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We study an online capacity planning problem in which arriving patients require a series
of appointments at several departments, within a certain access time target.

This research is motivated by a study of rehabilitation planning practices at the Sint
Maartenskliniek hospital (the Netherlands). In practice, the prescribed treatments and
activities are typically booked starting in the first available week, leaving no space for
urgent patients who require a series of appointments at a short notice. This leads to the
rescheduling of appointments or long access times for urgent patients, which has a negative
effect on the quality of care and on patient satisfaction.

We propose an approach for allocating capacity to patients at the moment of their
arrival, in such a way that the total number of requests booked within their corresponding
access time targets is maximized. The model considers online decision making regarding
multi-priority, multi-appointment, and multi-resource capacity allocation. We formulate
this problem as a Markov decision process (MDP) that takes into account the current
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patient schedule, and future arrivals. We develop an approximate dynamic programming
(ADP) algorithm to obtain approximate optimal capacity allocation policies. We provide
insights into the characteristics of the optimal policies and evaluate the performance of
the resulting policies using simulation.

Keywords: approximate dynamic programming, healthcare logistics, online capacity planning,
operations research, markov decision process, rehabilitation treatment planning, simulation

1. INTRODUCTION

Worldwide, millions of patients are admitted to rehabilitation facilities each year as a conse-
quence of accidents, sickness or congenital disorders. In rehabilitation, a patient is assisted in
improving or recovering lost functions after an accident, illness or injury. A patient is treated
by a multi-disciplinary team of practitioners, including, for example, physiotherapists and
occupational therapists, under the lead of a rehabilitation doctor. In the Netherlands, over
90,000 patients are treated in rehabilitation facilities each year [26]. A rehabilitation treat-
ment consists of an intake appointment with a doctor and a series of treatment sessions
over several weeks or months, either on an inpatient or an outpatient basis.

The best quality of rehabilitation care is delivered when the right care is provided at the
right time [5]. Rehabilitation care professionals claim that, amongst others, a short access
time [29], a simultaneous start of sessions from the different involved disciplines and the
continuity of the rehabilitation process [3] should be guaranteed. Access time targets can
vary widely depending on the type of patient: some patients have to start treatment within
24 hours whereas others can wait for several weeks.

This paper presents a methodology for capacity planning of rehabilitation treatments in
an online fashion, that is, capacity is booked for multiple weeks in advance as the treatment
requests arrive. The method is designed in such a way that compliance to access time
targets (concerning the recommended maximum number of weeks between consultation and
start of the treatment) is optimized across all patients. The performance of the proposed
methodology is evaluated for a case study based on data of the Sint Maartenskliniek, a
major rehabilitation center in the Netherlands.

Planning an appointment series for a patient is the act of determining a future starting
week of his or her treatment, setting the weekdays and time slots for each appointment,
and assigning a therapist to each appointment. This appointment planning process is com-
plex, because many constraints and preferences are involved, for example, the availability
of several therapists (often available part-time) and the patient’s preference to combine
appointments for different disciplines on the same day. Another factor that complicates
appointment planning is when appointments are booked at the moment the treatment
requests arrive (so-called online appointment planning). This is done as a service to the
patient, who then immediately knows when his or her treatment will start. However, this
implies that capacity planning decisions have to be made before we know which other
requests need to be scheduled. In practice, treatments are often booked to start in the first
week with enough capacity available. The risk is that there might be no space left to treat
urgent or resource intensive patients within their corresponding access time targets.

The planning problem we consider in this study can be described as follows. An incoming
request for a patient consists of weekly capacity requirements for different disciplines over
a consecutive number of weeks and an access time target, which states the number of
weeks within which the treatment should start. Each time a request comes in, the required
capacity has to be booked immediately for all the weeks and disciplines associated with the
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Figure 1. Example of a planning decision for a patient, who can start treatment either
in week 1 (left) or week 4 (right)

treatment. Since the treatment has to be delivered in consecutive weeks and has to start in
the same week for all involved disciplines, our decision entails determining a starting week
for each patient on the moment of his/her arrival. Note that the decision on the exact days,
time slots and therapists are not taken into account in this study. The treatment can only
take place if there is enough capacity available in each week for each discipline. If there is
not enough capacity in the booking horizon, a patient may be diverted to another hospital.
No changes can be made in already allocated capacity, that is, no rescheduling is allowed.
The objective of this problem is to maximize the number of requests booked within their
access time targets.

We illustrate the problem with the following example. Suppose we have an existing
schedule, where capacity is partly allocated. For simplicity, we consider the availability
of one discipline with a single therapist on a weekly basis (see Figure 1 for a schematic
representation). A request for one-time slot of treatment during 2 consecutive weeks arrives,
with an access time target of 4 weeks. According to the current schedule, there is at least
one-time slot available each week, except for the third week. Thus, we could choose to
start the treatment in week 1, but we could also postpone the start until week 4 such
that future urgent requests could be booked within their access time target of 1 week.
Determining which starting week is optimal depends on the nature of the arrival process of
future requests.

In this study, we develop an online capacity planning algorithm that provides guide-
lines for allocating capacity to incoming requests, taking into account the arrival process
of future requests, and taking into account that later arriving requests may have shorter
access time targets. This is the first model that considers online decision making regarding
multi-priority, multi-appointment, and multi-resource capacity allocation. Our contribu-
tion is threefold. First, we define a Markov decision process (MDP) to model our planning
problem. Due to the curse of dimensionality, the MDP cannot be solved analytically for
realistically sized problems. Therefore, our second contribution is the development of an
approximate dynamic programming (ADP) approach, using affine value function approx-
imation and column generation, to obtain approximate solutions for the MDP. To find a
suitable approximation of the value function, we provide a founded choice of basis functions
for the considered problem. Third, we provide insights into the characteristics of the optimal
policy. The model is applied to a case study based on data of the Spinal cord injury care
unit of the Sint Maartenskliniek in the Netherlands. Simulation results show that the use
of this method in practice could substantially increase the number of patients for whom
treatment starts within their access time targets.

The remainder of this paper is organized as follows. Section 2 provides an overview
of the related literature. In Section 3, we explain our MDP model. We develop an ADP
approach to solve the MDP model in Section 4. Section 5 presents the results, followed by
conclusions and discussion in Section 6.

https://doi.org/10.1017/S0269964818000402 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000402


384 Ingeborg A. Bikker et al.

2. RELATED LITERATURE

To place our contribution in the context of previous work, we discuss the related literature
on appointment planning in healthcare. We explain that our type of problem can be modeled
as an MDP and we discuss the application of ADP for obtaining approximate solutions to
it.

In this paper, we consider an online planning problem, in which patients get a direct
response to their treatment request in the form of a starting week. Offline planning involves
collecting treatment requests until all demand for a certain period is known and then book
all requests. Semi-online planning entails collecting requests and booking requests at the
end of each day.

