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The one-dimensional porous medium equation h, = (h" h J ,  (m > 0) admits waiting-time 

solutions, whose front remains motionless during a finite time interval f, before starting to 

move. We consider a family of initial value problems, and investigate the asymptotics, close to 

the front and near start-up, which we expect to be self-similar. We obtain numerical solutions 

for viscous gravity currents (m = 3) and power-law initial conditions (h  a xp, h is proportional 

to the thickness of the fluid, x is the distance to  the front). We find that: (a) i f p  < 2/3 the front 

starts moving immediately, (b) if p = 2/3 the front remains motionless during a finite time, (c) 

if p > 2/3 one obtains waiting-time solutions in which a moving corner layer (a small interval 

Ax in which h, varies strongly) appears behind the front; the front starts moving when it is 

overrun by the corner layer. The corner layer strengthens (Ax reduces and the variation of h, 

increases) as it approaches the front. Our initial conditions produce waiting-time solutions 

whose front starts moving with nonzero velocity. We determine r,(p) and study the motion of 

the corner layer and the front, as well as  other properties of the solutions. We compare the 

results with the theoretical upper and lower bounds of 1,. We investigate the asymptotics of the 

numerical solutions for p > 2/3, close to the corner layer and the front, and near start-up. To 

represent this asymptotics various kinds of similarity solutions are available, that can be 

classified according to the self-similarity exponent 6. We find that only two types (called L and 

A) are relevant. The L solutions correspond to 1 < 6 < 13/10, and have an infinite series of 

corner layers that accumulate a t  the front. The part of these solutions behind the first corner 

layer of the series represents the asymptotics of the numerical solutions in a domain that 

excludes the region between the corner layer and the front, for a time interval excluding the 

neighbourhood of start-up. The A solutions have 6 < 1, and represent the evolution of the 

strong corner layer that is arriving at  the front. The numerical evidence shows that the constant 

front velocity solution (type A with 6 = 1) describes the asymptotics close to, and including 

start-up, so that the motion of the corner layer joins smoothly with that of the front. 

1 Introduction 

We consider the one-dimensional porous medium equation with plane symmetry : 

h, = (h"h,),, (1) 

(h  = h(x, t )  2 0, m > 0). This equation governs a variety of phenomena: unconfined 

groundwater flow (m = 1, Polubarinova-Kochina, 1962; Eagleson, 1970; Peletier, 198 l), 
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percolation of gases in porous media (m = y 3 1, y is the ratio of specific heats (see 

Muskat, 1937; Gilding & Peletier, 1976; Vazquez, 1983, etc.), thermal conduction in 

plasmas ( n z  = 5 /2 ;  Zel’dovich & Raizer, 1966), viscous gravity currents over a plane rigid 

surface (rn = 3, h = (g/3v)lI3 H, H is the thickness of the fluid, v the kinematic viscosity, g 

the acceleration of gravity (see Buckmasler, 1977; Huppert, 1982; Gratton & Minotti, 

1990), thermal conduction in multiply (m = 4.5-5.5) and totally ionized gases (m = 13/2) 

(see Marshak, 1958; Zel’dovich & Raizer, 1966; Pert, 1977; Larsen & Pomraning, 1980, 

etc.). We take the viscous gravity currents as a ‘model’ case, since they have been studied 

experimentally (Thomas et al., 1981 ; Gratton et al., 1992; Marino et al., 1995). 

With the substitution q = h”‘, 7 = t/nz (1) takes the form 

r/? = 71: + ?rlr/TZZ, (2) 

showing that the evolution of is the result of the combined effect of nonlinear wave 

propagation and nonlinear diffusion. The nonlinear diffusion term of (2) leads to the 

occurrence of fronts (also called interfaces in the mathematical literature; the suffix f will 

denote quantities relating to a front). The motion of a front is continuous in time and its 

direction never reverses. For example, if ~ ( x ,  70) = 0 for x b X~(T~), then for any 7 > T~ one 

has rl(x, 7 > T ~ )  = 0 for x 3 xf(7) 3 ~ ~ ( 7 ~ ) .  Another typical feature is the occurrence of 

corner layers (i.e. small intervals Ax in which ’1, varies rapidly), as a result of the combined 

effect of the nonlinear term that tends to produce discontinuities of 7, (corner shocks), and 

the diffusion term that smoothens strong variations of 7 1 ~ .  We shall designate by a suffix c 

the quantities pertaining to a corner layer. 

An important property of the porous medium equation is the occurrence of waiting-time 

solutions. Let us assume that the process begins at t = t i ;  and the initial condition is 

h(x, ti) = ~ ( x )  (g(x) 3 0). For appropriate g(.x), the front may remain motionless during a 

finite interval t ,  ( x f ( t )  = xf(t,) for t < ti + t,), while changes occur behind it (waiting stage). In 

the followingwe assume that: (a) ti = - t,, so that the front begins to move at t = 0 (start-up), 

the subsequent interval will be called moving stage; (b) g(x) + 0 in the interval 0 < x d xo, 

and g(x) = 0 in x < 0 so that xf( - t,) = 0; (c) the solution is defined for - 00 < x < xo. 
Then the velocity of the front i f ( t )  cannot be positive (.if(t) < 0). At x = xo and t > - t ,  we 

assume the boundary condition h,(x,, t )  = 0. The initial condition determines a scale h, of 

h(x, - tto) (h, is any typical value of g(x), for example its maximum value), a spatial scale 

xo, and a time scale to 3 x: hi”. These are the only scales of the phenomenon (in particular, 

to is the scale of the waiting-time). Many theoretical papers have dealt with waiting-time 

solutions (see, for example, Aronson, 1970; Knerr, 1977; Kamin, 1980; Lacey et al., 1982; 

Kath & Cohen, 1982; Lacey, 1983; Aronson et al., 1985; etc.), but few experimental results 

(Thomas rt al., 1991 ; Gratton et al., 1992; Marino et al., 1995) and numerical analyses (see, 

for example, Gratton & Vigo, 1994a) are available. We are interested here in the connection 

between the initial condition and the waiting-time behavior; to this purpose we consider 

initial conditioiis of the form (K,p  are positive constants): 

g(x) = Kx” if 0 < x < x0, g(x) = 0 if x < 0. (3) 

There are no general theoretical formulae for t,, but theorems that establish upper and 

lower bounds have been derived (see Aronson et al. 1981; Kath & Cohen, 1982; Lacey et 

al. 1982; Vazquez, 1984). In the case nz < 1, with initial conditions of the form g(x) K xp, 
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Kath & Cohen (1982) have shown that there is a non-vanishing waiting time if p 3 2 / m  

(this result holds for any m > 0;  see Vizquez, 1984), and that a corner layer (if p > 2/m) 

or a corner shock (if p = 2/nz) appears in the solution. 

