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SUMMARY
Reliability of a satellite attitude control system depends
on accurate detection of failures in its sensors. This paper
presents an observer for robust detection and isolation of a
class of failures in satellite attitude sensors. The proposed
observer uses measurement of a three-axis gyro together
with only one attitude sensor, and generates a residual
signal which is sensitive to faults and is simultaneously
robust against disturbance and noise. A nonlinear model of
satellite kinematics is considered for design of the observer.
The structure of the observer is in the form of a delayed
continuous-time differential equation ensuring its robustness
properties. A realistic simulation is provided to illustrate the
performance of the proposed observer in the face of the faults
occurring in a magnetometer, as the attitude sensor, and also
the faults occurring in the gyro.

KEYWORDS: Robotic self-diagnosis and self-repair;
Navigation, Pose estimation and registration; Mobile robots,
Automation.

1. Introduction
Accuracy and reliability of any satellite attitude control
system relies on performance of the satellite attitude
determination (AD) subsystem. However, despite all efforts
for fault avoidance, occurrence of faults in navigational
sensors such as rate gyros, magnetometers, Earth-horizon
sensors, Sun sensors, or star trackers can significantly hinder
the performance of the attitude determination system. A
fault in an attitude sensor can be regarded as an unexpected
change of sensor operation affecting the sensor output.
Robust state observers are usually used in fault detection
and isolation (FDI) systems to generate a residual signal that
reacts to the presence of the fault and remains insensitive
to disturbance and noise. Achieving this goal usually
requires redundancy in the available information that can
be physical or analytical.1, 2 Despite its simplicity, hardware
redundancy usually increases cost and weight, which in the
case of the satellites with limited power and weight budget,
does not seem practical. In contrast, analytical redundancy
requires precise system modeling together with complex
computations to acquire the residual signal.

Several approaches to robust fault detection and isolation
for Linear Time Invariant (LTI) systems have been reported in
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the literature which use optimization-based techniques such
as Linear Matrix Inequality (LMIs) in order to minimize
the effect of disturbances and simultaneously maximize the
effect of faults on the residual signals.3–5 The same objective
for the nonlinear Lipschitz systems was considered by Pertew
et al.6 Sliding-mode observers were also employed for
robust FDI for LTI systems by Tan and Edwards.7 However,
assuming the satellite attitude matrix as the state and its
angular velocity as the input, satellite kinematics can be
regarded as a linear time-varying (LTV) system. So far, the
FDI problem has been rarely investigated in literature for
LTV systems. An optimal approach for robust fault detection
for LTV systems was developed by Li and Zhou,8 where the
main focus was on detection of faults; however, by using a
bank of observers, the method can be used for isolation of
faults as well.

Considerable research has been devoted to detection
of faults for autonomous nonlinear systems in literature.
A number of works achieved simultaneous detection and
identification of faults by using the state observers that
make the residual signal converge to the fault signal.9, 10 A
nonlinear observer with diagonal structure was proposed by
Narasimhan et al.10 by assuming that faults were constant
with respect to time. The LMI techniques were used by
Yan and Edwards9 to develop a sliding-mode observer for
robust detection and isolation of actuator faults. Moreover,
Zhang et al.11 used LMI-based sliding-mode observers to
estimate sensor faults in the case of nonlinear Lipschitz
systems but in the absence of disturbance signals. Xu and
Zhang12 and Yan and Edwards13 used adaptive techniques
for fault detection in a certain class of nonlinear systems. An
observer for single-output systems was proposed by Xu and
Zhang,12 where the faults were represented as elements of an
unknown parameter vector. Despite the above researches, the
effect of measurement noise was not generally considered.
Namvar and Aghili14 proposed an FDI filter to deal with
actuator and position faults in a robotic system without using
velocity measurement and by taking into account the sensor
noise.

In the case of satellite systems, the performance of the
FDI systems can be evaluated based on the type and total
number of used sensors, computational complexity, degree of
assumptions on noise characteristics, and modeling accuracy.
An FDI system based on the extended Kalman filtering (EKF)
was presented by Pirmoradi et al.,15 where rate gyros together
with two attitude sensors were used and it was assumed
that at least one sensor was functioning without fault. The
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fault signal was assumed to be added directly to the satellite
Euler angles instead of attitude sensor outputs. Another
approach for fault detection, based on the EKF innovation
sequence, was proposed by Okatan et al.16 by using two
attitude sensors and a rate gyro. Despite the use of Kalman
filtering in satellite attitude determination being common,
satellite kinematics and dynamics are nonlinear such that
the EKF does not necessarily guarantees global asymptotic
convergence of the estimation error to zero.17 In addition,
stochastic assumptions on process and measurement noise
are not satisfied in practice.

