
Proceedings of the Edinburgh Mathematical Society (2017) 60, 911–936
DOI:10.1017/S0013091516000481

THE HAUSDORFF DIMENSION IS CONVEX ON
THE LEFT SIDE OF 1/4

LUDWIK JAKSZTAS

Faculty of Mathematics and Information Sciences, Warsaw University of Technology,
ul. Koszykowa 75, 00-662 Warsaw, Poland (jaksztas@impan.gov.pl)

(Received 28 January 2014)

Abstract Let d(c) denote the Hausdorff dimension of the Julia set Jc of the polynomial fc(z) = z2 + c.
The function c �→ d(c) is real-analytic on the interval (−3/4, 1/4), which is in the domain bounded by
the main cardioid of the Mandelbrot set. We prove that the function d is convex close to 1/4 on the left
side of it.
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1. Introduction

Let us consider the family of quadratic polynomials of the form

fc(z) = z2 + c.

We define the filled-in Julia set Kc as the set of all points that do not escape to infinity
under iteration of fc. The Julia set Jc is defined as the boundary of Kc, i.e.

Jc = ∂Kc = ∂{z ∈ C : fn
c (z) � ∞}.

The Mandelbrot set M is the set of all parameters c for which the Julia set Jc is
connected, or, equivalently,

M = {c ∈ C : fn
c (0) � ∞}.

We are interested in the function c �→ d(c), where d(c) = HD(Jc) denotes the Hausdorff
dimension of the Julia set Jc.

Recall that a polynomial f : C → C (or more generally a rational function) is called
hyperbolic (expanding) if there exists n ∈ N such that for all z ∈ J(f), |(fn)′(z)| > 1.

The function d is real-analytic on each hyperbolic component of IntM (consisting of
parameters related to hyperbolic maps) as well as on the exterior of M (see [12]). In
particular, d is real-analytic on M0 and M1/2 (see the definitions below).
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Figure 1. The Hausdorff dimension of Jc.

The component M0 (the largest component of IntM, bounded by the so-called main
cardioid) consists of all parameters c for which the polynomial fc has an attracting fixed
point. Note that M0 ∩ R = (−3/4, 1/4), and the polynomial f1/4 has a parabolic fixed
point with one petal: f ′

1/4(1/2) = 1.
The component M1/2 (called the 1/2 bulb) consists of all parameters for which fc has

a minimal period 2 attracting periodic orbit. We have M1/2 ∩R = (−5/4,−3/4), and the
parameter c = −3/4 is a common point of the closures of M0 and M1/2. The polynomial
f−3/4 has a parabolic fixed point with two petals: f ′

−3/4(−1/2) = −1.
Let us consider c ∈ R. Bodart and Zinsmeister proved that the Hausdorff dimension

is continuous when the parameter tends to 1/4 from the left (see [1]). It follows from [9]
that the function d|R is continuous on the interval (cfeig, 1/4], where cfeig ≈ −1.401 is the
Feigenbaum parameter (in particular, d|R is continuous on [−5/4, 1/4] = (M1/2 ∪ M0)∩
R). Note that d|R is not right-continuous at 1/4, i.e. when c approaches 1/4 from outside
of the Mandelbrot set (see [2]).

In [4] Havard and Zinsmeister studied more precisely the behaviour of d on the left
side of 1/4. They proved the following theorem.

Theorem HZ. There exist c1 < 1/4 and K > 1 such that for every c ∈ (c1, 1/4),

1
K

(
1
4

− c

)d(1/4)−3/2

� d′(c) � K

(
1
4

− c

)d(1/4)−3/2

.

We know from [3] that d(1/4) < 3/2. Thus, d′(c) → +∞ when c → 1/4−.
In § 7 we present a strategy for the proof of Theorem HZ. It can help the reader to

understand results from §§ 8 and 9, which we need to prove the following theorem.

Theorem 1.1. There exists c1 < 1/4 such that

d′′(c) > 0,

where c ∈ (c1, 1/4) (i.e. d is a convex function on the interval (c1, 1/4)). Moreover,
d′′(c) → ∞ when c → 1/4−.
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A motivation is the expectation that d′(c) looks similar to the estimating function
(1/4 − c)d(1/4)−3/2, whose derivative is positive. Theorem 1.1 is a step towards this.

It seems also plausible that the function d is convex on the interval [−3/4, 1/4] (see
Figure 1, which was made with the use of McMullen’s program [8]). But until now it was
only known that d was convex on a neighbourhood of 0 (see [12]); moreover,

d(c) = 1 +
1

4 log 2
|c|2 + higher-order terms.

If c decreases to the left endpoint of [−3/4, 1/4], then the derivative d′(c) tends to −∞
(see [6]). So presumably the function d is convex to the right of −3/4, but this cannot
be proven in exactly the same way as Theorem 1.1.

Moreover, d′(c) → −∞ when c → −3/4− (see [7]). So this leads to the conjecture that
d is concave on the left side of −3/4. Of course, this result also means that d cannot be
convex on the interval [−5/4,−3/4].

2. Thermodynamical formalism

We shall repeat after [6, § 2] the basic notions.
If c ∈ M, then there exists the function Φc : C \ D → C \Kc (called the Böttcher coor-

dinate), which is holomorphic, bijective, tangent to identity at infinity, and conjugating
T (s) = s2 to fc (i.e. Φc ◦ T = fc ◦ Φc). For c ∈ M0 ∪ {1/4} the Julia set Jc is a Jordan
curve, and thus the function Φc : C \ D → C \ Kc has homeomorphic extension to ∂D

(Carathéodory’s theorem), and Φc conjugates T |∂D to fc|Jc .
The map (c, s) �→ Φc(s) gives a holomorphic motion for c ∈ M0 (see [5]). Thus, the

functions Φc are quasi-conformal, and then also Hölder continuous, whereas c �→ Φc(s)
are holomorphic for every s ∈ C \ D (in particular, for s ∈ ∂D).

Now we use the thermodynamical formalism, which holds for hyperbolic rational maps.
We will consider only such maps. Let X = ∂D, T (s) = s2, and let ϕ : X → R be a
potential function of the form ϕ = −t log |2Φc| for c ∈ (−3/4, 1/4), t ∈ R. Note that
2Φc(s) = f ′

c(z), where z = Φc(s).
The topological pressure can be defined as

P (T, ϕ) := lim
n→∞

1
n

log
∑

x̄∈T −n(x)

eSn(ϕ(x̄)),

where Sn(ϕ) =
∑n−1

k=0 ϕ ◦ T k, and the limit exists and does not depend on x ∈ ∂D. If
ϕ = −t log |2Φc| and Φc(x̄) = z̄, then eSn(ϕ(x)) = |(fn

c )′(z̄)|−t, and hence

P (T, −t log |2Φc|) = lim
n→∞

1
n

log
∑

z̄∈f−n
c (z)

|(fn
c )′(z̄)|−t.

The function t �→ P (T, −t log |2Φc|) is strictly decreasing from +∞ to −∞. So, there
exists a unique t0 such that P (T, −t0 log |2Φc|) = 0. By Bowen’s theorem (see [10,
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Corollary 9.1.7] or [13, Theorem 5.12]) we obtain

t0 = HD(Jc).

Thus, we have P (T, −d(c) log |2Φc|) = 0. Write ϕc := −d(c) log |2Φc|.
The Ruelle operator, or the transfer operator, Lϕ : C0(X) → C0(X) is defined as

Lϕ(u)(x) :=
∑

x̄∈T −1(x)

u(x̄)eϕ(x̄). (2.1)

The Perron–Frobenius–Ruelle theorem [13, Theorem 4.1] asserts that β = eP (T,ϕ) is a
single eigenvalue of Lϕ associated with an eigenfunction h̃ϕ > 0. Moreover, there exists
a unique probability measure ω̃ϕ such that L∗

ϕ(ω̃ϕ) = βω̃ϕ, where L∗
ϕ is dual to Lϕ.