We are particularly conccrned with the asymptotics near the front and close to start-up 

(1x1 < x,, It( < t,, to, Jhl < h(,). Tn this domain, h,, x, and to cannot be used as scales, so that 

we conjecture that the solution will be self-similar, depending on the variable < = x/bfs  

(b  and S are constants). Lacey ct a/. (1982) have given prescriptions to construct a set of self- 

similar waiting-time solutions (that we shall henceforth name LOT solutions), whose self- 

similarity exponent S may take any value 8 > 1. Gratton & Vigo (1994b) made a detailed 

study of the properties of the LOT solutions; they are of three types (L, S and N in the 

following) : (a) if 1 < S < 1 + m/2(n?+ 2), h and u display an infinite succession of corner 

layers, with an accumulation point at the front (type L); (b) if S > 1 +m/2(m+2), the 

solutions have no corner layer (types S and N). In addition to the LOT solutions we shall 

show that there is another family of self-similar solutions (which we call A solutions), 

corresponding to 6 < 1, that describe a strong corner layer (we call ‘strong’ a corner layer 

whose thickness Ax is very small) as it approaches and overtakes the waiting front. The 

constant velocity front solution is an important special case (8 = 1) of this family. Theory 

does not determine S and b ;  they depend on the initial conditions in a way not known 

beforehand, and can be found only by an experiment, or by solving (numerically) the initial 

value problem, and following the evolution of the phenomenon until some asymptotic 

regime is achieved near the front and close to the start-up time. We want to stress that there 

is no theoretical argument that guarantees that the initial value problem (I), ( 3 )  will really 

develop a self-similar asymptotics in this domain: it might as well happen that no self- 

similar behavior occurs (of course, the long-time behavior after start-up of our solutions 

approaches the self-similar ‘point source’ solution). Only experimental or numerical 

evidence can give an answer. To clarify these issues is one of the objectives of the present 

investigation. We shall show below that the numerical solutions have a self-similar 

asymptotics (as already suggested by experiments on the viscous spreading of linear ramps, 

see Marino et al., 1995), but their development involves subtle and surprising features. In 

this connection, we must mention the important theorems derived by Lacey (1983) and 

Aronson et al. (1985) about the initial motion of the front of a waiting-time solution. The 

relevant result is that if is discontinuous at start-up for a class of initial profiles, that 

includes those of the form g ( x )  cc xp, with p > 2/m. More precisely, and considering the 

solutions of (I), (3) withp > 2 / m ,  i t  can be proved (Aronson et al., 1985) that the quantity 

c = x f ( t  = 0 + )  satifies the inequality 

A consequence of this property is that the LOT solutions, for which xf is continuous at 

start-up, cannot describe the asymptotics of this initial value problem in domains that 

include t = 0. On the other hand, the A solutions can satisfy (4) and are candidates to 

describe the asymptotics in the neighbourhood o f t  = 0 (Icl can take any value if S = 1, and 

Ic] = 00 if S < 1). Therefore, if the asymptotics we are seeking is self-similar at all, it must 

correspond to a type A solution. Indeed, the numerical solutions tend to a constant velocity 

(8  = 1) type A self-similarity. In addition, we shall show that there exists a space-time 
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domain near (but not too near) to the front and close to (but excluding) t = 0 in which a 

type L solution is in excellent agreement with the numerical solution. 

In this paper we solve numerically the initial value problem (l), ( 3 )  for m = 3 ,  since this 

case (viscous gravity currents) has been investigated in the laboratory. We find that the 

solutions harmonize with the predictions of theory, but in addition yield a bounty of new 

information. The present results suggest topics for further theoretical research and may be 

useful for applications. When p > 2/3 we obtain the waiting-time behaviour, determine t , ,  

and study the formation and evolution of the corner layer as well as other properties of the 

solutions. In addition, the analysis of the asymptotics reveals two domains in which the 

numerical solution has a different behavior. The first one, in which the solution displays 

a S = 1 type A asymptotics, occurs very close to the front and near t = 0 (1x1 < exo, It] < 
tt,, ,  E 6 1). The second domain extends in the intervals exO < 1x1 6 xo, et, < It1 6 t , ,  where 

(h( 6 iz,; there the behavior is of type L, with S = S(p) > 1. In this domain we determine 

the relationship between S and p .  The present results are in good agreement with the 

experiments on viscous gravity currents (Thomas et al., 1991 ; Gratton et al., 1992; Marino 

et al., 1995) produced by the spreading of linear ramps and with other numerical solutions 

for p = 1 (Del Carmen & Ferreri, 1995; Marino et al., 1995), but the very high accuracy 

and spatial resolution of our calculations and the absence of the perturbing effects always 

present in the experiments, reveals many fine details not observed previously and allows 

more stringent checks of the self-similarity in the asymptotic re,' wne.  

2 Theory 

In this section we shall summarize some relevant theoretical results on waiting-time 

solutions, emphasizing those related to initial conditions of the type k cc xp and to the case 

of viscous gravity currents, but keeping nz arbitrary for generality. 

2.1 Influence of the initial conditions 

When m i  0, the diffusion term of (2) is small, and can be treated as a perturbation. To the 

lowest order (2) reduces to a first order nonlinear equation, that can be solved by the 

method of characteristics. With this approach Kath & Cohen (1982) investigated the 

solutions for m 6 1, with initial conditions of the type (3). The result depends on the 

formation of a corner layer or a corner shock. If 0 < p  < 2/m, the front starts to move 

immediately. If p = 2/m, the front starts to move after a time interval t ,  > 0, and at start- 

up a corner shock appears at the front. I f p  > 2/m there is a waiting time t, > 0 during 

which a corner layer appears behind the front; this corner layer moves towards the front 

becoming progressively stronger; start-up occurs when the front is overtaken by the corner 

layer, whose thickness vanishes at this moment. Vazquez (1984) considered arbitrary rn and 

proved a necessary and sufficient condition for t, > 0, that in the case of our initial 

conditions (3) is precisely p > 2/m. According to these results, start-up occurs immediately 

(t?,, = 0) if p < 2/m. 

2.2 Self-similar waiting-time solutions 

In the present context we interpret, as is usual in physics, that the quantities that appear in 

the porous media equation (1) have dimensions, so that [-XI = L, [t] = T and [h] = (L2/T)1im,  

but no constant dimensional parameter appears in (1). Then, when the initial and boundary 
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conditions of the problem involve no more than a single constant parameter b with 

independent dimensions, [b] = L P ,  the solution of (1) is self-similar, i.e. it depends on the 

single independent variable < = x/bts  (various examples of self-similar solutions of (1) are 

given by Barenblatt (1952), Barenblatt & Zel'dovich (1957), Pattle (1959), Pert (1977), 

Gilding & Peletier (1977a, b), Grundy (1979), Huppert (1982), Gratton & Minotti (1990) 

etc.). In the present problem the initial conditions introduce the parameters xo, h, (and by 

dimensional reasons t,, = const x t o )>  then the solution of (l), (3) will not be self-similar. 

However, if one considers a waiting-time solution in a domain close to the front and near 

t = 0 (1x1 < xo, I f 1  < f,,, lhl < 11,) none of these parameters can be a scale for the 

phenomenon, so that we expect that the solution may approach a self-similar asymptotics. 

In this case S is not known in advance, but can be found by requiring the existence of the 

solution (self-similarity of the second kind - see Barenblatt, 1979). This leads to a nonlinear 

eigenvalue problem (8  is then called an 'anomalous' exponent ~ see Aronson & Vazquez, 

1994). The knowledge of S fixes the dimensions of 6, but is still not sufficient to determine 

its numerical value : it must be obtained studying experimentally or numerically the 

evolution of the initial value problem. In the case we are dealing with, it turns out that the 

eigenvalue spectrum is continuous. Then S may in fact depend on the initial conditions of 

thc non-self-similar problem (whose asymptotics is the self-similar solution of the second 

kind we are considering). In consequence (see Barenblatt & Zel'dovich, 1972) both S and 

h must be obtained from the asymptotics of the initial value problem (l), (3). 

We now recall briefly the construction of the self-similar waiting-time solutions of (1). To 

this end, we introduce the phase-plane (2, V ) ,  writing (1) in the equivalent form 

h, = -(uh),, u = -hm-lhz, with h = [x2Z(<)/t]l/", u = x V ( ( ) / t  (in the case of a viscous 

gravity current u is the average horizontal velocity). The solutions are represented by 

integral curves V(Z),  which are solutions of the autonomous differential equation 

with Q = - (22+ m V)-'. /3 = 2 +m. The integral curves with Z < 0 represent solutions for 

t < 0 and those with Z > 0 correspond to solutions for t > 0. The space-time dependence 

of V,Z is obtained by integration of & / d Z  = Q with h = Inl(l1. 

