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SUMMARY
A new approach to the control of indirect simultaneous
positioning of deformable objects is presented. Many
manufacturing processes that deal with deformable objects
such as clothes and rubber sheets involve a positioning of
multiple points on a deformable object. The multiple points
should be guided simultaneously to the desired locations.
Moreover, these positioned points cannot be manipulated
directly. This operation is referred to as indirect simultane-
ous positioning. In this article, we will propose a new
control law for indirect simultaneous positioning of a
deformable object based on its uncertain model and will
show the robustness of the proposed control law. First, a
simplified physical model of a deformable object is
developed for its positioning operation. Second, indirect
simultaneous positioning of an extensible object is formu-
lated. Based on a linearized model of an extensible object,
we will propose a novel control law for indirect simultane-
ous positioning. Next, we will prove the robustness of the
proposed control law theoretically. Finally, experimental
results will show the robustness of our proposed control law
against the discrepancy between a real fabric and its
uncertain model.
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1. INTRODUCTION
There exist many manipulative operations that deal with
deformable objects such as fabrics, wires, rubber sheets, and
dough in various manufacturing including garment industry,
electronic industry, and food industry. Due to deformability
of manipulated objects, most these operations are performed
by humans though automatic operations are strongly
required in various industries. Many manipulative opera-
tions that deal with deformable objects result in a
positioning of multiple points on a deformable object. In
this positioning, multiple points on a deformable object
should be guided to the desired locations simultaneously.
Moreover, it is often impossible to manipulate the posi-
tioned points directly. For example, one operation called
linking is involved in the manufacturing of seamless socks.
In linking of fabrics, loops at the end of a fabric must be
matched to loops of another fabric so that the two fabrics
can be sewed seamlessly. These points cannot be manipu-
lated so that a sewing needle be guided along the matched
loops. Mating of a flexible part in electric industry also

results in the positioning of mated points on the object.
These points cannot be manipulated directly since the points
in a mating part contact with a mated part. Consequently, we
find that a positioning of multiple points on a deformable
object is one of fundamental operations in the manipulation
of deformable objects. Since the positioned points cannot be
manipulated directly, the guidance of positioned points must
be performed by controlling some points except the
positioned points. This operation is referred to as indirect
simultaneous positioning. In this paper, we will investigate
the control law for indirect simultaneous positioning of
deformable objects.

In indirect simultaneous positioning of a deformable
object, multiple points should be guided simultaneously by
controlling the motion of manipulated points. Motion of
individual positioned points and that of manipulated points
are interfered one another. This implies that the indirect
simultaneous positioning is a multi-input and multi-output
operation with coupling between inputs and outputs. Thus,
a model of the deformable object is indispensable to
determine the motion of manipulated points. On the other
hand, it is difficult to build an exact model of a deformable
object since its deformation may be nonlinear and often
shows hysteresis. The goal of this research is not to build an
exact model of a deformable object but to establish a control
law for indirect simultaneous positioning of a deformable
object. Thus, we will build a simple model of a deformable
object and will establish a model-based control law for
indirect simultaneous positioning, which is robust enough to
deal with the discrepancy between a deformable object and
its uncertain model.

Modeling of deformable objects has been studied in
computer graphics1-3 and virtual reality.4 These researches
focus on the modeling of object deformation, and manipu-
lative operations of deformable objects are out of
consideration. Manipulative operations of deformable
objects have been recently studied in robotics literature.
Automatic handling of deformable parts in garment industry
and shoe industry has been experimentally investigated.5

Zheng and Chen have proposed a strategy to insert a
deformable beam into a hole.6 Ono et al. have derived
a strategy for unfolding a fabric using a touch sensor and a
vision sensor.7 These researches focus on handling of
deformable objects, while positioning operations
of deformable objects are out of focus. Positioning of a
deformable object using two manipulators has been stud-
ied.8-9 A law to control the position and the orientation of a
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deformable object has been proposed there. The control law
can be applied to a positioning of one object but multiple
points on a deformable object cannot be controlled through
their approach.

