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SUMMARY
This paper investigates the vision-based pose stabilization of an electrically driven nonholonomic
mobile robot with parametric uncertainties in robot kinematics, robot dynamics, and actuator
dynamics. A robust adaptive visual stabilizing controller is proposed with the utilization of adaptive
control, backstepping, and dynamic surface control techniques. For the controller design, the idea
of backstepping is used and the adaptive control approach is adopted to deal with all uncertainties.
We also apply the dynamic surface control method to avoid the repeated differentiations of virtual
controllers existing in the backstepping design procedure such that the control development is easier
to be implemented. Moreover, to attenuate the effect of disturbances on control performance, smooth
robust compensators are exploited. It is proved that all signals in the closed-loop system can be
guaranteed to be uniformly ultimately bounded. Finally, simulation results are presented to illustrate
the performance of the proposed controller.

KEYWORDS: Actuator dynamics; Adaptive control; Dynamic surface control; Vision-based
stabilization; Nonholonomic mobile robot.

1. Introduction
During the past few years, the use of visual information in the feedback loop for motion control
of nonholonomic mobile robots (NMR) has received wide attention and is a topic of great research
interest. Many studies have been carried in this field and can be divided into two main portions:
visual tracking and visual stabilization. Here we consider the problem of vision-based stabilization
of a nonholonomic mobile robot with an onboard monocular vision system. The basic idea is using
visual feedback to drive robot from an initial pose to the desired one, which is specified by an image
previously taken at the target pose.

For the vision-based stabilization of NMR, much work has been done. A traditional approach
is to perform motion based on the epipolar geometry.1–3 However, the epipolar geometry becomes
ill-conditioned for planar scenes, which are quite common in human environments. A good alternative
is the homography-based approach,4,5 but the homography model is not well defined if there is no
dominant plane in the scene or with large baselines. In ref. [6], a switching control scheme based
on the epipolar geometry and homography was proposed, which took advantage of both models
avoiding the drawbacks of each one and allowing a smooth motion of robot. Another feasible way
to overcome the drawbacks of these two geometric constraints is to use trifocal tensor,7,8 which
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describes the relative geometry of three views completely and is independent of the observed scene.
Recently, Zhang et al.9 proposed a hybrid vision-based stabilization strategy based on a motion-
estimation technique, which can be applied in both planar and non-planar scenes and required no
matrix estimation or decomposition. In ref. [10], two-phase technique was used to present a robust
controller that enabled the mobile robot pose regulation in spite of lack of both depth information and
precise visual parameters. The above-mentioned methods, however, are based on robot kinematics
only and the nonlinear forces in robot dynamics are neglected. There have been few researches where
the dynamics of mobile robot is considered to achieve the vision-based stabilization. In ref. [11], a
feedback dynamic control law based on backstepping technique was presented for a wheeled mobile
robot to perform position-based visual servo stabilization. In ref. [12], considering uncertainties in
robot dynamics, an adaptive sliding-mode dynamic stabilizing controller was proposed.

In summary, the aforementioned approaches are of important reference in vision-based pose
stabilization of NMR. However, the proposed controllers in these schemes are designed at kinematic
level with velocity as input, or at dynamic level with torque as input without considering the actuator
dynamics. As demonstrated in ref. [13], the actuator dynamics is an important part of complete robot
dynamics, especially in the case of highly varying loads and high-velocity movement. In practice,
as the wheels of the robot are driven by actuators, it is more realistic to formulate the motion
control problem of NMR at actuator level, where the actuator voltages are taken as control inputs.
Many control strategies have therefore been developed for mobile robots incorporating actuator
dynamics.14–16 Unfortunately, these developments are devoted to the tracking control of NMR and
cannot be applied directly to stabilization problem due to restrictions on reference velocity (i.e.,
the reference linear velocity does not converge to zero), and it is assumed that full robot states
are available, which is clearly not true for the monocular vision system because of unknown depth
information. Moreover, most of the proposed controllers for the vision-based pose stabilization of
NMR in the literature do not consider uncertainties in robot kinematics.

Accordingly, this paper addresses the vision-based pose stabilization problem of a nonholonomic
mobile robot incorporating actuator dynamics with uncertainties and external disturbances. All
parameters of robot kinematics, robot dynamics, and actuator dynamics are assumed to be unknown.
As the presence of actuator dynamics increases the complexity of system dynamics, and when
the mobile robot includes uncertainties of robot kinematics and dynamics as well as uncertainties
of actuator dynamics, the controller design problem becomes extremely difficult. To solve this
stabilization problem, a simple robust adaptive controller is developed by combining dynamic surface
control (DSC) with backstepping and adaptive control inspired by the work given in refs. [14, 16]. For
controller design, the idea of backstepping is used, which breaks down complex nonlinear systems
into smaller subsystems such that the design procedure is systematic and simple. At the same time, by
using the DSC technique, which has been much studied in ref. [17], the complexity of the controller
caused by repeated derivatives of virtual controllers in the backstepping design procedure is reduced.
All parametric uncertainties are treated by the adaptive technique, and smooth robust compensators
are applied to counteract external disturbances. Besides, the simplified parameter estimation technique
presented in ref. [14] is used to reduce the number of tuning parameters. The proposed control scheme
can ensure that all signals in the closed-loop system are uniformly ultimately bounded.

