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The behaviour of a miniature calorimetric sensor, which is under consideration
for catheter-based coronary-artery-flow assessment, is investigated in both steady and
pulsatile tube flows. The sensor is composed of a heating element operated at constant
power and two thermopiles that measure flow-induced temperature differences over
the sensor surface. An analytical sensor model is developed, which includes axial heat
conduction in the fluid and a simple representation of the solid wall, assuming a quasi-
steady sensor response to the pulsatile flow. To reduce the mathematical problem,
described by a two-dimensional advection–diffusion equation, a spectral method is
applied. A Fourier transform is then used to solve the resulting set of ordinary
differential equations and an analytical expression for the fluid temperature is found.
To validate the analytical model, experiments with the sensor mounted in a tube
have been performed in steady and pulsatile water flows with various amplitudes and
Strouhal numbers. Experimental results are generally in good agreement with theory
and show a quasi-steady sensor response in the coronary-flow regime. The model can
therefore be used to optimize the sensor design for coronary-flow assessment.
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1. Introduction
Flow sensors based on forced convective heat transfer, such as hot-film

anemometers, can be used for the assessment of arterial blood flow (Seed & Wood
1970; Clark 1974; Nerem et al. 1976). In a recent study, Tonino et al. (2009) showed
that if the treatment of patients with coronary artery disease is based on an indirect
measure for the coronary flow (derived from coronary pressure measurements), the
clinical outcome improves significantly. Clearly, direct flow assessment by miniature
sensors that can be introduced into the coronary arteries would provide even more
information about the condition of these arteries (van ’t Veer et al. 2009). In this

† Present address: Physics of Fluids, Department of Applied Physics, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands. Email address for correspondence:
h.gelderblom@tnw.utwente.nl

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

42
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004234


Characterization of a miniature calorimetric flow sensor 429

Tf

A

B

Bb � 140 µm

10 µm

A

l � 7 mm

R � 2.
5 m

m

x

Flow

r

Tu TdTh

φ

r

(a) (b)

Figure 1. Schematic view of the calorimetric sensor mounted on the inside of the tube wall
(not drawn to scale); heater in black, thermopiles in grey, r representing the radial, x the
axial and φ the circumferential direction. (a) Side view showing the placement of the sensor
elements (heater and thermopiles measuring Th − Tf and Td − Tu) with respect to the fluid
flow. (b) Cross-section showing the positioning of the flexible device inside the tube.

study, we aim to characterize the behaviour of such a miniature convective heat-
transfer sensor in steady and pulsatile tube flows, through both an analytical and
an experimental approach. The sensor is based on a calorimetric flow measurement
principle: it consists of a small aluminium heating element of width b = 140 µm,
operated at constant power, and two polysilicon thermopiles that measure flow-
induced temperature differences over the sensor surface. These sensor elements are
embedded in a flexible polyimide substrate having a thickness of 10 µm; see figure 1(a).
In order to use it for coronary-flow assessment, the flexible device is bent around
a catheter guide wire, which can be inserted into the coronary arteries. In our
characterization study, however, the device is mounted at the inner wall of a tube,
to be able to subject it to a well-defined flow regime. The length l of the device is
equal to approximately half the circumference of the inner tube wall; see figure 1(b).
The temperature difference between two positions 100 µm downstream and 100
µm upstream from the heater centre (Td − Tu) is measured, as well as the heater
temperature Th with respect to the ambient fluid temperature Tf far upstream (2000
µm from the heater centre). In the absence of a flow, heat transfer from the sensor
to the fluid occurs solely through conduction, resulting in a symmetric temperature
distribution over the sensor surface. If a certain fluid flow exists, the advective heat
transfer leads to an asymmetric temperature distribution. The resulting temperature
differences are a measure for the flow (Elwenspoek 1999). Flow reversal will lead to a
sign change in Td − Tu, and hence, can be detected, which is an advantage compared
to the conventional hot-film anemometers (van Oudheusden & Huijsing 1989).

Two important dimensionless parameters that appear in the study of thermal
sensors in a time-dependent flow are the Péclet number Pe and the Strouhal number
Sr . Here, Pe is a measure for the importance of advective compared to conductive heat
transfer and Sr for the importance of unsteady compared to advective temperature
variations. Formal expressions for Sr and Pe are given further on (see (2.14) and
(2.19), respectively).

Many experimental and analytical studies of hot-film anemometers have been
reported in the literature. Experiments with these kinds of probes have been performed
by, among others, Seed & Wood (1970), Clark (1974), Ackerberg, Patel & Gupta (1978)
and van Steenhoven & van de Beucken (1991). Liepmann & Skinner (1954) derived
a theoretical relation between the amount of convective heat loss from a hot surface
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430 H. Gelderblom and others

and the local steady wall-shear rate. Pedley (1972, 1976) and Menendez & Ramaprian
(1985) extended this work to include unsteady, pulsatile flows.