For ϕ = ϕc we have β = 1, and then μ̃ϕc := h̃ϕc ω̃ϕc
is a T -invariant measure called an

equilibrium state (we assume that this measure is normalized). We denote by ω̃c and μ̃c

the measures ω̃ϕc and μ̃ϕc , respectively (measures supported on the unit circle). Next,
we take μc := (Φc)∗μ̃c and ωc := (Φc)∗ω̃c (measures supported on Jc).

So, the measure μc is fc-invariant, whereas ωc is called an fc-conformal measure with
exponent d(c), i.e. ωc is a Borel probability measure such that, for every Borel subset
A ⊂ Jc,

ωc(fc(A)) =
∫

A

|f ′
c|d(c) dωc, (2.2)

provided that fc is injective on A.

3. Variations of the Hausdorff dimension

Let μ be an ergodic fc-invariant probability measure on Jc, where c ∈ M0 (so, c is a
hyperbolic parameter). Then denote by hμ(fc) the measure-theoretic entropy of fc with
respect to μ, and let χμ(fc) be the Lyapunov characteristic exponent, i.e.

χμ(fc) =
∫

Jc

log |f ′
c| dμ.

The Hausdorff dimension of any probability measure ν on Jc is defined as

HD(ν) := inf{HD(Y ) : ν(Y ) = 1}.

It follows from [10, Theorem 11.4.1] that, due to hyperbolicity,

HD(μ) =
hμ(fc)
χμ(fc)

. (3.1)

Obviously, HD(μ) � HD(Jc) = d(c). Note that the equality holds for the equilibrium
state μc.

Let us fix c0 ∈ M0 and let c ∈ M0. We have μ̃c0 := (Φ−1
c0

)∗μc0 , and next we take

μc
c0

:= (Φc)∗μ̃c0 = (Φc ◦ Φ−1
c0

)∗μc0 .
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So, this is the measure μc0 transported to changing Jc. Because Φc ◦ Φ−1
c0

conjugates fc0

to fc, we conclude that μc
c0

is fc-invariant. Moreover,

hμc
c0

(fc) = hμc0
(fc0).

By (3.1) we have

HD(μc
c0

) =
hμc

c0
(fc)

χμc
c0

(fc)
. (3.2)

So, we see that the numerator does not depend on c. Note that the equality d(c0) =
HD(μc

c0
) holds for c = c0 (i.e. for the unique equilibrium state μc0 = μc0

c0
).

Next, the denominator can be rewritten as

χμc
c0

(fc) =
∫

Jc

log |f ′
c| dμc

c0
=

∫
∂D

log |2Φc| dμ̃c0 .

Since c �→ Φc(s) is a holomorphic function for every s ∈ ∂D, we conclude that c �→
log |Φc(s)| and

c �→
∫

∂D

log |2Φc(s)| dμ̃c0(s) = χμc
c0

(fc)

are harmonic functions on M0. Thus, we see from (3.2) that c �→ HD(μc
c0

) is an ana-
lytic (and subharmonic) function. Note that the subharmonicity of HD(μc

c0
) implies the

subharmonicity of d(c) (see [11, Chapter 6.5]).
Now we will assume that c, c0 ∈ M0 ∩ R = (−3/4, 1/4). Because c is a hyperbolic

parameter, for every i ∈ N we have

∂i

∂ci
χμc

c0
(fc) =

∂i

∂ci

∫
∂D

log |2Φc| dμ̃c0 =
∫

∂D

∂i

∂ci
log |2Φc| dμ̃c0 . (3.3)

Next, using the fact that d(c) � HD(μc
c0

), where the equality holds for c = c0, we
obtain

d′(c0) =
∂

∂c
HD(μc

c0
)
∣∣∣∣
c=c0

and d′′(c0) � ∂2

∂c2 HD(μc
c0

)
∣∣∣∣
c=c0

. (3.4)

Thus, in order to prove Theorem 1.1, it is enough to estimate (∂2/∂c2) HD(μc
c0

).
Differentiating both sides of (3.2) we obtain

∂

∂c
HD(μc

c0
) = −hμc0

(fc0)
(∂/∂c)χμc

c0
(fc)

(χμc
c0

(fc))2
= − HD(μc

c0
)
(∂/∂c)χμc

c0
(fc)

χμc
c0

(fc)
, (3.5)

and then

∂2

∂c2 HD(μc
c0

) = −hμc0
(fc0)

(∂2/∂c2)χμc
c0

(fc)

(χμc
c0

(fc))2
+ 2hμc0

(fc0)
((∂/∂c)χμc

c0
(fc))2

(χμc
c0

(fc))3

= − HD(μc
c0

)
(∂2/∂c2)χμc

c0
(fc)

χμc
c0

(fc)
+ 2 HD(μc

c0
)
( (∂/∂c)χμc

c0
(fc)

χμc
c0

(fc)

)2

. (3.6)

Thus, (3.5) combined with (3.3) and (3.4) leads to the following proposition.
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Proposition 3.1 (Havard and Zinsmeister [4, Proposition 2.1]). If c0 ∈
(−3/4, 1/4), then

d′(c0) =
−d(c0)∫

∂D
log |2Φc0 | dμ̃c0

∫
∂D

∂

∂c
log |2Φc|

∣∣∣∣
c=c0

dμ̃c0 .

Next, (3.6) combined with (3.3) and (3.4) gives us the following lemma.

Lemma 3.2. If c0 ∈ (−3/4, 1/4), then

d′′(c0) � 2d(c0)
( (∂/∂c)χμc

c0
(fc)|c=c0

χμc0
(fc0)

)2

− d(c0)
χμc0

(fc0)

∫
∂D

∂2

∂c2 log |2Φc|
∣∣∣∣
c=c0

dμ̃c0 .

If c ∈ (−3/4, 1/4), then the Lyapunov exponent χμc(fc) is positive. In fact, we know
from [4, §§ 3.2 and 3.3] that

lim
c→1/4−

χμc
(fc) = lim

c→1/4−

∫
∂D

log |2Φc| dμ̃c =
∫

∂D

log |2Φ1/4| dμ̃1/4 > 0. (3.7)

Therefore, Theorem 1.1 follows from Lemma 3.2 and the following lemma.

Lemma 3.3. There exists c1 < 1/4 such that
∫

∂D

∂2

∂c2 log |2Φc|
∣∣∣∣
c=c0

dμ̃c0 < 0,

where c0 ∈ (c1, 1/4). Moreover, the above integral tends to −∞ when c0 → 1/4−.

The rest of the paper is devoted to proving Lemma 3.3.

4. Cylinders

Now we define a partition of ∂D \ {1} onto cylinders Cn. Let

C+
n := {e2πα : α ∈ (2−n−1, 2−n]},

where n � 1. The sets C+
n form a partition of the upper half-circle. Write C−

n := C+
n ;

then
Cn := C+

n ∪ C−
n .

We see that
⋃

n�1 Cn = ∂D \ {1}.
We will respectively denote by ζc and zc the attracting and repelling fixed points, i.e.

ζc =
1 −

√
1 − 4c

2
, zc =

1 +
√

1 − 4c

2
,

where c ∈ (−3/4, 1/4). So, we see that ζc � 1/2 � zc and for c = 1/4 the points ζc, zc

become the parabolic point 1/2.
Since Φc(1) = zc, the function Φc allows us to define a corresponding partition of

Jc \ {zc} onto cylinders Cn(c).
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The set of points that are ‘near’ the fixed point zc is defined as

MN (c) :=
⋃

n>N

Cn(c) =
⋃

n>N

Cn(c) ∪ {zc},

where N ∈ N. Write
BN (c) := Jc \ MN (c).

Hence, BN (c) is the set of points that are ‘far’ from zc. Related subsets of ∂D will be
denoted by MN and BN .

Now we give a few basic facts that we will need in the next section.

Lemma 4.1 (Jaksztas [6, Lemma A.1]). For every c ∈ [−3/4, 1/4] we have

B̄(0, 1/2) ⊂ Kc.