An observer-based scheme for detecting the faults in a rate
gyro and a horizon sensor were presented by Venkateswaran
et al.,18 where the linear model of satellite kinematics and
dynamics was used, and measurement noise was ignored.
Similarly, Gao et al.19 considered the fault as an unknown
signal added directly to the Euler angles by using the
linear model and ignoring sensor noise. Fault reconstruction
together with detection and isolation of faults in attitude
sensors and actuators were achieved using a sliding-mode
observer in ref. [20] by using the linearized model of a
satellite. Unfortunately, in most practical situations, the
nonlinear properties of the satellite attitude dynamics and
kinematics cannot be neglected in the fault diagnosis. For
nonlinear systems, a novel fault detection scheme, using
the unscented Kalman filter (UKF) was proposed by Xiong
et al.21 and sufficient conditions for the convergence of
the UKF were derived. The method was then applied to
the satellite attitude determination system by assuming that
measurements of sun sensor, earth sensor, and gyro were
available. On the other hand, due to limitations in satellite
weight and power budget, the use of small number of attitude
sensors is desirable in practice. Consequently, the problem of
detection and isolation of faults in satellite attitude sensors,
by using only one attitude sensor and a single gyro, and
taking into account the nonlinear model of satellite dynamics
together with measurement noise, has remained open in
literature.

In this paper, we use a rate gyro together with a single
attitude sensor for detection and isolation of faults in the
output of the attitude sensor. By using nonlinear attitude
kinematics of the satellite, a novel third-order observer in
form of a delayed differential equation is proposed such
that the resulting residual signal is sensitive to sensor faults
and simultaneously remains insensitive against measurement
noise and disturbance. In the existing methods in literature,
the residual signal at time t is directly affected by the value of
disturbance at t . This usually results in high threshold level
and low detection sensitivity. The use of delay in the proposed
observer; however, makes the residual signal depend on the
difference of the value of the disturbance signal at t and
t − h, where h stands for the chosen delay. By proper choice
of delay, this makes the residual signal significantly less
sensitive to disturbance. Within a different framework, the
use of delay has been shown to attenuate slowly-varying
perturbations in the context of state feedback control.1 The
paper is organized as follows: Section 2 provides description
of satellite dynamics. Section 3 describes the attitude sensor
dynamics together with the assumptions and definitions
related to the class of faults that can be isolated by the

proposed observer. Fault detection and isolation strategies
are discussed in Section 4. Finally, simulation examples are
presented in Section 6 illustrating the performance of the
proposed FDI system in face of pulse-wise and ramp-wise
faults in the output of a magnetometer, as well as a
step-wise fault in the gyro.

2. Satellite Kinematics
We consider the satellite as a rigid body and assume a
coordinate frame attached to the center-of-mass of the
satellite. The rotational motion of the satellite can be
described by22

Ṙ = −S(ω)R, (1)

where R ∈ SO(3) is the rotation matrix of the Earth inertial
frame with respect to the satellite body frame, while ω ∈
R

3 denotes the angular velocity of the satellite body frame
with respect to the inertial frame and expressed in the body
frame. Assuming that ω = [ω1, ω2, ω3]T, the skew operator
is defined by

S(ω) =
⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ . (2)

We assume that ω is measured by a three-axis rate gyro,
and the rotation matrix R is unknown. Depending on the
type of the used attitude sensors, we assume that a set of
information denoted by the reference vector, vr ∈ R

3, is
available numerically by means of astrophysical laws. For
example, in case of using a sun sensor, vr is a vector with
its origin at Sun’s location and its end at satellite position.
In case of using a magnetometer, vr is Earth’s magnetic
field vector evaluated at the satellite position in orbit. We
assume that vr is expressed with respect to the inertial frame.
We denote the representation of the reference vector in the
satellite body frame by vb ∈ R

3. The output of the attitude
sensor gives measurement of vb if no fault or noise is present
in measurement. vb and vr are related by

vb = Rvr. (3)

3. Problem Statement
The time derivative of vb(t) can be expressed by

v̇b = Ṙvr + Rv̇r . (4)

By virtue of (1), we have v̇b = −S(ω)Rvr + Rv̇r . Defining
the disturbance signal d ∈ R

