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We analyse the low-frequency dynamics of a high Reynolds number impinging
shock-wave/turbulent boundary-layer interaction (SWBLI) with strong mean-flow
separation. The flow configuration for our grid-converged large-eddy simulations (LES)
reproduces recent experiments for the interaction of a Mach 3 turbulent boundary layer
with an impinging shock that nominally deflects the incoming flow by 19.6°. The
Reynolds number based on the incoming boundary-layer thickness of Res, ~203 x 10°
is considerably higher than in previous LES studies. The very long integration time

of 380560/U, allows for an accurate analysis of low-frequency unsteady effects.

Experimental wall-pressure measurements are in good agreement with the LES
data. Both datasets exhibit the distinct plateau within the separated-flow region of
a strong SWBLI. The filtered three-dimensional flow field shows clear evidence
of counter-rotating streamwise vortices originating in the proximity of the bubble
apex. Contrary to previous numerical results on compression ramp configurations,
these Gortler-like vortices are not fixed at a specific spanwise position, but rather
undergo a slow motion coupled to the separation-bubble dynamics. Consistent with
experimental data, power spectral densities (PSD) of wall-pressure probes exhibit
a broadband and very energetic low-frequency component associated with the
separation-shock unsteadiness. Sparsity-promoting dynamic mode decompositions
(SPDMD) for both spanwise-averaged data and wall-plane snapshots yield a classical
and well-known low-frequency breathing mode of the separation bubble, as well
as a medium-frequency shedding mode responsible for reflected and reattachment
shock corrugation. SPDMD of the two-dimensional skin-friction coefficient further
identifies streamwise streaks at low frequencies that cause large-scale flapping of the
reattachment line. The PSD and SPDMD results of our impinging SWBLI support
the theory that an intrinsic mechanism of the interaction zone is responsible for
the low-frequency unsteadiness, in which Gortler-like vortices might be seen as a
continuous (coherent) forcing for strong SWBLI.
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1. Introduction

Shock-wave/turbulent boundary-layer interactions (SWBLI) occur in a wide range
of practical flow devices, such as supersonic air intakes, turbomachine cascades,
overexpanded nozzles and high-speed aerodynamic applications in general, and are
often critical for the system performance. Although SWBLI have been an active
research field for more than 60 years (Dolling 2001), there are still many open
questions, in particular regarding unsteady effects of interactions where the adverse
pressure gradient imposed by the shock leads to boundary-layer separation. Such
interactions form a complex dynamical system with a broad range of temporal
and spatial scales. Unsteady pressure and friction forces may couple to resonant
frequencies of the structure and may result in failure due to fatigue (Dolling 2001;
Délery & Dussauge 2009). Of particular interest is the low-frequency unsteadiness of
the reflected shock observed in SWBLI with mean boundary-layer separation. This
phenomenon occurs at frequencies typically one to two orders of magnitude lower
than the characteristic frequency of the integral scales within the incoming turbulent
boundary layer U,/§,, where U, is the free stream velocity and §, the upstream
99 % velocity-based boundary-layer thickness. While experiments and numerical
investigations for canonical SWBLI (e.g. compression ramp, impinging oblique shock,
blunt fin, forward-facing step) unanimously confirm the existence of broadband
low-frequency shock motions, the precise mechanism that explains the separation in
time scales remains unknown. Since the first high-frequency measurements by Kistler
(1964), the mechanism responsible for low-frequency large-scale shock oscillations
has been the main research focus with the outcome of theories typically categorised
as upstream or downstream mechanisms (see also the recent review paper by Clemens
& Narayanaswamy (2014) for a summary).

Upstream mechanisms link the source of unsteadiness to flow phenomena or events
in the upstream turbulent boundary layer (TBL). Experimentally, Andreopoulos &
Muck (1987) were among the first to find a direct correlation between bursting
events of the incoming TBL and shock motions for their Mach 3 compression ramp
flow. Similarly, Erengil & Dolling (1993) observed a direct response of the reflected
shock to upstream pressure fluctuations, which however results in a high-frequency
smaller-scale jitter motion that could not explain the large-scale low-frequency
oscillations. Adams (2000) performed a direct numerical simulation (DNS) of a
Mach 3 compression ramp flow and found the bursting frequency being very close
to the shock-crossing frequency, supporting the earlier experimental findings of
Andreopoulos & Muck (1987). Unalmis & Dolling (1994) proposed that a low-
frequency thickening/thinning of the upstream TBL causes an upstream/downstream
motion of the shock. Later, Beresh, Clemens & Dolling (2002) and Hou, Clemens
& Dolling (2003) used particle image velocimetry (PIV) and verified that the
upstream conditionally averaged velocity profiles were fuller when the shock foot
was downstream (and vice versa). Using time-resolved PIV on a streamwise—spanwise
plane and applying Taylor’s hypothesis, Ganapathisubramani, Clemens & Dolling
(2009) found low-velocity fluid upstream of their compression ramp flow that
remained coherent for approximately 50 boundary-layer thicknesses. The authors
found a strong correlation between these so-called superstructures and an instantaneous
separation line surrogate. Based on the length of such a structure A =508, and U,,
the authors propose that the superstructure-induced low frequency scales like Uj/24.
Since this value is of the order of O(0.01U,/8y) which is typically found for the shock
motion, they conclude that the passage of these superstructures is responsible for the
low-frequency unsteadiness in their interaction. Contrary to this, Wu & Martin (2008)
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did not find any significant low-frequency correlation between the true separation point
(defined through the zero skin-friction coefficient) and upstream turbulent structures
for their DNS of a Mach 2.9 compression ramp configuration. Only when using a
similar instantaneous separation surrogate as that of Ganapathisubramani et al. (2009)
were the authors able to detect significant correlations, demonstrating the uncertainty
of such methods when applied to experimental measurements. At the same time
the authors found a high-frequency/small-amplitude spanwise wrinkling of the shock
which correlated with the mass flux in the incoming TBL. Applying tomographic
PIV to a Mach 2.1 impinging SWBLI, Humble et al. (2009) further observed that
the passage of upstream coherent structures results in a spanwise wrinkling of the
shock foot.