Moreover, if c ∈ (−3/4, 1/4), then B̄(0, 1/2) ∩ Jc = ∅, whereas for c ∈ {−3/4, 1/4} we
have B̄(0, 1/2) ∩ Jc = {−1/2, 1/2}.

Lemma 4.2.

(1) For every ε1 > 0 there exist N1 ∈ N and c1 < 1/4 such that if c ∈ (c1, 1/4], then

MN1(c) ⊂ B(1/2, ε1).

(2) For every N ∈ N there exists ε2 > 0 such that if c ∈ [0, 1/4], then

BN (c) ∩ B(1/2, ε2) = ∅.

Proof. The Julia set J1/4 is a Jordan curve, so the function Φ1/4 has homeomorphic
extension to ∂D (Carathéodory’s theorem). Since Φ1/4(1) = 1/2, the statements hold for
c = 1/4.

Next, because of the uniform convergence of Φc to Φ1/4 (see [4, § 3.2.]), the statements
also hold for c ∈ [c1, 1/4] for some c1 < 1/4.

Finally, since the Julia sets for c ∈ [0, c1] are uniformly separated from B̄(0, 1/2) (see
Lemma 4.1), the second statement follows. �

Lemma 4.3. There exists K > 0 such that, for every n � 1 and c ∈ [0, 1/4],

diam Cn(c) � K dist(Cn(c), [0, 1/2]).

Moreover, we can assume that the constant K is arbitrarily small if c � 1/4 is sufficiently
close to 1/4, and n > N for N large enough.

Proof. We see from Lemma 4.1 and Lemma 4.2 (2) that for every N ∈ N and c1 < 1/4
the Julia set Jc (for c ∈ [0, c1]) and the sets BN (c) (for c ∈ [0, 1/2]) are separated
from B̄(0, 1/2). Since diameters of cylinders are bounded, the assertion obviously follows
(possibly the constant K depends on c1 and N).
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Now we can assume that z ∈ MN , where N is large enough, and c is close to 1/4.
Thus, if z ∈ Cn(c) (n > N), then it follows from Lemma 4.2 (1) that f ′

c(z) is close to 1. So
diam Cn+1(c)/diam Cn(c) is also close to 1, and the statement follows from the fact that
cylinders Cn(c) ‘tend’ to the fixed point zc � 1/2 along the repelling direction (i.e. along
the ray (zc,∞)). �

We end this section with important results from [4].

Proposition 4.4 (Havard and Zinsmeister [4, Proposition 3.2]). There exist
c1 < 1/4 and K > 0 such that, for every c ∈ (c1, 1/4] and every sequence zn ∈ Cn(c),∑

n�1

|Im zn| � K.

If zn ∈ Cn(c), then, for large n, |arg zn| is close to 2|Im zn|. Thus, convergence of the
above series leads to the following corollary.

Corollary 4.5. For every ε > 0 there exist c1 < 1/4 and N ∈ N such that

|arg(fk
c )′(z)| � ε,

where z ∈ CN+n(c), 1 � k � n and c ∈ (c1, 1/4].

Lemma 4.6 (Havard and Zinsmeister [4, §4]). There exists c1 < 1/4 and for
every N ∈ N there is a constant λ(N) > 0 such that if z ∈ Jc and c ∈ (c1, 1/4], then

fn
c (z) ∈ BN (c) =⇒ 1

|(fn
c )′(z)| � λ(N)

n2 .

5. Partition of BN

For every N, N0 ∈ N we define a family of sets {AN0
N,n}n�0, which forms a partition of

BN (cf. [4, Proof of Proposition 4.1] and [6, § 12]). Let

AN0
N,n = T−N0(CN+n) ∩ BN for n � 1

and

AN0
N,0 = T−N0(BN ) ∩ BN .

The sets AN0
N,n(c) are defined as the images of AN0

N,n under Φc.
Let us recall from [4, § 3.3] (cf. [6, Lemma 7.1]) that there exists λ > 1 such that, for

every n � 1,

λ−1
∞∑

k=n

ω̃c(Ck) � μ̃c(Cn) � λ

∞∑
k=n

ω̃c(Ck), (5.1)

and also [4, § 4] (cf. [6, Lemma 7.3])

dμ̃c

dω̃c

∣∣∣∣
BN

� λ(N), (5.2)

where c < 1/4 is close to 1/4 and λ(N) depends on N .
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Now we will give two estimates of μ̃c(AN0
N,n). First, in Lemma 5.1, is a stronger version

of the estimate from [4, proof of Proposition 4.1].

Lemma 5.1. There exist K > 0 and c1 < 1/4 such that for every N ∈ N, N0, n � 1
and c ∈ (c1, 1/4] we have

μ̃c(AN0
N,n) � KN0ω̃c(CN+n).

Proof. The preimage of Cn(c) under fc consists of Cn+1(c) and the set C ′
n+1(c), which

is placed symmetrically to Cn+1(c) with respect to 0.
Since C ′

n(c) ⊂ B0(c), (5.2) gives us

μc(C ′
n(c)) � λ(0)ωc(C ′

n(c)).

By the uniqueness of ωc we get ωc(C ′
n(c)) = ωc(Cn(c)). Thus, the fact that μc is

fc-invariant leads to
μc(f−k

c (C ′
n(c))) � λ(0)ωc(Cn(c)). (5.3)

The set f−N0
c (CN+n(c)) can be written as

f−N0
c (CN+n(c)) = CN+n+N0(c) ∪

N0⋃
k=1

fk−N0
c (C ′

N+n+k(c)).

Thus, the above combined with (5.3) leads to

μ̃c(AN0
N,n) = μc(f−N0

c (CN+n(c)) ∩ BN (c)) �
N0∑
k=1

μc(fk−N0
c (C ′

N+n+k(c)))

� λ(0)
N0∑
k=1

ωc(CN+n+k(c))

� λ(0)N0ωc(CN+n(c)),

and the lemma follows. �

Lemma 5.2. For every ε > 0 there exist ñ ∈ N, c1 < 1/4 such that

ω̃c(Cn) � εμ̃c(Cn),

where n > ñ and c ∈ (c1, 1/4].

Proof. Using Lemma 4.2 (1) we can assume that f ′
c is as close to 1 as necessary on

the set MN (c), where N is large enough and c < 1/4 close to 1/4. Thus, it follows from
(2.2) that ωc(Cn+1(c))/ωc(Cn(c)) is close to 1, and the assertion follows from (5.1). �

Lemmas 5.1 and 5.2 lead to the following corollary.

Corollary 5.3. For every N0 ∈ N and ε > 0 there exist ñ ∈ N, c1 < 1/4 such that

μ̃c(AN0
N,n) � εμ̃c(CN+n),

where N + n > ñ and c ∈ (c1, 1/4].
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Let f−k
c,ν be an inverse branch of fk

c defined on C \ (−∞, 1/2], where k ∈ N. Since the
trajectory of the critical point 0 is included in the interval [0, ζc) ⊂ [0, 1/2], Lemma 4.3
and the Koebe distortion theorem lead to the following lemma.

Lemma 5.4. There exists K > 0 such that for every c ∈ [0, 1/4], n � 1, x, y ∈ Cn(c),
and an inverse branch f−k

c,ν , we have

K−1 <

∣∣∣∣ (f
−k
c,ν )′(x)

(f−k
c,ν )′(y)

∣∣∣∣ < K.

Lemma 5.5. There exists K > 0 such that for every c ∈ [0, 1/4], n � 1, and an inverse
branch f−k

c,ν , where k ∈ N, if x, y ∈ B = f−k
c,ν (Cn(c)), then

K−1 <
dμc

dωc
(x)

/
dμc

dωc
(y) < K.

Proof. The density dμc/dωc is the limit of Ln
ϕc

(1) (see [13, Theorem 4.1]), where
ϕc = −d(c) log |2Φc|. Since 2Φc = f ′

c(Φc), (2.1) leads to

Ln
ϕc

(1)(s) :=
∑

s̄∈T −n(s)

|(fn
c )′(Φc(s̄))|−d(c).