For miniature flow sensors like the one presented here, the theory developed for
hot-film anemometers is not applicable. First, because in a thermal sensor with small
dimensions, generally operated at small Pe, heat conduction in the flow direction
cannot be neglected, as is done in the usual boundary-layer approximation (see e.g.
Liepmann & Skinner 1954; Pedley 1972; Menendez & Ramaprian 1985). In numerical
studies, Tardu & Pham (2005) and Rebay, Padet & Kakaç (2007) showed that this
axial conduction has a considerable influence on the response of small hot-film gauges.
Ackerberg et al. (1978) derived an analytical solution for the heat transfer from a
finite strip for Pe → 0, in steady flow. Ma & Gerner (1993) examined the leading and
trailing edges of a micro-sensor in a steady flow separately to obtain an analytical
solution for the entire sensor surface, in analogy to the method used by Springer &
Pedley (1973) and Springer (1974).

Second, most analytical studies consider the problem of a uniform surface
temperature on the heated element, while our sensor is operated at constant power,
which is better described by a heat-flux boundary condition. Liu, Campbell & Sullivan
(1994) and Rebay et al. (2007) used a constant heat-flux boundary condition on the
surface of a heated element embedded in an adiabatic wall. However, the thermopiles
of our sensor consist of conductive polysilicon, and therefore, heat will be transferred
not only from the heater to the fluid directly, but also via the surrounding material.
In that case, we end up with a conjugate heat-transfer problem, where the heat source
is known, but the interface temperature and heat flux to the fluid are unknown;
Tardu & Pham (2005) studied this problem numerically. Stein et al. (2002) derived an
analytical solution downstream of a flush-mounted heat source in steady flow. Cole
(2008) considered conjugate heat transfer from a steady-periodic heated film, also
in steady flow. To the authors’ knowledge, only a few analytical models specifically
for calorimetric sensors exist. Lammerink et al. (1993) described an experimental
study and a relatively simple analytical model of such a sensor, but in a steady
flow and with a different sensor geometry. Calorimetric sensors on highly conductive
silicon wafers are described by van Oudheusden (1991), also in steady flow and
with very small on-sensor temperature differences compared to the sensor overheat.
Experimental studies with calorimetric flow sensors in steady flow have been reported
by Lammerink et al. (1993) and Nguyen & Kiehnscherf (1995). However, no data on
unsteady-flow experiments with this type of sensor are available.

Our analysis of the calorimetric flow sensor focuses on the derivation of a new
analytical model for the temperature distribution in a pulsatile fluid flow over a
small heated element operated at constant power. Experiments with the sensor
in steady and pulsatile water flows with Strouhal numbers and amplitudes in the
expected physiological flow range are carried out to verify our theoretical predictions.
In § 2, the mathematical formulation of our problem is given in terms of a two-
dimensional advection–diffusion equation. We circumvent the coupling of the heat-
transfer problems in the fluid and the substrate by approximating the heat flux from
the sensor to the fluid, and use this approximation as a boundary condition for the
fluid compartment. The axial conduction term is retained, and therefore, our solution
holds for all Pe values. Since the heat flux at the boundary is approximated by a
continuous function, the leading and trailing edges of the heater do not have to be
treated separately (Ma & Gerner 1993), resulting in one solution for the complete
domain. When applied in coronary flow, our sensor will be operated at small Strouhal
numbers; therefore, a quasi-steady sensor response to the pulsatile flow is assumed.
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As described in § 3, a spectral method is applied to reduce the mathematical problem
to one dimension. Then, a Fourier transform is used to solve the resulting set of
ordinary differential equations. The experimental technique is described in § 4. In § 5,
the experimental results are compared to the theoretical predictions, and found to be
in good agreement. The model developed not only leads to theoretical understanding
of the operating principle of the sensor, but it can also be used to optimize the sensor
design, as is demonstrated in § 5.

2. Mathematical problem formulation
In order to formulate an analytical model for the sensor in a pulsatile tube flow (see

figure 1), a cylindrical coordinate system (r, φ, x) is adopted, where the main flow is in
the axial or x-direction, r is the radial and φ the circumferential coordinate. The origin
of this system is chosen such that x = 0 at the heater centre. The pulsatile fluid flow
is assumed to be fully developed, and, because the temperature difference between
the heater and the oncoming fluid is relatively small, it is assumed to be temperature-
independent. The typical buoyancy-driven radial velocity can be estimated from the
momentum equation in the radial direction using the Boussinesq approximation. For
our configuration, the ratio of radial to axial velocity is of order 10−2; hence, free
convection can be neglected.

The basic problem is thus reduced to that of finding the temperature distribution
T (x, r, φ, t), with t being the time, in a prescribed pulsatile fluid flow in a tube of
radius R, which is heated by a time-constant prescribed heat influx in a small region
of length l and width b around the tube wall; the remaining part of the wall is
thermally insulated. The equation governing the temperature distribution in the fluid
is the thermal energy equation in the tube (x ∈ �, 0 � r � R, −π � φ � π):

∂T

∂t
+ u(r, t)

∂T

∂x
= α

[
∂2T

∂x2
+

1

r

∂

∂r

(
r
∂T

∂r

)
+

1

r2

∂2T

∂φ2

]
, (2.1)

together with the boundary condition at the tube wall, r = R, describing the prescribed
heat influx,

k
∂T

∂r
(x, R, φ, t) = q(x), if

−l

2R
< φ <

l

2R
,

= 0, if |φ| >
l

2R
. (2.2)