Theories of the second category relate the separation-shock motion to mechanisms
originating downstream of it, thus basically connecting the dynamics of the separation
bubble to unsteady shock movements. This idea traces back to early experimental
findings of Dolling & Erengil (1991) and Thomas, Putnam & Chu (1994) for
compression ramp configurations, and more recent investigations by Dupont, Haddad
& Debieve (2006) for impinging SWBLI. These studies showed that wall-pressure
fluctuations measured close to the shock foot and near reattachment are correlated
at frequencies connected to the separation-shock motion. The measured phase shift
indicates that the separation bubble expands and contracts periodically. Similarly,
based on conditionally averaged PIV velocity fields for small and large bubbles,
Piponniau et al. (2009) found that the position of the reflected shock is located more
downstream and upstream, respectively. They proposed a self-sustaining mechanism
to explain the low-frequency shock motions based on fluid entrainment by the shear
layer generated downstream of the reflected shock above the closed separation bubble.
A similar entrainment/recharge mechanism consisting of a feedback loop between the
separation bubble, the detached shear layer and the shock system is proposed by Wu &
Martin (2008). Pirozzoli & Grasso (2006) conducted a short-duration DNS of a Mach
2.25 impinging SWBLI and proposed an acoustic feedback mechanism as a possible
driver of low-frequency unsteadiness. They assume that shear-layer vortices interacting
with the incident-shock tip generate acoustic disturbances that propagate upstream
through the subsonic layer while subsequently inducing an oscillatory motion of the
separation point, similar to Rossiter modes in cavity flows. Touber & Sandham (2009)
performed large-eddy simulations (LES) of the impinging SWBLI experiment by
Dupont et al. (2006) for a weak deflection angle of 8°. Their linear-stability analysis
of the mean flow revealed a two-dimensional, zero-frequency, globally unstable
mode which could be linked to the low-frequency unsteadiness. Further, the authors
detected upstream-travelling acoustic waves within the separation bubble, confirming
the possibility of the acoustic feedback mechanism proposed by Pirozzoli & Grasso
(2006). Starting from the Navier—Stokes equations and incorporating LES results,
Touber & Sandham (2011) derived a stochastic ordinary differential equation for the
shock foot low-frequency motions, whose final form was found to be mathematically
equivalent to the one postulated by Plotkin (1975). They further argued that the
low-frequency unsteadiness is an intrinsic low-pass filter due to the interaction and
not necessarily an imposed property due to upstream or downstream forcing. However,
some coherent or incoherent (white noise) forcing must be present at low frequency
for the system to manifest low-frequency shock oscillations.

Based on conflicting observations in many studies with respect to the source of
low-frequency shock motions, Clemens & Narayanaswamy (2009) and Souverein
et al. (2010) argued that both mechanisms (upstream and downstream) are probably
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always present, with a weighting function depending on the state of the SWBLI. For
interactions with a separation length smaller or equal to 2§,, the shock unsteadiness
is highly correlated with upstream TBL fluctuations, while stronger interactions are
most probably dominated by downstream mechanisms inherent to the shock/bubble
system itself (Clemens & Narayanaswamy 2014).

Numerical investigations (DNS, LES) for impinging SWBLI that reached sufficiently
long integration times, suitable for addressing the low-frequency unsteadiness, are rare
in the literature. DNS results by Pirozzoli & Grasso (2006) covered an integration
time of only 256,/U,. Priebe, Wu & Martin (2009) studied the case of a Mach 2.9
impinging SWBLI at a Reynolds number of Res, ~ 38 x 10° and deflection angle
of 12° by means of DNS, matching experimental flow conditions of Bookey et al.
(2005). Their simulation covers approximately 8008,/U, and addressed low-frequency
aspects of the interaction. However, a direct comparison with experimental unsteady
measurements is missing. Touber & Sandham (2009) were probably among the first
to publish a successful comparison between their long-time (10*8,/U,) narrow-domain
LES results and experimental data with respect to the unsteady shock motion. Further
LES studies for impinging SWBLI with a focus on low-frequency aspects of the
interaction have been published thereafter (Pirozzoli et al. 2010; Agostini et al. 2012;
Hadjadj 2012; Aubard, Gloerfelt & Robinet 2013; Morgan et al. 2013; Pasquariello
et al. 2014; Nichols et al. 2016). All of these studies, however, predominantly
focused on weak interactions (with respect to the absence of a distinct pressure
plateau within the separated flow) and/or low Reynolds numbers being typically
below Res, =~ 60 x 10°. High Reynolds number compression corner experiments
(Dolling & Murphy 1983; Dolling & Or 1985) have shown that the wall-pressure
signal near the separation-shock foot is highly intermittent and basically reflects the
inviscid pressure jump across the oscillating shock. For low Reynolds number studies,
the reflected shock foot does not penetrate as deeply into the TBL as it does in the
high Reynolds number case. Increased viscous effects diffuse the separation-shock
foot into a compression fan, which in turn results in a broader range of frequencies
with attenuated shock intermittency (Ringuette et al. 2009). This behaviour is well
documented for compression corner flows, but has not been addressed so far in
numerical studies for impinging SWBLI.