The features of the phase plane relevant for the self-similar waiting-time solutions are the, 

singular points 0 (0, 0), A (0, S), E (00, a), B (-m/2p, 1 /p), and a limit cycle L that may exist 

around B. We next outline their properties. Various drawings of the phase plane, for 

different S, are displayed in the paper of Gratton & Minotti (1990). 

2.2.1 Singular points 0, A ,  E 

The point 0 represents < = 00. For Z < 0 is a saddle where the single curve C, (V = V,(Z)) 

arrives. Near 0, V,(Z+ 0) = (6-1 - 2) 2 / m ,  h cc x ( ~ ~ - ~ ) ' ~ ~ ,  u cc - x(")" (h,  u do not depend 

on t for x+ a). In the half-plane 2 > 0, 0 is a node and all the integral curves arriving 

there are tangent to C, for Z-tO. The point A is a saddle, through which two integral 

curves pass: Z = 0 and C,. The latter is given near A by V zz S+ (PS- 1) Z/4m8; This 

solution has a moving front at xf = cfbts  (Q = const.), near which Z = mS(l-#), 

h cc [t""-'( 1 - #)I1/", u cc # / t  (# = </&). The node Erepresents x = 0 ; close to E the following 

formulae apply: Vcc 2/Z, h cc t(28-1)'m, u cc t2"l. 
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FIGURE 1. Some self-similar solutions discussed in the text: (a), (b), (c) integral curve, logh vs. 

log5 (t < 0, the straight dotted and broken lines show the asymptotic behaviour near B and 
0, respectively) and h(<) for a Type L solution (6 = 1 . 1 ) ;  (d) integral curve for a type S solution 

(8 = 1.4); (e) integral curve for a type N solution (8 = 2.5); ( f )  integral curve for the constant 

velocity solution (8 = 1). 
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2.2.2 The singular point B and the limit cycle 

Close to B the form of the solution is hcc (-x2/t)lirn, u c c x l t  ( t  < 0). If S <  So 

(So = 1 + ~ / 2 / 3 ) ,  B represents 5 = co. If 6 > So, B represents a fixed (waiting) front at 6 = 0;  B 

is a node for S < 8- or S >, S, (8, - = So \/(2m/P)); for S- < 8 < 8, it is a stable spiral point 

(the integral curves spiral counterclockwise towards B);  for S = So, B is a centre in the linear 

approximation; for So < 6 < 6, it is an unstable spiral point (the integral curves spiral 

clockwise towards B). 

If S = 1, the integral curves C,, and C, coincide with the single curve C,,, the parabola 

2 = mV( V -  1). If S < 1, C, spirals towards B, leaving C, to the left. When S > 1, C,  

spirals towards B. If 1 < S < So, both B and 0 represent { = GO, and there is a limit cycle 

L that surrounds B (a limit cycle exists only when 1 < S < So, and the numerical evidence 

indicates that it is unique). In this case C, as well as the integral curves going to B emanate 

from L, which represents a waiting-time front at < = 0. When S+ So, L collapses into B and 

if S+ 1, L tends to C,, and the segment OA of 2 = 0. 

2.2.3 LOT solutions 

We now review the properties of the solutions of Lacey et al. (1982). For t < 0 the waiting 

front is at x = 0 and the solution must hold for arbitrarily large x. which implies that the 

integral curve must reach 0. Appropriate curves C, exist for any S > 1, and are of three 

types. If 1 < 6 < So, C,  emanates from the limit cycle (L solutions). If So < S they begin 

at B :  In this case C, is a spiral (S solutions) if So < S < S,, or issues from the node (N 

solutions) if 8 2 8,. To extend the LOT solutions to t > 0, we use the same S as for t < 0. 

Since now the solution has a moving front at x = x,(t) < 0,  it must be represented by the 

(unique) integral curve starting at A .  As before, the solution must hold for arbitrarily large 

x, so that the integral curve must arrive to 0. The corresponding integral trajectory lies in 

the half plane 2 > 0 and consists of the curve AE, which represents the solution in the 

interval xi < x < 0 and a curve EO which represents the solution for 0 d x < GO (the 

continuity of h and u at x = 0 determines EO). The scale of 6 is arbitrary, and by convention 

we shall assume Q = - 1. 

A remarkable feature of the L solutions (Figure 1 a x )  is that for S close to 1, 2 and V 

oscillate almost periodically with A as h +- GO, when C, circles around L. Notice, however, 

that A(<) and u(Q are monotonic. We call 1(1 < 0) the length of the period. In any period 

j ( j  = 0 ,1 , .  .), as the integral curve turns around L, there is an interval AA @ 111 close to 

A, = j l  (corresponding to the part of L nearer to A )  where dZ/dA and dV/dh are large. This 

behaviour produces a kink in the profiles of h(5) and u(<), with all the properties of a corner 

layer. As S+ 1, one finds that 111 increases and Ah+O so that dZ/dh  and dV/dA tend to 

become discontinuous (corner shock). In consequence, the L solutions display an infinite 

succession of corner layers with an accumulation point at < = 0. The first corner layer of 

this series occurs in the neighborhood of go FZ I &  = 1, and the positions of the successive 

ones follow a geometric progression of ratio 2. The profiles of h({)  and u(<) due to 

successive turns around L differ by a scale factor e', but are otherwise almost identical (thus 

the solution has a structure -the corner layer - that repeats itself self-similarly: a self- 

similarity within a self-similarity!). It can also be seen in Figure 1 that in the intervals of 
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each turn, where dZ/dh  and dV/dA are smaller, h(h) and u(h) repeat approximately the 

h % 1 behavior (given by the part of C, close to 0). Notice also that the part of the solution 

nearer the front (0 < < < <,) satisfies the inequalities a1 < h(<) <-2'" < aq where a,, a2 are 

two numbers and 0 < a, < a2 < co. As S changes from 1 to So, the amplitude of the 

oscillations reduces, the corner layers become weaker, and the period shortens (for 

example, in the case rn = 3 (8, = 13/10), we find I z -4.5 for S = 1.1 and 1 = -2.5 for 

S = 1.25). 

The solutions of types S and N do not have corner layer. In the S solutions (3, < S < S,, 
see Figure 1 d) there are oscillations of the phase variables, but they quickly damp as the 

integral curve spirals to B. and d.Z/dA and dV/dA never change rapidly. The corresponding 

undulations of h,u are very small and disappear near the front, where the solution is 

governed by B. Far from the front the solution is governed by 0. The phase variables of 

the N solutions (6 > 8, see Figure 1 e) have a monotonic behaviour, governed by B for 

C - t  0, and by 0 far from the front. The transition occurs around < % 1. 

2.2.4 Type A solutions 

With the initial conditions (3), andp > 213, a corner layer develops during the waiting time. 

When It1 < t,,, the corner layer is strong and close to the front, and h(x > x,, t )  B Iz(x < x,, t). 

In consequence, its motion and the evolution of the solution in the domain x, < x < xo, 

tend to become independent of the profile in 0 < 3c < x,. This is seen in the numerical 

solutions, see below. In this regime there is an interval x, < x < x, in which 

h, 9 h(x > x,, t )  B h(x < x,, t )  z 0, 

and the corner layer is equivalent to a moving front, since the influence of the vanishingly 

small h ahead is negligible. In this domain, no constant parameter arising from the initial 

and boundary conditions can be a scale of the solution. Then we expect a self-similar 

asymptotics (that need not be of the LOT type). If 0 < 6 < 1, self-similar solutions with 

adequate properties exist (A solutions). These self-similarities are represented for t < 0 by 

the curve C., that goes from A (that represents x,(t)) to B (which represents a point of the 

domain far behind the corner layer). If S = 1, the type A solution is given by C,, (see Figure 

If), and is a travelling wave that moves with constant velocity without changing shape : 

h(x, t )  = w(x, t )  f [cnz(ct - x)]l'", 

where c = const $. 0 is the velocity of the front; this solution holds also for f > 0. If S < 1, 

the velocity of the front (and that of the corner layer) diverges at t = 0, and these 

solutions cannot be extended to the moving stage (they blow up for any finite x as - t + 0). 