Here, u is the velocity in the x-direction, α the thermal diffusivity and k the thermal
conductivity. Heat influx q is in watts per square metre, such that the power supplied
to the heater in watts is given by

Q = l

∫ ∞

−∞
q(x) dx. (2.3)

Considering the case that u > 0, i.e. the fluid is flowing in the positive x-direction, we
state that T must go to To, the initial fluid temperature, for x → −∞, but that T for
x → +∞ must tend to a value T∞ >To for a quasi-steady solution to exist. In that
case, the total heat-transfer rate Q into the fluid is balanced by the advective heat
outflow in the positive x-direction, equal to ρcD(T∞ − To), with ρ being the density,

c the specific heat and D =2π
∫ R

0
u(r, t)r dr , the total volumetric flow rate at time t .

To emphasize the effect of the two different length scales that arise in the problem,
i.e. heater width b and tube radius R, we introduce the following dimensionless
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Parameter Value Description

To (◦C) 20 Outer flow temperature
Tc (◦C) 11.7 Temperature scale
Q (mW) 80 Heater power
xh (µm) 0 Heater centre
xd (µm) 100 Position where Td is measured
xu (µm) −100 Position where Tu is measured
xf (µm) −2000 Position where Tf is measured
b (µm) 140 Heater width
l (µm) 7000 Heater length
σ (µm) 70 Standard deviation of the assumed

boundary heat-flux distribution
R (mm) 2.5 Inner tube radius

V (m s−1) 0.1 Typical axial velocity
S0 (s−1) 115 Mean wall-shear rate

α (m2 s−1) 1.44 × 10−7 Thermal diffusivity†
k (W m−1 K−1) 0.606 Thermal conductivity†

ν (m2 s−1) 1 × 10−6 Kinematic viscosity†
ω (rad s−1) 2π Angular frequency

†see Incropera et al. 2007, p. 860

Table 1. The parameter values used in the analytical model based on the experimental set-up.

variables:

x̂ =
x

b
, r̂ =

r

R
, û =

u

V
, t̂ =

t

tc
, T̂ =

T − To

Tc

, (2.4)

with V being the typical axial velocity, tc the time scale for temperature variations and
Tc the typical temperature scale. The characteristic parameter values can be found
in table 1, and appropriate choices for tc and Tc are explained below. Note that the
heater width is used as the characteristic length scale in the x-direction, implying that
we will look for changes in temperature T in the direct axial vicinity of the heater,
which is where Td and Tu are measured. By substituting (2.4) into (2.1), we obtain

b

tcV

∂T̂

∂t̂
+ û(r̂ , t̂)

∂T̂

∂x̂
=

α

bV

∂2T̂

∂x̂2
+ ε2

[
1

r̂

∂

∂r̂

(
r̂
∂T̂

∂r̂

)
+

1

r̂2

∂2T̂

∂φ2

]
, (2.5)

with ε =
√

(αb/V )/R =0.006 � 1. Since, in (2.5), the small number ε2 appears in front
of the highest derivative with respect to r̂ , one can expect a boundary layer to develop
at the tube wall, i.e. at r̂ = 1. The outer solution at leading order, with ε = 0, is the
trivial solution T̂ = 0. The temperature problem is thus confined to a small region
close to the sensor surface: the thermal boundary layer of thickness δT .

Our sensor measures the temperature difference Td − Tu at distances of the order
of magnitude of b up- and downstream of the heater centre for |φ| < l/2R. Hence,
in the region of interest for our sensor, |x| =O(b) and δT � R. Within this region,
the problem is independent of the φ-coordinate. The characteristic length scale for
conduction in the φ-direction, heater length l = O(R), is much larger than the length
scale for conduction in the axial direction, heater width b. For our sensor, b/l =0.02;
hence, conduction in the φ-direction and edge effects occurring at φ = ± l/2R can be
neglected.
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T � To

T � To for x →+– ∞

u( y,t) � S(t)y y

xxu xh xd

y � 0: sensor surface

q(x)

y � h: upper boundary

σ

Figure 2. Scheme of the problem geometry.

Since the thermal boundary layer thickness δT is much smaller than the tube radius,
the tube wall in a b-environment of the heater can be considered flat. We therefore
adopt a spatial rectilinear coordinate system (x̂, ŷ), where x̂ is the surface coordinate
in the flow direction and ŷ is the stretched coordinate normal to the surface, defined
as ŷ =(R/δT )(1 − r̂); see figure 2. As a further approximation, we confine the domain
for the inner solution to a strip of finite height h. At the upper boundary of the strip,
y = h (with y = δT ŷ), we then require that T̂ = 0, to match the inner solution to the
outer one; see figure 2. How to choose h such that the solution in a b-environment
of the heater, where the thermal boundary layer is still thin, is not influenced by the
finite size of the domain in the y-direction will be explained further on in this section;
see (2.17).

Further downstream (for x >b, and hence, outside our region of interest), the
thermal boundary layer widens, due to radial conduction. Both curvature and
φ-dependence will enter the problem again, while axial conduction will become
negligible. Even further downstream (x̂ >R/b), the fluid temperature will become
uniform in each cross-section, with T → T∞ = To + Q/ρcD. It is therefore important
to note that, given the simplifications described above, our method will yield the
correct solution only in a b-environment of the heater, i.e. the region of interest for
our sensor.