The purpose of the current study is to extend the available numerical database for
high Reynolds number impinging SWBLI by a case with strong flow separation
from wall-resolved long-time integrated LES. We adopt the experimental flow
configuration of Daub, Willems & Giilhan (2015), where the incoming TBL (Ma = 3,
Res, ~ 200 x 10%) interacts with an oblique shock that is strong enough to cause a
very large separation bubble with a length of 15.5§y,. The long integration time of
380560/U, allows us to analyse low-frequency aspects of the interaction in detail.
A spectral analysis of wall-pressure probes serves as a starting point and provides
the dominant frequencies involved in the interaction. Further, a modal decomposition
of the flow by dynamic mode decomposition (DMD) (Rowley et al. 2009; Schmid
2010) is used to relate global flow phenomena to frequencies identified by the (local)
wall-pressure spectra. Similar DMD studies can be found in the literature based on
spanwise-averaged snapshots (Pirozzoli et al. 2010; Grilli et al. 2012; Nichols et al.
2016). We adopt this methodology in a first step, and discuss similarities/differences.
Subsequently we investigate three-dimensional effects based on snapshots of the
two-dimensional skin-friction coefficient. The article is organised as follows: in
§2 we provide details of the numerical approach, describe the experimental flow
configuration and discuss numerical details for the LES. The main results of this study
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are summarised in §3. A grid- and spanwise-domain-sensitivity study is presented
in §3.1, together with a validation of the incoming TBL. The mean-flow field and
a first comparison with experimental wall-pressure measurements are presented in
§3.2. Three-dimensional modulations of the nominally two-dimensional interaction
will be highlighted in the same section. A spectral analysis of wall-pressure probes
is presented in §3.3 and compared with unsteady experimental measurements by
Daub et al. (2015). Furthermore, high Reynolds number effects with respect to
the intermittent character of the interaction are analysed. A detailed DMD analysis
is provided in § 3.4, giving access to the flow organisation of dominant low- and
medium-frequency modes. Finally, we summarise our results and discuss the physical
origin of the low-frequency unsteadiness in §4.

2. Numerical approach and flow configuration
2.1. Governing equations and numerical approach

We solve the three-dimensional compressible Navier—Stokes equations in conservative
form on Cartesian grids

oU+V - -FU)—-V-DWU)=0, (2.1)

with the state vector U =[p, pu;, pus, pus, E] consisting of density o, momentum pu;
and total energy E. In the above equation the total flux is split into an inviscid part

F=[f,.f>.f5]" following
iU =[wip, wipuy + 8up, wipuz + 8op, uipus + 8ip, w;(E +p)1*, (2.2)
and a viscous contribution D = [d,, d>, d3]" following
d;(U) =10, t1, T, Ti3, Ty — qil" (2.3)

where u; is the velocity vector and 7; the viscous stress tensor, which according to
the Stokes hypothesis for a Newtonian fluid is

T = /_L(ajbli + a,'l/lj — 2/38U8kuk) (24)
The heat flux g; due to conduction follows from the Fourier law
qdi= —K 81T (25)

We model air as a perfect gas with a specific heat ratio of y =1.4 and a specific gas
constant of R =287.05 J (kg K)~!. Pressure p and temperature T are determined by
the ideal-gas equation of state

p=pRT, (2.6)
and the definition of total energy E
=P ! 2.7)
= —— + —puu;. .
y—1 " 2°

Temperature dependences of dynamic viscosity pu and thermal conductivity « are
modelled through Sutherland’s law and constant Prandtl number,

To+C ([ T\"
_—— : 2.8
H H 4 T + C (Tref) ( )
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FIGURE 1. Schematic of the experimental and numerical set-up. An instantaneous
numerical schlieren image is included.

YR

with Pr=0.72, T,,, =293.15 K, C=122 K and p,, =18.21 x 107° Pa s.

The compressible Navier—Stokes equations are solved using the adaptive local
deconvolution method (ALDM) for the discretisation of the convective fluxes (Hickel,
Adams & Domaradzki 2006; Hickel, Egerer & Larsson 2014). ALDM is a nonlinear
finite volume method that provides a physically consistent subgrid-scale (SGS)
turbulence model for implicit LES. Employing a shock sensor based on the sensor
functional of Ducros et al. (1999) to detect discontinuities and switch on the shock
dissipation mechanism, ALDM can capture shock waves, while smooth waves and
turbulence are propagated accurately without excessive numerical dissipation (Hickel
et al. 2014). Although the physically consistent implicit turbulence model (based
on the eddy damped quasi-normal Markovian (EDQNM) theory (Lesieur, Métais &
Comte 2005)) implies a second-order truncation error, ALDM provides a similar
spectral resolution of linear waves (modified wavenumber) as sixth-order central
difference schemes. The interested reader is referred to Hickel et al. (2014) for
a detailed validation based on canonical shock—turbulence cases and a modified
wavenumber analysis. The viscous flux is discretised using a second-order central
difference scheme, and the third-order Runge—Kutta scheme of Gottlieb & Shu (1998)
is used for time integration. This numerical method has been successfully applied to
a wide range of LES involving shock—turbulence interaction, ranging from canonical
test cases (Hickel er al. 2014) to SWBLI at a compression—expansion ramp (Grilli
et al. 2012; Grilli, Hickel & Adams 2013), flow control of SWBLI on a flat plate
(Pasquariello et al. 2014), shock train in a divergent nozzle (Quaatz et al. 2014) and
transition analysis between regular and irregular shock patterns of SWBLI (Matheis
& Hickel 2015).