3 as

d � Rv̇r (5)

and y(t) ∈ R
3 as the output of the attitude sensor, the attitude

kinematics can be represented by

v̇b(t) = −S(ω(t))vb(t) + d(t), (6)

y(t) = vb(t) + n(t) + fs(t), (7)

where n(t) ∈ R
3 denotes the measurement noise in the

attitude sensor. The fault signal is considered as an unknown
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but bounded signal denoted by fs(t) ∈ R
3. In this paper,

detection and isolation of faults is realized by means of
generation of a residual signal r(t) ∈ R

3 such that each
component of r is sensitive to a component of fault as stated
by the following definition:6

Definition 1: Denoting the residual signal as r(t) and the
chosen threshold level by T > 0, fault detection and isolation
is achieved if the residual remains below the threshold level
when the fault is identically zero. Moreover, occurrence of
fault implies that the residual surpasses the threshold level.
Equivalently,

|ri(t)| < T, if and only if fsi
(t) = 0.

for i = 1, 2, 3.

In the sequel, we consider the following assumptions:

Assumption 1: Faults do not occur simultaneously in any
channel of the attitude sensor. However, if no fault occurs in
gyro, then Assumption 1 is not necessary and simultaneous
occurrence of faults in attitude sensor channels can be
isolated.

Assumption 2: Constant and finite scalars cv , cf , and cn

exist such that

‖vb‖∞ < cv, ‖f ‖∞ < cf , ‖n‖∞ < cn,

where the infinite norm of a signal is defined by ‖u(t)‖∞ =
supt≥0 ‖u(t)‖. Besides, satellite angular velocity has a known
upper bound ω̄ such that ‖ω(t)‖∞ < ω̄.

3.1. Class of detectable faults in attitude sensors

Definition 2: For given ζ > 0 and τ > 0, and chosen
constants h > 0 and |λ| > 4τ−1, we define the set F by

F =
{
fsi

∈ R | fsi
(t) = 0 ∀ t < τ and ∃ t1 ∈ [τ, τ + h) :

|fsi
(t1)| − |λ|

∫ t1

τ

|fsi
(s)|ds >

ζ

|λ|
}

, (8)

where fsi
is the ith element of the fault signal fs(t).

Assumption 3: We assume that fsi
belongs to F .

Definition 2 specifies a class of fault signals that occur
at the time t = τ and grow sufficiently fast within the time
interval of length h. By virtue of Fig. 1, a time t1 exists
such that the amplitude of fault at t1 is large enough that it
overcomes the shaded area from τ to t1 multiplied by |λ|.

Example 1: Step-wise faults: Assume that

fsi
(t) =

{
a, t ≥ τ ,

0, t < τ,

where |a| >
ζ

|λ| . It can be verified that for t1 = τ the
inequality (8) is satisfied, which means the step-wise fault can

|f
si

|

τ t
1 τ+h

Fig. 1. (Colour online) Example of a fault belonging to the set F .
Here, τ denotes the time when fault occurs and t1 is the detection
time. h denotes the chosen delay time in the observer.

be immediately detected after its occurrence. The above ex-
planation can be similarly repeated for the pulse-wise faults.

Note that the most common faults in the attitude sensors
result from a sudden change of sensor measurements and can
be modeled as step-wise signals.

Example 2: Ramp-wise faults: Let

fsi
(t) =

{
α(t − τ ), t ≥ τ,

0, t < τ,

where α is a scalar such that |α| ≥ 2ζ . It can be shown that
for t1 belonging to the following interval:

t1 ∈ [
τ + |λ|−1

(
1 −

√
α2 − 2ζ |α|),

τ + |λ|−1
(
1 +

√
α2 − 2ζ |α|)] (9)

the last inequality in Eq. (8) is satisfied. As a result, ramp-
wise faults with sufficiently large slope fall into F .

3.2. Class of detectable faults in gyro
Let a fault occur in the ith channel of the gyro and denote it
by fωi

. Suppose that the fault occurs at t = τω.

Definition 3: For given ζω > 0 and τω > 0, and chosen
constant |λ| > 4τ−1

ω , we define the set Fω by

Fω =
{
f̄ ∈ R | f̄ (t) = 0 ∀ t < τω and ∃ tω ∈ [τω, τω + h) :

∣∣∣∣
∫ tω

τω

eλ(tω−s)f̄ (s)ds

∣∣∣∣ >
ζω

|λ|
}

. (10)

This definition specifies a class of faults that occur at t =
τω and grow sufficiently fast in the interval of time [τω, tω].