As a further approximation, we assume that the wall-shear rate is the only flow
parameter that influences the heat transfer from the sensor surface, implying that
the velocity profile may be approximated linearly throughout the thermal boundary
layer (see Pedley 1972). Since our domain is now restricted to a strip of finite height
h, the linearization of the velocity profile is valid throughout the complete domain.
This approximation requires the Stokes layer thickness δS to be much larger than the
thermal boundary layer thickness δT . In that case, the velocity u within the thermal
boundary layer can be approximated by (y = R − r = δT ŷ)

u(y, t) =
∂u

∂y

∣∣∣∣
y=0

y = S(t)y, (2.6)

with S being the wall-shear rate, which is, in a pulsatile tube flow, given by

S(t) = S0 [1 + β sin (ωt)] , (2.7)

with S0 being the mean, ω = 2πf the angular frequency and β the amplitude of the
shear-rate oscillations. This implies that when β > 1, backflow is involved. Since for
coronary flow, the order of magnitude of β will be about 1, the dimensionless shear
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rate Ŝ(t̂) = S(t)/S0 is an O(1) function of t . Hence, we have

u(y, t) = S(t)y = S0δT ŷŜ(t̂), (2.8)

which yields

V = δT S0 and û(ŷ, t̂) = Ŝ(t̂)ŷ. (2.9)

To find an expression for the thermal boundary layer thickness δT , we write (2.5)
in terms of ŷ, û(ŷ, t̂) and Ŝ(t̂) as

b

tcS0δT

∂T̂

∂t̂
+ Ŝ(t̂)ŷ

∂T̂

∂x̂
=

α

bS0δT

∂2T̂

∂x̂2
+

αb

δ3
T S0

∂2T̂

∂ŷ2
. (2.10)

When advection in the x- and conduction in the y-direction are the two dominant
effects, αb/S0δ

3
T must be of O(1), and hence, the thermal boundary layer thickness is

given by (see Liepmann & Skinner 1954)

δT = (αb/S0)
1/3 . (2.11)

The linearization of the velocity profile within the thermal boundary layer is allowed
if δT � δS. The Stokes layer thickness in a fully developed pulsatile tube flow is given
by (Schlichting & Gersten 2000, p. 367)

δS = (ν/ω)1/2 , (2.12)

with ν being the kinematic viscosity. For a 1 Hz pulsatile water flow, we get δS = 4 ×
10−4 m. The requirement that δT � δS leads us to an estimate for the admissible shear
rate:

S0 � αb/δ3
S = 0.3 s−1. (2.13)

This requirement is amply satisfied, since our experiments are performed at a mean
wall-shear rate of about 115 s−1. Furthermore, δT and b are of the same order of
magnitude in this range of shear rates, allowing the use of b as length scale in both x-
and y-directions. This indicates that the axial conduction term in (2.10) can certainly
not be neglected within the region of interest for our sensor. This is further confirmed
by the magnitude of the coefficient of x-conduction; α/bS0δT = 0.16 (see table 1 for
the parameter values used).

In (2.10), the magnitude of the Strouhal number Sr = b/tcS0δT ≈ 1/tcS0, if b/δT ≈ 1,
depends on the choice of the characteristic time scale tc. The goal of this study is not
to analyse start-up processes that occur when switching on the heater, but to describe
the periodic variations in the sensor response. Therefore, the oscillation time, 1/ω, is
used as characteristic time scale; hence,

Sr = ω/S0. (2.14)

Eventually, this sensor will be used for coronary-flow measurements, where the
estimated mean shear rate the sensor experiences when positioned on a guide wire
is of the order of magnitude of 1000 s−1. Hence, Sr is generally small for our
ultimate application (typically Sr < 0.1, assuming that the measurement of the first
10 harmonics is sufficient for reconstruction of the coronary-flow signal; see Milnor
1989, p. 157). We therefore assume the fluid temperature distribution to be quasi-
steady, thereby neglecting the unsteady term in the thermal energy equation. In the
quasi-steady approximation, time t represents a parameter rather than a variable.
From here on, we therefore omit the explicit dependence on t̂ (T̂ = T̂ (x̂, ŷ)); in fact,
the role of t̂ is now taken over by the shear rate Ŝ (Ŝ = 1 + β sin (t̂)).
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Another simplification is that heat loss through the insulating back of the tube in
which the sensor is mounted is neglected: all heat produced by the heater is assumed
to be transferred to the fluid. Capacitive effects, which may cause the heat transfer to
the fluid to vary in time, are also neglected. According to Tardu & Pham (2005), this is
reasonable, since the thermal diffusivities of the sensor components are two orders of
magnitude higher than that of water. Since the exact shape of the heat-flux distribution
from the sensor substrate to the fluid depends on the temperature distribution in the
fluid, this leads to a conjugate heat-transfer problem, which is hard to solve. We
circumvent this coupling of the fluid and substrate temperatures by a much simpler
approach: we approximate the shape of the heat-flux distribution from substrate to
fluid and use this as a boundary condition for the fluid problem. If all the heat were
transferred from the heater to the fluid directly, i.e. when there is perfect insulation
outside the heater compartment, a rectangular-shaped heat-flux boundary condition
would be most realistic. For our sensor, however, conduction of heat from the heater
towards the other sensor components will smooth the rectangular shape, leading to a
more Gaussian-shaped heat-flux profile, with some deviations due to the asymmetric
temperature distribution in the fluid. Therefore, as a simple approximation of the
real heat-flux boundary condition, we use a Gaussian distribution with a standard
deviation σ equal to half the heater width; hence, σ = b/2:

q(x) = −k
∂T

∂y

∣∣∣∣
y=0

=
Q

lσ
√

2π
exp

(
− (x − xh)