Thus, the assertion follows from Lemma 5.4. �

Lemma 5.6. There exists K > 0 such that for every c ∈ [0, 1/4], m � 1, an inverse
branch f−k

c,ν , and a continuous function F : Cm(c) → R
+, we have

K−1 �
(

1
μc(B)

∫
B

F (T k) dμc

)/(
1

μc(Cm(c))

∫
Cm(c)

F dμc

)
� K,

where B = f−k
c,ν (Cm(c)). Moreover, the statement remains valid if we replace B by

AN0
N,n(c), which is a union of images of Cm(c) under f−k

c,ν , where m = N + n and k = N0.

Proof. Let C ⊂ Cm(c) and let A = f−k
c,ν (C) (i.e. A ⊂ B). Because ωc is a conformal

measure (see (2.2)), Lemma 5.4 leads to

K−1
1 � ω̃c(A)

ω̃c(B)

/
ω̃c(C)

ω̃c(Cm)
� K1,

Next, Lemma 5.5 gives us

K−1
2 � μ̃c(A)

μ̃c(B)

/
μ̃c(C)

μ̃c(Cm)
� K2,

and the lemma follows. �
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6. The functions Φ̇c and Φ̈c

Let Φc = u + iv, and let Φ̇c := (∂/∂c)Φc, Φ̈c := (∂2/∂c2)Φc. Then we have

∂

∂c
log |2Φc| =

uu̇ + vv̇

u2 + v2 = Re
(

Φ̇c

Φc

)
. (6.1)

Moreover, the key expression whose integrals are to be estimated (see Lemma 3.3) can
be rewritten as

∂2

∂c2 log |2Φc| =
(uü + vv̈ + u̇u̇ + v̇v̇)(u2 + v2) − 2(uu̇ + vv̇)2

(u2 + v2)2

=
uü + vv̈

u2 + v2 −
(

uu̇ + vv̇

u2 + v2

)2

+
(

uv̇ − vu̇

u2 + v2

)2

= Re
(

Φ̈c

Φc

)
− Re2

(
Φ̇c

Φc

)
+ Im2

(
Φ̇c

Φc

)

= Re
(

Φ̈c

Φc

)
− Re

(
Φ̇c

Φc

)2

. (6.2)

Now we will deal with Φ̇c and Φ̈c. The function Φc conjugates T (s) = s2 to fc(z) =
z2 + c, so

Φc(s2) = Φ2
c(s) + c.

Differentiating both sides with respect to c, we have

Φ̇c(s2) = 2Φc(s)Φ̇c(s) + 1, (6.3)

and therefore
Φ̇c(s) = − 1

2Φc(s)
+

1
2Φc(s)

Φ̇c(s2).

Next, replacing s by s2, s4, . . . , s2m−1
, we obtain

Φ̇c(s) = −
m−1∑
k=0

1
2Φc(s) · 2Φc(s2) · · · · · 2Φc(s2k)

+
1

2Φc(s) · 2Φc(s2) · · · · · 2Φc(s2m−1)
Φ̇c(s2m

).

We have f ′
c(z) = 2z, and then 2Φc(s) = f ′

c(Φc(s)). Thus,

Φ̇c(s) = −
m∑

k=1

1
(fk

c )′(Φc(s))
+

1
(fm

c )′(Φc(s))
Φ̇c(Tm(s)). (6.4)

Let N ∈ N. If s ∈ CN+n, then define

Ψ̇N,c(s) := −
n∑

k=1

1
(fk

c )′(Φc(s))
. (6.5)
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Differentiating (6.3), we get

Φ̈c(s2) = 2Φ̇2
c(s) + 2Φc(s)Φ̈c(s).

Thus,

Φ̈c(s) = −2Φ̇2
c(s)

2Φc(s)
+

1
2Φc(s)

Φ̈c(s2).

Similarly to before we obtain

Φ̈c(s) = −
m∑

k=1

2Φ̇2
c(T

k−1(s))
(fk

c )′(Φc(s))
+

1
(fm

c )′(Φc(s))
Φ̈c(Tm(s)). (6.6)

If N ∈ N and s ∈ CN+n, then we define

Θ̈N,c(s) := −
n∑

k=1

2Φ̇2
c(T

k−1(s))
(fk

c )′(Φc(s))

and

ÄN,c(s) := −
n∑

k=1

2Ψ̇2
N,c(T

k−1(s))
(fk

c )′(Φc(s))
. (6.7)

7. Comments and Theorem HZ

From (6.2) we have

∫
∂D

∂2

∂c2 log |2Φc| dμ̃c =
∫

∂D

Re
(

Φ̈c

Φc

)
dμ̃c −

∫
∂D

Re
(

Φ̇c

Φc

)2

dμ̃c. (7.1)

Thus, in order to prove Lemma 3.3 (and consequently Theorem 1.1), it is enough to show
that ∫

∂D

Re
(

Φ̇c

Φc

)2

dμ̃c → ∞ and
∫

∂D

Re
(

Φ̈c

Φc

)
dμ̃c → −∞, (7.2)

where c → 1/4−. Sections 8 and 9 are devoted to proving these two facts (see Proposi-
tions 8.1 and 9.1).

Note that the right-hand side integral of (7.2) diverges faster, and therefore it has a
decisive influence on (7.1). But it is convenient to prove divergence of both the integrals.

The schemes of these two proofs, and some ideas, are very similar to that of the proof
that ∫

∂D

Re
(

Φ̇c

Φc

)
dμ̃c → −∞. (7.3)

This is the main ingredient in the proof of Theorem HZ (i.e. [4, Theorem 1.1]). Although,
in order to obtain Theorem HZ, the following more precise result is needed.
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Proposition 7.1. For every N ∈ N there exist K > 1 and c1 < 1/4 such that

−K

(
1
4

− c

)d(1/4)−3/2

�
∫

∂D

Re
(

Φ̇c

Φc

)
dμ̃c � − 1

K

(
1
4

− c

)d(1/4)−3/2

.

Indeed, we know that d(1/4) < 3/2, and thus the integral tends to −∞, and Theorem
HZ is a consequence of the formula from Proposition 3.1 and (3.7).

The rest of this section is devoted to a presentation of the scheme of the proof of
Proposition 7.1.

We will need three lemmas. Note that Proposition 8.1 as well as Proposition 9.1 will
be obtained in a similar way as a consequence of related lemmas. Moreover, we will use
some ideas from the proofs of Lemmas 7.3 and 7.4 (especially Lemma 7.3), and we will
draw a conclusion from Lemma 7.2.

Let us divide ∂D into two sets, BN and MN .

Lemma 7.2. For every N ∈ N there exist K > 1 and c1 < 1/4 such that

1
K

(
1
4

− c

)d(1/4)−3/2

�
∫

MN

|Ψ̇N,c| dμ̃c � K

(
1
4

− c

)d(1/4)−3/2

.

In particular, limc→1/4−
∫

MN
|Ψ̇N,c| dμ̃c = ∞.

Lemma 7.3. There exists c1 < 1/4 such that for every N ∈ N there is a constant
λ(N) > 0 such that ∫

BN

|Φ̇c| dμ̃c � λ(N),

provided that c ∈ (c1, 1/4).

Lemma 7.4. There exists c1 < 1/4 such that for every N ∈ N there is a constant
λ(N) > 0 such that ∫

MN

|Φ̇c − Ψ̇N,c| dμ̃c � λ(N),

provided that c ∈ (c1, 1/4).

By using Corollary 4.5, we can assume that Ψ̇N,c is close to −|Ψ̇N,c| on the set MN

(where N is large enough). So, the above lemmas and the fact that the function Φc is
separated from zero on BN , whereas Φc is close to 1/2 on MN , lead to

∫
∂D

Re
(

Φ̇c

Φc

)
dμ̃c �

∫
MN

Re
(

Φ̇c

Φc

)
dμ̃c �

∫
MN

Re
(

Ψ̇N,c

Φc

)
dμ̃c � −

∫
MN

|Ψ̇N,c| dμ̃c.