Appointment planning in healthcare has received considerable attention in the liter-
ature, especially offline scheduling. Two comprehensive surveys are provided in [4] and
[15]. The literature has mostly focused on planning single appointments on a particular
day for an individual service provider [4]. In the scheduling literature, several policies
are evaluated for offline scheduling of jobs with a decaying reward [18]. Such jobs apply
to patients in healthcare settings since delays in access to care can result in worse out-
comes. Some research has been done on planning series of multi-disciplinary appointments
in healthcare [17]. Most notably, Schimmelpfeng et al. [30] developed an offline decision
support system for multi-disciplinary planning in rehabilitation facilities. The authors for-
mulated a mixed integer linear programming model that is decomposed into a hierarchical
three-stage model to reduce computational difficulties. For online planning, comprehensive
reviews can be found in [24,34]. An approach for the online planning of rehabilitation
appointment series is proposed by Braaksma et al. [3]. In this paper, the access time
targets of all patients are similar, so no capacity has to be reserved for future urgent
patients.

Online and semi-online planning can significantly benefit from anticipating future treat-
ment requests when booking the current treatment request [21], for example by deriving
time-dependent policies (e.g., [21]) or threshold policies (e.g., [1]). Taking future requests
into account in online planning involves optimization over time, which can be represented
by a sequential decision problem, for example an MDP. Due to the curses of dimensionality,
these models can often not be solved exactly. One technique that can be used to derive
approximate solutions for the MDP is ADP. A comprehensive explanation and overview
of the various ADP techniques are given in [23]. Some practical examples are described in
[20]. ADP is used in, for example, resource capacity planning [9,32,33], communication [27],
inventory control [35], and transportation [36]. The application of ADP in healthcare is rel-
atively new. It has been used in ambulance planning (e.g., [19,31]), admission control (e.g.,
[16]) and patient planning [9,12,22,28]. In the work of [9,12,22], planning one appointment
in a semi-online manner is done using ADP. In [12], the appointment should take place in a
certain time interval. In [28], a series of radiation appointments on consecutive days are con-
sidered, where all appointments require the same resource and booking decisions are taken
at the end of each day. We have not found any papers on multi-disciplinary appointment
planning in an online fashion, using ADP.

An ADP approach for solving MDPs usually takes one of the common MDP solution
methods as a basis: value iteration, policy iteration or linear programming. The value iter-
ation method is mostly used as a basis for the ADP approach. However, since De Farias
and Van Roy [6] introduced ADP concepts to the linear programming method in 2003, this
method has received attention as a basis for ADP. Two major problems may occur with
the common linear programming method as a consequence of the curses of dimensionality.
First, the number of decision variables (equal to the number of states) may be too large,
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which can be solved introducing basis functions to approximate the representation of the
value function in the MDP formulation; examples of this can be found in [10,37]. Second,
the number of constraints (equal to the number of states times the number of actions) may
be too large. The latter problem can be solved using Monte Carlo samples of the constraints
[7], by allowing constraints to be represented compactly [14], or by using problem-specific
approaches making use of constraint generation/column generation methods [11,13,22,28].
In the planning problem of this paper, we face both curses of dimensionality and deal with
them using value function approximation and column generation, respectively.

Our contribution is the development of a method for online capacity planning over
multiple weeks and involving multiple disciplines and priorities, taking into account future
requests. In existing approaches, all appointments require the same resource, whereas we
study the interrelatedness of multiple disciplines with their own capacity limits and their
combined influence on the optimal policy. Also, healthcare logistics literature merely con-
tains approaches that save up requests and book them at the end of 1 day, which entails
more prior knowledge than the planning problem we consider where patients get a direct
response to their treatment request. Our approach is novel in the area of rehabilitation treat-
ment, as existing approaches in rehabilitation only use offline planning, or online planning
but without taking future requests into account. We use a linear programming approach as
a basis to solve the MDP and develop an ADP approach for this problem, using affine value
function approximation and column generation, to derive approximate solutions. In order
to find a suitable approximation of the value function, we provide a founded choice of basis
functions for the considered problem.

3. MARKOV DECISION MODEL

The planning problem we consider deals with booking capacity for each incoming treatment
request at the moment of arrival. Since the treatment has to take place over a number
of consecutive weeks and has to start in the same week for all involved disciplines, our
decision entails determining a starting week for each patient at the moment of his/her
arrival. The objective is to maximize the number of requests booked within their access time
targets.

We model this problem as a MDP. MDPs have proven to be useful as models for
sequential decision problems with stochastic characteristics that have the Markov property
(i.e., future states and decisions are independent of past states and decisions, given the
present state of the system). At each decision epoch in an MDP, the system’s state is
observed and one decision (action) is chosen. Based on the current state and action, the
probabilities of reaching any possible system state in the next decision epoch are known, as
well as the expected cost to be incurred given the current state and action. This decision
process is repeated over and over. MDPs are comprehensively discussed by Puterman [25]
and more recently in Boucherie and Van Dijk [2].

We consider an MDP with an infinite horizon since the considered system has no pre-
determined time of extinction and we are interested in stationary planning policies. Let
D, W, K, and R be sets containing the disciplines, weeks in the booking horizon, time
slots in a week, and types of requests respectively. The cardinalities of the sets are denoted
by the corresponding capitals, for example, W = {1, . . . ,W}. Typical elements are denoted
by the corresponding lower case characters. The decision epochs, states, actions, transi-
tion probabilities, and costs are described in the following subsections and summarized in
Table 1.
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Table 1. Indices and parameters in the MDP model

Term Description

d ∈ D Discipline
w ∈ W Week in the booking horizon
k(s) ∈ K Decision epoch in a week
r(s) ∈ R Treatment request
s, s′ ∈ S State, consisting of 〈y(s), r(s), k(s)〉
a ∈ As Feasible action, denoting the starting week of the treatment
ydw(s) No. of booked time slots for discipline d in week w
qd Total no. of available time slots per week for discipline d
frd No. of consecutive weeks in which treatment from discipline d is

required in request r
�rd Weekly no. of required time slots from discipline d during the

treatment of request r
br Access time target in request r
c(s, a) Costs, consisting of penalty for exceeding access time target, a

diversion cost, or nothing

3.1. Decision epochs and booking horizon

We use two different time scales: one related to the weeks of the booking horizon, and the
other related to the decision epochs. For the booking horizon, we consider W weeks. With
respect to the decision epochs, we divide the current week into K time intervals, at the
end of which a decision is taken. K is chosen in such a way that the probability of two
or more requests arriving in the same interval is negligible; so K depends on the patient
arrival distribution (see Appendix A). It is possible that no treatment request arrives in an
interval. In that case, we immediately proceed to the next decision epoch.

