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The Hippo signalling is emerging as a tumour suppressor pathway whose function is regulated by an intricate
network of intracellular and extracellular cues. Defects in the signal cascade lead to the activation of the Hippo
transducers TAZ and YAP. Compelling preclinical evidence showed that TAZ/YAP are often aberrantly
engaged in breast cancer (BC), where their hyperactivation culminates into a variety of tumour-promoting
functions such as epithelial-to-mesenchymal transition, cancer stem cell generation and therapeutic resistance.
Having acquired a more thorough understanding in the biology of TAZ/YAP, and the molecular outputs they
elicit, has prompted a first wave of exploratory, clinically-focused analyses aimed at providing initial hints on
the prognostic/predictive significance of their expression. In this review, we discuss oncogenic activities linked
with TAZ/YAP in BC, and we propose clinical strategies for investigating their role as biomarkers in the
clinical setting. Finally, we address the therapeutic potential of TAZ/YAP targeting and the modalities that, in
our opinion, should be pursued in order to further study the biological and clinical consequences of their inhibition.

Introduction
Over the past decade our increased understanding in the
biology of breast cancer (BC) has been paralleled by
the successful development of novel agents and combi-
nations that dramatically expanded the therapeutic
armamentarium and improved patient outcomes
(Ref. 1). A large-scale characterisation effort refined
the molecular taxonomy of the disease, reclassifying
BC into multiple molecular and clinical entities each
one carrying a specific set of molecular alterations
and a different spectrum of sensitivity to hormone
therapy, chemotherapy and molecular targeted agents
(Refs 2, 3). Having taken a more detailed look at the
biology of the disease it is shedding light on previously
unexplored oncogenic hits and gene–gene interaction
networks. If, on the one hand, this has added a
further level of complexity to the biology of BC, on
the other hand the pipeline of potential targetable
alterations and candidate biomarkers for patient stratifi-
cation and treatment assignment is expanding.
Among emerging oncogenic signals, compelling evi-

dence pinpointed the multifaceted tumour-promoting
avenues mediated by the transcriptional co-activator
with PDZ-binding motif (TAZ) and Yes-associated
protein (YAP) (Ref. 4). Operatively, TAZ and YAP
are placed in the context of the Hippo pathway, an

evolutionary conserved regulator of tissue growth
whose perturbation has been connected with tissue over-
growth and tumorigenesis in animal models (Refs 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20).
Importantly, with the exception of neurofibromin 2
(NF2), that is mutationally inactivated in some
tumours (Ref. 21), somatic or germline mutations in
Hippo core pathway components have uncommonly
been reported in human cancers, even including the
whole-exome sequencing analysis carried out by The
Cancer Genome Atlas Network (Ref. 3). Thus, at least
in principle, TAZ/YAP activation is driven either by
functional events disrupting Hippo-mediated control or
by Hippo-independent crosstalk with other perturbed
pathways or functions.
Upstream components of the Hippo pathway operate

an inhibitory phosphorylation of both TAZ and YAP,
preventing their nuclear translocation and then hinder-
ing the TAZ/YAP-mediated transcriptional pro-
gramme (Refs 15, 22, 23, 24). Preclinical evidence
broadened this biological frame by elucidating how
TAZ and YAP activation is controlled by a series of
input, spanning from cell junctions to extracellular
cues and metabolic pathways (Refs 25, 26).
Independently from the stimulus, the activation of the
Hippo transducers TAZ/YAP in cancer cells has
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been tied to a wide array of protumourigenic functions,
such as epithelial-to-mesenchymal transition (EMT)
and cancer stem cell (CSC) fate decision (Ref. 25).
In this review, we discuss the mechanisms governing

TAZ and YAP function, their biological roles in BC,
and early evidence linking them to clinical outcomes
of BC patients. We will finally discuss clinical strat-
egies for investigating TAZ/YAP as prognostic/pre-
dictive biomarkers and therapeutic targets in the
clinical setting.

