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This paper deals with a fully-coupled thermoelastic problem, in a heterogeneous medium,

arising from the metallurgical industry. The aim is to prove regularity properties of the

solution with respect to space and time. Regularity in space is obtained by means of regularity

properties for elliptic operators. In order to prove regularity in time, a mathematical induction

technique, together with an existence and uniqueness result for this type of problems, is

applied.
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1 Introduction

The present paper deals with the question of regularity with respect to time and space for

the solution to a quasi-static-coupled thermoelastic problem arising from metallurgical

industry processes, such as casting of alloys (see, for instance, Barral and Quintela [5])

or production of aluminium in electrolytic cells (see Bermúdez et al. [6]). The knowledge

of regularity properties of the solution for the former problems is important in order to

obtain their qualitative properties and to determine which methods are more suitable for

their numerical solution.

Previously, in Barral et al. [2,3] we studied the existence, uniqueness and regularity of a

mechanical problem when the behaviour law is of Maxwell-Norton type with temperature

dependent coefficients. Afterwards, in Barral et al. [4], we studied the coupling with a

thermal problem, assuming, as a first approach, that the material is linearly elastic and

heterogeneous; there we considered mixed boundary conditions in both sub-models and

also a Robin type boundary condition for the thermal one. This choice was suggested by

some industrial applications such as the aforementioned. In that paper, the existence and

uniqueness of solution were proved and here we obtain regularity properties in space and

time of that solution. Specifically, assuming additional regularity on the data, we prove
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H2
Loc regularity in space and Wr,∞ regularity in time, r ∈ {0} ∪ �, for displacements and

temperature.

In the bibliography, there are many works that deal with regularity properties with

respect to space. We refer the reader to Kačur and Ženı́šek [16] and to Marzocchi

et al. [18] for the dynamic case, when the coefficients of the mechanical behaviour law

and the reference temperature are independent of the spatial variable. In Kačur and

Ženı́šek [16], the problem is rewritten as two equations defined by means of elliptic

operators and the regularity properties in space are obtained applying regularity results

for these operators. On the other hand, Marzocchi et al. [18] use standard Galerkin

approximations and regularity properties for the elliptic transmission problem. In the case

of quasi-static problems, Copetti and Elliott [7] give regularity properties with respect to

space of the solution of a one-dimensional linear thermoelastic problem with unilateral

contact of Signorini type using a monotonicity method. Later, Muñoz and Racke [20] and

Jiang and Racke [15] studied the interior smoothing effects in the multi-dimensional case,

assuming that all the coefficients are C∞ smooth. In their works, the problem is decoupled

and the energy equation is transformed into a parabolic one; then, the regularity results

are obtained from the usual regularity for parabolic equations. In the present work, we

apply the techniques introduced by Kačur and Ženı́šek [16] to obtain regularity results in

space, when the parameters depend on the spatial point.

With respect to regularity properties in time, we mention the papers of Gawinecki [9–13]

and Gawinecki et al. [14], who present results of regularity with respect to space and

time for dynamic-coupled thermoelastic problems, with homogeneous Dirichlet boundary

conditions. Later, Zhelezovskiı̆ [22, 23] gave results on the smoothness of solutions con-

sidering the mechanical dissipation term in the energy equation. The proofs are obtained

by mathematical induction. In this paper, following their techniques, we achieve similar

regularity properties in time for our problem. The main difficulty in the quasi-static case

is to establish the appropriate regularity properties and compatibility conditions for the

time derivatives of the solution at the initial instant.

Finally, we prove the same time regularity for the corresponding homogeneous Dirichlet

problem, assuming less smoothness over the solution at the initial instant by increasing the

regularity of the initial conditions. Nonetheless, these considerations cause some difficulties

which will be overcomed using results of Nečas [21] and Agmon et al. [1].

The resulting regularity properties in time are the main contributions of this paper.

The outline of this paper is as follows. First, in Section 2, we will introduce the

mathematical model and we will recall the result of existence and uniqueness of solution

given in Barral et al. [4]. Then, in Section 3, we will prove the H2
Loc regularity of

displacements and temperature with respect to space. In Section 4, we will obtain the

Wr,∞ regularity properties of the solution with respect to time for r ∈ {0} ∪ � and finally,

some conclusions will be given in Section 5.

2 Mathematical model

2.1 Domain and notation

Let Ω ⊂ �3 be an open and bounded set with smooth enough boundary Γ = ∂Ω. We

refer the motion of the body to a fixed system of rectangular Cartesian axes Op1p2p3.
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Let g(p, t) be a scalar function; we represent by g(t) the function p −→ g(p, t) and ∇g
its gradient with respect to p.

If u, v are vector fields in �3, their scalar product is represented by u · v. Furthermore,

∇u and Div u denote the gradient and the divergence of u, respectively.

We denote by S3 the space of symmetric second order tensors over �3 and by : its

scalar product. Furthermore, if τ is a tensor field, |τ |, tr(τ ) and Div τ denote the norm

induced by this scalar product, its trace and its divergence, respectively.

We consider the notation ∂rt in order to denote the partial derivative with respect to t

of order r, with r ∈ {0} ∪ �. As usual, for r = 1 we will omit the superscript r.

We represent by [0, tf] the time interval of interest. We denote by u(p, t) the displacement

field and by θ(p, t) the temperature field at each (p, t) in Ω × (0, tf].

We assume that Γu,D , Γu,N , Γθ,D , Γθ,N and Γθ,R are open subsets of Γ , such that

• Γ = Γ u,D ∪ Γ u,N = Γθ,D ∪ Γθ,N ∪ Γθ,R ,

• Γu,D ∩ Γu,N = ∅, Γθ,D ∩ Γθ,N = ∅, Γθ,D ∩ Γθ,R = ∅, Γθ,R ∩ Γθ,N = ∅,

• meas(Γu,D) > 0 and meas(Γθ,D ∪ Γθ,R) > 0.

