
if not incorrect, to associate the FRN effect with a consequence of K62 (1.4). We
believe that this association has misled the vast majority of post 1962 studies; as a
result, K41 has by and large been abandoned in favour of K62.

We should also stress that (6.1) is derived from the Navier–Stokes equations.
Namely, in the SR, if the fourth-order velocity structure function D1111(r) (= (δu)4)
varies as r4/3, Ep(k1) should vary as k−7/3

1 for conformity with K41 at large Rλ (the
former is confirmed by the results on the axis of the plane jet and the latter by Tsuji
& Ishihara (2003) and Meldi & Sagaut (2013)), whereas the SR scaling exponents for
both Ep(k1) and (δu)4 depend on Rλ at small to moderate Rλ. We should also note that
the FRN effect on the statistical properties of the dissipation scales is also observed
in various turbulent flows. For example, Tang et al. (2015a), Antonia et al. (2015),
Tang et al. (2015b) showed that the FRN effect on the velocity derivative skewness S
can be recast in the form C/Rλ (C is a constant which differs from flow to flow, e.g.
along the axis in the far field of an axisymmetric jet flow, C= 90/[7(2+ R)], where
R= v2/u2 (Antonia et al. 2015)). The present work extends in an important way the
work reported in previous papers which focused primarily on the dissipative scales
and showed that the first similarity hypothesis in K41, albeit with some important
relaxations (Rλ does not in fact need to be very large nor is local isotropy strictly
necessary), was satisfied quite adequately. Here, the emphasis has been on statistics
associated with the SR. Evidently, much higher values of Rλ are needed before the
FRN effect on the SR scales disappears. When the IR is eventually established, one
cannot yet rule out that the skewness of δu will approach a constant as predicted
by K41 and supported by our analysis in § 4. The results of figures 13–15, 16, 19
and 20 strongly underline the fact that insufficient attention has been given in the
past to the FRN effect on the SR and, in particular, the possibility that this effect
only becomes more pronounced as the order of the structure function increases. The
deviation of αn from K41 obtained by Anselmet et al. (1984), a paper which was
influential in terms of providing strong support for the departure from K41, needs to
be reappraised critically in the light of the present results. It is pertinent to recall here
that when Rλ→∞, Iu should become negligible across the IR and (1.1) becomes an
accurate simplification of (1.2). Note that (1.1) is satisfied by K41 in a natural way
whereas any intermittency model used in conjunction with K62 must be chosen so
as to comply with the ‘4/5’ law.

Finally, it would be desirable to further confirm the present observations of the FRN
effect in other types of flows such as non-equilibrium flows(Valente & Vassilicos 2012;
Hearst & Lavoie 2014; Vassilicos 2015), wall shear flows or the so-called French
washing machine (Tabeling et al. 1996; Belin et al. 1997) which can provide larger
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Reynolds numbers than in this study. Evidently, the major challenge will continue to
be the attainment of sufficiently high Reynolds numbers to allow the influence of Iu

on the SR to be reduced considerably and therefore provide appropriate conditions,
e.g. local homogeneity and isotropy, for testing K41 (especially the second similarity
hypothesis) and K62 with much less ambiguity than in the past.
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