2

2σ 2

)
, (2.15)

with xh being the position of the heater centre and Q/l the total amount of heat
transferred from the sensor to the fluid, per unit of length in the z-direction (in watts
per square metre), as given by (2.3).

The resulting dimensional thermal energy equation and boundary conditions
describing the quasi-steady problem for the fluid temperature T = T (x, y) within
the thermal boundary layer or strip are given by

Sy
∂T

∂x
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
, x ∈ �, 0 � y � h,

T (±∞, y) = To,
∂T

∂y
(x, 0) = − Q

klσ
√

2π
exp

(
− (x − xh)

2

2σ 2

)
, T (x, h) = To.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.16)

Figure 2 shows a schematic view of the resulting problem to be solved. Note that,
although we are interested only in the solution close to the heater (for |x| =O(b)), we
have, for mathematical ease, extended the domain in the x-direction to infinity. The
outflow boundary condition used implies that in our model, all heat will eventually
escape through the upper boundary y = h. Since, for the correct choice of h, this
happens sufficiently far away from the heater, it does not influence the solution in
a b-environment of the heater. To ensure this, the upper boundary of the domain
has to be located sufficiently far outside the thermal boundary layer for x = O(b).
Therefore, h is taken equal to n times the estimated thermal boundary layer thickness,
where n= 1, 2, 3, . . . . Further on, it will be shown that for n � 4, the solution becomes
independent of n. Since the thermal boundary layer thickness δT , according to (2.11),
but with S0 replaced by S, depends on the actual wall-shear rate, h also depends on
S. This motivates us to choose h as (note that in the following, we use σ

√
2 instead
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of b as characteristic unit of length)

h = n

(
ασ

√
2

|S|

)1/3

. (2.17)

Hence, in our quasi-steady approximation, we solve the problem for each value of
S separately, choosing the upper boundary accordingly. The advantage of this S-
dependent position of the upper boundary will become clear in the next section. We
note that h can become large, i.e. larger than b, for small values of |S|, specifically
for |S| < 0.3 s−1. Then, the thermal energy equation is no longer advection-, but
diffusion-dominated and, in that case, δT must be taken equal to b. However, for our
problem this happens in a very short period of time (less than 0.1 % of one period
of S(t)) and it is therefore not relevant for our solution.

We introduce a new scaling by using the dimensionless variables and parameters:

x̃ =
x − xh

σ
√

2
, ỹ =

y

σ
√

2
, T̃ (x̃, ỹ) =

T (x, y) − To

Tc

,

Tc =
Q

kl
√

π
, h̃ =

h

σ
√

2
, α̃ =

α

2σ 2S
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.18)

where the temperature scale Tc is based on the heat source term (2.15). We define the
Péclet number as

Pe =
2σ 2S

α
. (2.19)

Hence, α̃ = 1/Pe.
Omitting the tildes, the newly scaled system for T = T (x, y) reads

y
∂T

∂x
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
, x ∈ �, 0 � y � h,

T (±∞, y) = 0,
∂T

∂y
(x, 0) = −e−x2

, T (x, h) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.20)

where

h = nα1/3, (2.21)

with n still to be chosen. Hence, T (x, y) depends on only two parameters, α and
n: T (x, y) = T (x, y; α, n). However, if n is taken sufficiently large, i.e. n � 4, then
solution T in a b-environment of the heater becomes independent of n, and α is the
only parameter remaining.

3. Analytical solution method
To solve the system (2.20), a spectral method is used, which reduces the partial

differential equation in (2.20) to a set of ordinary differential equations. To apply this
method, we first make the boundary conditions homogeneous, by writing

T (x, y) = (h − y) e−x2

+ T1(x, y), (3.1)

leaving for T1 the equation

y
∂T1

∂x
− α

(
∂2T1

∂x2
+

∂2T1

∂y2

)
= R(x, y), (3.2)
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with homogeneous boundary conditions and with

R(x, y) = (h − y) e−x2

[2xy + α(4x2 − 2)]. (3.3)

For the spectral method, we introduce the trial functions vk(y), given by

d2vk

dy2
= −λ2

kvk,
dvk

dy
(0) = 0, vk(h) = 0, (3.4)

yielding

vk(y) = cos(λky), λk =
(2k − 1)π

2h
, k = 1, 2, . . . . (3.5)