2.2. Experimental and numerical set-up

The flow configuration for the present study has been adopted from recent experiments
conducted by Daub et al. (2015), a schematic of which is shown in figure 1. The test
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Ma TO Po UO 0 80 90 R€50 Rego
3.0 2737 K 582 kPa 594 m s7! 19.6° 4.0 mm 028 mm 203 x10° 14 x 10°

TABLE 1. Main flow parameters.

facility is a blowdown wind tunnel with a continuously adjustable nozzle, enabling a
Mach number range of Ma = [0.5, 4.5], and a closed test section of 0.6 x 0.6m. A
wedge is mounted on a shaft and deflects the incoming flow by ¢ =19.6°, resulting in
a steady incident shock that interacts with a spatially developing flat plate TBL. For
fluid—structure interaction (FSI) experiments, the baseplate can be optionally equipped
with an elastic panel and the shock generator may be pitched, inducing a time-varying
load on the panel (Daub, Willems & Giilhan 2016). The shock generator as well as
the baseplate span the wind tunnel width. The wide test section together with the
full-span model (shock generator and baseplate) lead to a nearly two-dimensional
SWBLI, which is demonstrated in Daub et al. (2015). They show that the streamwise
wall-pressure evolution measured at the centreline and 90 mm off centre coincide (see
figure 5 in the respective publication). The TBL is tripped close to the leading edge of
the baseplate by a 5 mm wide strip of F150-macrogrits with mean diameter of 60 pm.
Figure 1 includes an instantaneous numerical schlieren image obtained from the LES.
The adverse pressure gradient imposed by the incident shock is sufficient to cause
strong flow separation. Note that the incident shock is curved due to the interaction
with the characteristics emanating from the centred Prandtl-Meyer expansion (PME).
This interaction results from the short wedge length w, which was a deliberate
experimental design to facilitate actuation in FSI experiments employing the wedge
as fast-pitching shock generator (Daub et al. 2016). The theoretical incident-shock
path is also shown to reflect the degree of shock curvature and to further indicate
the nominal inviscid impingement location x;,, =0.311 m.

Main flow parameters for the LES are summarised in table 1 and are set in
accordance with the reference experiment. The flat plate TBL is characterised by a
free stream Mach number of Ma =3, a stagnation temperature of 7, =273.7 K and a
stagnation pressure of p, =582 kPa. Note that the stagnation conditions differ slightly
from the ones reported in Daub er al. (2015) since the values summarised in table 1
refer to the specific SWBLI experimental realisation with wedge angle © =19.6° and
resulting shock angle § =37.3°, while in the referred publication an ensemble average
over multiple runs is reported. The TBL thickness, based on 99 % of the free stream
velocity Up, is estimated to be o =4 mm at the LES-domain inlet. The compressible
momentum thickness is 6y = 0.28 mm. The Reynolds number based on the incoming
boundary-layer thickness is Res, = Updo/vo = 203 x 10°, where v, is the free stream
kinematic viscosity. Based on the compressible momentum thickness the Reynolds
number is Reg, = Uyby/vo = 14 x 10°. The wedge width is w = 21.75§, and the
channel height to wedge width ratio equals g* = g/w = 1.8, see also figure 1. For a
given shock-generator position the non-dimensional quantity g™ implicitly determines
the relative impingement position of the first PME characteristic on the baseplate
with respect to x;,,, a quantity often referred to when dealing with transition studies
between regular and irregular SWBLI (Naidoo & Skews 2011; Matheis & Hickel
2015).

The experimental database includes mean and unsteady wall-pressure measurements
within the interaction region. The former are realised through 48 Pressure Systems,
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Inc. (PSI) pressure ports placed at the xy-centreplane and 90 mm off centre,
while fluctuating wall-pressure measurements are collected through 10 high-speed
Kulite Semiconductor, Inc. (Model XCQ-062) pressure transducers placed at the
xy-centreplane. The natural frequency of the sensors is 240 kHz. Data acquisition is
performed with a National Instruments 24-bit bridge module PXIe 4331 at a sampling
rate of 100 kHz, thus limiting the frequency response of the unsteady measurements
to about 50 kHz. Please refer to Daub et al. (2015) for a more detailed discussion
on applied measurement techniques.

2.3. Boundary conditions, grid distribution and numerical parameters

The LES domain in the xy-plane is shown in figure 1 and covers a rectangular
box with dimensions L, = 508, in the streamwise and L, = 204, in the wall-normal
direction. The spanwise width is varied in conjunction with a domain-sensitivity study
(see table 3 and §3.1) and covers L, =[2.25, 4.5, 9]§y. At the domain inlet a digital
filter based boundary condition is used (Klein, Sadiki & Janicka 2003), for which
first and second-order statistical moments have been prescribed through a precursor
zero pressure gradient temporal boundary-layer simulation with target TBL thickness
of §, and otherwise same flow conditions as the SWBLI simulations. The digital
filter technique is particularly suitable for the present studies as it does not generate
spurious correlations of the inflow data, a drawback exhibited by recycling-rescaling
techniques (Stolz & Adams 2003). The only delicate requirement when using synthetic
turbulence generators is to specify realistic integral length scales for all three velocity
components and coordinate directions to avoid laminarisation issues (Touber &
Sandham 2009). The digital filter technique induces a spatial transient downstream
of the inflow which depends on the chosen integral length scales and additionally
constraints the streamwise domain extent. By inspecting mean and root-mean-square
(r.m.s.) profiles we found that a transient distance of approximately 105, is sufficient.
Similar values can be found in the literature for supersonic TBL, e.g. Grilli et al.
(2013) report a transient length of 83, for their LES of a compression—expansion
ramp configuration and Wang et al. (2015) find a transient length of 124, for their
three-dimensional SWBLI studies including side walls.