2.2 Problem (P)

The aim of this work is to obtain regularity properties with respect to time and space of

the displacement and temperature fields, which are the solution to the following problem:

Problem (P)

Find u(p, t) and θ(p, t) in Ω × (0, tf], satisfying

−Div σ(θ, u) = b in Ω × (0, tf], (2.1)

ρ0cF∂tθ = −3θrαKDiv ∂tu + Div (k∇θ) + f in Ω × (0, tf], (2.2)

σ(θ, u) = Λ−1 : ε(u) − 3α(θ − θr)KI in Ω × (0, tf], (2.3)

u = uD on Γu,D × (0, tf], (2.4)

σ(θ, u) n = g on Γu,N × (0, tf], (2.5)

k∇θ · n = αc(θ
e − θ) on Γθ,R × (0, tf], (2.6)

k∇θ · n = h on Γθ,N × (0, tf], (2.7)

θ = θD on Γθ,D × (0, tf], (2.8)

u(0) = u0, θ(0) = θ0 in Ω. (2.9)

Here,

• σ(θ, u) is the stress tensor given by the thermoelastic behaviour law (2.3). In this law,

Λ−1 is the elasticity tensor defined as

Λ−1 : τ = λtr(τ )I + 2μτ , ∀τ ∈ S3, (2.10)

where λ, μ are the Lamé’s parameters, I is the identity tensor, ε(u) denotes the linear-

ized deformation tensor, α is the coefficient of thermal expansion, θr is the reference
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temperature and K is the bulk modulus of the material

K =
1

3
(3λ+ 2μ).

• b is the body force per unit volume at the reference configuration.

• ρ0 is the reference density.

• cF is the specific heat at constant deformation.

• k is the thermal conductivity of the material.

• f is the body heating per unit volume at the reference configuration.

• uD is the displacement on the Dirichlet mechanical boundary Γu,D .

• n is the outward unit vector normal to the boundary of Ω.

• g is the density of surface forces on the Neumann mechanical boundary Γu,N .

• αc is the coefficient of convective heat transfer on Γθ,R .

• θe is the external convection temperature on Γθ,R .

• h is the heat flux on the Neumann thermal boundary Γθ,N .

• θD is the temperature on the Dirichlet thermal boundary Γθ,D .

• u0 and θ0 are the initial conditions, which must satisfy the following compatibility

conditions: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ(θ0, u0) = Λ−1 : ε(u0) − 3α(θ0 − θr)KI in Ω,

−Div σ(θ0, u0) = b(0) in Ω,

u0 = uD(0) on Γu,D,

σ(θ0, u0) n = g(0) on Γu,N ,

θ0 = θD(0) on Γθ,D.

2.3 Existence and uniqueness of solution

Let us consider the following variational formulation of Problem (P):

Problem (VP)

Find (u(t), θ(t)) ∈ H1(Ω) ×H1(Ω) satisfying a.e. t ∈ (0, tf)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a(u(t), v) − m(θ(t) − θr, v) =

∫
Γu,N

g(t) · v dΓ +

∫
Ω

b(t) · v dp, ∀v ∈ H1
0,Γu,D

(Ω), (2.11a)

(∂tθ(t), φ)2 + κ(θ(t), φ) + m(φ, ∂tu(t)) + c(θ(t), φ) =

∫
Ω

f(t)

θr
φ dp+ c(θe(t), φ)

+

∫
Γθ,N

h(t)

θr
φ dΓ , ∀φ ∈ H1

0,Γθ,D
(Ω), (2.11b)

the boundary conditions (2.4)–(2.8) and the initial conditions (2.9).

Here, the following notation is used:

• H1(Ω) = [H1(Ω)]3 and H1
0,Γu,D

(Ω) is the admissible displacement space defined as

H1
0,Γu,D

(Ω) = {v ∈ H1(Ω) : v|Γu,D
= 0}.
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• H1
0,Γθ,D

(Ω) is the admissible temperature space given by

H1
0,Γθ,D

(Ω) = {φ ∈ H1(Ω) : φ|Γθ,D = 0}.

• a(·, ·) is the bilinear form defined on H1(Ω) × H1(Ω) by

a(u, v) =

∫
Ω

(Λ−1 : ε(u)) : ε(v) dp. (2.12)

• m(·, ·) is the bilinear form on L2(Ω) × H1(Ω) defined as

m(φ, v) =

∫
Ω

3φαKI : ε(v) dp. (2.13)

• (·, ·)2 is the scalar product in L2(Ω) given by

(φ,ψ)2 =

∫
Ω

ρ0cF

θr
φψ dp. (2.14)

• κ(·, ·) is the bilinear form defined on H1(Ω) ×H1(Ω) by

κ(φ,ψ) =

∫
Ω

k∇φ · ∇
(
ψ

θr

)
dp.

• c(·, ·) is the bilinear form defined on H1(Ω) ×H1(Ω) as

c(φ,ψ) =

∫
Γθ,R

αc
φ

θr
ψ dΓ . (2.15)

Furthermore, from here on, we will write Lr(Ω) = [Lr(Ω)]3, 1 � r � ∞.

Let us consider the following hypotheses:

(H1) The elasticity tensor Λ−1 ∈ [L∞(Ω)]4 and there exists amin > 0 such that

(Λ−1 : τ ) : τ � amin|τ |2, ∀τ ∈ S3.

(H2) The reference temperature θr ∈ W 1,∞(Ω), and there exists θr,min > 0 such that

θr(p) � θr,min in Ω.

(H3) The reference density ρ0 > 0, the specific heat at constant deformation cF > 0 and

the coefficient of thermal expansion α > 0.

(H4) The thermal conductivity coefficient k ∈ W 1,∞(Ω), and there exists kmin > 0 such

that k(p) � kmin in Ω.

(H5) The body force b ∈ W 2,2(0, tf; L2(Ω)).

(H6) The body heating f ∈ W 1,2(0, tf;L
2(Ω)).

(H7) uD is the restriction to Γu,D × (0, tf) of a function called ūD such that

ūD ∈ W 2,2(0, tf; H
1
2 (Γ )).
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(H8) θD is the restriction to Γθ,D × (0, tf) of a function called θ̄D such that

θ̄D ∈ W 2,2(0, tf;H
1
2 (Γ )).

(H9) The surface forces g ∈ W 2,2(0, tf; L2(Γu,N)) and h ∈ W 1,2(0, tf;L
2(Γθ,N)).

(H10) The coefficient of convective heat transfer αc ∈ L∞(Γθ,R), and there exists αc,min > 0

satisfying αc(p) � αc,min a.e. on Γθ,R .

(H11) The external convection temperature θe ∈ W 1,2(0, tf;L
2(Γθ,R)).

(H12) The initial conditions u0 ∈ H1(Ω) and θ0 ∈ H1(Ω).