This paper is organized as follows. Section 2 describes the mathematical modeling that is used
for the mobile robot–camera, and the robot–camera-target. Section 3 formulates the vision-based
stabilization problem. The controller design procedure and the stability analysis of the closed-loop
system are detailed in Sections 4 and 5 respectively. Simulation results are presented in Section 6.
Finally, Section 7 concludes the paper.

2. Mathematical Modeling
In this section, the mobile robot model, the camera model, and the robot–camera–target model are
briefly introduced, which are keys to the development of our controller.

2.1. Model of a nonholonomic mobile robot
As illustrated in Fig. 1, a mobile robot with two actuated wheels is used, and a monocular
camera is fixed on board. O − XYZ is the reference coordinate system, o − xryr and C − xcyczc

are the coordinate systems fixed to the mobile robot and the camera respectively. The middle between
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Fig. 1. Mobile robot with monocular camera.

the left and right driving wheels, o, is the origin of the coordinate system o − xryr ; C, the origin of
the coordinate system C − xcyczc, is located at the camera center coincident with o; Pc is the mass
center of the mobile robot; d is the distance from o to Pc; r is the radius of the wheel, and 2L is the
distance between the two driving wheels. Note that the camera is placed in such a way that the robot
and camera frames are aligned.

The kinematics and dynamics of nonholonomic mobile robot. including the actuator dynamics,
are described by18,16

q̇ = J (q)w, (1)

M̄(q)ẇ + V̄ (q, q̇)w + τ̄d = B̄τ, (2)

L̄aτ̇ + R̄aτ + KeNw + ud = u, (3)

where q = (x, y, θ)T ; (x, y)T is the coordinate of o in the reference coordinate system, θ is the
heading orientation taken counterclockwise from the OY-axis; w = (w1, w2)T and w1, w2 represent
the angular velocities of right and left wheels respectively; τ̄d = (τ̄d1, τ̄d2)T and ud = (ud1, ud2)T

denote the bounded unknown disturbances; τ = (τ1, τ2)T is the control torque applied to the right
and left wheels of the robot; u ∈ R2 is the input voltage,

J (q) = 0.5r

⎛
⎝− sin θ − sin θ

cos θ cos θ

L−1 −L−1

⎞
⎠ , M̄ =

(
m1 m2

m2 m1

)
,

V̄ = 0.5L−1r2mbd

(
0 θ̇

−θ̇ 0

)
, B̄ =

(
1 0
0 1

)
,

m1 = 0.25L−2r2(mL2 + I0) + Iw,

m2 = 0.25L−2r2(mL2 − I0),

m = mb + 2mw, I0 = mbd
2 + 2mwL2 + Ic + 2Im,

L̄a = La(NKT )−1, R̄a = Ra(NKT )−1.

In these expressions, mb and mw are the mass of the body and wheel with a motor respectively. Ic,
Iw, and Im are the moment of inertia of the body about the vertical axis through Pc, the wheel with a
motor about the wheel axis, and the wheel with a motor about the wheel diameter respectively. La =
diag(la1, la2) is the electrical inductance, Ra = diag(ra1, ra2) is the resistance, KT = diag(kt1, kt2) is
the motor torque constant, N = diag(n1, n2) is the gear ratio, and Ke = diag(ke1, ke2) is the back
electromotive force coefficient.
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Assumption 1: The disturbances τ̄d and ud are bounded such that ‖τ̄d‖ ≤ d1, ‖ud‖ ≤ d2 with
di, i = 1, 2 positive constants.

Assumption 2: All parameters of robot kinematics (1), robot dynamics (2), and actuator dynamics
(3) are constants, but unknown.

Remark 1: Assumption 1 is used to facilitate stability analysis. Since kinematic and dynamic
parameters of the whole robot system are geometric and physical, such parameters can be obtained
easily and are reasonably assumed to be constants in this paper. However, since measurements may be
inaccurate and the wheels of the robot may be attrited, in practice, there are uncertainties in the whole
robot system. Therefore, it is necessary to develop a control law that does not require the knowledge
of these parameters. All parameters of robot kinematics, robot dynamics, and actuator dynamics are
assumed to be unknown in the development of controller.

2.2. Camera model
The camera model shows the relationship between the target point in the 3D Euclidean space and its
projective point in the image space. Consider three static feature points in the scene (Fig.1). Based
on the perspective model,2 the following relationship can be obtained:

⎧⎪⎪⎨
⎪⎪⎩

μ = f kμ

xc

yc

+ μ0,

υ = f kυ

zc

yc

+ υ0,

(4)

where (xc, yc, zc)T is the 3D Euclidean coordinate of the feature point P expressed in the camera
frame C − xcyczc, (μ, υ)T is the corresponding image pixel coordinate, f is the focal length of the
camera, kμ, kυ are the number of pixels per unit distance in image coordinates, and (μ0, υ0)T is the
coordinate of the principal point in pixels. We assume that the principal point is in the center of the
image (μ0 = 0, υ0 = 0).