2.3 Front velocity at start-up and restrictions on the asymptotics 

We have seen that two families of self-similar solutions are available as candidates to 

describe different features of the asymptotics of the waiting time solutions of the problem 

(l), (3) close to the front and to the moment when it begins to move. Now we recall a 

relevant mathematical result of Aronson et al. (1985), that restricts the domains where the 

solutions of the problem (l), (3) may display a self-similar behaviour, and the kind of self- 
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similarity that may occur. They considered the quantity a = limsfo+ [X-~'"/I(.X, ~ rz(,)], and 

proved that: (a) if t,, = f, = t y / am ( t y  = mt,/2/3, see $2.5),  the initial motion of the front is 

due to local effects (shape of the initial profile close to s = O), then c = 0 and if is 

continuous at t = 0; (b) if t ,  < t ,  the motion of the front is due to global effects (which in 

addition, lead to the occurrence of the corner layer), then c =k 0 (if discontinuous at t = 0); 

in the last case, the inequality (4) holds, i.e., IcI > c*. Now (if p > 2/nz), the initial 

conditions (3) yield a = 0, then c =+ 0. On the other hand, the LOT solutions have c = 0 

(they satisfy a1 < x-'/"h(x, t )  d a2 for t < 0 and 0 < x < 1). Then they cannot represent the 

asymptotics of the initial value problem (I), (3) ,  for all It/ < 1 and 1x1 < 1. Either they are 

unrelated to this asymptotics, or they may yet represent it, but then, some subdomain 

around t = 0 and x = 0 must be excluded. The type A solutions do not suffer this 

limitation. 

2.4 The asymptotics near start-up 

Previous to the discussion of the numerical solutions and their asymptotics, let us indulge 

in some speculations on what to expect, and what to look for, based on theory and on 

intuition derived from the experiments. The crucial process in the phenomenon is clearly 

the development of the corner layer, as implied by the work of several authors (see, for 

example, Kath & Cohen, 1982; Lacey, 1983). On physical grounds, we go a step further: 

we believe that after a strong corner layer comes into being, it makes no difference to the 

phenomenon whether there is a waiting front ahead. The waiting front sitting beyond 

the strong corner layer is simply the foremost edge of an insignificant part of /z(x, t ) ,  a part 

that plays an irrelevant role in the evolution of the main flow behind the corner layer. In 

consequence, its position, and then the moment of start-up, have little (if any) practical 

relevance. Physically, there is a complete continuity between the strong corner layer of the 

last phase of the waiting stage, and the moving front after start-up. Both represcnt the same 

object, namely the leading edge of the main flow. In consequence we can regard them as 

a single entity (the corner layer/moving front). It stands to reason that this entity cannot 

display any special behavior at the moment when it overruns the front, other than merely 

substituting the waiting front as the foremost part of h(x, t).  Nothing special can happen 

to the velocity of the leading edge of the main flow at this moment: it cannot vanish, nor 

become infinite. In consequence, we expect a constant velocity asymptotics, which is 

equivalent to say that the velocity of the corner layer/moving front cannot change 

significantly in time scales < to (or, equivalently, < t,). The discontinuity of if at start-up 

and the inequality (4) are consequences of the substitution just mentioned. They state, jn 

mathematical language, that the main flow has overrun the waiting front, and its leading 

edge has assumed a new name. 

On the other hand, the spatial and temporal scales of the development of the corner 

layer, as well as its shape and velocity, must depend essentially on the global properties of 

g(x)  (its shape in the region where it is large). These in turn determine its velocity for t + 0, 

and then, the velocity of the front at start-up. The details of g(x )  near the waiting front, 

where it is vanishingly small, cannot influence these features. 
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2.5 Bounds and estimates of the waiting-time and large time behaviour

Setting V = VB,Z = ZB results in an exact waiting-time solution (x > 0) that holds for t < 0

(and blows-up at t = 0):

( y

Bounds of tw can be derived (Aronson et al. 1983; Vazquez, 1984) comparing the initial

conditions with y(x, t): if two quantities hOA,hOA exist, such that

A0|1 < x-2/mA(x, - O < /*02, (0 < x < x0)

then ^ 2 < ?„ sj / j , ! , with f̂  = mxl/2/3h^(. With the initial conditions (3) and p > 2/m,

these bounds are not very interesting if one is looking for an estimate of the waiting-time:

the upper bound diverges (tyl = oo), and the lower bound may not be a good

approximation to tw. We next discuss a more stringent upper bound for our initial value

problem (Vazquez, 1984).

For very large times (t >̂ t0), the solution of the problem (1), (3) must tend to the 'point

source' solution (Pattle, 1959):

In (8) we have used the notation t' = t + tw, x' = xo — x. The front of the point source

solution is x's = S
ml/i

C t'
1//!

, where S = \*
p
h(x', t')dx' is proportional to the mass of the

fluid per unit width of the current, and £ = (2/3/m)
1
"

l
[2r(3/2+ l/m)/y/%I\l + l/m)]""^

(£, = 1.411 ...for m = 3). The self-similar solution (8) corresponds to the initial condition

g(x) = 2S8(x') and describes the asymptotics of any problem in which g is localized near

x0, independently of the details of the initial profile. The front of s(x, i) arrives at the

position of the waiting front {x = 0) at t' = t's(m) = (xJCyS'"
1
 (t'sQ) = 0.1786... x xl/S

3
).

For the initial conditions (3) andp P 1, it is reasonable to expect that tw will be close to t's

(calculated with the appropriate S). In general, t's is an upper bound of the waiting-time,

tw < t's, and may give in many instances a better estimate than tyl. Actually, experiments

on viscous gravity currents (Gratton et al, 1992) have shown that t's is a good

approximation of tw forp x 1. This is confirmed by the numerical calculations. The most

unfavourable case occurs for p = 2/m. For example, for m — 3, p = 2/3 one finds tw =

0.0648 (in units of x^/S
3
), which differs considerably from ^(3), but is of the same order of

magnitude.

3 Numerical solutions

3.1 Method and details of calculations

We solve the problem (1), (3) for the case of viscous gravity currents, and for various values

of p. We do the calculations in terms of t' since tw is yet unknown. We employ the

dimensionless variables h = h/h0; x = x/x0; t/t0; u = u/u0 (x0: the initial length of the

current, h0 = g(x0), t0 = xl/hl, uQ = hl/x0), then the equation to be solved is (m = 3):

h = (h
3
h)i (9)

We assume g(x) = (p +1) xp
 (p > 0) for 0 < x ^ 1 and g(x) = 0 for Jc < 0 (then S = 1). At
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x = 1 there is an ideal wall that supports the fluid (in the following we shall omit the tildes
as no confusion will arise). To discretize (9) we employ a three-level second order finite
difference implicit scheme, centred in time and space. For each time step we derive a system
of algebraic equations and solve it by iterations with the Gauss-Seidel nonlinear inversion
method. The code includes a correction process that accelerates the iterations by using a
less stringent convergence criterion (Hirt & Harlow, 1967). We denote the time and grid
points where we calculate the quantities by superscripts and subscripts, respectively. The
grid has 2N+1 points and is non-uniform to achieve good accuracy near x = 0 with N not
too large for the computation (Kalnay de Rivas, 1972). To this end we set xt = Q£,}\,

- 1 < is < 1 with Ag = \/N. Then *•+> « (3h"+1-4hm+fi'-l)/2At', with an error O(At'
2
).