3.2. States

We denote the set of all possible states of the system by S. A state is represented by a
triple s = 〈y(s), r(s), k(s)〉, where y is a D ×W-matrix of which each cell ydw(s) contains
the number of time slots that are already booked for discipline d in week w in state s. The
total number of time slots that can be booked per week for a discipline d is denoted by
qd. Parameters r(s) ∈ R and k(s) ∈ K denote the current request and the current decision
epoch in state s, respectively. A request is either empty (meaning that no request arrived
in the decision epoch) or consists of a triple r(s) = 〈fr, �r, br〉, where br is the access time
target in weeks, and fr and �r are vectors in N

D such that for each d ∈ D:

• frd is the number of consecutive weeks in which treatment from discipline d is
required;

• �rd is the weekly number of required time slots from discipline d during the treatment.

3.3. Actions

An action a represents the week in the booking horizon in which the current requested
treatment starts. In case of an empty request or if a request is diverted to another hospital,
we set a = 0. Let As ⊆ {0, 1, . . . ,W} denote the set of feasible actions in state s ∈ S and
let q ∈ N

D contain the weekly capacities of the disciplines. The action a = 0 is always
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feasible. Given state s = 〈y(s), r(s), k(s)〉, an action a > 0 is feasible if the request r(s) = r
is non-empty and

• the final treatment week cannot be scheduled beyond the last week of the booking
horizon: a+ frd − 1 ≤W ∀d ∈ D;

• there must be sufficient capacity for each discipline in all weeks of the treatment
plan �rd ≤ qd − ydw(s) ∀d ∈ D, w ∈ {a, . . . , a+ frd − 1}.

Note that we assume that a patient’s treatment cannot start in the same week as his/her
arrival. However, this assumption can easily be relaxed.

3.4. Transition probabilities

When an action a is chosen (i.e., the current request is booked or diverted), the only
stochastic element in the transition to the next state is the new request r(s′) = r with
probability P(r). For states with k(s) < K, the state transitions 〈y(s), r(s), k(s)〉 −→
〈y(s′), r(s′), k(s) + 1〉 are further described by the following equations. For actions a > 0
holds:

ydw(s′) =
{
ydw(s) + �rd ∀d,w ∈ {a, . . . , a+ frd − 1},
ydw(s) ∀d,w /∈ {a, . . . , a+ frd − 1}. (1)

For action a = 0 holds, in case k(s) < K:

ydw(s′) = ydw(s) ∀d,w. (2)

If k(s) = K, the week indices shift 1 week in the next state, so week w in the current
state becomes week w − 1 at the subsequent state. At the end of the booking horizon,
a new week is added in which no treatments have yet been booked. The state transi-
tions 〈y(s), r(s),K〉 −→ 〈y(s′), r(s′), 1〉 are further described by the following equations.
For actions a > 0 holds:

ydw(s′) =

⎧⎨
⎩

0 ∀d,w = W ,
yd(w+1)(s) + �rd ∀d,w ∈ {max(a− 1, 1), . . . , a+ frd − 2}, w < W ,
yd(w+1)(s) ∀d,w /∈ {max(a− 1, 1), . . . , a+ frd − 2}, w < W.

(3)

For action a = 0 holds, in case k(s) = K:

ydw(s′) =
{

0 ∀d,w = W ,
yd(w+1)(s) ∀d,w < W . (4)

3.5. Immediate costs

If action a is chosen in state s, a cost c(s, a) is incurred, consisting of a penalty for exceeding
the access time target, a penalty for diversion, or nothing. The penalty for exceeding the
access time target consists of a fixed cost cb and a cost ce for each week that the treatment
starts later than the target:

c(s, a) =

⎧⎨
⎩
cb + (a− br)ce if a− br > 0 (exceeding the access time target),
cdiv if a = 0 and request non-empty (diversion),
0 otherwise.

(5)
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3.6. Optimality equations

Our objective is to find actions that minimize the total discounted expected costs over the
infinite horizon. Therefore, the optimality equations are as follows:

v(s) = mina∈As

{
c(s, a) + λ

∑
s′∈S

P(s′|s, a)v(s′)
}

∀s, (6)

where v(s) denotes the expected discounted cost associated with state s, s′ denotes the
next state where we transit to from state s, and λ is the discount factor. Note that the
(immediate) costs of a decision are always incurred at the moment of the decision, so when
the patient arrives. Future costs (which are discounted) are incurred on decisions about
patients who might come in the future.

4. ADP SOLUTION APPROACH

Even for very small instances, the size of the state space ((
∏
d∈D(qd + 1))(W−1) ·R ·K)

and the size of the action set (up to W + 1) of the MDP model prohibit finding a direct
solution of its optimality equations (6) in a reasonable time. Instead of solving the MDP
model directly, we develop an ADP approach, that enables us to approximate the solution
of the MDP. In particular, we use the linear programming approach to ADP to obtain an
approximate solution to the model and derive approximate optimal booking policies.

In order to deal with an intractable number of states, we first rewrite our MDP model
in its equivalent linear programming form. The linear programming approach to discounted
infinite-horizon MDPs is based on writing the optimality equations (6) as:

maxv
∑
s∈S

α(s)v(s), (7)

subject to

c(s, a) + λ
∑
s′∈S

P(s′|s, a)v(s′) ≥ v(s) ∀s ∈ S, a ∈ As, (8)

where α represents the weight of the state s in the objective function. The solution v(s)
to (7 and 8) is equivalent to that of the optimality equations in (6) whenever α is strictly
positive [25].

The model in (7 and 8) has one variable for every state s and one constraint for every
feasible state-action pair (s, a), making its solution numerically intractable.

4.1. Value function approximation

A common approach in ADP is to derive approximate policies based on value function
approximations. Value functions can be approximated by linear regression, where a (small)
series of explanatory variables (or “features”) can be used to identify a set of basis func-
tions φg(s) with weights Φg that represent the value function in the MDP formulation or,
equivalently, the variables in the corresponding linear programming model: v(s) =

∑
g φgΦg

[37].
The choice of basis functions is not straightforward and can influence the results dra-

matically [20,23]. To select a proper set of basis functions that together explain the value
function to the largest extent, we use regression analysis of several basis functions on a
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small problem instance (see Appendix B). Based on this analysis, we use a value function
approximation consisting of (i) D ×W features of the type “number of booked time slots for
discipline d in week w”, (ii) R features of the type “current request type”, (iii) one feature
valuing “the number of decision epochs still to go in the current week”, and (iv) one feature
denoting a constant. Together, these features explain a large part of the variance in the
computed MDP state values (R2 = 0.75). This entails the following affine approximation to
v(s):

v(s) = U0 +
∑
d

∑
w

ydw(s)Ydw +
∑
r

er(s)Er + k̄(s)N ∀s ∈ S, (9)

U0 ∈ R, Ydw ≥ 0 ∀d,w,Er ≥ 0 ∀r,N ≥ 0,

where ydw(s) follows from the state description; er(s) = 1 if the state description contains
the rth type of request and 0 otherwise; k̄(s) = K − k(s) + 1 denotes the number of decision
epochs still to go in the current week, and U0 is a constant.