Let p = (p1, p2)T denotes the 2D image coordinate of point P . For simple geometric analysis, it
is clear that

⎧⎪⎪⎨
⎪⎪⎩

p1 = f
xc

yc

,

p2 = f
zc

yc

.

(5)

Based on (4) and (5), it is obvious that the 2D image coordinate p = (p1, p2)T , which will be further
used to construct the error signal that is described in Section 3, can be calculated from the image
pixel coordinate as follows:

(
p1

p2

)
=

⎛
⎜⎜⎝

μ − μ0

kμ

υ − υ0

kυ

⎞
⎟⎟⎠ . (6)

2.3. Robot–camera–target model
The robot–camera–target model describes the dynamic behavior of the target in the camera frame
related to the robot motion. Based on the geometric analysis of coordinate systems (Fig. 1), the
following relationship can be derived:

⎧⎪⎨
⎪⎩

X = xr cos θ − yr sin θ + x,

Y = xr sin θ + yr cos θ + y,

xr = xc,

yr = yc,

(7)
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where (X, Y )T and (xr, yr )T are the coordinates of point P with respect to the reference coordinate
system and the robot coordinate system respectively. It is clear that (X, Y )T is constant.

After taking the time derivative of (7) and using (1), we can obtain the robot–camera–object model,
i.e., the velocity of point P in the camera frame related to the robot motion, as follows:

⎧⎪⎨
⎪⎩

ẋc = r

2L
(w1 − w2)yc,

ẏc = − r

2
(w1 + w2) − r

2L
(w1 − w2)xc.

(8)

3. Problem Statement
In general, the vision-based stabilization problem can be regarded as using image feedback to drive
mobile robot to a desired pose such that the current image (i.e., the image taken during the navigation)
and the desired image (i.e., the image taken at the desired pose previously) are the same, that is, the
image coordinates of the feature point P in the current and desired images are coincident with each
other.

Assumption 3: Three feature points in the scene can always be extracted from the images for the
vision-based stabilization task, and there exists the image feature point P satisfying zc �= 0.

Remark 2: Assumption 3 is used to ensure that the observed target remains visible during the
servoing process, and to facilitate the error signal construction. If some targets get out of the camera’s
field-of-view, the value of current features can no longer be computed, which leads to interruption in
control algorithm, that is, the failure of servoing.

Due to the planar motion of mobile robot, the height information zc remains constant during the
navigation. Therefore, for convenience, we define the following auxiliary signal, s ∈ R2:

s = (s1, s2)T =
(

xc

zc

, −yc

zc

)T

. (9)

Based on (5) and (9), it is clear that the signal s can be calculated as follows:

⎧⎪⎪⎨
⎪⎪⎩

s1 = p1

p2
,

s2 = −f
1

p2
.

(10)

Correspondingly, the signal s∗ = (s∗
1 , s∗

2 )T at the desired pose is defined by

⎧⎪⎪⎨
⎪⎪⎩

s∗
1 = p∗

1

p∗
2

,

s∗
2 = −f

1

p∗
2

,

(11)

where (p∗
1, p

∗
2)T is the desired image coordinate of the feature point P , and can be computed through

the camera model from the desired image.
Then to achieve the vision-based stabilization task and facilitate subsequent controller design, we

construct the error signal as follows:

e =
⎛
⎝ e1

e2

e3

⎞
⎠ =

⎛
⎝ θ

s1

s2

⎞
⎠ − Te

⎛
⎝ θ∗

s∗
1

s∗
2

⎞
⎠, (12)
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where θ∗ is the desired orientation of mobile robot,

Te =
⎛
⎝1 0 0

0 cos θe − sin θe

0 sin θe cos θe

⎞
⎠,

and θe = θ − θ∗, which can be estimated using the motion estimation technique.9

It can be observed in (12) that when the error e → 0, one can obtain

θ → θ∗, s1 → s∗
1 , s2 → s∗

2 . (13)

Based on (10), (11), and (13), it is clear that the image coordinate p1 → p∗
1 , p2 → p∗

2 , and the
orientation error θe → 0, that is, the current and desired images, are the same; the mobile robot
reaches the desired pose.

Accordingly, the control object of the vision-based pose stabilization is to design a control law for
u such that limt→∞ e = 0 and limt→∞ u = 0.

Remark 3: Based on Assumption 3, the values of p2 and p∗
2 are bounded away from zero, that is,

p2 �= 0 and p∗
2 �= 0 for all time. From (10) and (11), we can know that s1, s2, s∗

1 , and s∗
2 are bounded.

Therefore, the error signal defined in (12) is bounded and reasonable. In addition, to estimate the
orientation error θe, at least two feature points with non-zero height parameters and not lying on the
same perpendicular line with respect to the motion plane of the mobile robot are required.9

4. Controller Design
In this section, we will combine the dynamic surface control with backstepping and adaptive control
for the electrically driven nonholonomic mobile robot described by (1)–(3) to solve the vision-based
stabilization problem. The design of the control law u is proceeding step by step.