To conserve S better we discretize the right-hand side of (9) as:

WK) X * Axr'KhXm « i - hf) - (h%ll2 (hf - A;:J} («' = «+1).

In this way we obtain the tridiagonal system (J = 2,3, . . . , 2N):

Ih^-fiia^h^-b^h^ + c^h^
1
) = 2h»-\h?-\ (10)

in which p = A/'/Ax2; a) = (h%1/2 = ftAf+AjLJ*; c>} = (h%1/2 = p? + , + /»?]'; AJ = $+?,.

The boundary condition hx = 0 at the wall (J = 1) gives (h2~~hl))/2Ax = 0, then A2 = Ao

and c* = al, and the equation for this node is (f+A6J*1)*?*1 -2/k; i+ l AJ+I = 2/f,"-|A^1. In
the last point of the grid (J = 2N+\), where always h = 0) we require AaAr+, = 0.

The error of the approximation for ht. is e&653(P/x)f'At/2 (x^ 1 and A s 1 are the
scales of JC and A) then e ^ 1 determines A?'. With these choices and N x 103 the numerical
scheme is unconditionally stable and the results are satisfactory for our purposes. The mass
is conserved to an approximation better than one part in x 106.

A few additional comments are in order concerning the accuracy of the calculations. In
general, due to the discretization, numerical methods will not yield a good approximation
to the exact solution in those regions where hx changes very rapidly (from one grid point
to the next), as occurs near the leading edge of a strong corner layer and very close to an
advancing front. Moreover, our non-uniform grid will produce spurious effects. Consider,
for example, what happens if we try to reproduce with our numerical scheme the constant
velocity solution (6), that is an exact solution of (1). The front of the numerical solution will
be distorted with respect to the true solution, since there hx changes very rapidly. The
magnitude of the distortion depends on the local density of the grid points. Since the grid
is not uniform, the distortion will vary as the front travels and passes through regions where
the grid spacing is different. The consequences of this change in the shape is that the
velocity of the front of the numerical solution will vary as the front moves. This spurious
effect will be larger when the front passes through x = 0, where the spacings vary very
rapidly. The spurious effects just discussed will also be present in our numerical solutions
of (1), (3), and will be especially relevant when the corner layer is arriving at x = 0, and
when the front starts moving. Fortunately, this drawback does not invalidate our numerical
method. As we shall see, there is a device that allows to recover the information we want,
but we must be very careful in the interpretation of the results. In fact, we can recognize
and subtract the spurious effects, by comparing calculations with different TV (see more
details below). With this purpose we have computed solutions with N = 1000 and 4000 to
find the true asymptotics close to start-up. In domains not too close to the corner layer or
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the front, and then, not too close to start-up, the comparison of the results obtained with 

the coarser and finer grid show insignificant differences, indicating that they are free of 

spurious effects. For practical reasons we made these verifications only for y = 1. In the 

calculations for p =k 1 we only employ N = 1000, since we can use the results for p = 1 as 

a guide to interpret the solutions unambiguously. 

We follow the evolution of each solution until the front starts to move and travels a 

distance of  the order of unity. Having found t ,  we compute tn = t‘” - t,. A good accuracy 

(e  M ( N  = 1000) and At‘ z lo-* ( N  = 4000), 

which imply long computations. We used an Apollo 750 workstation (M 40 Mflops) and 

the graphical package Starbase@ to visualize the solution in real time. Each N = 1000 and 

N = 4000 solution took about 4 and 70 hours to run, respectively. 

To achieve a reliable test of the asymptotics we need a very accurate determination oft,, 

which in turn depends on the criterion we employ to decide when the front starts moving. 

Clearly it is not legitimate to find t ,  extrapolating the numerical law of motion of the front, 

since this implies to assume a priori a specific law of motion in the limit It1 i 0. We tested 

several criteria, based on the observation of the first grid point ahead of the waiting front 

( x ,  = - 1 / N 2 )  : (a) the arrival o f  fluid (we arbitrarily fixed a bound A = lo-* ; if h, > A we 

assume that the front has moved, since fluid has arrived in the region x < 0); (b) the onset 

of a significant flow velocity u, at x,; (c) the onset of a significant mass flow h, uN at x,. 

These criteria yield always consistent and unambiguous results (the front motion ‘begins ’ 

at the same time step, while sudden jumps of several orders of magnitude of hl,.? uAv and 

h,  u, occur at this moment), and then we finally decided to use (a). We can safely assume that 

the uncertainty of the numerical t, is of the order of At’. Of course, the true t, may differ 

from the numerical t, by a larger amount, due to the accumulation of errors of the 

numerical method. This difference is unknown, but certainly small (the t ,  obtained with the 

N = 1000 and N = 4000 calculations differ by less than 0.007 %). In a similar way, we 

determine the position of the front by means of a l z j  > A criterion. We define (arbitrarily) 

the ‘position’ of the corner layer as the place where h, is maximum. 

requires short time steps: At’ M 

3.2 Methods of analysis 

We have considered various methods to determine when and where the asymptotics of the 

numerical solution is self-similar and to find the corresponding exponent 6. They involve 

certain elaborations of the numerical results and their reliability depends on the type of 

data employed. The present discussion will help to appraise the significance of the results 

we report in the next section. The methods use: (a) the profile at t‘ = t,; (b) the motion of 

the corner layer and the front; (c) the profile for times close to start-up. 

The basis of method (a) is that at start-up the self-similar solutions of (1) have the simple 

form : 

with 6 > 1 for the LOT solutions and 6 d 1 for the A solutions with 

m -  , W 5 (1 1) h = y ( z - l / ~ ) / m  ~ xl-l/s 

zm = lim(b<)l’”sZ1’nE, u, = lim(b()1’8 V .  
5+m C+m 

For the theoretical reasons discussed previously, we expect that the numerical solution may 
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display the power law behaviour (1 1) with S > 1 in some interval el xo < x < e2 xo, (e ,  < c2 

< l), and eventually, with S < 1 in some other interval 0 < x < elxo. If either of these 

expectations is fulfilled (or both), we can determine the corresponding S by means (say) ol" 

a linear fit (in the appropriate interval) of a log(h) vs. log(x) plot. To this purpose we 

employ the following criterion: let R(x) = h(x, O ) / X ( ~ - ~ / ' ) / ~ ,  and let e, > 0 be the desired 

margin of tolerance (we usually set ea = or less); then if an interval x1 < x d x, exists, 

such that K < R(x) < K + co, where K is a constant, we say that (within the margin of 

tolerance ea) the numerical solution has a self-similar behavior in the said interval. Noticc 

that we do not know in advance the location of the interval involved. Also, its extent 

depends on e,. In using this method we must keep in mind that t ,  has an uncertainty O(At'), 

that due to the spatial discretization, the numerical scheme cannot yield a good 

approximation to the exact h(x, 0) very close to x = 0, and that there are spurious effects 

due to the non uniformity of the grid. For these reasons we must be careful when 

considering the grid points close to the front. With these qualifications, this method has the 

advantage that it depends 011 the behavior of the numerical solution in a domain where 

it is a reliable approximation of the true solution. 

The method (b) uses the fact that xc, xf K t6 for the self-similar solutions, so that we 

expect that the numerical solution will tend to this asyinptotics for It1 < tJL,. To decide if and 

when the numerical data display self-similarity, we use a tolerance criterion similar to that 

described above. We must be careful when using this method; in particular when 

considering the motion of the corner layer. It is very sensitive to the uncertainty o f t , ,  and 

it depends critically on how we defined the position of the corner layer. In addition, if p is 

close to 2/3, a well-defined corner layer appears only just before the end of the waiting-time 

stage, and very near to x = 0, so that it is difficult to determine accurately its law of motion. 