(H13) The initial conditions u0 and θ0 satisfy

a(u0, v) − m(θ0 − θr, v) =

∫
Γu,N

g(0) · v dΓ +

∫
Ω

b(0) · v dp, ∀v ∈ H1
0,Γu,D

(Ω),

u0 = uD(0) on Γu,D, θ0 = θD(0) on Γθ,D.

In Barral et al. [4], the following result is proved:

Theorem 2.1 Under assumptions (H1)–(H13), there exists a unique solution (u, θ) to Prob-

lem (VP) such that

u ∈ L∞(
0, tf; H1(Ω)

)
, ∂tu ∈ L2

(
0, tf; H1(Ω)

)
, and (2.16)

θ ∈ L∞(
0, tf;H

1(Ω)
)
, ∂tθ ∈ L2

(
0, tf;L

2(Ω)
)
. (2.17)

3 Regularity of the weak solution with respect to space

In this section, we prove additional regularity properties with respect to space of the weak

solution to Problem (VP). The proof is based on the methodology used by Kac̆ur and

Z̆enı́s̆ek [16], which consists in rewriting our coupled problem as two equations defined

by means of two elliptic operators. Then, some results given by Nečas [21], Lions and

Magenes [17] and Mizohata [19] can be applied in order to obtain the H2
Loc regularity of

the solution with respect to space.

Definition 3.1 For ι = (ι1, ι2, ι3), a 3-tuple of non-negative integers, Cr(Ω) denotes the vec-

torial space consisting of all functions φ : Ω �→ � which, together with all their partial

derivatives of orders |ι| � r, are continuous on Ω.

Definition 3.2 If 0 < δ � 1, we define Cr,δ(Ω) as the subspace of Cr(Ω) consisting of those

functions φ for which, for 0 � |ι| � r, the partial derivative of order |ι| satisfies in Ω a

Hölder condition of exponent δ.

In order to prove the space regularity, we increase the regularity properties for some of

the hypotheses imposed in the previous section. In particular,

(H1)s The elasticity tensor satisfies (H1) and Λ−1 ∈ [C0,1(Ω)]3
4 ∩ [C1(Ω)]3

4

.

(H2)s The reference temperature satisfies (H2) and θr ∈ C0,1(Ω) ∩ C1(Ω).
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(H4)s The thermal conductivity coefficient satisfies (H4) and k ∈ C0,1(Ω) ∩ C1(Ω).

(H7)s uD satisfies (H7) with ūD ∈ W 2,2(0, tf; H
3
2 (Γ )).

(H8)s θD satisfies (H8) with θ̄D ∈ W 2,2(0, tf;H
3
2 (Γ )).

Remark 3.3 Taking into account hypotheses (H1)s, (H2)s and (H4)s, the Lamé’s parameters,

the reference temperature and the thermal conductivity satisfy a Hölder condition of exponent

1, with Lipschitz constants aλ,h, aμ,h, θr,h and kh, respectively.

Theorem 3.4 Under assumptions (H1)s, (H2)s, (H3), (H4)s, (H5), (H6), (H7)s, (H8)s and

(H9)–(H13), the solution to Problem (VP) satisfies

u ∈ L∞(0, tf; H1(Ω) ∩ H2
Loc(Ω)) and θ ∈ L∞(0, tf;H

1(Ω) ∩H2
Loc(Ω)). (3.1)

Proof First, we introduce the change of variable by translation

ũ = u − u, ũ0 = u0 − u(0), θ̃ = θ − θ, θ̃0 = θ0 − θ(0), (3.2)

in order to obtain a homogeneous Dirichlet problem. We notice that the existence of u

and θ is guaranteed by assumptions (H7)s, (H8)s; furthermore, they satisfy (see Duvaut

and Lions [8]),

u ∈ W 2,2(0, tf; H2(Ω)), u = uD on Γu,D × (0, tf], (3.3)

θ ∈ W 2,2(0, tf;H
2(Ω)), θ = θD on Γθ,D × (0, tf]. (3.4)

With respect to these new unknowns, we introduce the following problem:

Problem (ṼP )

Find (ũ(t), θ̃(t)) ∈ H1
0,Γu,D

(Ω) ×H1
0,Γθ,D

(Ω) satisfying a.e. t ∈ (0, tf)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(ũ(t), v) − m(θ̃(t), v) =

∫
Γu,N

g(t) · v dΓ +

∫
Ω

b(t) · v dp− a(u(t), v)

+m(θ(t) − θr, v), ∀v ∈ H1
0,Γu,D

(Ω), (3.5a)

(∂tθ̃(t), φ)2 + κ(θ̃(t), φ) + m(φ, ∂tũ(t)) + c(θ̃(t), φ) =

∫
Ω

f(t)

θr
φ dp+ c(θe(t), φ)

+

∫
Γθ,N

h(t)

θr
φ dΓ −(∂tθ(t), φ)2 −κ(θ(t), φ) − m(φ, ∂tu(t)) −c(θ(t), φ),

∀φ ∈ H1
0,Γθ,D

(Ω), (3.5b)

with the initial conditions

ũ(0) = ũ0, θ̃(0) = θ̃0. (3.6)
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Since Problems (VP) and (ṼP ) are equivalent, from Theorem 2.1, we get the existence

and uniqueness of ũ and θ̃ solution to Problem (ṼP ) such that

ũ ∈ L∞(0, tf; H1
0,Γu,D

(Ω)), ∂tũ ∈ L2(0, tf; H1
0,Γu,D

(Ω)), and

θ̃ ∈ L∞(0, tf;H
1
0,Γθ,D

(Ω)), ∂tθ̃ ∈ L2(0, tf;L
2(Ω)).

(3.7)

Taking into account equations (3.5a), (3.5b) of Problem (ṼP ) and applying a Green’s

formula, we can deduce that its solution (ũ(t), θ̃(t)) ∈ H1(Ω) × H1(Ω) is a weak solution

in the sense of distributions of the equations

Auũ(t) = bu(t), Aθθ̃(t) = fθ(t), (3.8)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Auũ(t) = −Div
(
Λ−1 : ε(ũ(t))

)
, Aθθ̃(t) = Div

( k
θr

∇θ̃(t)
)
,

bu(t) = −Div
(
3αθ̃(t)KI

)
+ b(t) + Div

(
Λ−1 : ε(u(t))

)
− Div

(
3α(θ(t) − θr)KI

)
,

fθ(t) = −ρ0cF

θr
∂tθ̃(t) − 3αKI : ε(∂tũ(t)) − k∇θ̃(t) · ∇θr

θ2
r

+
f(t)

θr
− ρ0cF∂tθ(t)

θr

+Div

(
k

θr
∇θ(t)

)
− k∇θ(t) · ∇θr

θ2
r

− 3αKI : ε(∂tu(t)).