Step 1: Consider the robot kinematics (1). The error signal e defined in (12) is selected as the first
dynamic surface.

Substituting (1), (8), and (9) into the time derivative of (12), the following error dynamic system
can be obtained: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ė1 = r

2L
(w1 − w2),

ė2 = − r

2L
(w1 − w2)e3,

ė3 = r

2h
(w1 + w2) + r

2L
(w1 − w2)e2,

(14)

where h is the height information of the feature point P in the camera frame and is constant, that is,

h
�= zc.
To further facilitate the subsequent control design and analysis, we define v = (v0, ω)T , where v0,

ω are the linear and angular velocities of the mobile robot respectively. The relationship between the
wheel angular velocities and the velocity vector v is

w =
(

w1

w2

)
=

(
a1 a2

a1 −a2

)
v, (15)

where a1 = r−1 and a2 = Lr−1.
Substituting (15) into (14) results in

⎧⎨
⎩

ė1 = ω,

ė2 = −ωe3,

ė3 = h−1v0 + ωe2.

(16)
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The auxiliary control law for v is chosen as

{
v0d = −k1sgn(h)η,

ωd = −k2
(
e1 + β

(
e2

2 − ηe3
))

,
(17)

where η = e3 + βe2, k1, k2 are positive constants, β is a non-zero constant, and

sgn(h) =
{

1, if h > 0
−1 if h < 0 (18)

Then the virtual control law w̄ = (w̄1, w̄2)T is chosen as

w̄ =
(

w̄1

w̄2

)

=
(

â1 â2

â1 −â2

)
vd (19)

=
(

a1 − ã1 a2 − ã2

a1 − ã1 −a2 + ã2

)
vd,

where vd = (v0d, ωd )T ; â1 and â2 are the estimations of a1 and a2 respectively; ãi = ai − âi ,

i = 1, 2.
Substituting (19) into (14) results in

⎛
⎝ ė1

ė2

ė3

⎞
⎠ = 1

h

(
1 − ã1

a1

)
v0d

⎛
⎝0

0
1

⎞
⎠ +

(
1 − ã2

a2

)
ωd

⎛
⎝ 1

−e3

e2

⎞
⎠ . (20)

The parameter update laws are given by

{
˙̂a1 = −λ1sgn(h)ηv0d,

˙̂a2 = −λ2
(
e1 + β

(
e2

2 − ηe3
))

ωd.
(21)

where λ1 and λ2 are positive constants. Then to obtain the filtered virtual control wf = (wf 1, wf 2)T ,
we pass w̄ through the first-order filter,

κ1ẇf + wf = w̄, wf (0) = w̄(0) (22)

with a time constant κ1 > 0.
Remark 4: Despite the height parameter h is unknown, the proposed controller (17) only depends

on its sign, which can be determined according to the sign of p2 defined in (5). In (5), yc denotes
the depth information, and we know that yc > 0. So, if p2 > 0, then h > 0; if p2 < 0, then h < 0.
In addition, p2 can be directly computed from the image pixel coordinate using (6). Therefore, the
value of sgn(h) defined in (18) is known.

Step 2: Consider the robot dynamics (2). Define the second dynamic surface S1 = (S11, S12)T as

S1 = w − wf . (23)

Differentiating (23) and using (2) results in

Ṡ1 = ẇ − ẇf

= M̄−1(−V̄ w − τ̄d + τ ) − ẇf (24)

= M̄−1(τ + �1�1 − τ̄d ),

https://doi.org/10.1017/S0263574714001581 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001581


456 Vision-based pose stabilization of an uncertain mobile robot

where �1 and �1 are defined as

�1 = (
A B

)
, �1 = (

C D
)T

,

A =
(−(w1 − w2)w2 0

0 (w1 − w2)w1

)
,

B =
(−ẇf 1 −ẇf 2 0 0

0 0 −ẇf 2 −ẇf 1

)
,

ẇf 1 = w̄1 − wf 1

κ1
, ẇf 2 = w̄2 − wf 2

κ1
,

C = (
0.25L−2r3mbd 0.25L−2r3mbd

)
,

D = (
m1 m2 m1 m2

)
.

The virtual control law τ̄ = (τ̄1, τ̄2)T is chosen as14

τ̄ = −K1S1 − â3
�1�

T
1

2γ 2
1

S1, (25)

where K1 is the positive diagonal constant matrix; γ1 is a positive constant; and â3 is the estimate of
the unknown parameter a3 = ‖�1‖2.