In this paper, we will propose a new control method for
indirect simultaneous positioning of a deformable object.
First, a simplified physical model of an extensible object is
developed for its positioning operation. Second, indirect
simultaneous positioning of a deformable object is formu-
lated. Based on a linearized model of an extensible object,
we will propose a novel control law for its indirect
simultaneous positioning. Next, we will discuss the robust-
ness of our control law. Finally, experimental results will
show the robustness of our proposed method when dealing
with a discrepancy between a real fabric and its model.

2. INDIRECT SIMULTANEOUS POSITIONING
In this section, we will formulate indirect simultaneous
positioning of a deformable object. In this operation,
multiple points on a deformable object should be guided to
their desired locations, as illustrated in Figure 1. Since it is
impossible to manipulate the positioned points directly, a set
of mechanical fingers pinch the object except the positioned
points. The guidance is then performed by controlling the
manipulated points, which are driven by machanical
pinching fingers, as shown in the Figure 1.

A control system for indirect simultaneous positioning of
a deformable object is illustrated in Figure 2. Recall that it
is impossible to build an exact model of a deformable object
since its deformation may be nonlinear and may have
hysteresis. This implies that a feedforward control of the
location of positioned points based on an object model
cannot be realized. Detection of the location of positioned
points is indispensable to perform indirect simultaneous
positioning of a deformable object. Thus, real-time machine
vision is introduced to measure the position of positioned

points. The detected location is sent to a controller. The
locations of manipulated points are controlled by mechan-
ical pinching fingers. Recall that multiple positioned points
should be controlled simultaneously through the motion of
manipulated points in indirect simultaneous positioning.
Since the location of positioned points and that of
manipulated points interfere one with another, the indirect
simultaneous positioning is a multi-input and multi-output
operation with coupling between inputs and outputs. Thus,
a model of the deformable object is indispensable to
determine the motion of manipulated points and is built into
the controller in advance. Consequently, the controller
determines the motion of machanical fingers from the
measured location of positioned points based on an object
model, which may include discrepancy with an actual
deformable object.

Fig. 2. Vision-based positioning system
Location of positioned points is measured by a vision system. The motion of manipulated points is determined from measurements based
on an uncertain model of a deformable object.

Fig. 1. Indirect positioning of a deformable object
Multiple points on a deformable object should be guided to their
desired locations. These positioned points cannot be manipulated
directly. The guidance must be performed by controlling manipu-
lated points, which do not coincide with the positioned points.
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3. FORMULATION OF INDIRECT
SIMULTANEOUS POSITIONING BASED ON
OBJECT MODEL.
In this section, we will formulate indirect simultaneous
positioning of an extensible object. First, we will develop a
static model of an extensible object. Indirect simultaneous
positioning of an extensible object is then formulated based
on the object model. Equilibrium equations on the object are
also formulated to derive a control law for indirect
simultaneous positioning.

3.1 Static modeling of extensible objects
In this section, we will develop a static model of an
extensible object such as fabrics and rubber sheets. The
relationship between force and displacement in deformation
of a deformable object is nonlinear and often shows
hysteresis. It is difficult to model the nonlinearity and the
hysteresis in the object deformation. Note that the purpose
of this article is not to develop an exact model of the object
deformation but to establish a control law for indirect
simultaneous positioning of deformable objects. The object
model can be simple and may involve uncertainty if a
control law is robust enough to deal with the discrepancy
between an actual object and an object model. Thus, we will
build a simple object model and will construct a robust
control law for indirect simultaneous positioning based on
the simple model.

Let us formulate static behavior of an extensible object.
For the simplicity of the modeling, we will apply a lattice
modeling technique to an object model. Assume that an
extensible object deforms in two-dimensional plane. Let us
model the object by a set of lattice points and springs
connecting the lattice points, as illustrated in Figure 3-(a).
Assume that the object model consists of (M+1) (N+1)
lattice points as shown the figure. Let O2xy be a coordinate
system on the two-dimensional plane. Let pi,j = [xi,j, yi,j]

T be
position vector of the (i,j)-th lattice point with respect to the
coordinate system. The shape of an extensible object can be
described by a set of position vectors p0,0 through pM,N.

Springs are located between neighboring lattice points on
an object model, as illustrated in Figure 3-(b). Let us

introduce a unit vector to describe the direction of each
spring. Let e a,b

i, j be a unit vector between the (i, j)-th lattice
point and the (i+a, j+b)-th lattice point. Namely,

e a,b
i, j =

pi + a, j + b 2pi, j

upi+a, j + b 2pi, ju
.