A further drawback is that the accuracy of the position of the corner layer (defined by 

h,,(x,) = 0) depends on the numerical solution in the region where it is less reliable for the 

reasons already discussed. These problems increase as t'+ t,, precisely the limit we want to 

study. 

For any self-similar solution of (1) the relation 

1 ? t , f ~ ~  = Z(x/bts) = Z(x/ts> (12) 

holds, in which 2 is a function that depends on S and the type of self-similarity. This is used 

to study the profile for t'+ tT0. The method (c) consists in comparing graphs of thc 

numerical values of /i3t/.x2 vs. x / t 8  of a given run, for different t. By choosing a suitable 8, 

we can achieve an accurate overlap of the graphs in the domains where the numerical 

solution is self-similar (it is convenient to show the graphs in logarithmic scale). In the same 

process we can make comparisons with the self-similar solutions of type LOT or A, to find 

the domains where these asymptotics apply. This method is important because it allows a 

direct comparison between the numerical solution and the exact self-similar solutions. Thc 

test is very stringent because we use a single parameter (8) to fit a series of curves 

corresponding to different t .  However it is painstaking to achieve the optimum fit. In 

addition it will turn out (see below) that S is always close to unity, and then the quality of 

the fit is rather insensitive to the small changes in S involved. Method (c) is not practical if 

one only want to find 8, and we used it only to check consistency with the 6 obtained by 

other methods. 
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A moving front has the property that .tf(t) z -lim,+,fh3/3(s~-xf), x > xf. Then one 

might hope to find the velocity of the front by studying the profile of the numerical solution 

very close to it. The same procedure could allow to find the velocity of a strong corner layer 

overtaking a vanishingly thin film of fluid, as occurs near the end of the waiting-time stage. 

The method looks attractive, since it does not depend on the accuracy of t, nor on any 

assumption about self-similarity. Unfortunately, it depends on the value of h(x, t )  at the 

grid points where the numerical solution is unreliable. It is impossible to overcome this 

flaw. In consequence no useful additional information can be gained with this method. 

To sum up this discussion we can say that the more reliable deteminations of S and of 

the kind of self-similarity are obtained with method (a), complemented by method (c) to 

test how well the self-similar solutions fit the numerical calculations. The law of motion 

(method (b)) of the corner layer and the moving front is less reliable regarding the 

asymptotics close to t = 0; but can be used to check consistency with the results of the other 

methods. In all cases, we must be careful to exclude spurious numerical effects. 

4 Numerical results (rn = 3) 

4.1 General properties of the solutions for power law initial profiles 

The front of the numerical solutions for 0 < p < 2/3 starts moving immediately (t ,  = 0). 

We shall not comment further these cases, but shall discuss in detail the solutions for 

p > 2/3, that have non-vanishing waiting-times. In all these solutions a single corner layer 

develops. In Figure 2, we give an example that displays the typical behavior of our 

waiting-time solutions. As soon as the process begins, the profile changes and we can 

recognize two domains, separated by a moving transition interval. The transition occurs 

around an intermediate position x,(t’), defined as the point where h, attains its maximum 

/z&‘,~. In the domain near the wall (x, < x < 1) the profile differs markedly from its initial 

shape and h,, < 0 (h, increases monotonically as one goes from the wall, where it vanishes, 

to x,). In the domain near the front (0 < x < x,) the profile changes very little from the 

initial shape and h,, > 0 (h, increases monotonically as one goes from the front to x,). The 

transition is characterized by large changes of h, and hzx. While it travels towards the front, 

its width reduces. and h,, and the amplitude of the oscillation of h,, increase. Late during 

the waiting stage the transition can be appropriately described as a corner layer. The 

development of the corner layer is a gradual process, so that there is no particular time in 

which the corner layer begins to exist. To describe the time scale and location of this 

process, avoiding unnecessarily long circumlocutions, it is convenient to introduce some 

notation and terminology. We call ‘time of formation’ of the corner layer the time t,, when 

h,, exceeds a bound (arbitrarily chosen) and ‘place of formation’ x,, the position of h,, 

when this happens (x,, = x,(t’ = tJ). Specifically, we define t,, by 

h,,(t’ = fc,) = 10p(p + 1) g - 1 .  

In all the numerical solutions with p > 2/3 we find 0 < f,, < t,, and 0 < s,, < 1. As the 

corner layer travels, it becomes progressively narrower and stronger, and becomes a corner 

shock precisely when it catches up with the front. When this happens, the front begins to 

move. The time and place of formation of the corner layer depend onp. It forms earlier and 

nearer to the wall for p very large, and as p 4 2/3 the time t,, 4 t, and x,, --f 0. 
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FIGURE 2. Numerical solution ( p  = 1) during the waiting stage: (a)-(c) evolution of &, h, and hzL; 
(d). (e) nonlinear propagation and diffusion terms. 
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FIGURF 3 .  Self-similar asymptotics of the numerical solutions (a) profile at start-up: 

log[~-l’~h(x, O)] vs. logx ( p  = 1); (b) self-similarity exponent S,(p). 

In Figures 2d  and 2e, we plot the different terms of (2) for a numerical solution ( p  = 1) 

at two different times during the waiting stage. There are four domains where different 

behaviors arc displayed: (a) near the wall, the diffusion term rnvv.,, dominates; (b) in an 

intermediate region. far from the wall but behind the corner layer, the nonlinear term 71; 

prevails; (c) in a very small region around the corner layer, the diffusion term dominates 

again; and (d) in the region ahead of the corner layer, both terms (and then qT) are 

extremely small. The regions (b) and (c) roughly correspond to the two domains where 

different self-similar asymptotics develop, as will be discussed below. 

The behavior of our numerical solutions is in accord with theory. It also agrees very well 

(subtracting the two-dimensional and surface tension effects) with accurate experiments on 

the spreading of linear ramps of viscous liquids (Marino et al., 1995), and with other 

numerical solutions (Del Carmen & Ferreri, 1995; Marino et al., 1995). 

After start-up the qualitative behavior of the numerical solutions is very simple, and in 

accord to what is expected for a moving front. For very large t‘, the self-similar point source 

solution is closely approached. 

4.2 The asymptotics close to the front and start-up 

The profile at start-up h(x, 0) (method (a)) displays two self-similar regimes. We arrive at 

this conclusion after the following analysis. In Figure 3 a we plot log[x-I’:’ h(x, O)] vs. log(x) 

for thep = 1 numerical solutions with N = 1000 and 4000. This presentation has the advan- 

tage that a self-similar behavior with S = 1 appears as a horizontal line, and positive or 

negative slopes correspond to S > 1 or S < 1, respectively. We see that both solutions 

coincide exactly, except very close to the front where the plots curve upwards (apparently 

suggesting S < 1). The curving up occurs near x z 10-3x0 for the N = 1000 solution and 

x z xo for N = 4000. This different behavior brands the curving-up as a spurious effect 

due to the non uniform grid, that distorts the profile for small x (x < xo for the N = 

1000 solution and x < lO-*x, for N = 4000). It is sensible to assume that the effect: (a) 
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depends on N ,  (b) as N is increased its onset occurs for smaller x, (c) as N is varied, it only 

changes its scale. This is precisely what we see in Figure 3 a, and it allows to find the domain 

in which the numerical solution is free of the spurious effect. Where the N = 1000 and N 

= 4000 solutions overlap accurately, we can guarantee that the N = 1000 solution is free 

from a significant spurious effect (and a fortiori, the same is true for the N = 4000 solution). 