The parameter update law is given by

˙̂a3 = λ3
ST

1 �1�
T
1 S1

2γ 2
1

, (26)

where λ3 is a positive constant. Then, τ̄ is passed through the following first-order filter to obtain the
filtered virtual control law τf = (τf 1, τf 2)T :

κ2τ̇f + τf = τ̄ , τf (0) = τ̄ (0), (27)

where κ2 is a positive time constant.
Step 3: Consider the actuator dynamics (3). To obtain the actual control input u = (u1, u2)T , the

third dynamic surface S2 = (S21, S22)T is defined as

S2 = τ − τf . (28)

Substituting (3) into the time derivative of (28) results in

Ṡ2 = τ̇ − τ̇f

= L̄−1
a (u − R̄aτ − KeNw − ud ) − τ̇f

= L̄−1
a (u − R̄aτ − KeNw − L̄aτ̇f − ud ) (29)

= L̄−1
a (u + �2�2 − ud ),

where �2 and �2 are defined as

�2 = (
A1 A2 A3

)
, �2 = (

B1 B2
)T

,

A1 =
(−τ1 0

0 −τ2

)
, A2 =

(−w1 0
0 −w2

)
, A3 =

(−τ̇f 1 0
0 −τ̇f 2

)
,
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B1 =
(

ra1

n1kt1

ra2

n2kt2
n1ke1

)
, τ̇f 1 = τ̄1 − τf 1

κ2
,

B2 =
(

n2ke2
la1

n1kt1

la2

n2kt2

)
, τ̇f 2 = τ̄2 − τf 2

κ2
.

Then the actual control law u is chosen as

u = −K2S2 − â4
�2�

T
2

2γ 2
2

S2, (30)

where K2 is the positive diagonal constant matrix; γ2 is a positive constant; â4 is the estimate of the
unknown parameter a4 = ‖�2‖2, and it is updated by

˙̂a4 = λ4
ST

2 �2�
T
2 S2

2γ 2
2

(31)

with a positive constant λ4.
Assumption 4: ai, i = 1, 2, 3, 4 are bounded such that 0 < ai min ≤ ai ≤ ai max. Remark 5:

Assumption 4 is used to facilitate the stability analysis.
In addition, to reduce the external disturbances τ̄d and ud , robust compensators are introduced in

the virtual controller τ̄ and the actual controller u as follows:

τ̄ = −K1S1 − â3
�1�

T
1

2γ 2
1

S1 − ϕ1, (32)

u = −K2S2 − â4
�2�

T
2

2γ 2
2

S2 − ϕ2, (33)

where ϕi = (ϕi1, ϕi2)T , i = 1, 2, are robustness terms defined by16

ϕij = di tanh

(
2k0diSij

εi

)
,

(34)
k0 = 0.2785, j = 1, 2,

where εi, i = 1, 2, are any bounded time-varying positive scalars, i.e., 0 < |εi(t)| ≤ εMi with εMi

positive constants. The robustness terms ϕi satisfy the following conditions:

1. Sijϕij ≥ 0, j = 1, 2,
(35)

2. di

∣∣Sij

∣∣ − Sijϕij ≤ εi(t)

2
, j = 1, 2.

Remark 6: Although there are total nine unknown parameters in �1 and �2, the proposed
controller (32) and (33) require only two tuning parameters using the simplified parameter estimation
technique.14 In addition, by introducing the first-order filters at each step of the backstepping design
procedure, the proposed controller does not require the repeated differentiations of virtual controllers.
This advantage of the DSC technique provides a simple design when the dynamics of the mobile
robot is extended to the actuator level.

A complete structure of the proposed control scheme is shown in Fig. 2.

5. Stability Analysis
Theorem 1: Consider the electrically driven nonholonomic mobile robot described by (1)–(3) under
Assumptions 1–4. The proposed controllers (19), (32), and (33) with the conditions (35) and the
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Fig. 2. Complete structure of the control scheme.

adaptation laws (21), (26), and (31) guarantee that all signals in the closed-loop system are uniformly
ultimately bounded and the error systems (14), (24), and (29) can achieve asymptotic stabilization.

Proof: Define the boundary layer errors as

ζ1 = wf − w̄, (36)

ζ2 = τf − τ̄ . (37)

Taking the time derivative of (36) and (37) results in

ζ̇1 = ẇf − ˙̄w = − ζ1

κ1
+ �1, (38)

ζ̇2 = τ̇f − ˙̄τ = − ζ2

κ2
+ �2, (39)

where �1 and �2 are defined as

�1 = −
(

˙̂a1v0d + â1v̇0d + ˙̂a2ωd + â2ω̇d

˙̂a1v0d + â1v̇0d − ˙̂a2ωd − â2ω̇d

)
,

�2 = K1Ṡ1 + 1

2γ 2
1

( ˙̂a3�1�
T
1 S1 + â3�̇1�

T
1 S1

+ â3�1�̇
T
1 S1 + â3�1�

T
1 Ṡ1 + ϕ̇1).