Mechanisms of TAZ and YAP activation
Discovered in Drosophila melanogaster, Hippo was
later recognised as a conserved regulator of tissue
growth in the animal kingdom. For simplicity, hereafter
we refer to the mammalian nomenclature. Hippo func-
tions the same as other signal transduction pathways
with a ‘vertical’ architecture, as illustrated in Fig. 1.
However, as detailed in this paragraph, TAZ/YAP
activity is not necessarily driven by Hippo kinases, as
Hippo-independent mechanisms of TAZ/YAP regula-
tion have been elucidated. Thus, TAZ/YAP activation
should not be equated with Hippo signalling.
The core Hippo module encompasses the following:

two serine/threonine kinases known as sterile 20-like
kinase 1 (MST1) and 2 (MST2), large tumour suppres-
sor 1 (LATS1) and 2 (LATS2), the scaffold proteins
Salvador homologue 1 (SAV1), MOB kinase activator
1A (MOB1A) and 1B (MOB1B). In the ‘on’ state,
MST1/2 bind to SAV1, forming an enzymatic
complex that phosphorylates and activates LATS1/2
kinases and the MOB1A/B regulatory subunits of
LAST1/2. In turn, LATS1/2-MOB1A/B phosphory-
lates TAZ and YAP, preventing their interaction with
TEA domain-containing sequence-specific transcrip-
tion factors (TEAD1 to TEAD4) and other transcrip-
tional partners such as SMAD and RUNX proteins.
In this manner, MST1/2 and LATS1/2 orchestrate
TAZ/YAP nuclear exclusion, cytoplasmic retention
and proteasomal degradation (Refs 15, 22, 24, 27, 28).
Thus, Hippo is defined as a tumour suppressor
pathway whose main function consists in negatively
regulating the homologous oncoproteins TAZ and YAP.
Multiple upstream regulatory branches intersect the

Hippo pathway at different levels of the signal
cascade, either acting as activators of core kinases
repressing TAZ/YAP, or by sequestering TAZ/YAP
in physical complexes independently on the activa-
tion of core kinases. For an excellent overview of
the mechanisms controlling TAZ/YAP activation the
reader might refer to (Ref. 25). Briefly, whether the
functional organisation of Hippo resembles that of
other canonical signal transduction pathways, its acti-
vation does not seem to be chiefly reliant on soluble
ligands, even though exceptions have been described
as discussed below. Indeed, regulatory forces mostly
emanate from mechanisms involved in cell–cell adhe-
sion and apical–basal polarity. Overall, junctional
and apicobasal polarity factors, key elements of the

physiological architecture of epithelial tissues, block
TAZ/YAP nuclear activities (Ref. 25). Disruption of
these controllers, a hallmark of cancer cells where
adhesive properties are altered or defective, relieves
the inhibitory effects on TAZ/YAP. A third regulatory
branch involves the actin cytoskeleton and Rho GTPase
and defines the role of TAZ/YAP in mechanotransduc-
tion (Ref. 29). In this molecular framework, TAZ/YAP
acts as nuclear relays for mechanical signals conveyed
by changes occurring in extracellular matrix and cell
geometry. Through this process mechanical and phys-
ical cues are converted into biochemical stimuli that
mediate adaptive responses to external forces. A
further level of regulation of TAZ/YAP involving
RHO GTPases derives from the mevalonate pathway
(Ref. 30), a key metabolic route mediating a wide
array of cellular processes ranging from protein preny-
lation to steroid biosynthesis. These two types of input
have elegantly been combined in a unique equation.
Accordingly, geranylgeranyl pyrophosphate, a major
metabolite produced in the mevalonate cascade, is
essential for the correct membrane localisation and acti-
vation of Rho GTPases. These, in turn, inhibit TAZ/
YAP phosphorylation favouring their nuclear accumu-
lation. Finally, TAZ/YAP have been integrated in the
Wnt pathway as components of the β-catenin destruc-
tion complex (Ref. 31). This indicates that the connec-
tion existing between Hippo and Wnt is deeper than
previously thought as these two pathways share
common regulatory mechanisms. In greater detail, in
the absence of Wnt ligand-mediated stimulation
TAZ/YAP are sequestered in the cytoplasm where
they play a crucial role in β-catenin degradation.
Conversely, stimulation with Wnt ligands disassembles
the β-catenin destruction complex, leading to the
release of TAZ/YAP. The molecular implication of
this interaction is twofold seeing that, under these con-
ditions, both the β-catenin-mediated and the TAZ/
YAP-dependent transcriptional programs are activated.
Overall, multiple layers of TAZ/YAP regulation