Here we see the advantage of truncating the infinite half-space to a strip of finite
height. Next, we decompose T1 into a linear combination of the trial functions vk

according to

T1(x, y) =

∞∑
k=1

Ck(x)vk(y) ≈
K∑

k=1

Ck(x)vk(y), (3.6)

where, in the last step, we have truncated the series after K terms. (As demonstrated
in § 5, K = 5 is more than sufficient for obtaining precise numerical results when the
height of the strip is chosen according to the actual wall-shear rate.) Substituting (3.1)
and (3.6) into (2.20), we obtain

K∑
l=1

[
y

dCl

dx
− α

(
d2Cl

dx2
− λ2

l Cl

)]
vl(y) = R(x, y). (3.7)

Taking the inner product of (3.7) with functions vk(y), with the inner product of a
function u with v defined as

(u, v) ≡
∫ h

0

u(y)v(y) dy, (3.8)

we arrive at an equation for the array C , consisting of K elements Ck ,

h2W
dC
dx

− α
h

2

(
d2C
dx2

− ΛC
)

= R, (3.9)

with W being a K ×K-matrix with elements Wkl , given by (3.10a), Λ a K ×K diagonal
matrix with elements Λkk = λ2

k and R a K-array with elements Rk , given by (3.10b)

Wkl =
1

h2

∫ h

0

yvk(y)vl(y) dy =

∫ 1

0

ŷvk(hŷ)vl(hŷ) dŷ, (3.10a)

Rk(x) =

∫ h

0

R(x, y)vk(y) dy. (3.10b)

We introduce the Fourier transform of C(x) by

c(ζ ) =
1√
2π

∫ ∞

−∞
C(x) e−iζx dx = F {C; ζ}. (3.11)

By taking the Fourier transform of (3.9), after dividing it by αh/2, we obtain the
algebraic equation for c:(

ζ 2I + iζ
2h

α
W + Λ

)
c(ζ ) = M(ζ )c(ζ ) = r(ζ ), (3.12)
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with I being the unity K × K-matrix, and

M(ζ ) = ζ 2I + iζ
2h

α
W + Λ, (3.13a)

r(ζ ) = F

{
2

αh
R; ζ

}
. (3.13b)

We can, using Mathematica 6 (Wolfram Research, Champaign, USA), invert the
K × K matrix M analytically, by which we find

c(ζ ) = M−1(ζ )r(ζ ), (3.14)

and by taking the inverse Fourier transform of this result, we obtain the solution for
the array C(x) as

C(x) =
1√
2π

∫ ∞

−∞
c(ζ ) eiζx dζ =

1√
2π

∫ ∞

−∞
M−1(ζ )r(ζ ) eiζx dζ. (3.15)

The latter integral is evaluated numerically using Mathematica 6. The temperature T

is now determined by (3.1) and (3.6) with K = 5 and n= 4.

4. Experimental methods
In the experimental set-up, the device was mounted to the inner wall of a tube

with an inner diameter of 5 mm (see figure 1b). The tube was made of Polymethyl
methacrylate (PMMA), which is an insulating material, to prevent heat loss through
the back of the device. The device covered about half of the tube perimeter. The
polyimide foil including the sensor components has a thickness of only 10 µm
(see figure 1a), and since the very small step it causes in the tube wall is located
about 2 mm away from the actual sensor components (on both sides), this does not
significantly disturb the flow pattern near the sensor. In all experiments, the heater
was supplied with a power of 80 mW by a voltage source (EST 150, Delta Elektronika,
Zierikzee, The Netherlands). Two multimeters (DMM 2000, Keithley Instruments Inc,
Cleveland, USA) were used to register the output of the thermopiles that measure
Td − Tu and Th − Tf .

To ensure a fully developed flow over the sensor, the measurement section was
located 112 tube diameters from the tube entrance, which is, even at the highest
Reynolds number reached (≈500), well beyond the laminar entrance region. As test
fluid, tap water at room temperature was used. The steady flow through the set-
up was generated by a stationary pump (Libel-Project, Alkmaar, The Netherlands).
The amount of flow could be adjusted using a clamp. The oscillatory component
was added to the mean flow by a piston pump, driven by a computer-controlled
motor (ETB32, Parker Hannifin, Offenburg, Germany). Downstream of the sensor,
the flow was registered by an ultrasonic flow probe (4PSB transit time perivascular
probe, Transonic Systems Inc, Ithaca, USA), which was used as a reference. The
signals from the flow probe and the multimeters were recorded simultaneously
and transferred to a computer via an acquisition board with a sampling frequency
of 20 Hz.

The output voltage of a thermopile is proportional to the temperature difference
between its ends via the Seebeck coefficient, which depends on the composition of the
thermocouple leads (see van Herwaarden et al. 1989). By scaling the stationary sensor
response Th − Tf at S = 115 s−1 to the analytical value at this shear rate, we found
the Seebeck coefficient for the thermocouples in our sensor to be 305 µV K−1. This
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Figure 3. The influence of (a) the number of cosine terms K on the solution Td − Tu and
(b) parameter n on the solution T at y =0, S = 100 s−1.

Seebeck coefficient, which is only a scaling value for the experimental data and does
not influence the shape of the responses, is used for all experimental results shown
in § 5.