Assumption 4: We assume that for j 	= i, f̄ = yjfωi

belongs to the set Fω. This means the output measurement
yj must not be zero in the interval [τω, τω + h), i.e., after the
occurrence of the fault fω.

Example 3: fω is a step-wise signal: We assume that the
output signal yj (t) does not pass the zero in the time interval
[τω, τω + h]. Let the term f̄ = yj (t)fω(t) have the following

https://doi.org/10.1017/S0263574711001391 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711001391


1160 Robust detection and isolation of failures

Fig. 2. Fault detection and isolation scheme.

form

f̄ (t) =
{

a(t), t ≥ τω,

0, t < τω,

where a(t) is any bounded signal such that |a(t)| > ζω

and mint |a(t)| > 0 for t ∈ [τω, τω + h]. For given values
of h, λ, τω, and ζω, it can be shown that there exists tω at
which the fault can be detected and by virtue of (10), tω is
given by

tω > τω + |λ|−1 ln

(
1 − ζω

mint a(t)

)
.

In a particular case, where a(t) = yj (t), a step-wise fault in
fω can be handled, which shows that a step-wise fault in
gyro belongs to Fω. Note that the introduction of the class of
faults in (8) and (10) is justified due to the fact that most faults
in the satellite attitude estimation system such as electronic
short circuit, device saturation, data losses in the on-board
computer or in the GPS, and gradual creation of bias in gyro
measurement, can be modeled as pulse-wise or ramp-wise
signals.

4. Fault Detection and Isolation in Attitude Sensors
Fault detection and isolation for satellite attitude sensors,
with the dynamics model described by Eqs. (6) and (7), is
discussed in this section (see Fig. 2).

4.1. Fault detection
Considering Eq. (7), it is inferred that

‖y‖ ≤ ‖vb‖ + ‖n‖ + ‖f ‖. (11)

Thus, by virtue of vb = Rvr , we have ‖vb‖ = ‖vr‖, which
yields

if f ≡ 0, then |‖y‖ − ‖vr‖| ≤ cn.

This concludes that the time when the fault occurs can be
determined when the following inequality is satisfied:

|‖y‖ − ‖vr‖| > cn. (12)

The output of the fault detector is then a pulse signal
denoted by Af (t) that announces the presence of sensor fault.

However, isolation of faults needs further consideration and
is discussed in the next section.

4.2. Fault isolation
We consider the following observer for isolation of attitude
sensor faults:

ż(t) = Fz(t) + Fy(t − h) − (S(ω(t)) + F )y(t)

+S(ω(t − h))y(t − h), (13)

r(t) = z(t) + y(t − h) − y(t), (14)

z(t0) = z0, (15)

where z, r ∈ R
3 are the state and output of the observer,

respectively. The matrix F ∈ R
3×3 is a diagonal negative-

definite matrix. The constant h is a free positive scalar rep-
resenting the delay value in the delayed differential equation
(13).23 Also, z0 denotes the initial condition. For simplicity,
we set F = λI3 with λ < 0. The choice of λ determines the
convergence time when the residual signal turns zero due to
nonzero initial condition and in the absence of a fault signal.
Moreover, we define the disturbance signal ε by

ε(t) � (d(t − h) − d(t)) + (ṅ(t − h) − ṅ(t))

− (S(ω(t − h))n(t − h) − S(ω(t))n(t)) (16)

and consider the following assumptions:

‖d(t − h) − d(t)‖∞ < δd (h), (17)

‖S(ω(t − h))n(t − h) − S(ω(t))n(t)‖∞ ≤ δn, (18)

‖ṅ(t) − ṅ(t − h)‖∞ ≤ δ′
n(h). (19)

It is seen that ‖ε(t)‖∞ < cε , where

cε ≤ δd (h) + δn + δ′
n(h). (20)

Theorem 1: Let the fault fs belong to the set F and
choose ζ = ω̄cf + 2cε in (8) where ω̄, cf are specified in
Assumption 2. Define the threshold level T by

T = |λ|−1(ω̄cf + cε). (21)
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If a fault occurs at the ith channel of the attitude sensor, then
there exists a time t1 > 0, where |ri(t1)| > T while |rj (t)| <

T for t ≥ t1 and j 	= i. �
Proof: See Appendix A.