Assume that springs involved in an object model linear. Let
k a,b

i, j be the spring constant of a spring between the (i, j)-th
lattice point and the (i+a, j+b)-th lattice point. Let l a,b

i, j be
the natural length of the spring. The extension of the spring
is then described as follows:

da,b
i, j = upi + a,j + b 2pi,ju 2 la,b

i, j

Now we can formulate forces acting on individual lattice
points. Let Fa,b

i, j be a force acting on lattice point pi, j by a
spring connecting two points pi, j and pi + a,j+b. Force Fa,b

i, j is
then described by

Fa,b
i, j = k a,b

i, j da,b
i, j ea,b

i, j

The result force acting on point pi,j can be derived by
summing all forces caused by springs connected to the
point. Thus, the resultant force Fi,j is described by

Fi,j = O
(a,b)PD

Fa,b
i, j (1)

where

D = {(a, b) ua, bP{21, 0, 1}, (a, b) ≠ (0, 0)}.

Set D defines the arrangement of springs and characterizes
the static property of an extensible object.

In this paper, we will neglect hysteresis of an extensible
object and its dynamic behavior to build a simple object
model for indirect simultaneous positioning. Thus, we will
build a static model of an extensible object. Let us formulate
the potential energy of an extensible object to build its static
model. Let U be the potential energy of the object. The
potential energy is given by the sum of elastic energy of all
springs composing of the object model. The potential
energy U is thus given by

Fig. 3. Spring model of an extensible object
Neighboring lattice points are connected by linear springs. The shape of the object can be described by coodinates of all lattice points.
The potential energy at a deformed shape can be computed once all coordinates are given.
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U=
1

2 O
M

i=0
ON

j=0
O

(a,b)PD

1

2
ka,b

i, j {da,b
i, j }2. (2)

The summation in the above equation counts elastic energy
of each spring twice. The summation should be halved to
derive the potential energy. Note that force Fi, j is equal to
the partial derivative of U with respect to position vector pi, j.
That is,

Fi, j = 2
U
pi, j

.

The potential energy U is a function of a set of position
vectors p0,0 through pM, N. The potential energy U reaches its
minimum at a static stable shape. Thus, we can compute the
deformed shape of a fabric by minimizing the potential
energy U with respect to position vectors p0,0 through pM, N

under geometric constraints imposed on the object.

3.2. Description of indirect simultaneous positioning
In this section, we will formulate indirect simultaneous
positioning of an extensible object based on the object
model. Let us construct a lattice structure of an object model
so that the positioned points and the manipulated points are
located on lattice points on the model. Note that positioned
points do not coincide with manipulated points.

The shape of a fabric is determined by coordinates xi, j and
yi, j, where iP[0, M] and jP[0, N]. In the indirect simultane-
ous positioning of an extensible object, some coodinates
should be guided to their desired values. These coordinates
are referred to as positioned coordinates. This guidance
should be performed by controlling some coordinates
except positioned coordinates. These coordinates are
referred to as manipulated coordinates. Coordinates except
positioned coordinates or manipulated coordinates are
referred to as non-target coordinates. As a result, we can
classify a set of coordinates into three subsets; (1)
manipulated coordinates, (2) positioned coordinates, and (3)
non-target coordinates. For example, consider a positioning
illustrated in Figure 4-(a). In this example, three points

marked as circles should be guided to their desired locations
marked as crosses. This guidance is performed by control-
ling three points marks as triangles. In this example, a set of
positioned coordinates is given by x1, 1, y1, 1, x1, 2, y1, 2, x2, 2,
and y2, 2 while a set of manipulated coordinates is given by
x0, 3, y0, 3, x1, 2, y1, 2, x3, 3, and y3, 3. The desired values of
positioned coordinates coincide to desired coordinates of
positioned points. Consider a positioning illustrated in
Figure 4-(b). In this example, three points marked as circles
should be aligned on a target line perpendicular to the x-
axis. Note that we must guide the x-coordinates of the three
points to the x-intercept of the line, while we do not have to
control the y-coordinates of the three points. Thus, a set of
positioned coordinates in this example is given by x1, 1, x1, 2,
and x2, 2. Coordinates y1, 1, y1, 2, and y2, 2, are involved in non-
target coordinates. The desired values of positioned
coordinates coincide to the x-intercept of the target line.