Experiments under both steady and unsteady flow conditions were performed.
In steady flow, the Péclet number (see (2.19)) was varied from 0 (at zero flow;
S = 0 s−1) to 34 (at a flow of 368 ml min−1; S = 500 s−1). The wall-shear rate at
the sensor surface was calculated from the flow measured by the ultrasonic probe
assuming a Poiseuille velocity profile.

For the unsteady case, the Strouhal number (see (2.14)) was varied from 0.01 to
0.1 by varying the oscillation frequency from 0.2 to 2 Hz, and the amplitude (β) was
varied between 0.8 and 1.2 (corresponding to the expected coronary-flow regime),
keeping the mean shear rate constant at about 115 s−1. In unsteady flow, the wall-
shear rate was derived from the flow measurements assuming a Womersley velocity
profile (Womersley 1955).

5. Results and discussion
The cosine series used in (3.6) converged quite rapidly: only five terms sufficed for

an accurate approximation of the solution; see figure 3(a). The rapid convergence
is a consequence of the dependence of h on the actual wall-shear rate S; if h had
been fixed for all S, it could become much larger than the boundary-layer thickness,
leading to slow convergence of the cosine series. The parameter n (see (2.21)) was
chosen such that the position of the boundary condition did not influence the solution
at the sensor surface in a b-environment of the heater; n= 4 was found to be large
enough to ensure this, as demonstrated in figure 3(b).

In figure 4(a), the theoretical temperature profiles over the sensor surface are
depicted for different shear rates (hence, different Pe-values). At low shear rates (low
Pe), the temperature distribution is more symmetric with respect to the heater centre,
since in that case, conduction dominates the heat-transfer process. As the shear rate
increases, the temperature distribution becomes asymmetric, because more heat is
advected downstream, while the overall sensor temperature decreases because of the
augmented advective cooling.

The experimental data obtained in steady flow are plotted together with the
theoretically predicted sensor output in figure 4(b–d ). The results of two separate
experiments are shown to give an indication of the data spreading, where each data
point represents the average result of 20 s of measurement with a sampling frequency
of 20 Hz (i.e. 400 samples). Both the experimental and analytical curves show a
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Figure 4. Analytical (—) and experimental (• • •,   ) results in steady flow. (a) Analytical
temperature profiles at the sensor surface at S = 10, 60, 110, 160, 210 s−1; (b) response of the
thermopile measuring Th − Tf and (c) Td − Tu; and (d ) the ratio of thermopile outputs.

steep decline in the relative heater temperature Th −Tf at low shear rates, and a more
gradual one at higher shear rates. Sensor output Td −Tu is characterized, in both model
and experiment, by a steep increase at low shear rates, followed by a maximum and a
decline; see figure 4(c). These features were also found by Lammerink et al. (1993) and
Nguyen & Kiehnscherf (1995). With increasing shear rate, the (Td − Tu) temperature
difference rises because of augmented advection of heat in the downstream direction.
At the same time, the overall sensor temperature decreases (see also figure 4a); hence,
a maximum in Td − Tu is observed. Apart from describing very well the qualitative
sensor response, the analytical model also predicts the quantitative data with adequate
precision. Maximum deviations between model and experiment ranged from 5 % for
the (Th − Tf )-signal to 27 % for Td − Tu. Although measurement inaccuracies may
also play a role, the discrepancy between theory and experiment is most likely due to
the simplified modelling of the substrate: the Gaussian heat-flux distribution is only
a rough approximation, since the heat transfer from the substrate to the fluid will
be larger upstream than downstream, due to the hot thermal wake. Furthermore, the
influence of conduction in the substrate decreases with increasing wall-shear rate (see
Tardu & Pham 2005).

To obtain an invertible relation between the sensor output and the wall-shear rate or
the Péclet number, the ratio of thermopile outputs, (Td − Tu)/(Th − Tf ), can be used;
see figure 4 (d ). Note that this curve is independent of the thermopile calibration,
because the Seebeck coefficient is equal for both thermopiles and vanishes when the
ratio of outputs is used. From figure 4, it appears that the sensor is most sensitive to
lower shear rates. The performance of the sensor at higher shear rates, important for
the eventual application of the sensor in coronary flow, can be improved by decreasing
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Figure 5. Theoretical results with the original heater width (—), 50 % (· · ·) and 25 % (- · -)
of the original width for (a) Td − Tu and (b) (Td − Tu)/(Th − Tf ).

the heater width b, thereby reducing Pe. When the heater width b =2σ is decreased,
the distance to the heater centre of the thermopile measuring Td −Tu must be reduced
by an equal amount, to keep the same relative positions. The theoretical results for
decreasing the heater width by 50 % and 25 % are shown in figure 5. A smaller heater
leads to a shift in the maximum temperature difference Td − Tu, resulting in a more
linear relation between the shear rate and the ratio of thermocouple outputs, with a
lower sensitivity for lower and a higher sensitivity for higher shear rates compared to
the original response. From figure 5(a), we conclude that the effective heater width
has a large influence on the (Td −Tu) signal. This could also be an explanation for the
discrepancy between theory and the experiment shown in figure 4(c); if the effective
heater width in the experiment is somewhat smaller than the theoretically used value,
this will shift the maximum in the (Td − Tu) curve to higher shear rates. The difficulty
here is that the effective heater width will depend on the actual wall-shear rate (i.e.
the relative influence of conduction in the substrate), making b a function of S. The
actual effective heater width can therefore be obtained only by solving the conjugate
heat-transfer problem.