exist which depend on different factors such as the
spatial and tissue context, the interactions of cancer
cells with the surrounding environment, and the avail-
ability of growth factors. Nevertheless, whether, on the
one hand, we have acquired elements on the modalities
through which TAZ/YAP are engaged, the biological
outcomes they elicit, and the molecular networks in
which they operate, on the other the molecular
outputs of their activation remain largely enigmatic as
few target genes have been identified so far (e.g. Axl,
CTGF, Cyr61, amphiregulin) (Ref. 25).

Oncogenic activities mediated by TAZ and
YAP in BC
TAZ/YAP overexpression is commonly observed in BC
and appears to be a shared trait across the spectrum of
intrinsic subtypes. Indeed, elevated levels have been
reported in Luminal subtypes, in the HER2-positive back-
ground including both Luminal B and HER2-enriched
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tumours, and in triple-negative BC (Refs 32, 33, 34, 35,
36, 37). At the preclinical level, TAZ/YAP have been
described as central players of multiple cancer-associated
features such as proliferation and cell survival, migration
and metastasis, resistance to chemotherapy, EMT and
CSCs (Fig. 2). Given the tight connection existing
between EMT, CSCs and therapeutic resistance, they are
discussed separately in the next section.
The role of TAZ in oncogenic transformation of non-

neoplastic mammary cells was originally described in
MCF10A cells (Ref. 38). Overexpression of TAZ in
low-expressing MCF10A cells was associated with the
acquisition of a spindle-shaped, fibroblast-like morph-
ology and conferred increased migratory and invasive
properties compared with control cells (Ref. 38). From
a mechanistic perspective, this activity was later asso-
ciated with the interaction of TAZ with TEAD transcrip-
tional factors, as knocking down TEADs expression
suppressed TAZ-mediated transformation (Ref. 39).
Importantly, neoplastic transformation stemmed from
disrupting canonical Hippo-mediated control, as eluci-
dated by using a TAZ-mutated form refractory to
Hippo kinase phosphorylation. The concept that TAZ
activation elicits tumorigenic and proliferative effects
in a Hippo-dependent manner was further enforced in
an independent report exploiting LATS1 knockdown

(Ref. 40), and in addition to studies investigating nephro-
cystin proteins, known cilia-associated proteins, that
inhibit Lats1-mediated TAZ/YAP phosphorylation
(NPHP4) (Ref. 41) or compete with 14-3-3 for
TAZ binding (NPHP9), thus constraining 14-3-3-
mediated TAZ cytoplasmic retention (Ref. 42). Next, a
coordinated program involving TAZ/YAP, TEADs
and TGFβ-induced signals was described as a route
cancer cells use to overcome the repressive effects
of TGFβ in early oncogenic phases (Ref. 43).
Interestingly, in a screen of transcription factors TAZ
was identified as able to promote a luminal to basal
lineage switch, as confirmed by the fact that its depletion
in basal and myoepithelial cells promoted luminal differ-
entiation (Ref. 37). Analogies with TAZ in terms of
transforming potential were also reported for YAP. In
MCF10A cells YAP overexpression led to a series of
alterations mirroring tumourigenic transformation
including EMT, inhibition of apoptosis and anchorage-
independent growth (Ref. 44). Likewise, YAP overex-
pression promoted tumour formation and growth in
luminal-type BC (Ref. 45). Even though in an independ-
ent study YAP hyperactivation was not sufficient to
trigger mammary hyperplasia and oncogenic growth of
the normal breast epithelium, YAP inactivation exerted
tumour- and metastasis-suppressive activity in a mouse
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FIGURE 1.