Theorem 1.1 of Chapter 4 given in Nečas [21], guarantees the H2
Loc regularity of the

solution to equations (3.8), due to the following properties:

• The operator Au is H1
0(Ω)-elliptic with coefficients of C0,1(Ω) thanks to hypothesis

(H1)s.

• The operator Aθ is also H1
0 (Ω)-elliptic with coefficients of C0,1(Ω) taking into account

Remark 3.3 and assumptions (H2)s and (H4)s.

• bu(t) ∈ L2(Ω) a.e. t ∈ (0, tf) from hypotheses (H1)s, (H2)s, (H3), (H4)s, (H5), (H6),

(H7)s, (H8)s and (H9)–(H11).

• fθ(t) ∈ L2(Ω) a.e. t ∈ (0, tf) thanks to assumptions (H1)s, (H2)s, (H3), (H4)s, (H5),

(H6), (H7)s, (H8)s and (H9)–(H11).

Therefore, (ũ(t), θ̃(t)) is the weak solution in the sense of distributions to problem (3.8),

satisfying a.e. t ∈ (0, tf)

(ũ(t), θ̃(t)) ∈ H2
Loc(Ω) ×H2

Loc(Ω).

Finally, from equalities (3.2)–(3.4), we can conclude the regularity properties (3.1). �

4 Regularity with respect to time

The aim of this section is to prove the Wr,∞ regularity of the solution to Problem (VP)

(see equations (2.11a), (2.11b)) with respect to time for r ∈ {0} ∪ �. The main difficulty is

to establish the assumptions of regularity at the initial instant. In the first subsection, we

study the regularity in time of the solution when the smooth properties of the data and

the solution at the initial instant are increased. In the following subsection, we analyse the
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regularity with respect to time of the solution to the associated homogeneous Dirichlet

problem; in this case, we propose to improve the smooth properties in space of the initial

data of the problem instead of increasing the regularity properties of the solution at the

initial instant.

4.1 Regularity of the weak solution with respect to time

Let us generalize assumptions (H1), (H5)–(H9) and (H11)–(H13) as follows:

(H1)t The elasticity tensor satisfies (H1) and Λ−1 ∈ [W1,∞(Ω)]4.

(H5)t The body force b ∈ Wr+2,2(0, tf; L2(Ω)).

(H6)t The body heating f ∈ Wr+1,2(0, tf;L
2(Ω)).

(H7)t uD satisfies (H7) with ūD ∈ Wr+2,2(0, tf; H
1
2 (Γ )).

(H8)t θD satisfies (H8) with θ̄D ∈ Wr+2,2(0, tf;H
1
2 (Γ )).

(H9)t The surface forces g ∈ Wr+2,2(0, tf; L2(Γu,N)) and h ∈ Wr+1,2(0, tf;L
2(Γθ,N)).

(H11)t The external convection temperature θe ∈ Wr+1,2(0, tf;L
2(Γθ,R)).

(H12)t The displacements and temperature satisfy at time t = 0

∂ltu(0) ∈ H1(Ω) and ∂ltθ(0) ∈ H1(Ω), 0 � l � r.

(H13)t The displacements and temperature satisfy at time t = 0 for all 0 � l � r

a(∂ltu(0), v) − m(∂ltθ(0) − ∂ltθr, v) =

∫
Γu,N

∂ltg(0) · v dΓ +

∫
Ω

∂ltb(0) · v dp, ∀v ∈ H1
0,Γu,D

(Ω),

∂ltu(0) = ∂ltuD(0) on Γu,D, ∂ltθ(0) = ∂ltθD(0) on Γθ,D.

Furthermore, for 0 < l � r,

(∂ltθ(0), φ)2 + κ(∂l−1
t θ(0), φ) + m(φ, ∂ltu(0)) + c(∂l−1

t θ(0), φ)

=

∫
Ω

∂l−1
t f(0)

θr
φ dp+ c(∂l−1

t θe(0), φ) +

∫
Γθ,N

∂l−1
t h(0)

θr
φ dΓ , ∀φ ∈ H1

0,Γθ,D
(Ω).

Remark 4.1 We notice that in hypothesis (H13)t the term ∂ltθr of the first member of the

first equality is only not null when l = 0.

Theorem 4.2 Let r ∈ {0} ∪ � be a fixed parameter. Under assumptions (H1)t, (H2)–(H4),

(H5)t–(H9)t, (H10) and (H11)t–(H13)t, the solution to Problem (VP) satisfies

u ∈ Wr,∞(0, tf; H1(Ω)), ∂r+1
t u ∈ L2(0, tf; H1(Ω)) and (4.1)

θ ∈ Wr,∞(0, tf;H
1(Ω)), ∂r+1

t θ ∈ L2(0, tf;L
2(Ω)). (4.2)
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Proof We prove this result using the methodology of mathematical induction. For this

purpose, we show the induction from r = 0 to r = 1 and the induction from r to r + 1

runs in the same way. The proof is divided into two steps following the scheme:

• Step r = 0. This is directly deduced from Theorem 2.1.

• Step r = 1. In order to obtain the regularity of the first derivative with respect to time,

we define an auxiliary problem, where the second members are the derivatives in time of

the Problem (VP). We will prove that this problem satisfies the assumptions of Theorem

2.1, and we will show that its unique solution is the derivative in time of the solution

to Problem (VP).

Auxiliary problem.