Linear extrapolation of all flow variables is used at the outlet and the flat plate
is modelled as an adiabatic no-slip wall. Spanwise periodicity is enforced, which
is a legitimate assumption for the present flow configuration as discussed in §2.2.
Confinement effects as extensively studied by Bermejo-Moreno et al. (2014) are not
expected to be relevant for the SWBLI under investigation. As shown in figure 1
the LES domain does not include the shock generator. We rather chose the domain
height in such a way that the first characteristic from the PME does not intersect
the incident shock, thus requiring xp < x;. We neglect the boundary layer on the
wedge surface and analytically prescribe the aerodynamic and thermodynamic states
upstream of the incident shock (0), downstream of the incident shock and upstream
of the PME (1) and within the PME (i) in terms of Riemann invariants. The incident
shock is introduced by imposing a jump of the flow variables at x, that satisfies the
Rankine-Hugoniot relations for the shock angle g = 37.3°. The locations x, and x;
with respect to the xy coordinate system can be calculated from

Yep — Ly +8in ) - w

X0 =Xexp —COST - W+

_ b (2.10)
xl :xex + yexp > ’
P tan (uy + )
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where (Xeqp, Yep) = (0.149, 0.157) m denotes the location of the PME, and pu, is the
Mach angle in flow region (1). For the present configuration we obtain xy =0.206 m
and x; =0.215 m, thus resulting in a gap of 2.25§, between the incident shock and
the first characteristic of the PME on the top boundary patch.

In order to derive the flow states for an individual grid point x; within the PME
region, it is useful to introduce an additional coordinate system Xy which is aligned
with the wedge surface and has its origin at (x..,, y.x,). Each grid point on the top
boundary patch can be associated with an individual Mach line inside the PME, which
itself is characterised by the angle n;. One can find the solution on the Mach line (i)
by considering an imaginary wall at an angle 9; for which the Mach line (i) defines
the trailing edge characteristic of this auxiliary PME. The Mach number on ray (i)
can be explicitly calculated from

1
Mai:\/l+)/_|—l-tan2zi, 2.11)

where z; replaces n; by means of

1\ 08
2= (Z"‘l> vy +1/2—=1n), 0<z<m/2. (2.12)

Herein v(;, denotes the Prandtl-Meyer function for the known flow state (1) which in
its general form is given by

1 —1
v =1/ 2t YT (M2, — 1) — tan M, — 1. (2.13)
y—1 y+1

Once the Mach number Ma; has been calculated, the state vector U at x; is obtained
by considering the flow state (1), the local flow angle with respect to the xy coordinate
system (¢ — w; —n;) and isentropic relations. An auxiliary two-dimensional Reynolds-
averaged Navier—Stokes (RANS) simulation including the shock generator has been
used to verify the boundary condition as well as the assumption of neglecting the
boundary-layer growth on the wedge surface. By comparing the streamwise evolution
of flow variables at a specific wall-normal distance we found that the boundary-layer
growth and its influence on the trailing edge PME can be neglected.

Table 2 summarises simulation parameters for the computations that have been
performed for a grid-sensitivity study. In total four different grid resolutions
were considered. For all configurations the streamwise and spanwise directions
are uniformly discretised, whereas a hyperbolic grid stretching is applied in the
wall-normal direction following

yj =L, - tanh (M) / tanh(,). (2.14)
;

Herein, j is the grid point index and B, is a stretching factor which is the same for
all configurations studied (see table 2). The number of cells in wall-normal direction
N, is the same for all cases and chosen in such a way that in combination with a
given B, at least 10 cells reside within the streamwise Reynolds normal stress peak
of the incoming TBL and at the same time guarantees a grid resolution in wall units
of Ayl <1 for the first wall cell.
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Grid G G! G? G

Domain size
L.xLyxL; in § 50 x 20 x 4.5 50 x 20 x 4.5 50 x 20 x 4.5 50 x 20 x 4.5

Grid parameters

N, x Ny x N, 880 x 328 x 315 880 x 328 x 630 1760 x 328 x 630 3520 x 328 x 630
Axt x Ayl x Azt 78 x0.9x19.6 78 x0.9x9.8 39x09x%x9.8 19.5x%x0.9x9.8
By 3.56 3.56 3.56 3.56
Runtime & statistics

TU,/8y (FTT) 446(9) 446(9) 446(9)/3805(76) 446(9)
AtUy /8y - 10° 0.84 0.83 0.83 0.82
Sampling rate Every 20At Every 20At Every 20At¢ Every 20At

TABLE 2. Numerical parameters for the grid-sensitivity study.