Let rm be a vector consisting of manipulated coordinates,
rp be a vector composed of positioned coordinates, and rn be
a vector consisting of non-target coordinates. Vectors rm , rp,
and rn are referred to as manipulated coordinates vector,
positioned coordinates vector, and non-target coordinates
vector, respectively. Let m, p, and n be dimension of vector
rm , that of vector rp, and that of vector rn , respectively. For
example, in a positioning shown in Figure 4-(a), we have

rm = [x1, 1, x1, 2, y1, 2, x2, 2, y2, 2]
T ,

rp = [x0, 3, y0, 3, x1, 2, y1, 2, x3, 3, y3, 3]
T ,

rn = [x0, 0, y0, 0, x0, 1, y0, 1, . . . , x3, 2, y3, 2]
T.

Dimensions are given by m = 6, p = 6, and n = 24. In a
positioning shown in Figure 4-(b), we have

rm = [x1, 1, x1, 2, x2, 2]
T ,

rp = [x0, 3, y0, 3, x1, 2, y1, 2, x3, 3, y3, 3]
T ,

rn = [y1, 1, y1, 2, y2, 2, x0, 0, y0, 0, . . . , x3, 2, y322]
T .

Dimensions are given by m = 3, p = 6, and n = 27.
Note that individual positioned coordinates should be

guided to their desired values. This implies that all elements
composing vector rp have there desired values.

Let r*p be a vector consisting of the desired values of the
positioned coordinates. Then, the goal of indirect simultane-
ous positioning is given by an equation; rp = r*p. This goal
must be achieved by controlling manipulated coordinates,
rm .

3.3. Force equilibrium during indirect simultaneous
positioning
In this section, we will derive equilibrium equations on an
extensible object. During indirect simultaneous positioning
of an extensible object, internal forces caused by elasticity
of the object and external forces acting on it at manipulated
points by mechanical pinching fingers are balanced. The
location of positioned points is characterized by equilibrium
equations on the object. Equilibrium equations are thus
required to derive a control law for indirect simultaneous
positioning.

Note that the potential energy of an extensible object can
be computed from coordinates of lattice points on an object

Fig. 4. Classification of coordinates
Coordinates can be classified into manipulated coordinates,
positioned coordinates, and non-target coordinates. The classifica-
tion depends not only on the configuration of positioned points
and manipulated points but also on the desired region of
positioned points.
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model. Moreover, individual coordinates are involved in rm,
rp, or rn. This implies that the potential energy is a function
of vectors rm, rp, and rn. Thus, let us describe the potential
energy of an extensible object as U(rm, rp, rn). Note that
external forces are exerted on an object at manipulated
points by machanical pinching fingers. Let li, j =[lx

i, j, l
y
i, j]

T

be an external force at a manipulated point pi, j. Let l be a
vector consisting of all external forces at manipulated
points. Vector l is m-dimensional. Equations of equlibrium
at manipulated points are then described collectively as
follows:

U
rm

2l=om (3)

No external forces are exerted on positioned points and non-
controlled points. Equations of equilibrium at positioned
points and non-controlled points are written as follows,
respectively: 

U
rp

= op (4) 

U
rn

= on (5)

The above equations are satisfied at a stable state of an
extensible object. Assuming that an object model is
completely exact, we can compute the location of manipu-
lated points that achieve the given simultaneous positioning
by solving the above equations. However, because of the
discrepancy between an actual object and its model, a
model-inversion approach is impractical. Thus, it is neces-
sary to develop a control law, which is robust to the
discrepancy.

4. LINEARIZED ROBUST CONTROL LAW FOR
INDIRECT SIMULTANEOUS POSITIONING
In this section, we will propose a novel control law for
indirect simultaneous positioning of deformable objects.
Applying the proposed control law, the guidance of
positioned coordinates to their desired values can be
achieved by controlling manipulated coordinates. First, we
will derive a linearized model of an extensible object.
Second, a iterative control law for indirect simultaneous
positioning will be derived based on the linearized model of
an extensible object. The robustness of the proposed control
law is then investigated theoretically.