If we formally differentiate the second member of equations (2.11a) and (2.11b)

of Problem (VP) with respect to time, we can define the following problem:

Problem (V̂P )t
Find (û(t), θ̂(t)) ∈ H1(Ω) ×H1(Ω) satisfying a.e. t ∈ (0, tf)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(û(t), v) − m(θ̂(t) − θr, v) =

∫
Γu,N

[
∂tg(t) +

(
3αθrKI

)
n
]

· v dΓ

+

∫
Ω

[
∂tb(t) − 3α∇

(
θrK

)]
· v dp, ∀v ∈ H1

0,Γu,D
(Ω), (4.3a)

û(t) = ∂tuD(t) on Γu,D, (4.3b)

(∂tθ̂(t), φ)2 + κ(θ̂(t), φ) + m(φ, ∂tû(t)) + c(θ̂(t), φ) =

∫
Ω

∂tf(t)

θr
φ dp

+c(∂tθ
e(t), φ) +

∫
Γθ,N

∂th(t)

θr
φdΓ , ∀φ ∈ H1

0,Γθ,D
(Ω), (4.3c)

θ̂(t) = ∂tθD(t) on Γθ,D, (4.3d )

and the initial conditions û(0) = û0, θ̂(0) = θ̂0 in Ω, where these initial condi-

tions are defined as û0 = ∂tu(0) and θ̂0 = ∂tθ(0), which satisfy assumption (H12)

of Theorem 2.1 thanks to hypothesis (H12)t.

Existence and uniqueness of solution for Problem (V̂P )t.

Next, we prove that the data of Problem (V̂P )t satisfy the assumptions of Theorem

2.1. Indeed,

◦ Taking into account hypotheses (H1)t, (H2), (H3) and (H5)t, we deduce that

the body force associated to Problem (V̂P )t satisfies

∂tb(t) − 3α∇
(
θrK

)
∈ W 2,2(0, tf; L2(Ω)).

◦ Thanks to assumption (H6)t, the body heating for Problem (V̂P )t satisfies

∂tf ∈ W 1,2(0, tf;L
2(Ω)).
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◦ Considering hypotheses (H1)t, (H2), (H3) and (H9)t, the density of surface

forces associated to Problem (V̂P )t satisfies hypothesis (H9):

∂tg(t) +
(
3αθrKI

)
n ∈ W 2,2(0, tf; L2(Γu,N)), and ∂th(t) ∈ W 1,2(0, tf;L

2(Γθ,N)).

◦ Under hypothesis (H11)t, the external convection temperature for Problem

(V̂P )t satisfies

∂tθ
e(t) ∈ W 1,2(0, tf;L

2(Γθ,R)).

◦ Finally, thanks to hypotheses (H12)t and (H13)t for r = 1, the initial conditions

û0 and θ̂0 satisfy hypotheses (H12) and (H13) of Theorem 2.1

a(û0, v) − m(θ̂0 − θr, v) =

∫
Γu,N

[
∂tg(0) +

(
3αθrKI

)
n
]

· v dΓ

+

∫
Ω

(
∂tb(0) − Div

(
3θrαKI

))
· v dp, for all v ∈ H1

0,Γu,D
(Ω),

û0 = ∂tuD(0) on Γu,D, θ̂0 = ∂tθD(0) on Γθ,D.

Therefore, we can deduce the existence of a unique solution (û, θ̂) to Problem

(V̂P )t such that

û ∈ W 0,∞(0, tf; H1(Ω)), ∂tû ∈ L2(0, tf; H1(Ω)) and (4.4)

θ̂ ∈ W 0,∞(0, tf;H
1(Ω)), ∂tθ̂ ∈ L2(0, tf;L

2(Ω)). (4.5)

The solution to Problem (V̂P )t is the derivative in time of the solution to Problem (VP).

Let us introduce the helpful functions

w(t) = u0 +

∫ t

0

û(s)ds and Θ(t) = θ0 +

∫ t

0

θ̂(s)ds. (4.6)

From the regularity properties (4.4) and (4.5), we deduce that

w ∈ W 1,∞(0, tf; H1(Ω)), ∂2
tw ∈ L2(0, tf; H1(Ω)) with w(0) = u0,

and

Θ ∈ W 1,∞(0, tf;H
1(Ω)), ∂2

t Θ ∈ L2(0, tf;L
2(Ω)) with Θ(0) = θ0.
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Therefore, if we integrate the equations of Problem (V̂P )t over (0, t) and we

apply a Green’s formula to term m(θr, v) of equation (4.3a), we arrive at∫ t

0

a(û(s), v)ds−
∫ t

0

m(θ̂(s), v)ds =

∫
Ω

(
b(t) − b(0)

)
· v dp

+

∫
Γu,N

(g(t) − g(0)) · v dΓ , ∀v ∈ H1
0,Γu,D

(Ω), (4.7)

(θ̂(t) − θ̂(0), φ)2 +

∫ t

0

κ(θ̂(s), φ)ds+ m(φ, û(t) − û(0)) +

∫ t

0

c(θ̂(s), φ)ds

=

∫
Ω

(
f(t) − f(0)

)
θr

φ dp+ c(θe(t) − θe(0), φ)

+

∫
Γθ,N

(h(t) − h(0))

θr
φdΓ , ∀φ ∈ H1

0,Γθ,D
(Ω)). (4.8)

On the other hand, considering hypothesis (H13)t for l = 0 in displacements and

for l = 1 in temperature, we get∫
Ω

b(0) · v dp+

∫
Γu,N

g(0) · v dΓ = a(u0, v) − m(θ0 − θr, v), ∀v ∈ H1
0,Γu,D

(Ω),

(θ̂0, φ)2 = −κ(θ0, φ) − m(φ, û0) − c(θ0, φ) +

∫
Ω

f(0)

θr
φdp

+ c(θe(0), φ) +

∫
Γθ,N

h(0)

θr
φ dΓ , ∀φ ∈ H1

0,Γθ,D
(Ω).

Thus, if we replace the previous equalities in expressions (4.7), (4.8), we obtain

a(u0 +

∫ t

0

û(s)ds, v) − m(θ0 +

∫ t

0

θ̂(s)ds− θr, v)

=

∫
Ω

b(t) · v dp+

∫
Γu,N

g(t) · v dΓ , ∀v ∈ H1
0,Γu,D

(Ω), (4.9)

(θ̂(t), φ)2 + κ(θ0 +

∫ t

0

θ̂(s)ds, φ) + m(φ, û(t)) + c

(
θ0 +

∫ t

0

θ̂(s)ds, φ

)

=

∫
Ω

f(t)

θr
φ dp+ c(θe(t), φ) +

∫
Γθ,N

h(t)

θr
φdΓ , ∀φ ∈ H1

0,Γθ,D
(Ω). (4.10)

Therefore, w and Θ solve Problem (VP) (see equations (2.11a), (2.11b)). Since this

problem has a unique solution, we can conclude that w(t) = u(t) and Θ(t) = θ(t).