Domain D! D? D?
Domain size

L. xL,xL, in § 50 x 20 x 2.25 50 x 20 x 4.5 50 x20x9
Grid parameters

N, x Ny x N, 1760 x 328 x 315 1760 x 328 x 630 1760 x 328 x 1260
Axt x Ayt x Az* 39x0.9x%x9.8 39x0.9x%x9.8 39x0.9x%x9.8
By 3.56 3.56 3.56
Runtime & statistics

TUy /S0 (FTT) 446(9) 446(9)/3805(76) 446(9)
AtUy/8y - 10° 0.84 0.83 0.82
Sampling rate Every 20At Every 20At Every 20At

TABLE 3. Numerical parameters for the domain-sensitivity study.

The incoming TBL thickness § is discretised with 162 cells. Non-dimensionalisation
is performed with respect to the inner length scale [t = v, /u, measured at a
reference plane 12.5§, downstream of the LES inflow, where u, = /1,,/p, is the
friction velocity and 7, = w,(du/dy)|,, is the wall shear stress. The coarsest grid
configuration G' results in streamwise and spanwise resolutions of Ax™ = 78 and
Azt =19.6, respectively. For G! the number of cells in the spanwise direction N,
is doubled, resulting in Azt =9.8. For grid level G2, both the x and z resolutions
are halved simultaneously when compared to G', thus leading to Ax" = 39 and
Az" = 9.8. Finally, the number of cells in streamwise direction N, is doubled for
gj which leads to Ax™ = 19.5. A total amount of 90.9, 181.8, 363.6 and 727.3
million cells is used for G', G!, G* and G}, respectively. Statistics were gathered by
averaging instantaneous three-dimensional snapshots of the flow every 20 steps (both
in time and spanwise direction if not stated otherwise), excluding an initial transient
of approximately 5948,/U, (or 11 flow-through times, FTT). After this transient we
collect samples for a time period of 4463,/U, for the grid-sensitivity study. It will
be shown in §3.1 that grid configuration G* is sufficient to capture accurately the
interaction zone. For corroborations of the low-frequency analysis this case has been
additionally run for a much longer time period of 38056,/U, (or 76 FTT). Besides
investigating the sensitivity of statistical results with respect to the grid resolution, we
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FIGURE 2. Grid-sensitivity study with respect to (a) skin-friction coefficient and (b)
wall-pressure evolution. Reported quantities are time and spanwise averaged. (----) G!,

(—=-9) G, (—) G (——) G2, (® (grey)) G° averaged over 4468y/Up, (-----°)
inviscid interaction. The plateau pressure prediction according to Zukoski (1967) is also
shown. See table 2 for reference.

perform a domain-sensitivity study in the spanwise direction based on G2, see table 3.
The reference span of L. =4.58, (D?) is halved (D') and doubled (D?), resulting in
three domain configurations D'.

3. Results
3.1. Grid- and domain-sensitivity study

A sensitivity study with respect to the chosen grid resolution as well as the spanwise
domain extent is provided in the following. We start with the grid-sensitivity study for
which table 2 summarises the main parameters. Figure 2(a,b) gives a comparison of
time- and spanwise-averaged skin-friction coefficient (C;) and wall-pressure evolution
(Pw)/Poo- Comparing the coarsest grid resolution G! (Axt =78, Ay}, =09, Azt =
19.6) with the next level Qzl (refinement in spanwise direction) one can state that
the overall wall-pressure evolution coincides, while larger deviations can be observed
in the post-interaction region for the skin-friction coefficient. Mean separation and
reattachment locations (defined through (C;) = 0) and thus the resulting separation
length Ly, remain unaltered. Note that the pressure strongly decreases in the relaxation
zone due to the influence of the PME, resulting in a significantly higher skin-friction
level than for the incoming TBL. The inviscid wall-pressure evolution (dotted line
in figure 2a) clearly deviates from the stepwise pressure signal characteristic of a
canonical inviscid shock reflection without PME. Characteristics emanating from the
centred expansion in the current SWBLI already influence the incident shock (see
shock curvature in figure 1), shifting the nominal inviscid shock impingement location
downstream to (X — X;,,) /80 =2.35. Note that the wall pressure in the post-interaction
zone for (x — Xx;,,)/8 > 20 asymptotically reaches the inviscid solution. The next
grid level G? differs from the previous one gg in the number of cells in streamwise
direction, resulting in a grid resolution of Ax™ =39, Ay!. =0.9 and Az" =9.8 in
streamwise, wall-normal and spanwise directions, respectively. A strong effect is found
for the skin friction and wall pressure, which is related to a significant change in
separation length (relative increase of 14.8 % compared to G!) and probably caused
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by the slightly different development of synthetic turbulence in the upstream TBL (see
also the discussion related to Reynolds stresses in figure 4b). Note that the location
of reattachment remains the same, while the mean separation point moves upstream.

Having identified an influence on the results by the streamwise resolution, we
doubled the number of cells in this direction, which results in grid configuration
Qf (AxT = 9.8) with a total number of 727.3 million cells. Both the mean wall
pressure and skin friction now do not show significant changes any more. Note
that we also include results on G? for the same integration time of 4468,/U, as
for the remaining grid resolutions (see grey bullets (®) in figure 2a,b). The results
suggest that the number of samples used in this study are sufficient to consider the
results to be statistically converged with respect to the skin friction and wall pressure.
Touber & Sandham (2009) also investigated the sensitivity of their results to the grid
resolution by refining the grid in each coordinate direction separately. They did not
find significant dependencies of the size of the separation bubble with respect to the
chosen grid resolution. While our results may imply a different conclusion it must
be noted that their reference grid has a similar resolution expressed in wall units
(Axt =40.6, Ay, = 1.6, Azt =13.5) as our configuration G*, for which we have
identified that a further refinement does not change the overall results.