Now we can substitute the value function approximation (9) and the state transitions
(1) and (3) into the linear program (7–11). For this, we use the following notation:

γdw(s, a) = ydw(s) − λydw(s′),

εr(s, a) = εr(s) = er(s) − λer(s′) = er(s) − λP(r),

κ(s, a) = κ(s) = k̄(s) − λk̄(s′) = k̄(s) − λ(K − mod(k(s),K)),

Thus, rewriting the linear program (7–11), we obtain:

max
(U0,Y,E,N)

(
U0 +

∑
d

∑
w

[∑
s

α(s)ydw(s)

]
Ydw

+
∑
r

[∑
s

α(s)er(s)

]
Er +

[∑
s

α(s)k̄(s)

]
N

)
, (10)

subject to

(1 − λ)U0 +
∑
d

∑
w

γdw(s, a)Ydw +
∑
r

εr(s, a)Er + κ(s, a)N ≤ c(s, a) ∀s ∈ S, a ∈ As,

(11)

U0 ∈ R, Ydw ≥ 0 ∀d,w,Er ≥ 0 ∀r,N ≥ 0.

Note that the approximation parameters (U0, Y, E,N) are the decision variables of the linear
program in Eqs. (10 and 11), and they have replaced the values v(s), which are the decision
variables of the linear program in Eqs. (7 and 8).

In the MDP setting, the choice of α(s) in (7) does not influence the solution, as long
as it is strictly positive [25]. This can be explained by the fact that for any state s and any
feasible solution v we have v∗(s) ≥ v(s), in which v∗ is the optimal solution. In the ADP
setting, this phenomenon is lost and the states compete in importance, measured by their
weights α. Intuitively, the weight of a state is, therefore, best chosen proportional to its
frequency of occurrence over time. We introduce the following notation:

Eα[ydw] =
∑
s∈S

α(s)ydw(s) ∀d,w,
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Eα[er] =
∑
s∈S

α(s)er(s) ∀r,

Eα[k̄] =
∑
s∈S

α(s)k̄(s),

which denote the expected values of ydw(s), er(s) and k̄(s) under the probability distribution
α that reflects the occurrence of each state over time. Using this notation in the optimality
equations (10), we obtain:

max(U0,Y,E,N)

(
U0 +

∑
d

∑
w

Eα[ydw]Ydw +
∑
r

Eα[er]Er + Eα[k̄]N

)
, (12)

subject to

(1 − λ)U0 +
∑
d

∑
w

γdw(s, a)Ydw +
∑
r

εr(s)Er + κ(s)N ≤ c(s, a) ∀s ∈ S, a ∈ As, (13)

U0 ∈ R, Ydw ≥ 0 ∀d,w,Er ≥ 0 ∀r,N ≥ 0.

In a practical sized instance, such as the case study described in Section 5.2, the application
of value function approximation can reduce the number of decision variables from around
28,000 to <250.

4.2. Column generation

The approximate linear programming model in (12) has a tractable number of variables,
but still an intractable number of constraints. Therefore, we solve its dual (14) using column
generation:

minx
∑
s∈S

∑
a∈As

c(s, a)X(s, a), (14)

subject to

(1 − λ)
∑
s∈S

∑
a∈As

X(s, a) = 1,

∑
s∈S

∑
a∈As

γdw(s, a)X(s, a) ≥ Eα[ydw] ∀d,w,
∑
s∈S

∑
a∈As

εr(s)X(s, a) ≥ Eα[er] ∀r,
∑
s∈S

∑
a∈As

κ(s, a)X(s, a) ≥ Eα[k̄],

X(s, a) ≥ 0 ∀s ∈ S, a ∈ As.

The idea behind column generation is the following. Since most of the variables associ-
ated with state–action pairs are non-basic and have value zero in the optimal solution, only
a subset of the state–action pairs need to be considered when solving the dual optimization
problem [8]. With column generation, we find the optimal solution to (14), the master prob-
lem, by starting with a small set of feasible state–action pairs and adding the state–action
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pair associated with the most violated primal constraint. Then the master problem is solved
again, and this process is repeated until no primal constraint is violated anymore.

Finding an initial set of feasible state–action pairs focuses on dual feasibility, satisfying
the constraints in (14), rather than optimality. Usually, an initial set can either be found
manually [22], or, if this is not possible, using an optimization model [28]. In our case, an
initial set can be found manually, starting by filling in the transition equations (1)–(4) in
the constraints of (14). We use the following expected values in the right-hand side of (14):
Eα[ydw] = q(d) · λ(w−1) ∀d,w < W , Eα[ydW ] = 0 ∀d, Eα[er] = P(r) and Eα[k̄] = K + 1/2,
which represent an initial situation where the first week is fully booked, and the number
of booked slots decreases with the weeks until no slots are booked in the last week of the
planning horizon. All decision epochs are equally probable and the requests are sampled
according to their probability distribution.

For these expected values, we consider the following feasible state–action pair for each
request type: the state s such that ydw(s) = qd ∀d,w; k̄(s) = K; and the action a = 0. That
is, all slots are fully booked, we are in the first decision epoch, and the action is to divert
the treatment request. Together, these pairs form a feasible initial set of state–action pairs.

We identify the state–action pair associated with the most violated primal constraint
(11) by solving the following optimization problem:

argmins∈S,a∈As

{
c(s, a) −

[
(1 − λ)Ũ0 +

∑
d

∑
w

γdw(s, a)Ỹdw +
∑
r

εr(s)Ẽr + κ(s)Ñ

]}
,

(15)

in which (Ũ0, Ỹ , Ẽ, Ñ) denote the optimal values of the dual LP (14) under the current set
of state–action pairs. The state–action pair obtained in (15) enters the basis if:

argmins∈S,a∈As

{
c(s, a) −

[
(1 − λ)Ũ0 +

∑
d

∑
w

γdw(s, a)Ỹdw
∑
r

εr(s)Ẽr + κ(s)Ñ

]}
< 0.

(16)

The column generation algorithm iterates until no primal constraint is violated, giving
us the optimal values (U∗

0 , Y
∗, E∗, N∗). We can identify the approximate optimal policy

d∗(s), by inserting the values (U∗
0 , Y

∗, E∗, N∗) into the right-hand side of the optimality
equations (6):

d∗(s) ∈ argmina∈A(s)

{
c(s, a) + λ

[
U∗

0 +
∑
d

∑
w

ydw(s′)Y ∗
dw

+
∑
r

er(s′)E∗
r + k̄(s′)N∗

]}
∀s ∈ S. (17)

Rearranging the terms, leaving out the ones that are independent of the action a, we obtain:

d∗(s) ∈ argmina∈A(s)

{
c(s, a) + λ

∑
d

∑
w

ydw(s′)Y ∗
dw

}
∀s ∈ S. (18)

Expression (18) represents the balance between immediate costs c(s, a) and the loss of
available treatment capacity in the future

∑
d

∑
w ydw(s′)Y ∗

dw. Filling in the definitions
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of c(s, a) and ydw(s′), and leaving out the terms independent of action a, we obtain for
k(s) < K:

d∗(s) ∈ argmina∈A(s)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cb + (a− br)ce + λ
∑
d

�rd

a+fr
d−1∑

w=a

Ydw if a− br > 0,

cdiv if a = 0 and request non-empty,

λ
∑
d

�rd

a+fr
d−1∑

w=a

Ydw otherwise.