The sensor response to unsteady flow was investigated experimentally by varying
the oscillation frequency, and thereby the Strouhal number, and amplitude in the
estimated physiological regime. At each amplitude and frequency, the dynamic sensor
response was measured during at least five flow cycles; here two periods of each
signal are shown. In figure 6, the experimental results for non-reversing shear rates
at four Sr-values are depicted, together with the quasi-steady analytical solution. The
shear-rate signals calculated from the flow measurements are aligned, to ensure that
the phase differences observed in the thermopile signals are due to thermal unsteady
effects, and not due to phase differences between the flow and the wall-shear rate.
Owing to limitations of the pump, the 2 Hz (Sr = 0.1) flow signal was not purely
sinusoidal, which also shows in the sensor response.

We observe a phase shift and decrease in amplitude with increasing Strouhal number
in the (Th − Tf ) signal. The (Td − Tu) thermopile output also shows this phase shift,
together with a slight change in the signal shape. As Sr increases, the wall-shear rate
oscillations become too fast for the thermal boundary layer to react instantaneously,
and the sensor response starts to deviate from its quasi-steady behaviour, and hence,
from the analytical solution. The deviation between the signals with Sr = 0.01 and
Sr = 0.1 is larger (17 % in Th − Tf ) during minimum shear rate, when unsteady
effects are most important, than during maximum shear rate (6 %), when advection
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Figure 6. Results in unsteady flow for β =0.8, with τ being the period of a flow cycle;
analytical (—) and experimental (• • •) curves for Sr = 0.01 (blue), Sr =0.03 (red), Sr =
0.06 (green) and Sr = 0.1 (magenta). (a) Shear rate at the sensor surface obtained from the
Womersley approximation of the measured flow; (b) response of thermopile measuring Th −Tf

and (c) Td − Tu; and (d ) the ratio of thermopile outputs.

dominates. Not only during minimum shear rate, but during the complete deceleration
phase, the spreading between the different Sr-curves is somewhat larger. To investigate
whether flow instabilities in the deceleration phase can explain these deviations, a
frequency analysis of the signals was performed. No coherent structures with a fixed
frequency were found, so the origin of the deviations remains unclear. Nevertheless,
the quasi-steady analytical solution appears to describe the sensor response quite well
in the complete experimental range, up to Sr = 0.1, with again larger quantitative
differences in the (Td − Tu)-signal than the (Th − Tf )-signal. In the coronary-flow
regime, with Strouhal numbers of about 0.01 for the first harmonic, a quasi-steady
sensor response is therefore expected. In their studies with hot-film anemometers and
electrochemical wall-shear probes, respectively, Clark (1974) and van Steenhoven &
van de Beucken (1991) found the quasi-steady regime to hold for Sr up to 0.2.

For β =1.2, larger deviations between the sensor response for Sr =0.01 and Sr = 0.1
have been found during the reversal period and the deceleration phase; see figure 7.
A sign change in Td − Tu, indicating shear-rate reversal, was clearly observed for the
two lowest Sr-values. During the reversal period, hot fluid from the thermal wake is
carried back over the sensor, which is not taken into account in the analytical model
and leads to further deviations from the quasi-steady response. As the shear rate
approaches zero, the heat is carried away from the heater only very slowly, leading
to large heater temperatures in the quasi-steady analytical solution, while Td − Tu,
and therefore (Td − Tu)/(Th − Tf ) also, tend to zero, due to the symmetric influence of
conduction. In the experimental data, such large relative heater temperatures are never
reached because it takes time to heat the fluid, due to its finite thermal diffusivity.
Hence, only during the very short period of time where S is close to zero, are larger
deviations from the quasi-steady solution observed in the (Th − Tf )-signals.
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Figure 7. As figure 6, but with β = 1.2.

6. Conclusions
An analytical model describing the response of a miniature calorimetric sensor

to both steady and pulsatile tube flows is developed. In experiments, the sensor
is subjected to a flow in the expected physiological range to verify the theoretical
predictions. Steady-flow analytical and experimental results are in good agreement
for the complete range of Péclet numbers studied. Hence, our two-dimensional model
with the wall-shear rate at the sensor surface as the only flow parameter is sufficient
for examining the steady sensor behaviour. Only a simplified model of the substrate
in which the sensor is embedded was taken into account, by means of a heat-flux
boundary condition. A conjugate approach will lead to a more accurate quantitative
prediction of the temperature differences measured; however, our model has the
advantage of a simple representation of the substrate, and still leads to an acceptable
description of the sensor response.

The quasi-steady analytical model predicts quite well the sensor behaviour in a non-
reversing pulsatile flow with Strouhal numbers up to 0.1. Based on the experimental
results, we conclude that the sensor response to coronary flow will be quasi-steady,
except during the (short) periods of shear-rate reversal. The analytical model can
therefore be used to optimize the sensor design for coronary-flow measurements, as
demonstrated in figure 5.

This research was financially supported by the Dutch Technology Foundation STW,
project SmartSiP 10046, Philips Research and St. Jude Medical.
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