4.1. Linearized model of extensible objects
Let us derive a linearized model of extensible object in order
to construct a linear control law for indirect simultaneous
positioning. Let rm , rp, and rn be manipulated coordinates
vector, positioned coordinates vector, and non-target coor-
dinates vector at an equilibrium, respectively. Consider the
behavior of an extensible object in the neighborhood around
the equilibrium. Let d rm , d rp , and d rn be deviations from
the equilibrium. Linearizing eqn. (4) around the equilibrium
yields

2U
rm rp

d rm +
2U

rn rp

d rn +
2U

rp rp

drp = op.

The partial derivatives in this equation are evaluated at the
equilibrium. Vector oP is a p-dimensional zero vector.
Linearizing eqn. (5) around the equilibrium, we have

2U
rm rn

d rm +
2U

rn rn

d rn +
2U

rp rn

d rp = on .

Vector on is n-dimensional zero vector. Combining the
above equations yields

Ad rm + Bd rn + Cd rp = op + n (6)

where

A =

2U
rm rp

(rm, rp, rn)

2U
rm rn

(rm, rp, rn)

,

B =

2U
rn rp

(rm, rp, rn)

2U
rn rn

(rm, rp, rn)

,

C =

2U
rp rp

(rm, rp, rn)

2U
rp rn

(rm, rp, rn)

.

Matrix A is a (p + n)3 m matrix, B is a (p + n)3 n matrix, C
is a (p + n)3 p matrix. Equation (6) is a collection of
equilibrium equations corresponding to positioned coor-
dinates and non-target coordinates, where no external forces
are applied. Matrices A, B, and C are stiffness matrices,
which depend on coordinates vectors rm, rp, and rn.

Let us derive the relationship between d rm and d rp as well
as the relationship between d rn and d rp in order to derive a
control law for positioning. Equation (6) can be rewritten as
follows:

FF drm

drn
G = 2Cd rp

where F=[A B]. Matrix F is a (p+n)3 (m+n) matrix, which
depend on coordinates vectors rm , rp, and rn. Note that
matrix F is a square matrix when dimension p is equal to m.
This implies that matrix F is square when the number of
positioned coordinates is equal to the number of manipu-
lated coordinates. In addition, if the matrix F is invertible,
we have the following equation:

F d rm

d rn
G = 2F21Cd rp.

This equation can be divided into the following two
equations:

Objects with multi-pinching fingers 7

https://doi.org/10.1017/S0263574799002362 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002362


d rm = 2SU F21Cd rp , (7)

d rn = 2SD F21Cd rp , (8)

where

SU = [Im Om3 n],
SD = [On3 m In].

Matrix SU is a m3 (m+n) matrix and SD is a n3 (n+m)
matrix. From the above equations, we find that displacement
d rm can be determined uniquely for an arbitrary infinitesi-
mal error of positioning coordinates, d rp, if matrix F is
invertible.

4.2. Iterative control law for indirect simultaneous
positioning
In this section, we will propose an iterative control law to
achieve a given indirect simultaneous positioning of an
extensible object. The control law will be derived based on
the linearized model of an extensible object, that is, eqns.
(7) and (8).

Note that a vision system is introduced to measure the
current values of positioned coordinates. This implies that
the current value of positioned coordinates vector rm can be
measured through a vision system. Moreover, recall that
mechanical fingers pinch an extensible object and no slip
between the fingers and the object occurs. Namely, the
current value of manipulated coordinates vector rm can be
computed from the motion of mechanical pinching fingers.
On the hand, the current values of non-target coordinates
cannot be measured. Let rk

m be the value of manipulated
coordinates vector at the k-th iteration and rk

n be the value of
non-target coordinates vector at the k-th iteration. Let rk

p be
the value of positioned coordinates vector at the k-th
iteration, which can be measured through a vision system.
Let Fk and Ck be stiffness matrices at the k-th iteration, say,
Fk =F(rm, rp, rn) and Ck =C(rm, rp, rn).