4.3. Selection of time delay h

Theorem 1 states that the occurrence of the fault can be
isolated at the earliest time t = t1. Since by definition t1 ≤
τ + h, the delay h should be large enough to allow detection
of the fault. For example, in the case of a ramp-wise fault in
Example 3.1, for the detection time t1 to exist, it is necessary
to have h > |λ|−1(1 −

√
α2 − 2ζ |α|), which means the delay

needs to be kept higher than certain value. Moreover, when
noise level in sensors is high, ζ as specified by Theorem 1,
is large and as a result the delay h should be kept large. In
general, large h means large class of detectable faults. On the
other hand, by virtue of Eqs. (17)–(19), the value of delay
is limited from above. From the residual equation (34), it
is clear that the residual ri(t) is affected by both the fault
and the disturbance εi(t). However, the disturbance signal,
defined by Eq. (20), depends only on the differences of some
time-dependent signals evaluated at t and t − h. Hence, a
small delay results in a small disturbance and consequently a
small threshold level. In the sequel, we present two examples
to highlight this issue.

4.3.1. Case study. We aim to calculate the upper bounds
δd(h) and δ′

n(h) as defined by Eqs. (17) and (20). Consider
the case of using a magnetometer as attitude sensor. The
Earth magnetic vector with respect to the orbital frame is
approximately given by

vo
r =

⎛
⎜⎝

μf r−3
o sin(i) cos(ω0t)

−μf r−3
o cos(i)

2μf r−3
o sin(i) sin(ω0t)

⎞
⎟⎠ ,

where μf = 7.9 × 1015 Wb.m−1 denotes the magnetic field
dipole strength, t represents time, ro is the orbital circular
radius, and i denotes the orbit inclination. The orbital angular
velocity ω0 is in the order of 0.001 rad/s at an altitude of
700 Km. In this case, the modeled disturbance signal d(t) is
given by

d = Rb
ov̇

o
r = Rb

o

⎛
⎜⎝

−μf r−3
o ω0 sin(i) sin(ω0t)

0

2μf r−3
o sin(i)ω0 cos(ω0t)

⎞
⎟⎠ , (22)

where Rb
o denotes the orientation of the body frame with

respect to the orbit. Obviously, the variation of d(t) depends
on ω0. It can be shown that

‖ḋ‖ ≤ (
2μf r−3

o ω0| sin(i)|)(ω̄ + ω0) := A.

On the other hand, we know that ‖d(t) − d(t − h)‖ ≤
‖ḋ‖h + O(h2), where O(h2) can be neglected for a small
delay. Consequently, δd (h) is calculated by δd (h) = Ah,
which shows that a small delay results in a small upper bound
for the disturbance in difference form. Next, we calculate

δ′
n(h) in case of a twice differentiable noise n(t). Assuming

that delay is sufficiently small, it can be shown that

‖ṅ(t) − ṅ(t − h)‖ ≤ max
t−h≤ς≤t

‖n̈(ς)‖h := δ′
n(h). (23)

Assume, for example, that n(t) is a result of filtering of a
bounded disturbance as n = G(s)w, where G(s) is a strictly
stable system of relative degree higher than 1, and w(t) is a
bounded disturbance with ‖w(t)‖∞ ≤ 1. Then, ‖n̈(t)‖∞ ≤
‖s2G(s)‖1 such that ‖ṅ(t) − ṅ(t − h)‖ ≤ ‖s2G(s)‖1h :=
δ′
n(h). Once again, it is seen that the upper bound for the

difference term ṅ(t) − ṅ(t − h) can be significantly reduced
if delay is kept small.

4.4. Effect of gyro noise on detection of attitude sensor
faults

Lemma 1: Let us denote the measured angular velocity
of satellite by ωm which is contaminated by the additive
noise nω,

ωm = ω + nω. (24)

Consider the observer (13)

ż(t) = Fz(t) + Fy(t − h) − (S(ωm(t)) + F )y(t)

+ S(ωm(t − h))y(t − h).

Assuming that c̄n is a known upper bound for gyro noise such
that

‖nω‖∞ ≤ c̄n (25)

and

‖S(nω(t − h))y(t − h) − S(nω(t))y(t)‖∞ ≤ cγ . (26)

Then, the threshold level is given by

T = |λ|−1(ω̄mcf + cε + cγ ), (27)

where the term ζ is given by ζ = ω̄mcf + 2cε + 2cγ and
ω̄m = ω̄ + c̄n and cγ is defined by

cγ = 2c̄n(cv + cf + cn). (28)

Proof : See Appendix B.