To further address the effect of grid resolution, we analyse the prediction of the
plateau pressure by applying the free interaction concept. Carriere, Sirieix & Solignae

(1969) report a generalised correlation function F independent of Mach and Reynolds
number. It accounts for non-uniformities in the incoming outer flow as well as for
wall curvature effects and is especially suited for SWBLI featuring strong streamline
curvature in the free interaction zone (Matheis & Hickel 2015). While the pressure
plateau value is around J, =6.4 on G' and g;, we find a value of F,=6.0 for the
grid configurations G* and G?. The latter value is in perfect agreement with Erdos &
Pallone (1963) who proposed a value of 6.0 for the pressure plateau in turbulent flow.
Figure 2(b) includes the plateau pressure prediction by Zukoski (1967). The prediction
again matches the numerical results on grid levels G* and G2, suggesting that the
Reynolds number in our studies (Res, 2 x 10°) is high enough such that the plateau
pressure ratio essentially depends on the upstream Mach number.

Finally, we investigate the sensitivity of statistical results to the domain width. In
total three configurations based on the grid resolution G> have been considered. The
reference span of L.=4.58, (D?) is halved for D' (L. =2.258,) and doubled for D?
(L, = 98y), see table 3 for simulation parameters and figure 3 for corresponding
results. While the small span LES (D') reveals a slightly smaller separation
bubble (downstream and upstream shift of the separation and reattachment location,
respectively) and a different skin-friction recovery, the results for the reference span
(D?*) and the large span (D?) are nearly undistinguishable.

In figure 4, we report the van Driest transformed mean velocity profile as well
as the r.m.s. of Reynolds stresses in Morkovin scaling for all grid resolutions and
evaluated at the streamwise location (x — X;,,)/80 = —15.25, which corresponds
to a friction Reynolds number of Re, = p,u.6/u,, = 1523. The figure also includes
incompressible DNS data of Schlatter & Orlii (2010) at their highest available friction
Reynolds number of Re, = 1271. The inner layer and log-law region are in good
agreement with the logarithmic law of the wall (with k =0.41 and C =5.2) and the
DNS data, with small differences recognisable in the wake region. The strength of
the wake component increases with increasing momentum thickness Reynolds number
and remains nearly constant above a value of approximately 6000 (Coles 1962; Smits
& Dussauge 20006; Gatski & Bonnet 2009). For the incompressible DNS data a
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FIGURE 3. Domain-sensitivity study with respect to (a) skin-friction coefficient and (b)

wall-pressure evolution. Reported quantities are time and spanwise averaged. (----) D!,
( )y D%, (=== ) D3. See table 3 for reference.

(b)

10° 10! 10? 103 10° 10! 102 10
¥ y*
FIGURE 4. (a) van Driest transformed mean velocity profile and (b) r.m.s. of Reynolds
stresses with density scaling & = \/(p)/{p,) for all grid resolutions at Re, = 1523 and
(X = Xinp) /80 = —15.25: (----) G, ( ————— ) Gl (——) G*, (——) GI. See table 2 for

reference. (O (grey)) Incompressible DNS data adopted from Schlatter & Orlii (2010) at
Re, =1271.

momentum thickness Reynolds number of 4061 is reported. In order to compare with
incompressible data we compute Rey = ((o/w)Reg = pocBUs/ 1, = 6500, explaining
the higher wake velocity observed in figure 4(a) for the present LES. The streamwise
Reynolds stress on grid levels G' and G!, see figure 4(b), shows a significant
overestimation of the peak value situated around y™ ~ 10.5 when compared to the
DNS data. On grid level G the agreement with the reference data is very good,
both in the inner and log layer. Further improvement within the log layer is obtained
with G2 for the streamwise Reynolds stress. Note that the friction Reynolds number
Re, for the reference DNS is slightly lower, resulting in an earlier drop of the r.m.s.
profiles at the wake region.

Finally we compare the skin-friction evolution obtained by the LES on grid level
G? with well-established correlations for incompressible flows, reference data from
DNS and experimental data at different Mach numbers. A direct comparison with
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FIGURE 5. Incompressible skin-friction distribution. ( ) Present LES (G?), (----)
Blasius, (—-—-— ) Kéarman—Schoenherr (both adopted from Hopkins & Inouye (1971)),
(—-—-) Smits, Matheson & Joubert (1983), ([]) Pirozzoli & Bernardini (2011), (®)
Komminaho & Skote (2002), (A) Schlatter & Orlii (2010), (V) Simens et al. (2009), (O)
Pirozzoli, Grasso & Gatski (2004), (x) Maeder, Adams & Kleiser (2001), (4) Guarini
et al. (2000), () Coles (1953) (CAT5301, from Fernholz & Finley (1977)).

incompressible data is possible after applying the van Driest II transformation to the
compressible results (van Driest 1956). Figure 5 shows the incompressible skin-friction
coefficient (C;) as a function of Re,. Our present LES results agree well with the
incompressible relations of Smits er al. (1983), Blasius and Kdrméan—Schoenherr (both
adopted from Hopkins & Inouye (1971)), and available high Reynolds number data of
Fernholz & Finley (1977).