Then we consider the following Lyapunov function candidate:

V = V1 + V2, (40)

where

V1 = 1

2
e2

1 + 1

2
e2

2 + 1

2
η2 + sgn(h)

h

ã2
1

2λ1a1
+ ã2

2

2λ2a2
,

V2 = 1

2
ST

1 M̄S1 + 1

2
ST

2 L̄aS2 + ã3

2λ3
+ ã4

2λ4
+ 1

2
ζ T

1 ζ + 1

2
ζ T

2 ζ2,
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Herein η = e3 + βe2, ãi = ai − âi , i = 1, 2, 3, 4 denote the estimation errors of ai . Clearly, V ≥ 0.
Substituting (17), (20), and (21) into the time derivative of V1 yields

V̇1 = e1

(
1 − ã2

a2

)
ωd − e2e3

(
1 − ã2

a2

)
ωd + η

[
1

h

(
1 − ã1

a1

)
v0d +

(
1 − ã2

a2

)
ωde2

]

− βη

(
1 − ã2

a2

)
e3ωd + sgn(h)

h

ã1

λ1a1

˙̃a1 + ã2

λ2a2

˙̃a2

= [
e1 + β

(
e2

2 − ηe3
)]

ωd + 1

h
ηv0d (41)

− 1

h

ã1

a1

[
ηv0d + sgn(h)

λ1

˙̂a1

]

− ã2

a2

{[
e1 + β

(
e2

2 − ηe3
)]

ωd + 1

λ2

˙̂a2

}
− k2

[
e1 + β

(
e2

2 − ηe3
)]2 − sgn(h)

h
k1η

2.

The time derivative of V2 along (24), (29), (38), and (39) is given by

V̇2 = ST
1 M̄S1 + 1

2
ST

1
˙̄MS1 + ST

2 L̄aṠ2 + 1

2
ST

2
˙̄LaS2 − 1

λ3
ã3 ˙̂a3 − 1

λ4
ã4 ˙̂a4 + ζ T

1 ζ̇1 + ζ T
2 ζ̇2

= ST
1 (τ + �1�1 − τ̄d ) + ST

2 (u + �2�2 − ud ) − 1

λ3
ã3 ˙̂a3

− 1

λ4
ã4 ˙̂a4 − 1

κ1
‖ζ1‖2 − 1

κ2
‖ζ2‖2 + ζ T

1 �1 + ζ T
2 �2

≤ ST
1 τ̄ + (ST

1 �1�1)(ST
1 �1�1)T

2γ 2
1

+ γ 2
1

2
+ ST

2 u

+ (ST
2 �2�2)(ST

2 �2�2)T

2γ 2
2

+ γ 2
2

2
− 1

λ3
ã3 ˙̂a3 − 1

λ4
ã4 ˙̂a4

− 1

κ1
‖ζ1‖2 − 1

κ2
‖ζ2‖2 + ζ T

1 �1 + ζ T
2 �2 − ST

1 τ̄d − ST
2 ud

≤ ST
1 τ̄ + a3S

T
1 �1�

T
1 S1

2γ 2
1

+ ST
2 u + a4S

T
2 �2�

T
2 S2

2γ 2
2

+ γ 2
1

2

+ γ 2
2

2
− 1

λ3
ã3 ˙̂a3 − 1

λ4
ã4 ˙̂a4 − 1

κ1
‖ζ1‖2 − 1

κ2
‖ζ2‖2

+ ζ T
1 �1 + ζ T

2 �2 − ST
1 τ̄d − ST

2 ud, (42)

where the Young’s inequality (i.e., z1z2 ≤ z2
1

/
2 + z2

2

/
2) has been used.

Substituting (26), (31)–(34) into (42) and using (35) result in

V̇2 ≤ −ST
1 K1S1 − ST

2 K2S2 − 1

κ1
‖ζ1‖2 − 1

κ2
‖ζ2‖2 + ã3

ST
1 �1�

T
1 S1

2γ 2
1

− 1

λ3
ã3 ˙̂a3 + ã4

ST
2 �2�

T
2 S2

2γ 2
2

− 1

λ4
ã4 ˙̂a4 + γ 2

1

2
+ γ 2

2

2
+ ζ T

1 �1 + ζ T
2 �2

− ST
1 ϕ1 − ST

1 τ̄d − ST
2 ϕ2 − ST

2 ud

≤ −ST
1 K1S1 − ST

2 K2S2 − 1

κ1
‖ζ1‖2 − 1

κ2
‖ζ2‖2

+ γ 2
1

2
+ γ 2

2

2
+ ζ T

1 �1 + ζ T
2 �2 + ε1 + ε2, (43)
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where the fact that

−ST
1 ϕ1 − ST

1 τ̄d − ST
2 ϕ2 − ST

2 ud = −
2∑

i=1

(S1iϕ1i + S1i τ̄di) −
2∑

i=1

(S2iϕ2i + S2iudi)

≤ −
2∑

i=1

(S1iϕ1i − |S1i | |τ̄di |) −
2∑

i=1

(S2iϕ2i − |S2i | |udi |)

≤
2∑

i=1

(d1 |S1i | − S1iϕ1i) +
2∑

i=1

(d2 |S2i | − S2iϕ2i)