Furthermore, from (4.6) we deduce that û(t) = ∂tu(t) and θ̂(t) = ∂tθ(t).

Finally, from the regularity properties (4.4) and (4.5), we obtain (4.1), (4.2) for

r = 1.

�

To conclude this subsection, we summarize the regularity properties in time and space for

the solution to Problem (VP) from Theorems 3.4 and 4.2. To do so, we replace (H7)t and

(H8)t by the following hypotheses with r ∈ {0} ∪ �:
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(H7)st uD satisfies (H7) with ūD ∈ Wr+2,2(0, tf; H
3
2 (Γ )).

(H8)st θD satisfies (H8) with θ̄D ∈ Wr+2,2(0, tf;H
3
2 (Γ )).

Theorem 4.3 Let r ∈ {0} ∪ � be a fixed parameter. Under assumptions (H1)s, (H2)s,

(H3), (H4)s, (H5)t, (H6)t, (H7)st, (H8)st, (H9)t, (H10) and (H11)t–(H13)t, the solution (u, θ)

to Problem (VP) satisfies

u ∈ Wr,∞(0, tf; H1(Ω) ∩ H2
Loc(Ω)), ∂r+1

t u ∈ L2(0, tf; H1(Ω)) and

θ ∈ Wr,∞(0, tf;H
1(Ω) ∩H2

Loc(Ω)), ∂r+1
t θ ∈ L2(0, tf;L

2(Ω)).

Proof The proof is deduced directly from Theorems 3.4 and 4.2. �

4.2 Regularity of the Dirichlet problem with respect to time

In this subsection, we consider a particular case of Problem (P) with homogeneous

Dirichlet boundary conditions in displacements and temperature. We are going to prove

that if we replace hypotheses (H12)t and (H13)t on the initial data by others, we can also

obtain the Wr,∞ regularity in time for the Dirichlet case. For this purpose, we introduce

the following results.

Definition 4.4 Let γ be a non-negative scalar function defined in Ω. We define the operator

Λ̂−1 as the perturbation of the tensor Λ−1 given by

Λ̂−1 : τ = Λ−1 : τ + γτ s, τ ∈ S3, (4.11)

where τ s denotes the spherical part of τ .

Lemma 1 Let us consider m ∈ � a fixed parameter. We suppose that

• the elasticity tensor satisfies

Λ−1 ∈
[
C0,1(Ω)

]34

and, if m � 2, Λ−1 ∈
[
C2m−1(Ω)

]34

, (4.12)

and there exists amin > 0 such that

(Λ−1 : τ ) : τ � amin|τ |2, ∀τ ∈ S3;

• the body force b ∈ H2(m−1)(Ω);

• γ is a non-negative scalar function such that

γ ∈ C0,1(Ω) and, if m � 2, γ ∈ C2m−1(Ω). (4.13)

Then, there exists a unique weak solution ū ∈ H1
0(Ω) ∩ H2m(Ω) of the following equation:

−Div
(
Λ̂−1 : ε(ū)

)
= b in Ω.
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Proof Notice that, since Λ−1 satisfies (4.12) and γ satisfies (4.13) then

Λ̂−1 ∈

⎧⎪⎨
⎪⎩

[
C0,1(Ω)

]34

if m = 1,[
C0,1(Ω)

]34

∩
[
C2m−1(Ω)

]34

if m � 2.

Indeed, from definition (4.11) the Lamé’s parameters of Λ̂−1 are μ and λ+
γ

3
, which belong

to C0,1(Ω) if m = 1 and C0,1(Ω) ∩ C2m−1(Ω) if m � 2.

Thus, the result is true for m = 1 thanks to Theorems 3.7.2, 2.4.10 and Lemma 3.2 of

Chapter 5 of Nečas [21]. For m � 2, the H2m regularity is obtained thanks to Theorem

10.5 of Agmon et al. [1]. �

From here on, let us denote by r ∈ � a fixed parameter. We define the following static

problem:

Problem (P̄ r)

Find ūr in Ω, satisfying

−Div
(
Λ̂−1 : ε(ūr)

)
= b̄r in Ω, (4.14)

ūr = 0 on Γ , (4.15)

where Λ̂−1 is the perturbed operator defined in expression (4.11), with

γ =
27θrα

2K2

ρ0cF
and

b̄r =∂rtb(0) − Div
( 3αK

ρ0cF
Div (k∇θ̄r−1)I

)
− Div

(3αK∂r−1
t f(0)

ρ0cF
I
)
. (4.16)

Here, θ̄0 = θ0 and for r � 1

θ̄r = −3θrαK

ρ0cF
Divūr +

Div (k∇θ̄r−1)

ρ0cF
+

∂r−1
t f(0)

ρ0cF
in Ω. (4.17)

Corollary 1 Let 1 � l � r. Under hypothesis (H3) and the following assumptions:

(h1) θr , λ and μ are strictly positive functions in C0,1(Ω) ∩ C2r−1(Ω),

(h2) k ∈ H2r(Ω),

(h3) θ0 ∈ H2r+1(Ω),

(h4) ∂ltb(0) ∈ H2r−2l(Ω),

(h5) ∂l−1
t f(0) ∈ H2r−2l+1(Ω),

there exists a unique weak solution ūl ∈ H1
0(Ω) ∩ H2r−2l+2(Ω) to each Problem (P̄ l).

Proof This result is proved using the methodology of mathematical induction on the

parameter l for a fixed r ∈ �.

• If r = 1 then l = 1 and the result is deduced from the previous lemma taking m = 1.

Indeed, thanks to assumptions (H3) and (h1)–(h5) for r = 1, the body force associated
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with Problem (P̄ 1), given by (4.16), belongs to L2(Ω). Furthermore, under hypotheses

(H3) and (h1), we get

γ ∈ C1(Ω) ∩ C0,1(Ω) and γ(p) �
27θr,minα

2K2(p)

ρ0cF
� 0, for all p ∈ Ω.

• If r � 2, we show the induction from l = 1 to l = 2 and the induction from l to

l + 1 runs in the same way. Notice that, at each step l, we can apply Lemma 1 for

m = r − l + 1.

◦ Step l = 1. It is obtained directly from Lemma 1 for m = r.