This we conclude that the straight (very short) horizontal part of the N = 1000 graph is a 

genuine result (i.e. it represents the behavior of the true solution). We also conclude that 

the longer (more than one decade in length) horizontal part of the N = 4000 graph is a 

genuine result, because we know that the fraction that overlaps the N = 1000 graph is 

genuine, and the rest must also be genuine, as follows from the scaling property of the 

spurious effect. By the same arguments, we conclude that a calculation with a sufficiently 

large N should produce a graph with a straight horizontal part that extends to any 

arbitrarily small value of x. Then we infer that the small x behavior of the true solution 

is of type A, with 8 = 1, i.e. it is described by a constant velocity front solution w(x, t )  (6). 

In Figure 3 a we also observe an intermediate range, still far froin the wall e, xo < x Q xo 

(e, M 5 x for p = l), in which the behavior is of type L (with S = 8, larger, but 

close, to unity). In this range both numerical calculations coincide, and we can safely 

assume that no spurious numerical effect is present. 

Similar results arc obtained (with N = 1000) for any p > 2/3, with 8, = 1 (as inferred 

from the presence of a small horizontal part in the l~g [x - l ’~  h(x, O)] vs. log(x) graphs), and 

8, = S,(p). In Figure 3b we represent the S,(p) obtained by this method, showing that 

1 < 6,(p) < 13/10, with 6,+13/10 forp+2/3 and 6,+1 fo rp  z o o .  

The laws of motion of the corner layer (during the waiting stage) and of the front (during 

the moving stage) are shown in Figure 4, in which we plot log(-x,/t) and log(xf/t) vs. 

log(lt1) for the numerical solutions for p = 1, and N = 1000,4000. The comparison of the 

high and low spatial resolution results indicates that the curving up that occurs in both 

graphs to the left of t z t ,  for N = 4000 is 

due to the spurious numerical effect, already discussed in connection with the profile at 

t ,  for the N = 1000 solution and t z 
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start-up. By means of the argument then used, we can subtract the effect. In consequence 

we infer that the true velocity of the corner layer and of the front tends to the same constant 

value c + 0 in the limit Itl+O. This means that the motion of the corner layer joins 

smoothly at start-up with the motion of the front, and it is consistent with a 8 = 1 type A 

asymptotics as already obtained using method (a). Coming back to the motion of the 

corner layer, Figure 4a shows that there is a time interval 6, t ,  < Jtl 6 t, (et < 1, for example 

6, w for p = 1) that excludes the neighborhood of t = 0, in which xCl cc /t18L with 
1 < 6,(p) < 13/10. Then in this interval the motion follows a type L behaviour. In this 

range no spurious numerical effect occurs (as shown by the coincidence of the N = 1000 and 

4000 results), and the method (b) allows to determine S,(p), in good agreement with 

that obtained from the intermediate region of the profile at start-up. 

We have used the self-similarity exponents 6, and 8, = 1 obtained by method (a) to 

compare the profiles h(x,t) for different times during the waiting-time stage with the 

appropriate L (h,(x, t ) )  and constant velocity front (w(x, t ) )  solutions (method (c)). Since 

the procedure is cumbersome, we only considered the case p = 1. In Figure 5a we have 

represented 10g[(t/x~)~’~h(x, t)] vs. A = log(x/t8L) for a series of t, near the end of the 

waiting stage (- 0.7 x t, < t < 0, when the corner layer, that appears at A z 0, has already 

developed). The details of the evolution of the profile reveal some subtle features. The first 

profile of the series has already approached the L solution, but only in a small domain 

0 < A < A,(t) not far behind the corner layer. As t increases, A ,  grows, and the domain in 

which the numerical solution approaches the L solution expands. However, studying 

carefully the graphs, we notice that very close to the corner layer a small subdomain 

0 < A < A,(t) (AA(t) < A,(t)) appears and enlarges as t + 0. In this subdomain the behavior 

of the numerical solution is not well represented by the L solution (the departures increase 

as t - O ) ,  and the A solution gives a better approximation (see Figures 5b, c). In 

consequence, during the last phase of the waiting-time stage there are two regions of self- 

similarity: the region 0 < A < A,(t) just behind the corner layer (type A, constant velocity) 

and the intermediate region A,(t) < A < A,(t) (type L). The accuracy with which the L 

solution describes the asymptotics in this domain is impressive. In the region close to the 

corner layer the constant velocity solution gives a very good description of the asymptotics 

(except very close to the corner layer, where the numerical solution departs from the true 

solution due to the spurious effects we have already discussed). These domains correspond 

to those observed in the profile at start-up. The peculiar behavior of the profile is 

consistent with the observations of the motion of the corner layer: as long as A,(t) remains 

small (i.e. t is not too close to 0), the motion is very approximately of type L, but as start- 

up is approached it tends to the constant velocity solution. 

To complete the discussion of the numerical profiles, we notice that (as expected) in the 

domain near the wall ( A  > AL(t)) there is no self-similar behavior, and that ahead of the 

corner layer ( A  < 0) only very small changes with respect to the initial profile occur. 

Summarizing, an asymptotics of type L appears in an intermediate domain near and 

behind the corner layer, and a constant velocity asymptotics (type A) develops very close 

to the corner layer during the last phase of the waiting stage. Asymptotics of type S and 

N are never observed. Only parts of the full L and A solutions describe the asymptotics of 

the numerical solutions : a piece of the L solution behind the first corner shock of the series, 

and a small portion of the A solution just behind the front. This is a consequence of our 

choice of initial conditions, as will be discussed below. 
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cumes i= 

a 0.08372 
b 0.11 
c 0.11948 
d 0.11959 

I,= 0.1195909~ 

h 6, = 1.00609 

0 . --.. 

d 

-0.05 

b 

li A = log (I/&) 

-0.1 - 
n 1 2 3 4 5 

FIGURE 5 .  SeIf-similarity during the waiting stage ( p  = 1) as start-up is approached: (a) 

l o g [ h / P ~ - ~ ) / ~ ]  vs. log(x/tsL), showing how the solution approaches to the type L self-similarity in the 

intermediate region; (b) log[h/w] vs. log(x/ t )  and (c) log[h/h,] vs. log(x/t’L), showing how the 

solution approaches to the constant velocity solution close to the corner layer, but at the same time 

maintains the type L self-similarity in the intermediate region. 

4.3 Front velocity at start-up 

On the basis of the profiles at start-up and at previous times, as well as on the motion of 

the front (and discounting spurious numerical effects), we have concluded that a type A 

asymptotics with 8, = 1 holds near the front, which means c = i f ( t  = 0+)  + 0 as predicted 

by theory. The absolute value of the start-up velocity is an increasing function ofp, and can 

be determined from our numerical solutions using method (b), or equivalently by method 

(a). For y = 1, the extrapolation of the first reliable numerical values of if (corresponding 

to t close to % 10-’tW for the N =  1000 solution and = 10-3tw for N =  4000) yields 

~ c ~ t n / x o  z 1, that exceeds 1/144 (the lower bound given by (4) for 177 = 3) by more 

or two orders of magnitude. For p - f c o ,  when the solution tends to s(x, f), we find 
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FIGURE 6. (a) Velocity of the front after start-up. (b) waiting-time I&) ,  

)c)t0,/.x, + { i5/5 % 1.2. This yields a theoretical upper bound of c: IcI ,< {i5 xo/5 to  z 1 .2x,/t,. 

Other values are shown in Figure 6a. Our numerical investigation does not permit to find 

c when p is very close to 2/3 (the difficulty in resolving the domain where the constant 

velocity asymptotics occurs becomes insurmountable when p --f 2/3). We conclude that the 

lower bound (4) does not give a practical estimate of the velocity at start-up, at least for 

p not very close to 2/3. 