Thus, Proposition 7.1 follows, and we see that the integral of −|Ψ̇N,c| over MN has a
decisive influence on

∫
∂D

Re(Φ̇c/Φc) dμ̃c.
We will not prove Lemma 7.2. But let us note that the proof relies on estimates of

diameters of cylinders Cn(c). Indeed, if z ∈ Cn(c), then 1/(fk
c )′(z) can be estimated by

diam Cn(c)/diam Cn−k(c), whereas μ̃c(Cn) can be estimated by (diam Cn(c))d(c).
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Proof of Lemma 7.3. Let us fix N ∈ N. For every N0 � 1 and s ∈ AN0
N,n, using (6.4),

we can get

Φ̇c(s) = −
N0+n∑
k=1

1
(fk

c )′(Φc(s))
+

1
(fN0+n

c )′(Φc(s))
Φ̇c(TN0+n(s)).

So, we have divided Φ̇c into two parts, the finite sum and the ‘tail’.
First, in Step 1, we will prove that the integral of the ‘tail’ is less than 1

2

∫
BN

|Φ̇c| dμ̃c

(for N0 large enough, depending on N). Next, in Step 2, we will see that the integral
of the finite sum is bounded by a constant K(N, N0) (depending on N and N0), which
means that ∫

BN

|Φ̇c| dμ̃c � K(N, N0) + 1
2

∫
BN

|Φ̇c| dμ̃c.

Since N0 depends only on N , the assertion follows.

Step 1. The measure μ̃c is T -invariant, and TN0+n(AN0
N,n) ⊂ BN , so

∫
A

N0
N,n

|Φ̇c(TN0+n)| dμ̃c �
∫

BN

|Φ̇c| dμ̃c.

Next, if s ∈ AN0
N,n, then fN0+n

c (Φc(s)) ∈ BN (c). Thus, Lemma 4.6 leads to
∫

A
N0
N,n

∣∣∣∣ Φ̇c(TN0+n(s))
(fN0+n

c )′(Φc(s))

∣∣∣∣ dμ̃c(s) � λ1(N)
(N0 + n)2

∫
BN

|Φ̇c(s)| dμ̃c(s).

So, we get
∞∑

n=0

∫
A

N0
N,n

∣∣∣∣ Φ̇c(TN0+n)
(fN0+n

c )′(Φc)

∣∣∣∣ dμ̃c �
( ∞∑

n=0

λ1(N)
(N0 + n)2

) ∫
BN

|Φ̇c| dμ̃c.

For N0 large enough (depending on N), we obtain
∞∑

n=0

λ1(N)
(N0 + n)2

< 1
2 .

Step 2. Lemma 5.1 and [4, Remark 3.5] lead to

μ̃c(AN0
N,n) � K1N0ω̃c(CN+n) � K2N0(diamCN+n(c))d(c) � K3N0(N + n)−2d(c),

where n > 1. Since |f ′
c(z)| > 1, we obtain

∫
A

N0
N,0

∣∣∣∣
N0∑
k=1

1
(fk

c )′(Φc(s))

∣∣∣∣ dμ̃c +
∞∑

n=1

∫
A

N0
N,n

∣∣∣∣
N0+n∑
k=1

1
(fk

c )′(Φc(s))

∣∣∣∣ dμ̃c

� N0μ̃c(AN0
N,0) +

∞∑
n=1

(N0 + n)K3N0(N + n)−2d(c)

� K(N, N0),

where the constant K(N, N0) depends on N and N0. �
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Proof of Lemma 7.4. The definition of Ψ̇N,c and (6.4) give us

∫
CN+n

|Φ̇c − Ψ̇N,c| dμ̃c =
∫

CN+n

∣∣∣∣ 1
(fn

c )′(Φc)
Φ̇c(Tn)

∣∣∣∣ dμ̃c.

Thus, similar to in the proof of Lemma 7.3 (Step 1), Lemma 4.6 and the fact that
Tn(CN+n) ⊂ BN lead to

∞∑
n=1

∫
CN+n

|Φ̇c − Ψ̇N,c| dμ̃c =
∞∑

n=1

λ(N)
n2

∫
BN

|Φ̇c| dμ̃c.

Since
∑∞

n=1 λ(N)/n2 is finite, the assertion follows from Lemma 7.3. �

8. The integral of Re(Φ̇c/Φc)2 is positive

Proposition 8.1. There exists c1 < 1/4 such that

∫
∂D

Re
(

Φ̇c

Φc

)2

dμ̃c > 0,

provided that c ∈ (c1, 1/4). Moreover,

∫
∂D

Re
(

Φ̇c

Φc

)2

dμ̃c → ∞

when c → 1/4−.

In order to prove Proposition 8.1 we will need the three following lemmas.

Lemma 8.2. For every N ∈ N we have

lim
c→1/4−

∫
MN

|Ψ̇N,c|2 dμ̃c = ∞.

Lemma 8.3. For every N ∈ N we have

lim
c→1/4−

∫
BN

|Φ̇c|2 dμ̃c∫
MN

|Ψ̇N,c|2 dμ̃c

= 0.

Lemma 8.4. For every N ∈ N we have

lim
c→1/4−

∫
MN

|Φ̇2
c − Ψ̇2

N,c| dμ̃c∫
MN

|Ψ̇N,c|2 dμ̃c

= 0.

Now, using the above lemmas, we will prove Proposition 8.1.
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Proof of Proposition 8.1. Let us fix N ∈ N (large enough) and c1 < 1/4 (close
to 1/4).

We see from Corollary 4.5 and (6.5) that Ψ̇2
N,c(s) is close to |Ψ̇N,c(s)|2, where s ∈

MN and c ∈ (c1, 1/4). Because we can also assume that Φc(s) is close to 1/2 (see
Lemma 4.2 (1)), we conclude that

∫
MN

|Ψ̇N,c|2 dμ̃c � 1
3

∫
MN

Re
(

Ψ̇N,c

Φc

)2

dμ̃c.

Next, Lemma 8.4 allows us to replace Ψ̇N,c by Φ̇c on the right-hand side of the above
inequality (possibly after changing constant). So, we get

∫
MN

|Ψ̇N,c|2 dμ̃c � 1
2

∫
MN

Re
(

Φ̇c

Φc

)2

dμ̃c.

We know that the function Φc is separated from zero. Thus, Lemma 8.3 leads to
∫

MN

|Ψ̇N,c|2 dμ̃c �
∫

∂D

Re
(

Φ̇c

Φc

)2

dμ̃c,

and the statement follows from Lemma 8.2. �

So, we see that the integral of |Ψ̇N,c|2, over MN , has a decisive influence on∫
∂D

Re(Φ̇c/Φc)2 dμ̃c (cf. scheme of the proof of Proposition 7.1).
The main difference between the proofs of Proposition 8.1 and (7.3) (or Proposition 7.1)

is that we do not know if the integrals∫
BN

|Φ̇c|2 dμ̃c,

∫
MN

|Φ̇2
c − Ψ̇2

N,c| dμ̃c

are bounded or not (cf. Lemmas 7.3 and 7.4). So we will prove that these integrals are
small with respect to

∫
MN

|Ψ̇N,c|2 dμ̃c.
Now we will prove Lemmas 8.2 and 8.3, and Lemma 8.5, which is a stronger version

of Lemma 8.4.