◦ Step l = 2. In this case, the body force of Problem (P̄ 2) depends on θ̄1 (see equation

(4.17)) and, therefore, on ū1, solution to Problem (P̄ 1). Since from the previous step

ū1 ∈ H1
0(Ω) ∩ H2r(Ω) and θ̄1 belongs to H2r−1(Ω), we can deduce that b̄2 ∈ H2r−4(Ω)

(see equation (4.16)). Thus, the existence and uniqueness of ū2 ∈ H1
0(Ω) ∩ H2r−2(Ω),

solution to Problem (P̄ 2), is deduced from Lemma 1 with m = r − 1.

�

Remark 4.5 We notice that the result is also valid when θr , λ and μ are strictly positive

functions in W 2r−1,∞(Ω) ∩ C0,1(Ω).

As we have stated, throughout this subsection we consider the following Dirichlet problem:

Problem (PD)

Find u and θ in Ω × (0, tf], satisfying (2.1)–(2.3), the initial conditions (2.9) and

u = 0, θ = 0 on Γ × (0, tf].

Following the reasoning used in Barral et al. [4], we propose the following weak variational

formulation:

Problem (VPD)

Find (u(t), θ(t)) ∈ H1
0(Ω) ×H1

0 (Ω), satisfying a.e. t ∈ (0, tf)⎧⎪⎪⎨
⎪⎪⎩
a(u(t), v) − m(θ(t) − θr, v) =

∫
Ω

b(t) · v dp, ∀v ∈ H1
0(Ω), (4.18a)

(∂tθ(t), φ)2 + κ(θ(t), φ) + m(φ, ∂tu(t)) =

∫
Ω

f(t)

θr
φ dp, ∀φ ∈ H1

0 (Ω), (4.18b)

and the initial conditions (2.9).

Under hypotheses (H1)–(H6), (H12), (H13), Theorem 2.1 implies the existence and unique-

ness of solution (u, θ) to Problem (VPD), satisfying (2.16), (2.17), or equivalently (4.1), (4.2)

for r = 0.

In the following, we modify some hypotheses to successfully treat this second result of

regularity in time:

(H1)t2 The elasticity tensor satisfies (H1) and Λ−1 ∈
[
C0,1(Ω)

]34

∩
[
C2r−1(Ω)

]34

.

(H2)t2 The reference temperature satisfies (H2) and θr ∈ C0,1(Ω) ∩ C2r−1(Ω).
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(H4)t2 The thermal conductivity coefficient satisfies (H4) and k ∈ W 2r,∞(Ω).

(H5)t2 The body force b ∈ Wr+2,2(0, tf; L2(Ω)), and ∂ltb(0) ∈ H2r−2l(Ω), 1 � l � r.

(H6)t2 The body heating f ∈ Wr+1,2(0, tf;L
2(Ω)), and ∂ltf(0) ∈ H

2r−(2l+1)
0 (Ω), 0 � l � r−1.

(H12)t2 The initial conditions u0 ∈ H1
0(Ω) and θ0 ∈ H2r+1

0 (Ω).

(H13)t2 The initial conditions u0 and θ0 satisfy

a(u0, v) − m(θ0 − θr, v) =

∫
Ω

b(0) · v dp, ∀v ∈ H1
0(Ω).

(H14)t2. For 1 � l � r, the solution ūl to each Problem (P̄ l) satisfies

Div ūl ∈ H2r−2l+1
0 (Ω).

Remark 4.6 We notice that in hypotheses (H1)t2 and (H2)t2, it would be enough to consider

Λ−1 ∈ [C0,1(Ω)]3
4 ∩ [W2r−1,∞(Ω)]4 and θr ∈ C0,1(Ω) ∩W 2r−1,∞(Ω).

Theorem 4.7 Let r ∈ � be a fixed parameter. Under assumptions (H1)t2, (H2)t2, (H3),

(H4)t2–(H6)t2 and (H12)t2–(H14)t2, the solution to Problem (VPD) satisfies

u ∈ Wr,∞(0, tf; H1
0(Ω)), ∂r+1

t u ∈ L2(0, tf; H1
0(Ω)) and

θ ∈ Wr,∞(0, tf;H
1
0 (Ω)), ∂r+1

t θ ∈ L2(0, tf;L
2(Ω)).

Proof The proof follows the scheme of Theorem 4.2. Therefore, we give the proof for

r = 1.

Auxiliary problem.

Using formal derivation with respect to time in Problem (VPD), we define the

following problem:

Problem (V̂PD)t
Find (û(t), θ̂(t)) ∈ H1

0(Ω) ×H1
0 (Ω), satisfying a.e. t ∈ (0, tf):⎧⎪⎪⎨

⎪⎪⎩
a(û(t), v) − m(θ̂(t)−θr, v)=

∫
Ω

[
∂tb(t)−3α∇

(
θrK

)]
· v dp, ∀v ∈ H1

0(Ω), (4.19a)

(∂tθ̂(t), φ)2 + κ(θ̂(t), φ) + m(φ, ∂tû(t)) =

∫
Ω

∂tf(t)

θr
φ dp, ∀φ ∈ H1

0 (Ω), (4.19b)

and the initial conditions û(0) = û0, θ̂(0) = θ̂0 in Ω, where

û0 = ū1, θ̂0 = θ̄1. (4.20)

Here, ū1 is the weak solution to Problem (P̄ 1) and θ̄1 is defined from equality (4.17).

Notice that û0 and θ̂0 are defined to coincide formally with the derivatives with
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respect to time of u and θ at t = 0. In effect, if we evaluate energy equation (2.2) at

time t = 0, we obtain

∂tθ(0) = −3θrαKDiv ∂tu(0)

ρ0cF
+

Div (k∇θ0)

ρ0cF
+
f(0)

ρ0cF
in Ω.

In addition, if we formally differentiate motion equation (2.1) with respect to time,

we consider t = 0 and we replace the previous expression, we obtain equation (4.14)

for ū1 playing the role of ∂tu(0) with b̄1 given by equality (4.16).

Lemma 2 Under assumptions of Theorem 4.7 for r = 1, the initial conditions û0

and θ̂0, given in (4.20), are well defined.

Proof Under hypotheses (H1)t2, (H2)t2, (H3), (H4)t2–(H6)t2 and (H12)t2 for r = 1,

the assumptions of Corollary 1 are true for r = 1 and we can conclude that

û0 ∈ H1
0(Ω) ∩ H2(Ω) is the unique solution to equation (4.14) for r = 1. Therefore,

θ̂0 = θ̄1 can be defined from equality (4.17) and θ̂0 ∈ H1(Ω). �

Existence and uniqueness of solution to Problem (V̂PD)t.