For (t’ > t,), a practical estimate (by excess) of xf is given by the velocity o f  the front of 

the point source solution (9, i.e. i s ( t ’ )  = S3I5 <: C 4 l 5 / 5  (see Figure 6a). The velocity of the 

corner layer and of the front of a type L solution vanish at t = 0, but this does not 

contradict (4), since the L solution only describes the asymptotics of the numerical solution 

in the intcrmediate region, that does not include x = 0 and t = 0. 

4.4 Magnitude of the waiting-time and large-time behaviour 

We plot the numerical values o f t ,  in Figure 6b, where we also show the lower and upper 

bounds t g , 2  and t: (for S = 1). As expected t: is a reasonably good practical estimate (by 

excess) of t , ,  for large p .  On the contrary, t, >> t,,,, except for p very close to 2/3. The 

quantity I,, = 1 - 2-l/(f’+l) gives a measure o f  the concentration of the initial distribution of 

fluid (half of the fluid is initially in the interval (1 - lo) xo < x < x,). If p -> m,\, --f 0, and all 

the fluid is concentrated at x,. In this limit the point source solution is an exact solution 

of our initial value problem, then limp-.m t, = f:. The smaller is p ,  the less is the 

concentration of the initial condition, then the waiting-time is shorter, and the estimate 

given by t: impairs (Figure 6b). It is interesting to observe that the numerical solution 

approachcs rapidly the point source solution: for t‘ z 2t, the difference is already small. 

For many practical purposes the point source solution is a good approximation in the 

moving stage (as observed by Gratton et al., 1992, for p = 1). 
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5 Discussion 

In any problem of physical interest (defined in a bounded support), an arbitrary initial 

profile with a front at x = 0 will have a dominant term of the form I” for x+0. If 

0 < p < 2/3, the front moves at once. If p > 2/3, a corner layer appears before start-up. 

Then any waiting time solution of practical interest develops at least one corner layer (an 

exception occurs if the initial profile coincides everywhere with the singular solution (7), 

then no corner layer appears during the waiting stage). In consequence, we conclude that 

no conceivable initial condition will tend to asymptotics of type S or N (that do not display 

corner layers). This may be related to the instability of these self-similar solutions. We have 

performed a stability analysis (unpublished) of the phase plane using the Lyapunov 

functional approach, and proved that the integral curves in the neighbourhood of the 

singular point B arc unstable, which implies that the parts of the self-similar solutions 

represented by integral curves approaching B cannot be attractors. 

We were puzzled to find that when the numerical solution approaches a type L 

asymptotics only one corner layer appears (the first of the series). We ascertained that this 

is a consequence of our initial conditions, and not an artifact of the numerical method. This 

suspicion arises because the subsequent corner layers of the L solutions appear in scales 

that decrease geometrically, which makes very difficult, perhaps impossible, to detect them 

in the solutions. To discard this possibility we have made two tests: (a) we tried other 

numerical schemes specifically devised to achieve high resolution in the domain of interest, 

and we always obtained a single corner layer in solutions with the initial conditions (3), (b) 

we computed the evolution of an initial condition consisting of a piece of a type L profile 

(with two corner layers), and found that the numerical solution preserves both corner 

layers, which remain observable during the waiting stage. Then we conclude that the 

occurrence of a single corner layer is a true property of our waiting-time solutions. This 

peculiar behavior can be explained heuristically, observing that (according to (1)) the time 

scale for profile modifications is T z Ih/h,l z L2/h3,  where L is the spatial scale of variation 

of h. With a power-law initial profile, T(x) cc x-3p. Then near x = 0 (and ahead of the first 

corner layer) the profile changes very slowly (T(x) % t, for x < 1). In consequence the first 

corner layer arrives to the front (ending the waiting stage) too rapidly for the subsequent 

ones to develop. This is why only part of the L solution plays a role in the asymptotics of 

our problem. However, the rest of this self-similar solution is also physically meaningful, 

and plays a role in the asymptotics of different initial value problems, as proved by the 

example (b) above. 

More peculiar yet is the fact that the solution tends to different self-similarities in two 

regions: type L in a n  intermediate region that excludes a neighborhood of the front (the 

motion of the corner layer is also of type L for It1 < t7<,, but excluding the vicinity of 

t = 0): and of constant velocity very close to the front and of t = 0 (the A solutions with 

S < 1 do not play any role in this asymptotics, as is suggested by their blowing-up behavior 

at start-up). This remarkable behavior reconciles the occurrence of a type L asymptotics 

with the discontinuity of the front velocity at start-up. We have not yet found a rigorous 

theoretical explanation of why the evolution of the solution follows such an intricate path, 

but as discussed in $2.4, the crucial point is the development of the corner layer. Loosely 

speaking, the evolution of the solution occurs in two steps. During most of the waiting 
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stage, from the beginning of the phenomenon until there is a well-defined corner layer, the 

shape of the solution in the domain near the front 0 < .Y < x, is still relevant, and influences 

the phenomenon everywhere (0 < x < xu). In this phase the initial condition forces the 

solution to approach a self-similar asymptotics of type L with a certain SJp)  (determined 

by the global initial profile), and then to develop a corner layer. As the end of the waiting 

stage is approached, the main flow (i.e. the solution behind the increasingly strong corner 

layer) dominates the process, and the state o f  the flow downstream (0 < x < xc) has a 

vanishingly small influence on the solution upstream (x, < x < xo). In this phase, the 

solution close to, and behind the corner layer, becomes independent on the solution in the 

downstream domain. In other words, the existence of the waiting front becomes irrelevant 

for the main flow (xc < x < x,), which to all practical purposes evolves as if there were 

nothing ahead. Then it cannot follow the L solution, but tends to the constant velocity 

asymptotics. The resulting 6, = 1 is not related to the shape of the initial profile near the 

front. However, the velocity of the corner layer in this phase of the phenomenon is 

determined by the type L asymptotics previously developed, i.e. by S,(p), which in turn 

depends on the initial condition. 

6 Conclusions 

The numerical investigation of viscous gravity currents starting from initial conditions of 

the type h cc xp gives results in harmony with theory. The agreement with experiments on 

the spreading of viscous liquids (discounting surface tension and two-dimensional effects) 

is good. If p < 2 / m  = 2/3, start-up is immediate. If p > 2/3 there is a finite waiting-time. 

During the waiting stage the profile distorts until a moving corner layer develops; as the 

corner layer advances towards the front it strengthens. Power-law initial profiles yield 

waiting-time solutions with a single corner layer. Start-up occurs when the corner layer 

overtakes the front. The point source solution gives a reasonably good estimate (by excess) 

of the waiting-time, except for p close to 2/3. 

In  addition to the exact numerical value of the waiting-time, the numerical solutions yield 

a wealth of new results concerning the properties of waiting-time solutions, especially 

regarding the self-similarity of the asymptotic behavior in certain domains. These features 

are impossible to observe in the experiments, since the measurements cannot be sufficiently 

precise, and perturbing effects are always prescnt. The asymptotics of the solutions of (l), 

( 3 )  near the front and to start-up is self-similar of the second kind, and consists of two 

domains. In the neighborhood of the front the asymptotics is of type A, with 8 = 1, the 

velocity of the front is discontinuous at start-up. In an intermediate domain a type L 

asymptotics with S = 6,(p), (1 < S,(p) < 13/10) occurs. The initial condition determines 

6,. The type L solutions have an infinite number of corner layers, but since the solution of 

the initial value problem tends very slowly to its asymptotics where h is small, with the 

initial conditions (3) the first corner layer arrives too rapidly to the front (ending the 

waiting stage), not allowing the development o f  other corner layers. Furthermore, as the 

corner layer approaches the front and strengthens, the main flow becomes independent of 

the conditions downstream and tends to a constant velocity asymptotics (with c determined 

by the initial condition). The LOT solutions of types S and N are unstable and do not 

represent the asymptotics of any real problem. Some of the present results await theoretical 

explanations and suggest directions for further research. 
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