Regulation of TAZ and YAP. The Hippo core module is composed by kinases (MST1, MST2, LATS1, LATS2) and adaptor proteins (SAV1,
MOB1A, MOB1B). When the Hippo signalling cascade is active, LATS1 and LATS2 operate an inhibitory phosphorylation of TAZ and YAP,
leading to their cytoplasmic retention and proteasomal degradation. NF2, which lacks kinase activity, is a further activator of LATS1 and
LATS2. When the Hippo signalling cascade is not active, TAZ and YAP are not phosphorylated and translocate to the nucleus where they inter-

act with TEAD1-TEAD4 and other transcriptional partners (i.e. SMAD and RUNX), inducing target gene expression.
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model of oncogene-induced BC, raising the hypothesis
that cooperating genetic events are necessary for generat-
ing a neoplastic phenotype (Ref. 46). Finally, a non-cell-
autonomous path requiring the activation of the epider-
mal growth factor receptor (EGFR) signallingmachinery
was also described as a mechanism of TAZ/YAP-driven
cellular proliferation (Refs 47, 48). The EGFR ligand
amphiregulin was indeed designated as a TAZ/YAP
transcriptional target stimulating EGFR-expressing
neighbouring cells.
Multiple evidence linked TAZ/YAP to BC metasta-

sis. Knockdown of TAZ expression in BC cell lines
reduced cell migration and invasion (Ref. 38).
Importantly, TAZ has been implicated in BC-associated
metastatic bone disease, partly through its interaction
with hypoxia inducible factor-1α (Ref. 49). A pro-
metastatic role was also envisioned for YAP and asso-
ciated with its interaction with TEADs (Ref. 50), and
with loss of the BC metastasis suppressor leukaemia
inhibitory factor receptor (LIFR) and the correlated
defective activation of the Hippo kinases MST1,
MST2 and LATS1 (Ref. 51).
The involvement of YAP in the context of cancer-

associated fibroblasts (CAFs), one of the major stromal
cell types cohabitating the tumour microenvironment,
deserves to be mentioned. CAFs are known for the
vicious relationship they weave with cancer cells,

ultimately encouraging tumour growth, angiogenesis
and metastasis (Ref. 52). YAP activation was found to
be required for maintaining the CAF phenotype and
their tumour-promoting functions through a self-reinfor-
cing positive feedback loop with the extracellular matrix
(Ref. 53). Thus, in the domain of tumour–stroma
interplay, YAP-mediated tumour-enhancing properties
operate through mechanotransduction.
It is worth mentioning, however, that controversies

exist on the oncogenic role of YAP. On the one
hand, it appears prominent in some tumours, such as
KRAS-driven colon, lung and pancreatic cancer,
where YAP compensates for loss of oncogenic
KRAS (Refs 54, 55). On the other hand, a tumour-
suppressive role was envisioned owing to its interaction
with the p53 family member p73 and its negative regu-
lation operated by AKT (Refs 56, 57, 58, 59, 60, 61,
62). Accordingly, YAP was found to physically inter-
act with, and stabilise, p73 in a process leading to
transcription of proapoptotic target genes (Refs 57,
58, 59, 60, 62). In 2008 Yuan et al. (Ref. 59)
prompted by previous evidence of frequent loss of het-
erozygosity at 11q22.2, (Refs 63, 64, 65, 66) reported
on loss of YAP by immunohistochemistry in BC.
Functionally, authors designated YAP as a tumour
suppressor, whose silencing protected BC cells from
anoikis, increased migration, invasiveness and

Oncogenic activities mediated by TAZ/YAP in breast cancer.
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FIGURE 2.

Oncogenic activities mediated by TAZ/YAP in BC. Activation of TAZ and YAP in BC is associated with multiple tumor-promoting functions
including oncogenic transformation, proliferation, migration and metastasis. TAZ also promotes EMT, chemotherapy resistance and sustains

self-renewal of CSCs.
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tumorigenic potential. Similar conclusions were
recently drawn by Yu et al. (Ref. 67). Using multiple
BC cells lines authors demonstrated that miR-200a
enables cancer cells to evade anoikis and metastasise
by targeting YAP (Ref. 67). Overall, a divergent role
was described for YAP in BC. We believe that more
focused investigations considering each of the intrinsic
subtypes are warranted to solve this puzzle, ideally
exploiting primary cancer (stem) cells instead of
cancer cell lines.