Let us derive a recursive law to update the manipulated
coordinates vector based on eqn. (7). Assume that matrix F
is invertible. Substituting deviation d rm by difference
rk

m 2rk21
m and deviation d rp by error r*p 2rk21, we find the

following equation:

rk
m = rk21

m 2gpSU F21
k21Ck21(rd

p 2rk21
p ), (9)

where scalar gp is a gain. The right side of this equation can
be evaluated at the (k21)-th iteration. Thus, the value of
manipulated coordinates vector at the (k21)-th iteration
can be updated into the value at the k-th iteration by this
equation. Note that matrix C21 depends not only on rp and
rm but on rn. Thus, it is necessary to update the value of non-
target coordinates vector rn. Let us derive a recursive law to
update non-target coordinates vector based on eqn. (8). Let
us substitute deviation d rn by difference rk

n 2rk21
n . Note that

we have to substitute deviation d rp by a quantity which can
be evaluated at the (k21)-th iteration. Thus, we substitute
deviation d rp by difference rk21

p 2rk22
p , which can be

evaluated at the (k21)-th iteration. These substitutions
yield the following equation:

rk
n = rk21

n 2gpSD F21
k21Ck21(r

k21
p 2rk22

p ). (10)

The right side of this equation can be evaluated at the
(k21)-th iteration. Thus, the value of non-target coor-
dinates vector at the k-th iteration can be updated into the
value of the k-th iteration by this equation.

As a result, control law for indirect simultaneous
positioning is summarized as shown in Table I. First, the
current value of positioned coordinates vector is measured
by a vision system. Second, stiffness matrices Fk21 and Ck21

are computed. Next, manipulated coordinates vector and
non-target coordinates vector are updated using eqns. (9)
and (10), respectively. Then, the value of manipulated
coordinates vector rk

m is commanded to a set of pinching
fingers so that an extensible object can be deformed. This
procedure is iterated until an error of positioning coor-
dinates vector is close to zero.

4.3. Robustness of linearized control law
In this section, we will investigate the robustness of the
proposed control law for indirect simultaneous positioning.
Assume that the static behavior of an actual extensible
object is given in eqns. (7) and (8). Supposing that
differences rk

m 2rk21
m and rk

p 2rk21
p are sufficiently small, we

find that the following equation is satisfied:

rk
m 2 rk21

m = 2SU F21
k21Ck21(r

k
p 2rk21

p ).

The above equation can be described simply as follows:

rk
m = rk21

m 2Qk21(r
k
p 2rk21

p ), (11)

Qk21 = SU F21
k21Ck21. (12)

Recall that matrix F and C involve errors due to the
discrepancy between an actual extensible object and its
model. Assume that this discrepancy results in the identi-
fication errors of spring constants in the object model. Let
us denote matrix F with errors by F̃ and matrix C with errors
C̃. Then, an iterative control law given in eqn. (9) can be
rewritten as follows:

rk
m = rk21

m = 2gpSU F
~
21
k21C

~
k21(r*p 2r k21

p ) .

The above equation can be described simply as follows:

rk
m = rk21

m 2 Q̃k21(r*p 2rk21
p ) (13)

Q̃k21 = gpSU F
~
21
k21C

~
k21 (14)

Subtracting eqn. (13) from eqn. (11) yields

Table I. Iterative control law for indirect simultaneous
positioning.

Step 1 Measure r k
p by vision system.

Step 2 Evaluate error e(k) = ir k
p 2r*pi.

Stop if the error is smaller than a predefined value.
Increase k otherwise.

Step 3 Compute Fk21 = F(r k21
m , r k21

p , r k21
n ) and

Ck21 = C(r k21
m , r k21

p , r k21
n ).

Step 4 Update r k
m and r k

n.

Step 5 Command r k
m to mechanical fingers.

Step 6 Goto Step 1.
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Qk21(r
k
p 2rk21

p ) = Q̃k21(r*p 2rk21
p ).

Since F is a regular matrix, matrix Qk21 is invertible. Thus,
we have

rk
p = rk21

p + Q 21
k21 Q̃k21(r*p 2rk21

p ).

From the above equation, we have the following equation:

r*p 2rk
p = (Ip 2Q 21

k21 Q̃k21)(r*p 2rk21
p ). (15)

Finally, we can obtain

i r*p 2rk
p i ≤ i Ip 2Q 21

k21 Q̃k21 i i r*p 2rk21
p i . (16)

Therefore, we find that

rk
p → r*p as k → ∞ (17)

if matrix Q̃k satifies

i Ip 2Q 21
k Q̃k i < 1. (18)

Thus, we find that condition for the convergence of the
positioned coordinates vector is given by eqn. (18).