4.5. Detection of fault clearance
In this section, we discuss a procedure to determine when
a fault in the attitude sensors is cleared. Recall that τ is the
time when a fault occurs. Also, t1 is the time when a fault
is detected and isolated. We define τ ′ and t ′1 as the instants
of time when a fault is actually cleared and its clearance is
determined, respectively. For any τ ′ > t1 + h + 4|λ|−1, let
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us define the extended class of faults by

F̄ =
{

fsi
(t) ∈ F | fsi

= 0 ∀ t > τ ′ and ∃t ′1 ∈ [τ ′, τ ′ + h) :

(29)

|fsi
(t ′1 − h)| − |λ|

∫ t ′1

τ ′
|fsi

(s − h)|ds >
ζ

|λ|

}
, (30)

where the values of h, λ, and ζ are known. Moreover, we
assume that ḟsi

(t) is a smooth function for τ + h < t < τ ′ −
h, such that ‖ḟsi

(t) − ḟsi
(t − h)‖∞ ≤ δ′

f (h) ≤ ω̄cf .

Theorem 2: Consider the observer introduced by Eqs. (13)–
(15). Assume that faults belong to the class F̄ . Assume
that there exists a time t = t ′1 > t1 + h + 4|λ|−1, where the
residual signal surpasses the threshold, i.e., |ri(t ′1)| > T .
Then, fsi

(t) = 0 ∀ t > t ′1.

Proof of this theorem is similar to the proof of Theorem 1.

Remark 1: Note that due to smoothness of ḟsi
, the

condition τ ′ > t1 + h + 4|λ|−1 states that the residual signal
has converged to a close vicinity of zero before the time t ′1,
i.e., |ri(t)| < T for t < t ′1.

5. Fault Detection and Isolation for Gyro
Denote ωm ∈ R

3 as the measured angular velocity by a gyro
such that

ωm = ω + nω + fω,

where nω is the measurement noise, and fω denotes the fault
occurring in gyro. Define the disturbance ε by

ε � cε + S(nω(t − h))y(t − h) − S(nω(t))y(t).

Then, ‖ε‖∞ ≤ cε, where

cε = cε + cγ

and cγ ≤ 2c̄n(cv + cn), where cε is given by (20). According
to Assumption 1, we assume that no fault occurs in attitude
sensors, i.e., fs(t) = 0.

Theorem 3: Assume that f̄ = fωyj belongs to the set Fω,
where ζω = 2cε in Eq. (10). Consider the observer introduced
by Eqs. (13)–(15) and define the threshold level T by

T = |λ|−1cε. (31)

If a fault occurs at the ith channel of a gyro, then there exists
a time tω > 0, where |rj (t)| surpasses the threshold for j 	= i,
i.e, |rj (t)| > T , while |ri(t1)| < T for ∀t .

Proof: See Appendix C.
By Theorem 3 we infer that the occurrence of a fault in the

ith channel affects all residuals except the ith residual.
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Fig. 3. (Colour online) Transient response of residuals when no
fault occurs. Residuals tend to zero asymptotically.

6. Simulation Results
We consider a rigid satellite with kinematics described by
Eq. (1), and the dynamics given by

τM = I ω̇ + ω × Iω, (32)

where τM is the external torque expressed in the body frame,
and I ∈ R

3×3 is the constant moment-of-inertia matrix of the
satellite given by I = diag(13.654, 13.555, 0.765) Kg.m2.
The satellite is assumed to be moving in the sun-synchronous
orbit with the inclination of 60◦, the altitude of 540 Km,
zero right ascension of the ascending node and argument of
perigee, and the 1.68 × 10−4 of eccentricity.

Gravity gradient boom is considered as the only source of
external torque to the satellite.24 We consider a magnetometer
as the attitude sensor, where its output is modeled by
y = vb + n̄, where y is the measured sensor output and vb

is the actual magnetic field expressed in the body frame.
Moreover, n̄ denotes the output disturbance given by n̄ =
n + S(e)vb, where n is considered as a filtered uniform
random number with the upper bounds cn = 10−7 Tesla and
c′
n = 10−7 Tesla/s, and e is the magnetometer misalignment

vector. For modeling the magnetic field vector in the inertial
frame, we use the International Geomagnetic Reference
Field (IGRF) model.25 We consider an additive uniform
random number together with a constant bias for the
gyro measurement such that c̄n ≤ 10−5 rad/s(2.06 deg/h) in
Eqs. (24) and (25). We assume the initial condition of the
observer (13)–(15) as z(t0) = [0, 0, 0]T. The upper bound
for the magnetometer fault amplitude cf is assumed as
10−5 Tesla. Also, we consider the delay value h = 1 s and the
residual response time λ = 1. This leads us to the threshold
level of T = 8 × 10−8 Tesla according to Eq. (27).