TAZ/YAP and BC stem cells
Since 1997, we have witnessed increasing experimental
evidence describing the existence of a rare population
of cancer cells endowed with unique phenotypic and
functional traits, namely: expression of markers
common to stem and progenitor cells, ability to self-
renew, differentiate and, more importantly, to regener-
ate the parental tumour when delivered to the murine
background (Refs 68, 69, 70, 71, 72, 73, 74, 75, 76, 77).
Commonly defined as CSCs, this cellular subset has
gained attention also owing to their intrinsic resistance
to widely used anticancer agents. The discovery of
CSCs has spurred an intense debate on the origin and
evolution of cancer, mostly centred on the incom-
patibility of the CSC-centric model, the so-called
‘hierarchical model’, with Darwinian principles of evo-
lution, widely applied to cancer biology and condensed
in the ‘clonal evolution model’ (Ref. 78). The growing
body of knowledge on CSCs, along with technical
improvements, has smoothened most of the supposed
differences between the two models, allowing one to
combine CSCs and clonal evolution. The joining link
was the discovery of clonal evolution in the CSC
pool (Refs 79, 80, 81, 82) and the description of a
series of stimuli coming from, or related to, the
tumour microenvironment able to install the CSC
phenotype in non-CSCs (Refs 83, 84, 85, 86). The
process allowing to overtake the concept of a ‘fixed’
state of CSCs, defined as ‘dynamic stemness’, was
observed when cancer cells undergo EMT (Ref. 83),
or when they are exposed to hypoxia (Ref. 84), low
pH (Ref. 85) and cytokines (Ref. 86).
Considering the well-established role of the Hippo

signalling pathway in regulating tissue-resident stem
cells (Ref. 87), it is not surprising that TAZ/YAP
were also tied to CSCs (Refs 32, 88). Breast CSCs
(BCSCs) are characterised by the immune-phenotype
CD44+/CD24−/low (Ref. 69), and a first level of func-
tional characterisation lately revealed they are reliant on
self-renewal-related pathways such as Hedgehog and
Notch (Ref. 89). Cordenonsi et al. were the first who
showed that TAZ sustains self-renewal and tumour-
forming ability of BCSC, whereas TAZ activation in
non-BCSCs conferred them stem-like traits (Ref. 88).
The model proposed, connecting TAZ to EMT and
BCSCs, envisioned that EMT delocalises Scribble, a
cell polarity determinant, from the cell membrane alle-
viating its inhibitory effects on TAZ via a defective

activation of Hippo kinases, ultimately promoting the
onset of CSC-associated features. Our group recently
added a further layer of evidence on how TAZ influ-
ences the biological behaviour of BCSCs (Ref. 32).
By using molecularly characterised patient-derived
xenografts generated with BCSCs and their differen-
tiated counterparts, we clarified the involvement of
TAZ in the metastatic process. In an orthotopic
mouse model created for recapitulating the clinical
course of the disease silencing TAZ expression in
BCSCs severely impaired the generation of distant
metastasis, whereas its overexpression in differentiated
BC cells increased their metastasis-forming ability.
Moreover, TAZ depletion in BCSCs increased pacli-
taxel- and doxorubicin-induced cell death, thus sup-
porting previous findings generated with commercial
cell lines delineating the involvement of TAZ target
genes, Cyr61 and CTGF, in paclitaxel resistance
(Ref. 90). More recently, the connection existing
between TAZ and BCSCs has been further strength-
ened by independent reports, and correlated with its
interaction with established inducers of the CSC
phenotype such as hypoxia-inducible factor 1 and
extracellular cues (Refs 91, 92, 93, 94).
Collectively, the studies discussed above point to

TAZ/YAP as a novel BCSC-related signal. Therefore,
understanding whether and how they interact with
other established CSC pathways holds the potential to
develop effective CSC-focused therapies, even consider-
ing that putative anti-CSC compounds are either under-
going clinical development or have already entered the
therapeutic arena (Refs 95, 96).