Proof of Lemma 8.2. Since μ̃c is a probability measure, the assertion follows from
Lemma 7.2. �

Proof of Lemma 8.3. Let us fix N ∈ N and ε > 0. For every N0 � 1 and s ∈ AN0
N,n

we can write

|Φ̇c(s)|2 =
∣∣∣∣−

N0∑
k=1

1
(fk

c )′(Φc(s))
−

N0+n∑
k=N0+1

1
(fk

c )′(Φc(s))
+

Φ̇c(TN0+n(s))
(fN0+n

c )′(Φc(s))

∣∣∣∣
2

� 3
∣∣∣∣

N0∑
k=1

1
(fk

c )′(Φc(s))

∣∣∣∣
2

+ 3
∣∣∣∣

N0+n∑
k=N0+1

1
(fk

c )′(Φc(s))

∣∣∣∣
2

+ 3
∣∣∣∣ Φ̇c(TN0+n(s))
(fN0+n

c )′(Φc(s))

∣∣∣∣
2

=: 3A(s) + 3B(s) + 3Ω(s). (8.1)

Note that the sum in B(s) is empty when n = 0.

https://doi.org/10.1017/S0013091516000481 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000481


The Hausdorff dimension is convex on the left side of 1/4 927

First, in the same way as in the proof of Lemma 7.3, we will show that the integral of
the expression Ω(s) (the ‘tail’) is less than

1
6

∫
BN

|Φ̇c|2 dμ̃c

for N0 large enough (see Step 1).
Next, we will estimate the first two expressions (squares of sums) on the right-hand

side of (8.1). In the proof of Lemma 7.3 related sums were considered together, and each
inverse of a derivative was bounded simply by 1. In our case this estimate is not enough.
Of course the integral of A(s) is bounded (see Step 3), but we would get an infinite upper
bound of the integral of B(s).

Nevertheless, the expression B(s) can be estimated by |Ψ̇N,c(TN0)|2, whereas AN0
N,n ⊂

T−N0(CN+n). Thus, roughly speaking, the integral

∫
A

N0
N,n

B(s) dμ̃c

turns out to be small with respect to

∫
CN+n

|Ψ̇N,c|2 dμ̃c,

because μ̃c(AN0
N,n) � εμ̃c(CN+n) (see Step 2). This is the key fact that we need to complete

the proof (see Step 4).

Step 1. We have TN0+n(AN0
N,n) ⊂ BN , so fN0+n

c (Φc(s)) ∈ BN (c). Therefore,
Lemma 4.6 and the fact that the measure μ̃c is T -invariant give us

∫
A

N0
N,n

∣∣∣∣ Φ̇c(TN0+n(s))
(fN0+n

c )′(Φc(s))

∣∣∣∣
2

dμ̃c(s) � λ1(N)
(N0 + n)4

∫
A

N0
N,n

|Φ̇c(TN0+n(s))|2 dμ̃c(s)

� λ1(N)
(N0 + n)4

∫
BN

|Φ̇c|2 dμ̃c.

Hence, we obtain

∞∑
n=0

∫
A

N0
N,n

∣∣∣∣ Φ̇c(TN0+n)
(fN0+n

c )′(Φc)

∣∣∣∣
2

dμ̃c � λ1(N)
( ∞∑

n=N0

1
n4

) ∫
BN

|Φ̇c|2 dμ̃c.

Thus, for N0 = N0(N) large enough, we have

∞∑
n=0

∫
A

N0
N,n

∣∣∣∣ Φ̇c(TN0+n)
(fN0+n

c )′(Φc)

∣∣∣∣
2

dμ̃c � 1
6

∫
BN

|Φ̇c|2 dμ̃c. (8.2)
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Step 2. The second sum on the right-hand side of (8.1) is non-zero for n � 1. Since
|(fk

c )′(Φc)| � 1, for every ñ � 1 we can get

∞∑
n=1

∫
A

N0
N,n

∣∣∣∣
N0+n∑

k=N0+1

1
(fk

c )′(Φc)

∣∣∣∣
2

dμ̃c

�
ñ∑

n=1

∫
A

N0
N,n

∣∣∣∣
N0+n∑

k=N0+1

1
(fk

c )′(Φc)

∣∣∣∣
2

dμ̃c

+
∞∑

n=ñ+1

∫
A

N0
N,n

∣∣∣∣ 1
(fN0

c )′(Φc)

n∑
k=1

1
(fk

c )′(Φc(TN0))

∣∣∣∣
2

dμ̃c

�
ñ∑

n=1

n2 +
∞∑

n=ñ+1

∫
A

N0
N,n

∣∣∣∣
n∑

k=1

1
(fk

c )′(Φc(TN0))

∣∣∣∣
2

dμ̃c

� ñ3 +
∞∑

n=ñ+1

∫
A

N0
N,n

|Ψ̇N,c(TN0)|2 dμ̃c.

By Lemma 5.6 we have
∫

A
N0
N,n

|Ψ̇N,c(TN0)|2 dμ̃c � K
μ̃c(AN0

N,n)
μ̃c(CN+n)

∫
CN+n

|Ψ̇N,c|2 dμ̃c,

where K > 0 is a universal constant. Next, we see from Corollary 5.3 that

μ̃c(AN0
N,n)

μ̃c(CN+n)
� ε for n > ñ

(where ñ = ñ(N0) is large enough) and c < 1/4 is close to 1/4. Hence, the above estimates
lead to

∞∑
n=1

∫
A

N0
N,n

∣∣∣∣
N0+n∑

k=N0+1

1
(fk

c )′(Φc)

∣∣∣∣
2

dμ̃c � ñ3 + εK

∫
MN+ñ

|Ψ̇N,c|2 dμ̃c. (8.3)

Step 3. The first expression on the right-hand side of (8.1) can be easily estimated as

∫
BN

∣∣∣∣
N0∑
k=1

1
(fk

c )′(Φc)

∣∣∣∣
2

dμ̃c �
∫

BN

|N0|2 dμ̃c � N2
0 . (8.4)

Step 4. Combining (8.1) with (8.2)–(8.4), we see that for every N ∈ N and ε > 0
there exist N0 = N0(N), ñ = ñ(N0) such that

∫
BN

|Φ̇c|2 dμ̃c � 3
(

N2
0 + ñ3 + εK

∫
MN+ñ

|Ψ̇N,c|2 dμ̃c + 1
6

∫
BN

|Φ̇c|2 dμ̃c

)
, (8.5)

where c is close to 1/4. Because∫
MN+ñ

|Ψ̇N,c|2 dμ̃c �
∫

MN+ñ

|Ψ̇N+ñ,c|2 dμ̃c → ∞,
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when c → 1/4− (see Lemma 8.2) we obtain

1
2

∫
BN

|Φ̇c|2 dμ̃c � 4εK

∫
MN+ñ

|Ψ̇N,c|2 dμ̃c � 4εK

∫
MN

|Ψ̇N,c|2 dμ̃c,

where the parameter c < 1/4 is close to 1/4. Since K is a universal constant, the assertion
follows. �

If z ∈ CN+n(c), then we define the function f∗
N,c by setting

f∗
N,c(z) := fn

c (z).

We need to prove Lemma 8.4, but it is an immediate consequence of the following fact,
which will be also used later on.

Lemma 8.5. For every N ∈ N we have

lim
c→1/4−

∫
MN

|(f∗
N,c)

′(Φc)| |Φ̇2
c − Ψ̇2

N,c| dμ̃c∫
MN

|Ψ̇N,c|2 dμ̃c

= 0.

Proof. Let N ∈ N. If s ∈ CN+n, then

(Φ̇c(s))2 − (Ψ̇N,c(s))2 =
(

Ψ̇N,c(s) +
Φ̇c(Tn(s))

(fn
c )′(Φc(s))

)2

− (Ψ̇N,c(s))2

= 2Ψ̇N,c(s)
Φ̇c(Tn(s))

(fn
c )′(Φc(s))

+
(

Φ̇c(Tn(s))
(fn

c )′(Φc(s))

)2

.