Performance of the observer in the absence of faults is
shown in Fig. 3. Obviously, before occurrence of the fault,
the residual signal converges to a close vicinity of zero.
Figure 4 shows the residual response to a step-wise and also a
ramp-wise fault in the first channel of the magnetometer.
The step-wise fault with the amplitude of 10−5 Tesla starts at
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Fig. 4. (Colour online) Residuals when fault occurs in
magnetometer first channel (solid). Threshold level (dash).
Sensitivity of r1 is an indication that f1 has occurred.

t = τ = 10 s and ends at t = τ ′ = 15 s; in addition, the ramp-
wise fault occurs at time t = τ = 10 s with the amplitude of
10−5 Tesla and the rate of 10−5 Tesla/s. It is observed that the
first element of the residual signal r1(t) exceeds the threshold
level at time t = t1. In light of Theorem 2, the clearance of
the step-wise fault is identified at time t ′1 ≈ 15 s.

Next, as another scenario, we assume a pulse-wise fault
with the amplitude of 10−2 rad/s occurring in the gyro’s
second channel. Figure 5 shows the residual signal together
with the threshold level of T = 5 × 10−8 Tesla. As predicted
by Theorem 3, r1(t) and r3(t) exceed the threshold level and
r2 remains insensitive to fault.

6.1. Comparison with non-delay-based approaches
For comparison purpose, the sliding-mode fault detector of
Chen and Saif26 was implemented for the satellite system.
The residual dynamics in response to the fault fsi

is given by

ṙi = λri − ηsgn(ri) + εi − ḟsi
,

where εi represents the effect of disturbance and sensor noise.
Also, η > 0 is chosen such that η > ‖ε‖∞. The important
difference between εi here with εi defined in (16) is that
here εi depends on disturbance and noise at time t . As a
result, when disturbance is not negligible and its magnitude
is comparable to the fault, its effect is indistinguishable from
the effect of the fault. In contrast, the use of the delayed-
based observer (13) transforms the residual dynamics into
Eq. (34), i.e.,

ṙi = λri + εi − ḟsi
,

where by virtue of Eq. (16) the perturbation εi is a difference
of time varying functions. Based on the discussions in
Section 4.3, the upper bound for the disturbance depends on
the delay h and can be made small by choosing a small delay.
Figure 6 illustrates the response of two methods to a step-wise
fault occurring in the second channel of the magnetometer
at time t = 10 s, and with the amplitude of 10−6 Tesla. The
fault was not detected by the non-delay-based sliding-mode
method because the effect of fault was lost in the residual
signal. However, the proposed observer effectively detects
and isolates the fault.

7. Conclusions
A new scheme for fault detection and isolation in satellite
gyro and attitude sensors was proposed. The class of
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Fig. 5. (Colour online) Residual signals in response to a fault in gyro’s second channel (solid). Threshold levels (dash). Insensitivity of the
residual r2 is an indication that f2 has occurred.
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delay-based observer (right column) in the presence of sensor noise. Fault occurs in the second channel of magnetometer at t = 10 s.

detectable faults was shown to include most common forms
of fault signals. Based on the nonlinear model of the satellite,
the proposed observer used only a three-axis gyro and a single
attitude sensor. The structure of the observer was in the form
of a delayed differential equation. Use of delay in the observer
was shown to reduce the sensitivity of residuals to noise.