(19)

For k(s) = K, we obtain:

d∗(s) ∈ argmina∈A(s)

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cb + (a− br)ce + λ
∑
d

�rd

a+fr
d−2∑

w=a−1

Ydw if a− br > 0,

cdiv if a = 0 and request non-empty,

λ
∑
d

�rd

a+fr
d−2∑

w=a−1

Ydw otherwise.

(20)

From expressions (19) and (20), we see that the function on the right-hand side depends on
the action a, the request r(s), and the decision epoch k(s). Expression (18) can, therefore,
be written as a function of a, r(s), and k(s):

d∗(s) ∈ argmina∈A(s)f(a, r(s), k(s)) ∀s ∈ S. (21)

This observation will be used in Section 5 to provide insight into the resulting policies.

5. NUMERICAL RESULTS

In this section, we present the results of the numerical experiments we carry out to evaluate
the performance of the proposed solution approach. First, we compare the MDP and ADP
models for a small size instance, followed by a case study based on data from the Sint
Maartenskliniek. The MDP and ADP models are implemented in MATLAB R2014b. For
the experiments, we used a 2.3 GHz Intel Core i5 Notebook with 8 GB RAM.

5.1. Small case – comparison of MDP and ADP model

We solve the MDP and ADP model for an instance consisting of 3 weeks, 2 disciplines, 2
decision epochs per week, 2-time slots per week for both disciplines, and request types as
indicated in Table 2. The diversion cost is 10,000 and the costs for exceeding the access time
targets are 100 plus 25 per week. The discount factor is set to 0.98. This corresponds with a
medium-term planning horizon that is applicable in this healthcare setting. By discounting
slightly, the weight of the costs is relatively similar over the short-term while still less valued
far in the future.
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Table 2. Parameter values for the requests of the small case

Request type r P(r) br Disc. 1 Disc. 2

�rd; frd �rd; frd
Urgent 0.3 1 week 2 slots; 1 week 2 slots; 1 week
Regular 0.7 2 weeks 2 slots; 1 week 2 slots; 1 week

Table 3. Values of the approximation parameters
(U∗

0 , Y ∗, E∗, N∗) in the small case

Approximation parameter Optimal value (×105)

U0 2.0338

Disc. 1 Disc. 2
Yd1 (week 1) 0.0253 0.0253
Yd2 (week 2) 0.0250 0.0250
Yd3 (week 3) 0.0247 0.0247

Req. 1 Req. 2
Er 0.1734 0.1734
N 0.0489

The output of both the MDP and the ADP model is a policy for every state. The
average discounted cost of the system when following these policies can be obtained from
the MDP model directly.

The optimal approximation parameter values for the ADP model (U0, Y, E,N) are given
in Table 3. The Y ∗ values are slightly higher for the first week than for the other weeks. This
indicates that the availability in this week contributes slightly more to the value of a state
(i.e., is somewhat more important) than the availability in weeks later on in the planning
horizon. The Y ∗ values are equal for both disciplines since the demand of and availability
for both disciplines are equivalent. For the E∗ values, both requests contribute equally to
the value of a state. Apparently, the different access time targets of both requests do not
influence the E∗ values in this case.

The values of the function f(a, r(s), k(s)) are displayed in Figure 2 for actions a > 0. For
action a = 0, the value is f(0, r(s), k(s)) = cdiv = 10,000 ∀r, k. We can derive the policy for
each state s by choosing the action with the smallest function value from the set of feasible
actions. In Figure 2, we see, for example, that regular requests in states with k(s) < K
should be booked in week 2 (if possible), and otherwise in week 1 (if possible), or week 3.
Diversion is advised only if there is not enough capacity available to start in weeks 1-3.
Thus, for states with k(s) < K, urgent requests should be booked as soon as possible, and
for regular requests, it is advised to book just within the access time target. For states with
k(s) = K, no other requests can still arrive that can be booked in week 1. Therefore, it is
best to book the current request as soon as possible, such that available capacity in week 1
is not left unused.

From the 2,916 states in the small problem instance, there are eight states for which the
policy generated by the ADP model differs from the MDP policy. In all these eight states,
the approximate optimal policy (AOP) prescribes action a = 3 for the urgent request where
the MDP policy prescribes action a = 2. Both actions involve an exceedance of the access
time target.
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Figure 2. Values of the function f(a, r(s), k(s)) for a > 0 in the small case

The average discounted cost of the system when following these policies, can be obtained
from the MDP model directly by plugging in the corresponding policies. The average dis-
counted costs over the infinite horizon are 254,943.714 for the MDP model and 254,943.728
for the ADP model (a difference of 5 × 10−6%).

Considering the results in this section, we conclude that our model provides reasonable
approximations of the optimal policy.

5.2. Case study at the Sint Maartenskliniek

We consider a case study based on data of the Spinal cord injury care unit of the Sint
Maartenskliniek, with five disciplines and an arrival rate of 1.72 patients per week. According
to Appendix A, 10 decision moments per week suffice in this case. Based on an analysis of
the historical data, we identified 13 request types (plus the empty request) as indicated in
Table 4. The corresponding access time targets were determined using an expert opinion
from within the facility. The number of weekly available time slots per discipline is based
on the ratio of availability between the disciplines and are displayed in Table 5. The costs
for diversion are 10,000 and the costs for exceeding the access time target are 2,000 plus
500 per week. This reflects the hospital’s policy to only divert patients as a last resort, and
the fixed exceeding costs entail an extra impulse to comply to the target. The planning
horizon is set to 40 weeks, as for each request, the length of the treatment plus the access
time target is at most 26 weeks and we do not want to book more than 14 weeks after the
access time target. The discount factor is again set to 0.98. In this setting, the execution
time of the ADP algorithm is 20 minutes (without the use of a time limit).

The optimal approximation parameter values are given in Table 6. With respect to
the Y ∗ values, we see that only available slots of discipline 1 (movement therapy) have a
nonzero value. This indicates that the capacity of movement therapy is the most important
factor (or: the bottleneck) in the booking decision. The fact that movement therapy is the
bottleneck could also be derived from Table 5, where the system load is the highest for this
discipline. Analogous to the small case, the Y ∗ values are slightly higher in the first week
than in the weeks later in the planning horizon (for discipline 1). For the E∗ values, we see
that the shorter the access time target of the request and the heavier the treatment with
respect to discipline 1, the higher the value of the request.