Clinical implications: TAZ and YAP
expression in BC
The heterogeneous nature of BC has long fuelled clin-
ical studies focused on risk stratification and target
characterisation at an individual patient level. Under
this wave, in the first decade of the microarray era, a
number of multigene classifiers were initially identified
and applied to the clinical setting to improve risk strati-
fication (Ref. 97). A decade later, these same tools are
not fully collocated into routine clinical practice
(Ref. 1). This is mainly because of the lack of prospect-
ive validation and unclear gain in precision over the
assessment of standard molecular and pathological fea-
tures. Hence, the search for novel biomarkers combining
precision, reproducibility and economic sustainability,
along with a streamlined identification–validation path,
is a field of intense investigation.
TAZ and YAP expression have been documented in

different BC intrinsic subtypes, albeit to a various
degree, and early clinical evidence suggests an associ-
ation with patient outcomes (Refs 32, 33, 34, 35, 36,
37, 88). In a first analysis, seven BC gene-expression
datasets pertinent to 993 primary tumours were interro-
gated for retrieving pathway-related signatures asso-
ciated with high grade (poorly differentiated) BC
(Ref. 88). Enrichment analysis revealed that the only
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signature significantly over-represented in G3 tumours,
but not in G1 tumours, registered TAZ/YAP activa-
tion. The TAZ/YAP signature also correlated with
the onset of metastasis and overall survival. An inde-
pendent analysis of the TCGA dataset suggested that
TAZ mRNA expression was higher in basal-like
tumours compared with luminal tumours, negatively
correlated with protein levels of luminal biomarkers
(GATA3, oestrogen receptor and androgen receptor)
and positively associated with protein levels of basal
biomarkers (Ref. 37). High TAZ expression was also
linked to poor survival outcomes in patients with
basal-like tumours, but not in other intrinsic subtypes
(Ref. 37). Conversely, in a series of 99 non-metastatic
BC patients where TAZ was evaluated by immunohis-
tochemistry we showed an association between high
TAZ expression and aggressive biological features
such as HER2 and Ki67 positivity (Ref. 32).
Coherently, at the preclinical level TAZ was found
highly expressed in ErbB2-driven mammary tumours
(Ref. 98). In our study higher TAZ expression corre-
lated with disease-free survival (51.7% of recurrence-
free patients in the TAZ-positive group versus 78%
of recurrence-free patients in the TAZ-negative group;
P= 0.014) (Ref. 32), but we did not observe any
clear molecular subtype-specific interaction between
TAZ levels and survival outcomes. Next, an increased
TAZ expression was seen when comparing the primary
tumours with their matched metachronous metastases
(Ref. 32). Increased expression or activation (nuclear
localisation) during the metastatic cascade was also
observed by comparing primary BC and bone metasta-
ses (Ref. 99). Finally, in a clinically focused study we
showed that in non-metastatic BC with HER2 overex-
pression/amplification a TAZ-based score generated
by combining staining intensity and cellular localisa-
tion (nuclear versus cytoplasmic) predicted pathologic-
al complete response (pCR) after neoadjuvant
chemotherapy and trastuzumab (Ref. 33). Although
this association was significant in the Luminal B,
HER2-positive subgroup (P= 0.03) and in a subset
of HER2-positive tumours co-expressing high levels
(≥50%) of both oestrogen and progesterone receptors,
the same association was not observed in the HER2-
enriched subtype, where the pCR rate was unaffected
by TAZ expression. Albeit preliminary, these results
contain three important implications. First, we previ-
ously used Luminal B-derived CSCs and xenografts
to describe the role of TAZ in therapeutic resistance
(Ref. 32). Thus, hints were provided on the reliability
of our preclinical model in identifying potential bio-
markers. Secondly, landmark neoadjuvant studies told
us that pCR is less frequent in hormone receptor-positive
tumours (Refs 100, 101, 102). Predictive biomarkers are
therefore particularly needed in this setting. Thirdly, an
association exists between pCR and long-term outcomes
(Ref. 103). Thus, biomarkers developed in the neoadju-
vant setting might also provide prognostic information
related to recurrence and survival.