Appendix
A. Proof of Theorem (1)
When a fault occurs at t = τ in the ith element of the attitude
sensor, the residual signal is given by

ṙ(t) = Fr(t) + ε(t) + (ḟ (t − h) − ḟ (t))

+ (S(ω(t − h))f (t − h) − S(ω(t))f (t)). (33)

Since F = λI with λ < 0, the residual signal is bounded,
i.e., r(t) ∈ L∞. Based on Eq. (33), as long as t − h < τ , the
terms ḟ (t − h) and S(ω(t − h))f (t − h) are zero. Therefore,
Eq. (33) simplifies into

ṙi(t) = λri + εi(t) − ḟsi
(t), (34)

ṙj (t) = λrj + εj (t) − Sji(t)fsi
(t), ∀i 	= j, (35)

where Sji denotes the (j, i)th element of the matrix S(ω).
Notice that ḟsi

affects ṙi directly, whereas Sji reduces the
effects of fsi

on ṙj (Due to the fact that Sji depends on
the satellite angular velocity whose magnitude is normally
smaller than 1 rad/s; however, the proof does not rely on this
assumption). We assume that the residual transient response
to nonzero initial condition has passed, and faults occur after

this transient period. Now, consider the Lyapunov function
Vj = 1/2r2

j . Then,

V̇j = λr2
j + (εj − Sjifsi

)rj ≤ |rj |(λ|rj | + |εj − Sjifsi
|),

which is negative for |rj | >
(|εj −Sjifsi

|)
|λ| . Hence, rj (t) is

bounded by

|rj | < (cε + ω̄cf )|λ|−1.

Therefore, the inequality |rj | < T is always satisfied. Now,
considering the dynamics equation (34) leads us to

ri(t) =
∫ t

0
eλ(t−s)(εi(s) − ḟsi

(s)) ds

=
∫ t

0
eλ(t−s)εi(s)ds +

∫ t

0
eλ(t−s)(−ḟsi

(s)) ds

= ri1(t) + ri2(t).

It is obvious that |ri1(t)| ≤ cε

|λ| . For ri2(t), we have

ri2(t) = −fsi
(t) − λ

∫ t

0
fsi

(s) eλ(t−s) ds.

Obviously,

∣∣∣∣|fsi
(t)| −

∣∣∣∣λ
∫ t

0
fsi

(s) eλ(t−s)ds

∣∣∣∣
∣∣∣∣ ≤ |ri2(t)|.
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Since ∣∣∣∣
∫ t

0
fsi

(s) eλ(t−s)ds

∣∣∣∣ ≤
∫ t

0
|fsi

(s)|ds, (36)

it is implied that

|fsi
(t)| − |λ|

∫ t

0
|fsi

(s)|ds ≤ |ri2(t)|.

Now, according to Assumption 3, at time t = t1 and for ζ =
ω̄cf + 2cε , we have

ω̄cf + 2cε

|λ| < |ri2(t1)|. (37)

On the other hand, the residual signal ri(t) always satisfies

||ri2(t)| − |ri1(t)|| ≤ |ri(t)|.

Hence, at time t = t1, we have∣∣∣∣ ω̄cf + 2cε

|λ| − cε

|λ|
∣∣∣∣ ≤ |ri(t1)|,

which finally implies

T ≤ |ri(t1)|.

B. Proof of Lemma 1
Considering the noise in gyro changes the residual dynamics
into

ṙ(t) = Fr(t) + ε(t) + S(nω(t − h))y(t − h) − S(nω(t))y(t).

Note that for the largest singular value of the matrix S(n),
denoting by σ̄ (S(n)), we have σ̄ (S(n)) ≤ c̄n. This yields,
cγ = 2c̄n‖y(t)‖∞. Since

‖y(t)‖ ≤ cv + cf + cn,

hence cγ is given by Eq. (28).

C. Proof of Theorem(3)
When the fault in the ith element of gyro occurs, the residual
signal changes into

ṙ(t) = Fr(t) + ε(t) + S(y(t − h))fω(t − h) − S(y(t))fω(t).

(38)

Based on Eq. (38), as long as t − h < τω, the term fω(t −
h) is zero. Moreover, denoting f̄ = yjfω, Eq. (33) can be
simplified by

ṙi(t) = λri + εi(t), (39)

ṙj (t) = λrj + εj (t) − f̄ωi
(t), ∀i 	= j. (40)

It is clear that |ri | < cε

|λ| and we always have |ri | < T . Now,
the dynamics equation (40) yields

rj (t) =
∫ t

0
eλ(t−s)εj (s) ds +

∫ t

0
eλ(t−s)(−Sji(y(s))fωi

(s)) ds

= rj1 + rj2,

where |rj1(t)| ≤ cε

|λ| . On the other hand,

∣∣∣∣
∫ t

0
eλ(t−s)f̄ωi

(s) ds

∣∣∣∣ ≥ ζω

|λ| .

According to assumption (4), at time t = tω and for ζω = 2cε,
we conclude that

|rj (tω)| ≥ T .
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