Individual elements of matrix Q̃k decrease when gain gp

decreases. This implies that the convergence of the proposed
control law is satisfied by decreasing the gain gp despite
errors involved in matrix Q̃k. The speed of convergence is,
however, reduced when the gain gp decreases.

5. EXPERIMENTAL VERIFICATION
In this section, we will experimentally verify the robustness
of the proposed control law for indirect simultaneous
positioning and will investigate the effect of model errors to
the positioning.

The experimental setup is shown in Figure 5. Successive
images of an extensible object are captured by a CCD
camera, Toshiba IK-M43H. The images are sent to a vision
board, Fujitsu Tracking Vision, which is installed on a PC.
This vision board has a capacity of finding some patterns in
an image captured by a CCD camera. Patterns are
memorized in the board in advance. Using this capacity, we
can measure the coordinates of positioned points. Three

2-DOF fingers are located around the extensible object.
Each finger is driven by two stepping motors: Oriental
motor LMS2B250PK-1, which is controlled by the PC
through a motor control board, Adtek system science aISA-
M59.

A knitted fabric of acrylic 85[%] and wool 15[%] with an
area of 100[mm]3 100[mm] is used in the experiments. A
model of the fabric is composed of 43 4 lattice points.
Locations of positioned points and those of manipulated
points are illustrated in Figure 6. As shown in the figure, we
have three positioned points, marked as circles, and have
three manipulated points, marked as triangles. Positioned
coordinates vector rp and manipulated coordinates vector rm

are thus given as follows:

rp = [x1, 1, y1, 1, x1, 2, y1, 2, x2, 2, y2, 2]
T,

rm = [x0, 3, y0, 3, x1, 0, y1, 0, x3, 2, y3, 2]
T.

The desired value of positioned coordinates vectors is
assumed to be

r*p = [30, 40, 65, 50, 54, 90]T.

The desired locations of positioned points are marked as
crosses in the figure.

Assume that all spring constants of horizontal springs
coincide one with another. Also, we assume that all spring
constants of vertical springs are equal to one another and
that all spring constants of diagonal springs coincide one
with another. Let kc, kw , and ks be the spring constant of
horizontal springs, that of vertical springs, and that of
diagonal springs, respectively. From a tensile test of fabric,
we have identified spring constants as kc = 4.17[gf/mm],
kw = 13.2[gf/mm], and ks = 3.32[gf/mm]. Note that the ratio
of the three spring constants is critical in our control law.
Thus, let us define a = kc/ks and b = kw/ks. From identified
spring constants, we have a = 1.256 and b = 3.976. In
experiments, various values of a and b are used in the
control law so that the robustness of proposed control law
against model identification errors can be investigated.
Moreover, values 0.1 and 0.5 of gain gp are used in eqns. (9)
and (10) to examine the effect of the gain.

In the following experiments, we will evaluate how
positioned coordinates converge to their desired values. Let
e(k) be the square root of positioned coordinates errors at
the k-th iteration. That is, 

e(k) = i r k
p 2r*p i.

Let us plot the value of e(k) with respect to the number of
iterations. Experimental results when the gain gp is equal to

Fig. 5. Experimental setup
A CCD camera measures the location of positioned points. Three
2-DOF pinching fingers deform an extensible fabric.

Fig. 6. Configuration of positioned points and manipulated points
in experiments
Three positioned points, marked as circles, should be guided to
their desired locations by controlling three manipulated points,
marked as triangles.
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0.1 and the ratio a takes its original value are plotted in
Figure 7-(a). In this experiment, the ratio b takes various
values; the original value, ten times the value, one hundred
times the value, one-tenth of the value, one-hundred of the
value, and one-thousand of the value. As described in the
figure, positioned coordinates converge to their desired
values when ratio b is greater than or equal to one-hundred
of its original value and is less than or equal to ten times of
its original value. Positioning has failed when ratio b takes
hundred times of its original value or one-thousand of its
original value. Graphs corresponding to these values are not
plotted in the figure. Experimental results when the gain gp

is equal to 0.1 and the ratio b takes its original value are
plotted in Figure 7-(b). The ratio a takes various values; the
original value, one-tenth of the value, one-hundred of the
value, one-thousand of the value, ten times of the value, and
one hundred times of the value. As described in the figure,
positioning has succeeded except when the ratio a takes one
hundred times of its original value or one-thousand of its
original value.