≤ 1

2
ε1 + 1

2
ε1 + 1

2
ε2 + 1

2
ε2 = ε1 + ε2

has been used.
Substituting (41) and (43) into the time derivative of the Lyapunov function V defined in (40)

results in

V̇ ≤ −k1
sgn(h)

h
η2 − k2

[
e1 + β(e2

2 − ηe3)
]2 − ST

1 K1S1 − ST
2 K2S2 − 1

κ1
‖ζ1‖2 − 1

κ2
‖ζ2‖2

+ γ 2
1

2
+ γ 2

2

2
+ ζ T

1 �1 + ζ T
2 �2 + ε1 + ε2

≤ −k′
1η

2 − k2
[
e1 + β

(
e2

2 − ηe3
)]2 − ST

1 K1S1

− ST
2 K2S2 − 1

κ1
‖ζ1‖2 − 1

κ2
‖ζ2‖2 + ‖ζ1‖ ‖�1‖

+ ‖ζ2‖ ‖�2‖ + γ 2
1

2
+ γ 2

2

2
+ ε1 + ε2

≤ −ST
3 K3S3 − ST

1 K1S1 − ST
2 K2S2 − 1

κ1
‖ζ1‖2

− 1

κ2
‖ζ2‖2 + ‖ζ1‖2 ‖�1‖2

2δ1
+ ‖ζ2‖2 ‖�2‖2

2δ2

+ δ1

2
+ δ2

2
+ γ 2

1

2
+ γ 2

2

2
+ ε1 + ε2, (44)

where S3 = [η, e1 + β(e2
2 − ηe3)]T , k′

1 = k1sgn(h)h−1 > 0, δ1 and δ2 are positive constants, and
K3 = diag(k′

1, k2).
Since for any ξ > 0, the sets

�1 :=
{
e2

1 + e2
2 + η2 + sgn(h)

h

ã2
1

2λ1a1
+ ã2

2

2λ2a2
+ ST

1 M̄S1 + ζ T
1 ζ1

}
≤ 2ξ, (45)

�2 :=
{
e2

1 + e2
2 + η2 + sgn(h)

h

ã2
1

λ1a1
+ ã2

2

λ2a2
+ST

1 M̄S1 + ST
2 L̄aS2 + ζ T

1 ζ1 + ζ T
2 ζ2 + ã3

λ3

}
≤ 2ξ

(46)

are compact in R9 and R14 respectively, there exist positive constants ρ1, ρ2 such that ‖�1‖ ≤ ρ1 on
�1 and ‖�2‖ ≤ ρ2 on �2. Consider this fact and choose

κ−1
1 = κ∗

1 + ρ2
1

2δ1
, κ−1

2 = κ∗
2 + ρ2

2

2δ2
(47)
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with κ∗
1 , κ∗

2 as positive constants, then we have

V̇ ≤ −ST
3 K3S3 − ST

1 K1S1 − ST
2 K2S2 −

2∑
i=1

[(
κ∗

i + ρ2
i

2δi

)
‖ζi‖2 − ‖ζi‖2 ‖�i‖2

2δi

]

+ δ1

2
+ δ2

2
+ γ 2

1

2
+ γ 2

2

2
+ ε1 + ε2

= −ST
3 K3S3 − ST

1 K1S1 − ST
2 K2S2 −

2∑
i=1

[
κ∗

i ‖ζi‖2 +
(

1 − ‖�i‖2

ρ2
i

)
ρ2

i ‖ζi‖2

2δi

]
+ ε

= −ST
1 K1S1 − ST

2 K2S2 − ST
3 K3S3 − ST

4 K4S4 − ST
5 K5S5 + ε

= −ψT Kψ + ε

≤ −ςmin(K) ‖ψ‖2 + ε, (48)

where

S4 =
⎛
⎝‖ζ1‖ ,

√
1 − ‖�1‖2

ρ2
1

‖ζ1‖
⎞
⎠

T

, K4 = diag

(
κ∗

1 ,
ρ2

1

2δ1

)
,

S5 =
⎛
⎝‖ζ2‖ ,

√
1 − ‖�2‖2

ρ2
2

‖ζ2‖
⎞
⎠

T

, K5 = diag

(
κ∗

2 ,
ρ2

2

2δ2

)
,

ε = δ1

2
+ δ2

2
+ γ 2

1

2
+ γ 2

2

2
+ ε1 + ε2,

ψT = (
ST

1 , ST
2 , ST

3 , ST
4 , ST

5

)
, K = diag(K1, K2, K3, K4, K5),

and ςmin(K) is the minimum eigenvalue of matrix K . Thus, v̇ is strictly negative outside the following
compact set �ψ :

�ψ =
{
ψ(t)

∣∣∣∣0 ≤ ‖ψ‖ ≤
√

ε

ςmin(K)

}
. (49)

Under the conclusion that âi , i = 1, 2, 3, 4 are uniformly ultimately bounded (it is easy to prove
that âi ∈ [ai min, ai max] under Assumption 4, which is omitted here), we can conclude that ‖ψ‖
decreased whenever ψ is outside the compact set �ψ , and hence ‖ψ‖ is uniformly ultimately
bounded. Therefore, all signals in the closed-loop system are uniformly ultimately bounded. Besides,
by adjusting the control gains K , the error systems (14), (24), and (29) can achieve asymptotic
stabilization.