Thus, we see that
∫

MN

|(f∗
N,c)

′(Φc)| |Φ̇2
c − Ψ̇2

N,c| dμ̃c

�
∞∑

n=1

∫
CN+n

2|Ψ̇N,cΦ̇c(Tn)| dμ̃c +
∞∑

n=1

∫
CN+n

|Φ̇c(Tn(s))|2
|(fn

c )′(Φc(s))|
dμ̃c. (8.6)

First, we will estimate the rightmost expression. Note that this part of the proof is similar
to the proof of Lemma 7.4 (and estimates of ‘tails’).

Step 1. The measure μ̃c is T -invariant, so the fact that Tn(CN+n) ⊂ BN and
Lemma 4.6 lead to

∞∑
n=1

∫
CN+n

|Φ̇c(Tn)|2
|(fn

c )′(Φc)|
dμ̃c �

∞∑
n=1

λ1(N)
n2

∫
BN

|Φ̇c|2 dμ̃c.

Since the series
∑∞

n=1 1/n2 converges, using Lemma 8.3 we observe that the latter expres-
sion is less than or equal to

K1(N)
∫

BN

|Φ̇c|2 dμ̃c � δN (c)K1(N)
∫

MN

|Ψ̇N,c|2 dμ̃c,

where δN (c) is a positive function such that δN (c) → 0 when c → 1/4−.

https://doi.org/10.1017/S0013091516000481 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000481


930 L. Jaksztas

Step 2. If s ∈ CN+n, then write T ∗(s) := Tn(s). By the Schwarz inequality, we obtain

∞∑
n=1

∫
CN+n

2|Ψ̇N,c · Φ̇c(Tn)| dμ̃c = 2
∫

MN

|Ψ̇N,c · Φ̇c(T ∗)| dμ̃c

� 2
( ∫

MN

|Ψ̇N,c|2 dμ̃c

)1/2( ∫
MN

|Φ̇c(T ∗)|2 dμ̃c

)1/2

.

Now, we need to estimate the integral of |Φ̇c(T ∗)|2. Using Lemma 5.6 and then Lemma 8.3
we get

∫
MN

|Φ̇c(T ∗)|2 dμ̃c =
∞∑

n=1

∫
CN+n

|Φ̇c(Tn)|2 dμ̃c

� K

∞∑
n=1

μ̃c(CN+n)
μ̃c(CN )

∫
CN

|Φ̇c|2 dμ̃c

� K
μ̃c(MN )
μ̃c(CN )

∫
BN

|Φ̇c|2 dμ̃c

� K2(N)
∫

BN

|Φ̇c|2 dμ̃c

� δN (c)K2(N)
∫

MN

|Ψ̇N,c|2 dμ̃c,

where K2(N) is a constant that depends on N and δN (c) → 0 if c → 1/4−. Thus, we
conclude that

∞∑
n=1

∫
CN+n

2|Ψ̇N,c · Φ̇c(Tn)| dμ̃c � 2(δN (c)K2(N))1/2
∫

MN

|Ψ̇N,c|2 dμ̃c.

Step 3. Since we can assume that δN (c) � (δN (c))1/2, (8.6) combined with the above
and the estimate from Step 1 gives us

∫
MN

|(f∗
N,c)

′(Φc) · (Φ̇2
c − Ψ̇2

N,c)| dμ̃c � K3(N)(δN (c))1/2
∫

MN

|Ψ̇N,c|2 dμ̃c. (8.7)

Thus, the statement follows. �

Lemmas 8.3 and 8.4 lead to the following corollary.

Corollary 8.6. For every N ∈ N we have

lim
c→1/4−

∫
∂D

|Φ̇c|2 dμ̃c∫
MN

|Ψ̇N,c|2 dμ̃c

= 1.
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9. The integral of Re(Φ̈c/Φc) is negative

Proposition 9.1. There exists c1 < 1/4 such that

∫
∂D

Re
(

Φ̈c

Φc

)
dμ̃c < 0,

provided that c ∈ (c1, 1/4). Moreover,

∫
∂D

Re
(

Φ̈c

Φc

)
dμ̃c → −∞ when c → 1/4−

.

In order to prove Proposition 9.1 we will need the following facts.

Lemma 9.2. For every N ∈ N we have

(1)

lim
c→1/4−

∫
∂D

|Φ̇c|2 dμ̃c∫
MN

|ÄN,c| dμ̃c

= 0

and, in particular,
∫

MN
|ÄN,c| dμ̃c → ∞ when c → 1/4−;

(2)

lim
c→1/4−

∫
MN

|Θ̈N,c − ÄN,c| dμ̃c∫
MN

|ÄN,c| dμ̃c

= 0.

Lemma 9.2 (2) leads to the following corollary.

Corollary 9.3. For every N ∈ N we have

lim
c→1/4−

∫
MN

|Θ̈N,c| dμ̃c∫
MN

|ÄN,c| dμ̃c

= 1.

Lemma 9.4. For every N ∈ N we have

lim
c→1/4−

∫
BN

|Φ̈c| dμ̃c∫
MN

|ÄN,c| dμ̃c

= 0.

Lemma 9.5. For every N ∈ N we have

lim
c→1/4−

∫
MN

|Φ̈c − Θ̈N,c| dμ̃c∫
MN

|ÄN,c| dμ̃c

= 0.

Now we will prove Proposition 9.1.

Proof of Proposition 9.1. Let us fix N ∈ N (large enough) and c1 < 1/4 (close
to 1/4).
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We see from Corollary 4.5 and definition (6.7) that −ÄN,c(s) is close to |ÄN,c(s)|,
where s ∈ MN and c ∈ (c1, 1/4). Because we can also assume that Φc(s) is close to 1/2
(see Lemma 4.2 (1)), we conclude that

∫
MN

|ÄN,c| dμ̃c � −5
8

∫
MN

Re
(

ÄN,c

Φc

)
dμ̃c.

Using Lemma 9.2 (2) we get
∫

MN

|ÄN,c| dμ̃c � −6
8

∫
MN

Re
(

Θ̈N,c

Φc

)
dμ̃c.

Combining this with Lemma 9.5 we see that
∫

MN

|ÄN,c| dμ̃c � −7
8

∫
MN

Re
(

Φ̈c

Φc

)
dμ̃c.

Next, Lemma 9.4 leads to
∫

MN

|ÄN,c| dμ̃c � −
∫

∂D

Re
(

Φ̈c

Φc

)
dμ̃c.

We see from Lemma 9.2 (1) that
∫

MN
|ÄN,c| dμ̃c → ∞ when c → 1/4−. Thus, the state-

ment follows. �

Let us note that Lemmas 9.4 and 9.5 play similar roles to Lemmas 8.3 and 8.4, respec-
tively. So, we will prove that the integrals

∫
BN

|Φ̈c| dμ̃c,

∫
MN

|Φ̈c − Θ̇N,c| dμ̃c

are small with respect to the integral
∫

MN
|ÄN,c| dμ̃c, which has a decisive influence on∫

∂D
Re(Φ̈c/Φc) dμ̃c.

Moreover, the schemes of the proofs of Lemmas 9.4 and 8.3 are the same, whereas the
proof of Lemma 9.5 is similar to the first step of the proof of Lemma 8.5 (which is a
stronger version of Lemma 8.4).

On the other hand, the formula for Φ̈c is more complicated than the formula for Φ̇c

(cf. formulae (6.4) and (6.6)). Thus, in particular, we will have to deal with ‘tails’ of the
functions Φ̇2

c(T
k−1) (see Lemma 9.2 (2)).

Proof of Lemma 9.2. Fix N ∈ N and ε > 0.

Step 1. We can assume that cylinders with sufficiently large indexes are as close to
the point 1/2 as we want (for c < 1/4 close to 1/4). Thus, the derivative f ′

c is close to 1
on these cylinders, and then we can find ñ ∈ N and c1 such that

|Ψ̇2
N,c(s)| � ε

∣∣∣∣
n∑

k=1

Ψ̇2
N,c(T

k−1(s))
(fk

c )′(Φc(s))

∣∣∣∣ = ε|ÄN,c(s)|,
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where s ∈ CN+n, n > ñ, and c ∈ (c1, 1/4). So, combining this with Corollary 8.6 (possibly
changing c1), we get

∫
∂D

|Φ̇c|2 dμ̃c � (1 + ε)
∫

MN+ñ

|Ψ̇N,c|2 dμ̃c

� ε(1 + ε)
∫

MN+ñ

|ÄN,c| dμ̃c

� ε(1 + ε)
∫

MN

|ÄN,c| dμ̃c. (9.1)

Hence, the first statement follows.