Experimental results when the gain gp is equal to 0.5 and
the ratio a takes its original value are plotted in Figure 8-(a).
It is found that the error norm diverges and that positioning
fails when the ration b is equal to ten times of its original

value or when it is equal to one-hundred of its original
value. Graphs corresponding to these values are not plotted
in the figure. Comparing with Figure 7-(a), we find that the
admissable range of ratio b is narrow. Experimental results
when the gain gp is equal to 0.5 and the ratio b takes its
original value are plotted in Figure 8-(b). It is found that the
error norm diverges and that positioning fails when the ratio
b is equal to hundred times of its original value or when is
equal to one-tenth of its original value. Graphs correspond-
ing to these values are not plotted in the figure. Comparing
with Figure 7-(b), we find that the admissable range of
ratios a is narrow.

As described in the figures, positioned coordinates
converge to their desired values as long as ratios a and b
take values closer of their indentified values. Positioned
coordinates are oscillatory, or diverge if either a or b is far
from the identified values. Figures 7(a) and 7-(b) show that
positioned coordinates converge to their desired values
when ratios a and b take 10 times of their original values or
0.01 times of their original values. From these results, we
conclude that our proposed control law is robust against
model errors. Comparing Figures 7 and 8, we find that the
admissable range of ratios when the gain gp is equal to 0.1
is wider than that when the gain gp is equal to 0.5. The speed

Fig. 7. Robustness of the control law against model errors for a
small gain
Error e(k) when gp =0.1 is plotted for various values of a and b.

Fig. 8. Robustness of the control law against model errors for a
large gain
Error e(k) when gp =0.5 is plotted for various values of a and b.
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of convergence is, however, larger when the gain gp is equal
to 0.5 than when the gain gp is equal to 0.1. Namely, the
robustness is greater and the convergence is slower for
a small gain, while the robustness is smaller and the
convergence is faster for a large gain. Thus, we have to
choose a small gain when model errors are supposed to be
large while we can take a large gain when model errors are
supposed to be small.

Figure 9 shows the behavior of positioned coordinates
and manipulated coordinates when gp = 0.5, a = 1.256, and
b = 3.976. The accuracy of the convergence to the desired
values has reached the resolution of the vision sensor, which
is almost 1[mm]. According to the above experimental
results, we conclude that uncertain identified model parame-
ters can be applied to our proposed control law in a practical
indirect simultaneous positioning of extensible fabric.

6. CONCLUDING REMARKS
In this paper we have proposed a novel control law for
indirect simultaneous positioning of deformable objects,
and the robustness of the proposed control law against
model uncertainty is shown theoretically and experimen-
tally. First, we have proposed a mathematical model of an
extensible object. Second, indirect simultaneous positioning
of an extensible object has been formulated based on an
object model. Next, we have proposed a novel iterative
control law for indirect simultaneous positioning based on a
linearized object model. Then, the robustness of the
proposed control law has been analytically proved. Finally,
we have investigated the robustness of the control law
against model errors experimentally. We have found the
proposed control law is robust against model errors and that
roughly identified object model can be applied to the control
of indirect simultaneous positioning.

The contribution of this paper is summarized as follows:
(1) We have proposed a simple control law for indirect
simultaneous positioning of deformable objects, and (2) We

have shown that an uncertain object model is acceptable in
the proposed control law for indirect simultaneous position-
ing. Our approach is to build a robust control system based
on an uncertain model. Note that model uncertainty is
inevitable in actual handling of deformable objects. Conse-
quently, our approach can be applied to various handling
including grasping, assembly, and positioning of deform-
able objects, as well as handling of objects by flexible
fingers.
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Fig. 9. Behavior of positioned points and manipulated points
Locations of positioned points and manipulated points when gp = 0.5, a = 1.256, and b = 3.976 are plotted. Three positioned points,
marked as circles, are guided to their desired locations, marked as crosses, by moving three manipulated points, marked as triangles.
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