In the following, we prove the existence and uniqueness of solution to Problem

(V̂PD)t from Theorem 2.1; the main difficulty is to verify that the initial condition

of this problem, (û0, θ̂0), satisfies the required hypotheses. Indeed,

• Taking into account hypotheses (H1)t2, (H2)t2 and (H5)t2, we easily deduce

that the body force associated to Problem (V̂PD)t satisfies ∂tb − 3α∇
(
θrK

)
∈

W 2,2(0, tf; L2(Ω)).

• In the same way, considering assumption (H6)t2, we obtain ∂tf ∈
W 1,2(0, tf;L

2(Ω)).

• From Lemma 2, û0 ∈ H1
0(Ω) ∩ H2(Ω) and θ̂0 ∈ H1(Ω).

• Finally, it is necessary to check hypothesis (H13). From definition of û0, we can

deduce that (û0, θ̂0) satisfies the weak equality

a(û0, v) − m(θ̂0 − θr, v)=

∫
Ω

(
∂tb(0) − Div

(
3θrαKI

))
· v dp, (4.21)

for all v ∈ H1
0(Ω). Indeed, since û0 is the weak solution to Problem (P̄ 1), given

by equation (4.14), considering the definition of b̄1 (see (4.16)) and taking into

account Definition 4.4 for γ =
27θrα

2K2

ρ0cF
,

−
∫
Ω

Div

(
Λ−1:ε(û0) − 3αK

[
−3θrαK

ρ0cF
Div (û0)I +

Div (k∇θ0)I

ρ0cF
+
f(0)

ρ0cF
I

])
·v dp

=

∫
Ω

∂tb(0) · v dp, for all v ∈ H1
0(Ω). (4.22)
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Furthermore, considering expression (4.17) and taking into account that θ̂0 =

θ̄1, equation (4.22) can be rewritten as

−
∫
Ω

Div
(
Λ−1 : ε(û0) − 3αK(θ̂0 − θr)I

)
· v dp

=

∫
Ω

[
∂tb(0) − Div

(
3αθrKI

)]
· v dp, for all v ∈ H1

0(Ω),

which proves (4.21).

Then, by definition of Problem (P̄ 1), û0 = 0 on Γ and thanks to (H2)t2, (H3),

(H6)t2, (H12)t2 and (H14)t2, from equality (4.17) we deduce that θ̂0 = 0 on Γ .

Summing up, from Theorem 2.1, we can conclude the existence of a unique weak

solution (û, θ̂) to Problem (V̂PD)t satisfying (2.16), (2.17).

The solution to Problem (V̂PD)t is the derivative in time of the solution to Problem (VPD).

Following the proof of Theorem 4.2, we introduce the helpful functions w(t) and

Θ(t) defined in (4.6).

Let us integrate the equations of Problem (V̂PD)t over (0, t), and apply a Green’s

formula to the term m(θr, v)∫ t

0

a(û(s), v)ds−
∫ t

0

m(θ̂(s), v)ds =

∫
Ω

(
b(t) − b(0)

)
· v dp, ∀v ∈ H1

0(Ω), (4.23)

(θ̂(t) − θ̂(0), φ)2 +

∫ t

0

κ(θ̂(s), φ)ds+ m(φ, û(t) − û(0))

=

∫
Ω

(
f(t) − f(0)

)
θr

φ dp, ∀φ ∈ H1
0 (Ω). (4.24)

On the other hand, considering (H13)t2, we have∫
Ω

b(0) · v dp = a(u0, v) − m(θ0 − θr, v), ∀v ∈ H1
0(Ω).

In addition, due to expression of θ̂0 = θ̄1 (see equation (4.17)), we can deduce

(θ̂0, φ)2 = −m(φ, û0) − κ(θ0, φ) +

∫
Ω

f(0)

θr
φ dp, ∀φ ∈ H1

0 (Ω).

Thus, if we replace the previous equalities in expressions (4.23) and (4.24), we obtain

a(u0 +

∫ t

0

û(s)ds, v) − m(θ0 +

∫ t

0

θ̂(s)ds− θr, v) =

∫
Ω

b(t) · v dp, ∀v ∈ H1
0(Ω),

(θ̂(t), φ)2 + κ(θ0 +

∫ t

0

θ̂(s)ds, φ) + m(φ, û(t)) =

∫
Ω

f(t)

θr
φ dp, ∀φ ∈ H1

0 (Ω).

Therefore, w and Θ are solution to Problem (VPD). An argument similar to that of

Theorem 4.2 completes the proof.

�
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In order to conclude this part, we summarize the regularity properties in space and time

for the solution to Problem (VPD) given in Theorems 3.4 and 4.7. For that purpose, we

replace (H4)t2 by the following hypothesis:

(H4)st2 The thermal conductivity coefficient satisfies (H4) and k ∈ C0,1(Ω) ∩ C2r(Ω).

Theorem 4.8 Let r ∈ � be a fixed parameter. Under assumptions (H1)t2, (H2)t2, (H3),

(H4)st2, (H5)t2, (H6)t2, and (H12)t2-(H14)t2, the solution (u, θ) to Problem (VPD) satisfies

the following regularity properties:

u ∈ Wr,∞(0, tf; H1
0(Ω) ∩ H2

Loc(Ω)), ∂r+1
t u ∈ L2(0, tf; H1

0(Ω)) and

θ ∈ Wr,∞(0, tf;H
1
0 (Ω) ∩H2

Loc(Ω)), ∂r+1
t θ ∈ L2(0, tf;L

2(Ω)).

Proof The proof is deduced directly from Theorems 3.4 and 4.7. �

5 Conclusions

In this paper, we have obtained regularity properties of the solution to a quasi-

static fully-coupled linear thermoelastic problem for heterogeneous materials with mixed

displacement-traction boundary conditions for the mechanical sub-model and mixed

Dirichlet–Neumann–Robin for the thermal one.

Specifically, we have proved H2
Loc regularity in space for displacements and temperature

assuming additional regularity on the data, and we have achieved Wr,∞ regularity in

time, r ∈ {0} ∪ �, assuming also more regularity of the solution at the initial instant.

Furthermore, for the corresponding homogeneous Dirichlet problem, we have obtained

the same regularity in time by increasing the smooth properties in space of the initial data

without considering smoother properties of the solution at the initial instant.
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