Step 2. We have

f ′
c(f

k−1
c (Φc)) · (fn

c )′(Φc) = f ′
c(f

k−1
c (Φc)) · (fn−k

c )′(fk
c (Φc)) · (fk

c )′(Φc)

= (fn−k+1
c )′(fk−1

c (Φc)) · (fk
c )′(Φc). (9.2)

Let

Ω̈N,c(s) := Θ̈N,c(s) − ÄN,c(s) = −
n∑

k=1

Φ̇2
c(T

k−1(s)) − Ψ̇2
N,c(T

k−1(s))
(fk

c )′(Φc(s))
. (9.3)

Then, using (9.2), we obtain

∫
CN+n

|Ω̈N,c| dμ̃c �
∫

CN+n

n∑
k=1

|(fn−k+1
c )′(fk−1

c (Φc))|
|(fn−k+1

c )′(fk−1
c (Φc))|

·
|Φ̇2

c(T
k−1) − Ψ̇2

N,c(T
k−1)|

|(fk
c )′(Φc)|

dμ̃c

�
∫

CN+n

n∑
k=1

|(fn−k+1
c )′(Φc(T k−1))| · |Φ̇2

c(T
k−1) − Ψ̇2

N,c(T
k−1)|

|(fn
c )′(Φc)|

dμ̃c.

Next, the fact that T k−1(CN+n) = CN+n−k+1 and Lemma 4.6 lead to the following
estimate of the latter expression

λ(N)
n2

n∑
k=1

∫
CN+n−k+1

|(fn−k+1
c )′(Φc)| · |Φ̇2

c − Ψ̇2
N,c| dμ̃c

� λ(N)
n2

∫
MN

|(f∗
N,c)

′(Φc)| · |Φ̇2
c − Ψ̇2

N,c| dμ̃c,

where f∗
N,c(z) = fm

c (z) if z ∈ CN+m(c).
The above estimates, Lemma 8.5 and then Corollary 8.6 give us

∫
MN

|Ω̈N,c| dμ̃c =
∞∑

n=1

∫
CN+n

|Ω̈N,c| dμ̃c

�
∞∑

n=1

λ(N)
n2

∫
MN

|(f∗
N,c)

′(Φc)| · |Φ̇2
c − Ψ̇2

N,c| dμ̃c
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� δN (c)
∞∑

n=1

λ(N)
n2

∫
MN

|Ψ̇N,c|2 dμ̃c

= δN (c)K(N)
∫

∂D

|Φ̇c|2 dμ̃c,

where δN (c) → 0 when c → 1/4−. Thus, we conclude from (9.1) that
∫

MN

|Ω̈N,c| dμ̃c � δN (c)K(N)
∫

MN

|ÄN,c| dμ̃c.

So, the second statement follows from definition (9.3). �

Proof of Lemma 9.4. Let us fix ε > 0 and N ∈ N. For every N0 � 1 and s ∈ AN0
N,n

we have

Φ̈c(s) = −
N0∑
k=1

2Φ̇2
c(T

k−1(s))
(fk

c )′(Φc(s))
−

N0+n∑
k=N0+1

2Φ̇2
c(T

k−1(s))
(fk

c )′(Φc(s))
+

Φ̈c(TN0+n(s))
(fN0+n

c )′(Φc(s))
. (9.4)

Note that if n = 0, then the second sum is empty.

Step 1. We have TN0+n(AN0
N,n) ⊂ BN and fN0+n

c (Φc(s)) ∈ BN (c). Thus, Lemma 4.6
and the fact that μ̃c is T -invariant lead to

∫
A

N0
N,n

∣∣∣∣ Φ̈c(TN0+n(s))
(fN0+n

c )′(Φc(s))

∣∣∣∣ dμ̃c(s) � λ1(N)
(N0 + n)2

∫
BN

|Φ̈c(s)| dμ̃c(s).

So, for N0 = N0(N) large enough, we obtain

∞∑
n=0

∫
A

N0
N,n

∣∣∣∣ Φ̈c(TN0+n)
(fN0+n

c )′(Φc)

∣∣∣∣ dμ̃c �
( ∞∑

n=0

λ1(N)
(N0 + n)2

) ∫
BN

|Φ̈c| dμ̃c � 1
2

∫
BN

|Φ̈c| dμ̃c. (9.5)

Step 2. First, note that

ñ∑
n=1

∫
A

N0
N,n

∣∣∣∣
N0+n∑

k=N0+1

2Φ̇2
c(T

k−1)
(fk

c )′(Φc)

∣∣∣∣ dμ̃c �
ñ∑

n=1

∫
∂D

2|Φ̇c|2 dμ̃c = 2ñ

∫
∂D

|Φ̇c|2 dμ̃c. (9.6)

Next, the fact that |(fN0
c )(Φc)| > 1, Lemma 5.6 and Corollary 5.3 lead to

∞∑
n=ñ+1

∫
A

N0
N,n

∣∣∣∣ 1
(fN0

c )′(Φc)

n∑
k=1

2Φ̇2
c(T

N0+k−1)
(fk

c )′(Φc(TN0))

∣∣∣∣ dμ̃c

� K
μ̃c(AN0

N,n)
μ̃c(CN+n)

∞∑
n=ñ+1

∫
CN+n

∣∣∣∣
n∑

k=1

2Φ̇2
c(T

k−1)
(fk

c )′(Φc)

∣∣∣∣ dμ̃c

� Kε

∫
MN+ñ

|Θ̈N,c| dμ̃c, (9.7)

where K is a universal constant.
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Step 3. We have

∫
BN

∣∣∣∣
N0∑
k=1

2Φ̇2
c(T

k−1)
(fk

c )′(Φc)

∣∣∣∣ dμ̃c � 2N0

∫
∂D

|Φ̇c|2 dμ̃c. (9.8)

Step 4. Combining (9.5)–(9.8) with (9.4) we obtain

∫
BN

|Φ̈c| dμ̃c � 2N0

∫
∂D

|Φ̇c|2 dμ̃c + 2ñ

∫
∂D

|Φ̇c|2 dμ̃c

+ εK

∫
MN+ñ

|Θ̈N,c| dμ̃c + 1
2

∫
BN

|Φ̈c| dμ̃c.

Thus, Lemma 9.2 leads to

1
2

∫
BN

|Φ̈c| dμ̃c � ε

∫
MN

|Θ̈N,c| dμ̃c + εK

∫
MN+ñ

|Θ̈N,c| dμ̃c

� ε(K + 1)
∫

MN

|Θ̈N,c| dμ̃c

� 2ε(K + 1)
∫

MN

|ÄN,c| dμ̃c,

and the statement follows. �

Proof of Lemma 9.5. Since Tn(CN+n) ⊂ BN , we see from Lemma 4.6 and then
from Lemma 9.4 that

∫
MN

|Φ̈c − Θ̈N,c| dμ̃c =
∞∑

n=1

∫
CN+n

∣∣∣∣ Φ̈c(Tn(s))
(fn

c )′(Φc(s))

∣∣∣∣ dμ̃c

�
∞∑

n=1

λ1(N)
n2

∫
BN

|Φ̈c| dμ̃c

� K(N)
∫

BN

|Φ̈c| dμ̃c

� δN (c)K(N)
∫

MN

|ÄN,c| dμ̃c,

where K(N) is a constant that depends on N and δN (c) → 0 when c → 1/4−. �

Thus, Theorem 1.1 follows from Propositions 8.1 and 9.1 combined with formula (6.2),
and Lemmas 3.2 and 3.3.
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