As preliminarily discussed, the role of YAP in BC is
a matter of debate. Some hints to address this topic
come from clinically oriented studies. Low YAP1
mRNA expression in luminal A BC was correlated
with worse outcome, but an opposite trend was
observed in oestrogen receptor-negative tumours
(Ref. 34) The hypothesis of a potential different signifi-
cance of YAP expression across the spectrum of intrin-
sic subtype is further supported by the higher levels
described in metaplastic carcinoma compared with
triple-negative BC (Ref. 35). Moreover, a higher cyto-
plasmic YAP expression was reported in HER2-
positive BC compared with other molecular subtypes,
even though these differences were not significant
when considering nuclear expression (Ref. 36).
Intriguingly, YAP expression was more marked in the
stromal compartment of luminal B and HER2 type
BC than in triple-negative BC, rising the hypothesis
of a different biological relevance of YAP in sustaining
tumour-promoting functions of CAFs, as outlined
above, in relation to the intrinsic subtype (Ref. 36). In
this case series, nuclear YAP expression in tumour
cells was correlated with shorter survival outcomes
(Ref. 36).
In concluding this overview on TAZ/YAP-based

prognostic and predictive biomarkers in BC, we
would like to draw the reader attention to some strat-
egies that, in our opinion, may help overcome import-
ant drawbacks, ultimately driving forward this as
young as promising field. Firstly, from both preclinical
and clinical studies it is increasingly clear that TAZ/
YAP might function differently, if not oppositely in
the case of YAP, in different molecular subtypes.
Adequately sized studies, including pilot studies, with
a clear focus on each BC subtype would be beneficial
to advance our knowledge and avoid wasting resources
in fruitless studies. A second hurdle relates to the use of
standardised operative procedures for TAZ/YAP
assessment and quantification. It might seem intuitive
focusing on nuclear localisation, as it mirrors activa-
tion. However, immunohistochemistry captures a snap-
shot and lacks dynamicity. In our opinion, ignoring
cytosolic expression is potentially misleading. To this
end, exploratory studies evaluating matched pre- and
post-treatment samples, i.e., diagnostic biopsies and
residual diseases following neoadjuvant therapy, may
provide a more exact idea of the changes occurring
under pharmacological pressure. Indeed, we have
already clues on increased TAZ expression arising
during the natural history of the disease (Refs 32, 99).
This was also the logic behind our study (Ref. 33),
where we considered both cytosolic and nuclear
expression to build a composite score. Finally, con-
comitant assessment of TAZ/YAP, their targets, and
Hippo-dependent and independent mechanisms,
ideally considering both the tumour and its surrounding
stromal compartment, may provide clues on the
environment where TAZ/YAP are more commonly
activated, and increase the precision in assessing
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associations with the outcomes explored. Once these
nodes will be solved, time will be mature to embark
in prospective studies with validation purposes aimed
at bringing to routine clinical practice TAZ/YAP-
based biomarkers for risk stratification and treatment
assignment.

Research in progress and conclusion
Compelling preclinical evidence converge on the
same message: TAZ/YAP is involved in breast car-
cinogenesis at a multiple levels. As this makes them
suitable candidates for a wave of clinically oriented
studies with biomarker identification/validation pur-
poses and/or envisioning their therapeutic targeting,
potential clinical approaches are discussed in the last
section.
The neoadjuvant setting represents the ideal platform