The values of f(a, r(s), k(s)) are given in Figure 3 for a subset of the requests. In this
Figure, actions a > 0 are displayed. For a = 0, the value is f(0, r(s), k(s) = cdiv = 10,000 ∀k
for all shown requests. Instead of displaying all requests, we provide the results of two
urgent requests (light color) and two regular requests (dark color). The requests represent a
resource intensive, long treatment (solid lines) or a shorter, less intensive treatment (dashed
lines). Actions that imply treatment beyond the last week of the booking horizon are not
shown. Again, we can derive the policy from the Figure. For states with k(s) < K, urgent
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Table 4. Parameter values for the requests of the case study, with br and frd in weeks
and �rd in slots

Request type r P(r) br Disc. 1 Disc. 2 Disc. 3 Disc. 4 Disc. 5

�rd; frd �rd; frd �rd; frd �rd; frd �rd; frd
1. Arm/hand function screening 0.002 6 0; 0 6; 1 4; 1 0; 0 0; 0
2. Baclofen pump 0.009 8 0; 0 0; 0 10; 2 0; 0 0; 0
3. Bolus baclofen 0.004 8 0; 0 0; 0 8; 1 0; 0 0; 0
4. Decubitus 0.016 3 0; 12 2; 12 6; 12 0; 0 0; 0
5. Guillain Barré 0.003 2 4; 24 7; 24 21; 24 4; 24 4; 24
6. Oncology 0.005 3 2; 6 11; 6 14; 6 2; 6 2; 6
7. Sitting advice 0.016 6 0; 0 6; 1 6; 1 0; 0 0; 0
8. Spinal injury T6 & higher 0.041 1 2; 24 14; 24 19; 24 2; 24 2; 24
9. Spinal injury T7 & lower 0.033 1 2; 18 8; 18 21; 18 2; 18 2; 18
10. Spinal injury others 0.003 1 2; 18 7; 18 18; 18 2; 18 2; 18
11. Sports desk 0.001 1 4; 1 0; 0 0; 0 4; 1 4; 1
12. Standard outpatient 0.034 4 2; 18 6; 18 12; 18 2; 18 2; 18
13. Outpatient continuation 0.005 1 2; 12 8; 12 13; 12 2; 12 2; 12
14. Empty request 0.828 0 0; 0 0; 0 0; 0 0; 0 0; 0

Table 5. Number of weekly available time slots per discipline in
the case study and the system load per discipline in this case: average
demand divided by capacity

Discipline d No. of slots qd System load

1. Movement therapy 90 0.55
2. Occupational therapy 557 0.44
3. Physiotherapy 898 0.49
4. Social work 175 0.24
5. Psychology 156 0.26

requests should be booked as soon as possible, and for regular patients, it is advised to
book just within the access time target. For each request, there is a point in time where
f(a, r(s), k(s)) exceeds the diversion cost cdiv = 10,000, that is, from where diversion is
preferred over booking. For states with k(s) = K, each request should be booked as soon
as possible, but if this is not possible, the policy is again to book within the access time
target.

Following the approach of [28], we translate these “preferred order of actions” into a
practical table that can be used by planning clerks in practice (Table 7). For each request,
the number 1 indicates the most preferred booking week in the planning horizon. If this
action is infeasible, number 2 indicates the next preferred week, and so on. As an example,
a request of a Guillain Barré patient can best be booked starting in week 2, or in week 1,
and if this is not possible, the patient should be diverted.

5.3. Insights into the AOP

Insights into the properties of the AOP can be obtained by analyzing the impact of different
parameter settings on the values of f(a, r(s), k(s)).
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Table 6. Values of the approximation parameters (U∗
0 , Y ∗, E∗, N∗) in the case study

Approximation parameter Optimal value

U0 (×103) −56.499
Disc. 1 Disc. 2 Disc. 3 Disc. 4 Disc. 5

Yd1 (week 1) 150.42 0 0 0 0
Yd2 (week 2) 147.47 0 0 0 0
Yd3 (week 3) 144.47 0 0 0 0
Yd4 (week 4) 141.58 0 0 0 0
Yd5 (week 5) 138.75 0 0 0 0
...

...
...

...
...

...
Yd20 (week 20) 102.47 0 0 0 0
Yd21 (week 21) 0 0 0 0 0
...

...
...

...
...

...
Yd40 (week 40) 0 0 0 0 0

Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Req. 6 Req. 7

Er (×103) 0 0 0 0 10.000 1.683 0

Req. 8 Req. 9 Req. 10 Req. 11 Req. 12 Req. 13 Req. 14
7.000 6.586 6.586 2.602 4.404 5.238 0

N (×103) 0.302

Table 7. Booking week preferences for k(s) < K, for a subset of the request types, in
the case study

Request type Week in the booking horizon

1 2 3 4 5 6 7 8 9 . . . 16 17 . . . 23 24 . . . 40

Bolus Baclofen 8 7 6 5 4 3 2 1 9 . . . 16 17 . . . 23

Guillain Barré 2 1

Spinal cord
T6 & higher

1 2 3 4

Sports desk 1 2 3 4 5 6 7 8 9 . . . 16

For each request type, (circled) number 1 indicates the most preferable booking week.
If this action is infeasible in the current state, move to number 2, etc.

In Section 5.2, we already observed the following with respect to the various
requests. First, the longer and/or more intensive the treatment, the higher the values of
f(a, r(s), k(s)). Therefore, in the AOP, longer and/or more intensive treatments are more
likely to be diverted. Second, the more capacity required of the most limited discipline(s),
the higher the values of f(a, r(s), k(s)). This means that the more capacity is required for a
request, the more likely it is to be diverted. Third, if the access time target is exceeded, the
values of f(a, r(s), k(s)) have a steep increase over the weeks; before the target is reached,
f(a, r(s), k(s)) is relatively similar over the weeks.

We now consider several changes to the parameters of the case study and show their
influence on the AOP. Each scenario assumes the settings from Section 5.2, referred to as
“base case”, with one change at a time. The individual changes and their main results are
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Figure 3. Function f(a, r(s), k(s)) for a subset of the requests in the case study
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Figure 4. Function f(a, r(s), k(s)) for different settings of the case study

described below. In Figure 4, the values of f(a, r(s), k(s)) are displayed for k(s) < K against
the base case.

(a) Discount factor: when increasing the discount factor to 0.99, we observe higher values
for, in particular, the longer and/or more intensive treatments. Therefore, policies
for longer and/or more intensive treatments switch to diversion earlier.

(b) Costs: when increasing the costs for exceeding the access time target to 3,000 plus
1,000 per week, while the costs for diversion stay 10,000, we observe steeper values
for all cases and therefore, policies switch to diversion earlier.