6. Simulation Results
In this section, simulation results are provided to show the validity of the developed controller for the
vision-based pose stabilization of the electrically driven nonholonomic mobile robot. The initial pose
of the mobile robot is chosen as (−1.5, −5, π

/
9)T and the desired one is (0, 0, 0)T . The simulated

data are obtained by generating a virtual landmark comprising three feature points not lying on the
same vertical plane. The feature points of the landmark are projected to the image plane using a
virtual camera: the focal length of the camera being f = 6 mm and the size of the virtual images is
640 × 480 pixels. The parameters with appropriate units of robot and actuators are chosen as follows:

r = 0.15, L = 0.75, d = 0.3, mb = 30, mw = 1,

Ic = 15.625, Iw = 0.005, Im = 0.0025,
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Fig. 3. Robot trajectory on the X − Y plane.
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Fig. 4. State variables of robot during motion.

Ra = diag(1.5, 1.5), La = diag(0.227, 0.227),

Ke = diag(0.01, 0.01), KT = diag(0.283, 0.283),

N = diag(15, 15).

The control gains and other parameters are chosen as

k1 = 0.15, k2 = 1.8, β = 0.001,

K1 = diag(3.1, 3.1), K2 = diag(4.1, 8.1),

λ1 = 0.045, λ2 = 25.5, λ3 = 0.01, λ4 = 0.1,

γ1 = 7.1, γ2 = 8.1, κ1 = κ2 = 0.1.

The initial values of â1, â2, â3, and â4 are chosen as â1(0) = 0.1, â2(0) = 0.5, â3(0) = 0.1, and
â4(0) = 0.1 respectively. The disturbances are chosen to be white noises distributed uniformly with
amplitude of 0.04.

The simulation results are shown in Figs. 3–10. Fig. 3 shows the upper view of the robot motion
in the X − Y plane. Although all exact values of the parameters of the robot and the actuators are not
known a priori and there are external disturbances in the robot and actuator dynamics, the mobile
robot is successfully driven to the desired pose with a quite small error. The corresponding behavior
of the state of robot is depicted in Fig. 4. All the state variables are convergent to their desired values.
The bounded control input u by using the proposed controller is shown in Fig. 5. We can note that
the actuator voltages asymptotically tend to zero except the external disturbances. Besides, the error
signal e, the wheel angular velocity error S1, and the wheel torque error S2 can be corrected quickly
by the controller depicted in Figs. 6–8. In Fig. 6, we can see that the system error e tends to zero
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Fig. 5. Control input, u = [u1, u2]T .
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Fig. 6. Error signal, e = [e1, e2, e3]T .
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Fig. 7. Wheel angular velocity error, S1 = [S11, S12]T .

(about 6.5 s), which implies that the current image gradually converges to the desired one. From Figs.
7 and 8, we can see that the actual wheel angular velocity and wheel torque asymptotically reach
their desired ones in about 6.0 s and 5.0 s respectively. The responses of the estimated unknown
parameters are given in Figs. 9 and 10. It is shown that all the signals are bounded, and that â1 and
â2 approach to their actual values a1 = r−1 = 6.67 and a1 = r−1L = 5 respectively. We can also see
that the estimated parameters reach their desired values in about 3.0 s.

To illustrate the performance of the controller with image noise, a random noise with a standard
deviation of 0.3 pixels is added to feature points. The results are shown in Figs. 11–16. We can observe
that the control objective can still be achieved with quite a small error in spite of the existence of image
noise. Fig. 11 shows the image trajectory of three feature points. The presence of the image noise is
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Fig. 8. Wheel torque error S2 = [S21, S22]T .
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Fig. 10. Responses of â3 and â4.

clear and we can see that the current image gradually tends to the desired image, which implies that
the robot is driven to its desired pose asymptotically. In Fig. 12, we can see the exponential behavior
of the robot state. In spite of image noise, the control input u depicted in Fig. 13 is also bounded and
finally tends to zero. Figs. 14–16 show the error signal e, the wheel angular velocity error S1, and the
wheel torque error S2 respectively, all of which converge to zero. All of the simulation results verify
the effectiveness of the proposed controller.
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Fig. 11. Trajectory of feature points in the image.
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Fig. 12. State variables of robot during motion.
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Fig. 13. Control input, u = [u1, u2]T .

7. Conclusions
Following are the conclusions:
1. A robust adaptive dynamic surface controller has been presented to perform the vision-based

pose stabilization of a nonholonomic mobile robot, including actuator dynamics with parametric
uncertainties and disturbances.

2. By incorporating the DSC method with backstepping, the repeated differentiations of virtual
controllers can be avoided, and the parametric uncertainties and disturbances can be compensated
by the robust adaptive technique. In addition, the number of tuning parameters has been reduced
by using the simplified parameter estimation technique.
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Fig. 14. Error signal, e = [e1, e2, e3]T .
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Fig. 15. Wheel angular velocity error, S1 = [S11, S12]T .
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Fig. 16. Wheel torque error, S2 = [S21, S22]T .

3. The proposed controller can drive the robot to its desired pose in spite of lack of depth information
and does not require any a priori knowledge of robot and actuator’s parameters. From the Lyapunov
stability theory, it is shown that all signals in the close-loop system are uniformly ultimately
bounded. Simulation results have been provided to demonstrate the performance of the proposed
controller.
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