to search for novel biomarkers. The advantages are
multiple. Developing predictive biomarkers in this
setting might provide information on (neo)-adjuvant
treatment, avoiding to expose patients whose tumours
express resistance-related factors to ineffective and
toxic treatments. Moreover, by using a short-term end-
point such as pCR the more challenging task of predict-
ing the likelihood of developing a metastatic disease
can be approached, given the established relationship
between pCR and disease-free survival/overall sur-
vival (Ref. 103). Thus, candidate biomarkers devel-
oped in the pre-surgical setting hold the dual
potential of being both prognostic and predictive. In
the realm of biomarker research, a more granular
hypothesis stems from the concept that TAZ/
YAP operates in the context of bone metastases.
The underlying biological dynamics is that TAZ/
YAP-expressing tumours might be characterised by
an increased ability to adapt to, and progress within,
the bone microenvironment (Refs 49, 99). We envision
that TAZ/YAP expression might affect the onset and
number of skeletal-related events, defined as a collec-
tion of medical conditions correlated with the progres-
sion of bone metastases encompassing pathologic
fractures, surgery or radiotherapy to bone, spinal cord
compression and malignant hypercalcaemia. The
studies described above suggest that manipulating
TAZ, and perhaps YAP considering that both
tumour-promoting and tumour-suppressing functions
were described, may be beneficial for treating BC
patients. Even though TAZ/YAP modulation was
achieved with a number of compounds or substances
(Ref. 4), we will focus on those potentially meeting
the requirements for proof-of-principle clinical trials.
Porphyrin compounds were identified as the most
potent hits inhibiting TEAD–YAP association in a
high-throughput screening of Food and Drug
Administration (FDA)-approved drugs (Ref. 104). In
particular, verteporfin, which is used in the clinical
setting as a photosensitiser in the treatment of
macular degeneration, resulted effective in delaying
tumour progression in a mouse model of liver cancer

(Ref. 104), as further confirmed in a model of Gq/11
mutated uveal melanoma (Ref. 105). Another cell-
based screening carried out to examine compounds
affecting the subcellular localisation of YAP identified
the G-protein-coupled β-adrenergic receptor agonist
dobutamine, used in patients with acute heart failure,
as effective in inducing YAP cytoplasmic translocation
(Ref. 106). This effect was described as Hippo-inde-
pendent, since knocking down LATS1 and LATS2
did not affect dobutamine-induced YAP phosphoryl-
ation. Next, the tyrosine kinase inhibitor dasatinib,
which is used for treating haematological malignancies,
resulted effective in inhibiting YAP (Ref. 107). Again,
this occurred independently on the modulation of
Hippo kinases and was correlated with the dasatinib-
mediated inhibition of YES1, which in turn interfered
with the assembly of the YAP-β-catenin-TBX5
complex that drives proliferation of β-catenin-depend-
ent colon cancer cells. Statins, a class of widely pre-
scribed cholesterol-lowering medications that inhibit
the mevalonate pathway, deserve a final mention. At
the preclinical level these compounds emerged as
potent modulators of TAZ/YAP (Refs 30, 108).
Geranylgeranyl pyrophosphate, an intermediate of
the mevalonate cascade, is essential for proper
activity of Rho GTPases; these, in turn, inhibit TAZ/
YAP phosphorylation in a LATS1/2-independent
manner promoting their nuclear accumulation. By
blocking HMG-CoA reductase, the rate-limiting
enzyme of the mevalonate pathway, statins suppress
the metabolic control of TAZ/YAP. Prompted by this
evidence we decided to clinically test the ability of
statins to modulate TAZ/YAP in a pre-surgical
window-of-opportunity study in early BC patients
who are candidates for elective surgery (available at
ClinicalTrials.gov ID: NCT02416427). This trial
design relies on the treatment-free window between
diagnostic biopsy and surgical resection to explore
the biologic effects of a drug. In this case, the aim is
to assess the ability of statins to modulate TAZ/YAP,
and whether this leads to a reduction in aggressive
molecular features when comparing matched pretreat-
ment biopsies and post-treatment surgical specimens.
To sum up, thus far, clinical data related to TAZ and

YAP derive from exploratory, retrospective analyses
mostly embedded into wider preclinical studies.
However, looking at these data from a different angle
the message conveyed is that TAZ/YAP deserves
further and more thorough clinical investigations.
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