(c) Booking horizon: a smaller number of weeks W causes an earlier switch to diversion,
as the opportunities to book capacity within the booking horizon are limited.

(d) Patient mix: adapting the patient arrival rates such that 24% of the (non-empty)
requests are urgent instead of 48% in the base case, while the number of patient
arrivals and system load stay the same, does not cause any change in the policy.

(e) System load: when reducing the capacities of all disciplines in equal proportion to the
numbers provided in Table 8, we observe higher values for, in particular, the longer
and/or more intensive treatments. Therefore, policies for those treatments switch to
diversion earlier.

(f) Bottleneck disciplines: when changing the capacities of the disciplines such that
not just one discipline is a bottleneck but multiple (see Table 8), the approximate
parameter values of the first weeks change to those displayed in Table 9. The values
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Table 8. Number of weekly available time slots per discipline in the case study
and the system load per discipline: average demand divided by capacity

Discipline d Scenario (e) Scenario (f)

No. of slots qd System load No. of slots qd System load
1. Movement therapy 75 0.66 75 0.66
2. Occupational therapy 393 0.62 366 0.68
3. Physiotherapy 669 0.65 656 0.71
4. Social work 123 0.35 65 0.63
5. Psychology 111 0.38 63 0.64

Table 9. Values of the approximation parameters (U∗
0 , Y ∗, E∗, N∗) in the case study

with scenario (f)

Approximation parameter Optimal value

U0 (×103) −74.488
Disc. 1 Disc. 2 Disc. 3 Disc. 4 Disc. 5

Yd1 (week 1) 0 0.964 24.624 0 0
Yd2 (week 2) 0 0.945 24.132 0 0
...

...
...

...
...

...
Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Req. 6 Req. 7

Er (×103) 0.096 5.528 0.174 1.578 8.706 1.987 8.859

Req. 8 Req. 9 Req. 10 Req. 11 Req. 12 Req. 13 Req.14
10.000 10.000 0.141 2.000 4.410 0.431 0

N (×103) 0.403

of f(a, r(s), k(s)) change depending on the intensity of the treatments with respect
to those new bottleneck disciplines.

To conclude, the AOP always consists of booking requests just within their access time
targets and divert them if they cannot be booked within a certain time interval in the
booking horizon. This time interval depends on the discount factor, the cost structure, the
booking horizon, the system load, and the capacities of the most constrained discipline(s).

5.4. Comparison of the AOP with the myopic policy

To evaluate the performance of the AOP obtained by the ADP model, we use a discrete event
simulation. Results are compared with the following three policies. First, the policy that
is often used by planning clerks in hospitals: book every request in the earliest week with
enough available capacity, and if it is not possible to book the request within the booking
horizon W , divert. We refer to this policy as the myopic policy. Second, the AOP where
diversion is only advised and if it is not possible to book the request within the booking
horizon W . We refer to this policy as the AOP without diversion. Third, a heuristic policy
based on general structures of the policies for similar planning problems in [22,28], applied
to the online setting. We use parameters that seem reasonable for this case study. Requests
with targets 1-3 weeks are booked as soon as possible and at most 4 weeks after their target;
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Table 10. Results of the basic case study for the AOP, the myopic policy, the AOP
without diversion and the heuristic policy

AOP (%) Myopic (%) AOP w.d. (%) Heuristic (%)

Requests booked after target 21.5 26.4 25.0 25.2
Booked after target (urgent) 42.6 53.4 51.0 51.2
Booked after target (regular) 0.0 2.3 2.2 2.2
Diversions 0.2 0.0 0.0 0.1
Diversions (urgent) 0.0 0.0 0.0 0.2
Diversions (regular) 2.2 0.0 0.0 0.0
Requests booked within target 78.3 73.6 75.0 74.7
Booked within target (urgent) 57.4 46.6 49.0 48.6
Booked within target (regular) 97.8 97.7 97.8 97.8

Table 11. Results of scenario (d) for the AOP, the myopic policy, the AOP without
diversion and the heuristic policy

AOP (%) Myopic (%) AOP w.d. (%) Heuristic (%)

Requests booked after target 3.6 6.2 3.8 4.3
Booked after target (urgent) 15.0 24.0 15.0 17.0
Booked after target (regular) 0.0 0.2 0.2 0.2
Diversions 0.1 0.0 0.0 0.0
Diversions (urgent) 0.0 0.0 0.0 0.0
Diversions (regular) 0.1 0.0 0.0 0.0
Requests booked within target 96.3 93.8 96.2 95.7
Booked within target (urgent) 85.0 76.0 85.0 83.0
Booked within target (regular) 99.9 99.8 99.8 99.8

the other requests are booked from week 4, and at most 4 weeks after their target. Diversion
is advised if there is not enough capacity available in the described time intervals.

We evaluate three scenarios: the basic case study at the SMK, the same case study with
a different patient mix (scenario (d)), and the case study at the SMK with a higher system
load (scenario (e)).

The length of a simulation run is set to 500 weeks and statistics are collected for 140
runs, starting from different states with respect to r(s) and k(s). The booked capacity in
the initial states is ydw(s) = qd · λ(w−1) ∀d,w < W, s and ydW (s) = 0 ∀d, s. The runs are
repeated 10 times with different arrival patterns. We use common random numbers to be
able to compare the policies. The simulation is implemented in MATLAB R2014b and the
execution time in this setting is 20 minutes.

The expected discounted cost of the system, as well as the percentage of diversions and
the percentage of requests booked after the access time targets are given in Tables 10, 11
and 12 for each of the scenarios, respectively. A subdivision of the percentages is given for
“urgent” requests (with an access time target of 1 week) and “regular” requests (with an
access time target longer than 1 week).

In the basic case study, the percentage of requests booked after their access time target
is relatively high for all policies, and, in particular, for urgent patients. Since urgent requests
(which account for 48% of the arrivals) have relatively resource intensive and long treatments
(representing 79.7% of the required capacity), these are more difficult to fit in an already
filled schedule than shorter, less intensive treatments. It has to be noted that in reality, the
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Table 12. Results of scenario (e) for the AOP, the myopic policy, the AOP without
diversion and the heuristic policy.

AOP (%) Myopic (%) AOP w.d. (%) Heuristic (%)

Requests booked after target 8.3 35.1 30.8 28.8
Booked after target (urgent) 7.8 55.9 47.9 45.6
Booked after target (regular) 7.4 10.9 9.9 9.5
Diversions 11.1 0.0 0.0 2.9
Diversions (urgent) 16.9 0.0 0.0 4.6
Diversions (regular) 2.3 0.0 0.0 0.0
Requests booked within target 80.6 64.9 69.2 68.3
Booked within target (urgent) 75.3 44.1 52.1 49.8
Booked within target (regular) 90.3 89.1 90.1 90.5

management of the Sint Maartenskliniek would always try to avoid booking requests after
their targets, by giving patients slightly more or less therapy than prescribed or by planning
overtime for bottleneck disciplines. Comparing the AOP with the other policies, the AOP
performs best, and particularly for urgent patients.

In scenario (d), where 24% of the (non-empty) requests are urgent, the percentages
of requests booked within their access time target are much higher than in the basic case
study. Although the system load is similar to the load in the basic case study, the lower
percentage of urgent requests clearly has a good influence on the percentages of requests
booked within their target. In this scenario, the AOP still outperforms the other policies,
but the differences between the AOP, the AOP without diversions and the heuristic policy
are small. Apparently, in this scenario, it is not essential to divert requests if they cannot
be booked within a certain time interval in the booking horizon.

In scenario (e), where the capacities of the disciplines are reduced such that the system
has a higher load, the AOP has a much better performance than the other policies. We
conclude that in this scenario, the advise to divert requests from some point in the booking
horizon is a valuable ingredient of the AOP, to ensure enough space is kept free for future
urgent requests.

Considering the simulation results, we conclude that the AOP outperforms the other
policies with respect to the percentage of requests booked within their access time targets.
Thus, the policy of booking regular requests just within their access time targets and divert-
ing them if they cannot be booked within a certain time interval in the booking horizon,
ensures more space for future urgent requests to be booked within their access time targets.

6. CONCLUSION AND DISCUSSION

In this paper, we presented a methodology for the online capacity planning of rehabili-
tation treatments. The method is designed in such a way that compliance to access time
targets is optimized for all patients. The model considers online decision making regarding
multi-priority, multi-appointment, and multi-resource capacity allocation. We formulated
this problem as a MDP, and developed an ADP algorithm to obtain approximate solutions.
Starting from a linear programming approach to ADP, we applied value function approx-
imation and column generation to derive effective booking policies for the online capacity
planning of rehabilitation treatments. For the approximation of the value function, we pro-
vided a founded choice of basis functions. We provided insights into the characteristics of
the optimal policy and evaluated the performance of the optimal policy using simulation.
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The performance of the proposed methodology is evaluated using a case study based
on data of the Sint Maartenskliniek. The results show that the AOP outperforms other
booking policies, including the (myopic) policy often used in practice. In the simulation,
the percentage of requests booked within their access time target increases from 73.6% for
the myopic policy to 78.3% for the AOP, with the relatively largest increase for urgent
patients (from 46.6% to 57.4%). The AOP prescribes to book requests just within their
access time targets and divert them if they cannot be booked within a certain time interval
in the booking horizon, where the interval depends on the capacities of the most constrained
discipline(s). This policy ensures more space for future urgent patients to be booked within
their access time targets.

It is important to note that the case study presented in this paper does not incorporate
all the details of the planning practices at the Sint Maartenskliniek. In our study, we use
aggregated data of the treatment requests and the capacity of disciplines, which do not
take all characteristics of the daily operations into account. As an example, the capacity of
disciplines might change over the weeks and treatment requirements of a patient can change
over the weeks, dependent on the patient’s progress.

A possible extension to the proposed capacity planning method is to investigate the use
of a threshold policy that tries to reserve some capacity for future urgent arrivals. Another
direction for further research is to extend the planning decision by also determining the exact
days, time slots and therapists for each request. Given the constraints and preferences that
apply to this more detailed level of scheduling, and the increasing complexity of the state and
action space if these decisions would be included, this is an interesting direction for further
research. Besides the use of the AOP, further, improvement is possible in the compliance to
the access times targets, especially for urgent patients. Suggestions for future research are
to investigate the allowance for rescheduling capacity of already planned patients and for
working in overtime. Also, planning in an offline fashion (collecting requests and executing
them periodically, e.g., once per week) or planning using a waiting list, would most likely
lead to better results in terms of access time compliance.

Given the results of the case study, we are convinced that the application of our method
can be valuable to many rehabilitation facilities. The case of the Spinal cord injury care unit
is representative for other rehabilitation facilities treating both urgent and regular patients.
Furthermore, since many other multi-disciplinary care systems deal with booking capacity
in an online fashion, many relevant possibilities exist for our method to be applied in other
health care systems, for example, in cancer treatment or rapid cancer diagnostics.
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APPENDIX A

We assume that new patients arrive according to a Poisson process with a rate of μ arrivals per
week. The random number N of new patients who arrive within a typical decision epoch of length
1/K (in weeks) is then Poisson distributed with scale parameter μ/K. We have P(N = 0) = e−μ/K ,

P(N = 1) = ((μ)/(Ke−μ/K)), and δ = P(N ≥ 2) = (1 − (1 + ((μ/(K)e−μ/K)). In the case study of
Section 5.2, the arrival rate μ is 1.72. For K = 10, we find δ = 1.3%.

APPENDIX B

In Section 4.1, we introduce basis functions into the formulation to approximate the future value
of an action a in state s. The challenge is to make sure the choice of basis functions contributes
to the quality of the solution. The basis functions can be observed as independent variables in the
regression literature [23]. Hence, to select a proper set of basis functions that have significant impact
on the value function, we use a regression analysis. In this analysis, the dependent variables are
the optimal values from the MDP solution, and the independent variables are the basis functions
calculated from the state descriptions.

Table 13 shows the regression results for various sets of basis functions. In each set, a constant
is added as an explanatory variable. The R2 depicts the variation in the value that is explained by
the corresponding regression model.

One can observe that the features with high level of detail about the state description score
is significantly better (are higher in the ordered table). The higher R2, the more suitable the
basis functions are for predicting the value. However, we have to take into consideration that a
correct ranking of the different actions is more important than how well the value is predicted

Table 13. The different sets of basis functions and the R2 regression values

Features R2 No. of variables

Combination of no. of booked slots for discipline d in week w,
type of request r and no. of epochs to go in current week k̄

0.752 D × W + R + 1

Type of request r 0.610 R
No. of booked slots for discipline d in week w 0.090 D × W
No. of booked slots for discipline d 0.087 D
No. of decision epochs to go in current week k̄ 0.052 1
Maximum no. of booked slots in week w 0.046 W
Maximum no. of booked slots for discipline d 0.014 D
No. of booked slots in each week w 0.009 W
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[20]. Therefore, policies obtained using particular set basis functions should be carefully evaluated
before one can conclude that this set of basis functions is a good choice.

For our ADP model, we choose to use a value function approximation consisting of D × W
features of the type ‘number of booked time slots for discipline d in week w’, R features of the
type ‘current request type r’, one feature valuing ‘the number of decision epochs still to go in the
current week k̄’, and one feature denoting a constant. These basis functions explain a large part
of the variability in the optimal values using the MDP model (R2 = 0.75) and the obtained policy
performs well (see Section 5.1). Another advantage is that the basis functions can be obtained
directly from the state description.
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