The above grid- and domain-sensitivity studies have shown that the grid resolution
G* with a reference span of L. = 4.58, properly resolves the incoming TBL and
accurately predicts the interaction region. Small improvements of the streamwise
Reynolds stress prediction within the log layer are possible by further increasing
the streamwise grid resolution (Qf). However, the interaction region is unaffected by
further refinement and thus we are confident that the grid resolution G? is sufficiently
fine. The analyses in the following are based on G2

3.2. Instantaneous and mean-flow organisation

A first impression of the flow field is provided in figure 6, where we show both
instantaneous and mean contours of temperature. Isolines in figure 6(a) indicate the
instantaneous and mean reversed flow (defined through u/u,, = 0 and (u)/u., = 0,
respectively). Additional isolines in figure 6(b) represent the shock system, the sonic
line and the boundary-layer edge, where the latter is defined through an isovalue of
mean spanwise vorticity (w,) that gives the same boundary-layer thickness as the
velocity-valued definition upstream of the interaction. Clearly, the adverse pressure
gradient imposed by the incident shock is strong enough to cause a large flow
separation and a separation shock originating well ahead of the inviscid impingement
location. Note that x;,, is related to the theoretical location at which a straight
incident shock would impinge on the flat plate in the absence of a centred PME,
thus neglecting shock curvature effects. The separation shock intersects the incident
shock well outside the TBL, indicating the strong character of the interaction. Délery
& Marvin (1986) further characterised a strong interaction through the presence of
three inflection points in the wall-pressure evolution, which are associated with the
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(x — ximp)/(SO

FIGURE 6. (Colour online) (a) Instantaneous contours of temperature in the xy midplane
together with isolines indicating mean ( (black)) and instantaneous (—— (blue))
reversed flow. (b) Time- and spanwise-averaged contours of temperature. The shock
system is visualised by isolines of pressure gradient magnitude |Vp|dy/po = {1.08, 3.28}.
( (red)) (8), ( (black)) (Ma) =1, ( (blue)) (u) =0.

separation, the onset of reattachment and the reattachment compression. For even
stronger interactions with an extended separated flow, a noticeable pressure plateau
develops, as is the case for the present study (see figure 2b,c). The separation-shock
foot penetrates deeply into the incoming TBL, a phenomenon associated with the high
Reynolds number of the flow (Loginov, Adams & Zheltovodov 2006; Ringuette et al.
2009). As will be discussed later in § 3.3, this feature causes a stronger footprint on
the fluctuating wall-pressure signal as compared to SWBLI at lower Reynolds number
and same Mach number (Adams 2000; Pasquariello et al. 2014; Nichols et al. 2016).
In the same figure the formation of a detached turbulent shear layer originating from
the separation shock is visible and contains the separated-flow area. Compression
waves are formed along with the reattachment process, which finally coalesce into
the reattachment shock. The instantaneous separation bubble is strongly perturbed near
the initial part of the interaction zone, probably being related to fluid entrainment
through the shear-layer vortices in this region (Piponniau et al. 2009). The TBL
grows significantly across the interaction, reaching a maximum of approximately 3§
in the vicinity of the separation-bubble apex, see figure 6(b). The subsequent PME
reduces the TBL thickness, which settles down to a value of 2§, downstream of the
interaction.

The mean separation length is determined from the skin-friction distribution shown
in figure 7(a) and results in L,, = 15.58,. Mean separation x; and reattachment
x, locations are indicated by vertical dashed lines and are located at (x — X;u)/80 =
—11.256¢ and 4.254, respectively. Priebe & Martin (2012) found in their compression
corner results that the separation is not uniformly strong in the sense that the
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FIGURE 7. (a) Skin-friction and (b) wall-pressure evolution: (——) present LES (averaged
in time and spanwise direction; spanwise minimum and maximum values of the
time-averaged data are indicated by the grey shaded area for the long integration time of
38058y/Uy and by dots for the short integration time of 44665,/U,), (®) experimental static
pressure measurements and () mean experimental unsteady pressure measurements from
Daub et al. (2015). Error bar indications are only approximate experimental estimates due
to Willems (2016).

skin-friction coefficient varies within the separated-flow region. More precisely, their
skin-friction distribution (see figure 4(a) in their publication) reveals a less strong
separated flow approximately 1/3L,, downstream of the mean separation location,
resulting in a local (C;) maximum. They related this behaviour to collapse events
of the separation bubble during the low-frequency unsteadiness and found a positive
skin-friction coefficient in this region for conditional averages of collapsing bubbles.
Our results, however, show a rather uniformly strong separation over a streamwise
length of approximately 2/3L,.,, which is probably related to the intensity of the
present SWBLI. The pressure distribution reported in Priebe & Martin (2012) does
not exhibit a pressure plateau and the overall separation length of 34, is considerably
smaller compared to our results. Furthermore, Clemens & Narayanaswamy (2014)
have shown by a simple scaling analysis that the upstream momentum fluctuations
may be large enough to provoke a bubble collapse in case of weakly separated flows
but not for strong separations.

The grey shaded area in figure 7(a) indicates three-dimensional structures in
the nominally two-dimensional interaction by considering spanwise minimum and
maximum values of the time-averaged data (38058,/U,). In the incoming TBL,
a very low spanwise variation of (C;) is found, indicating statistical convergence.
Two regions can be identified where evidence of stationary or slowly evolving
three-dimensional flow structures exists: in the proximity of the mean separation
location at —11.25 < (x — X;,,) /8o < —7.5 and downstream of the inviscid impingement
location at (x — X;,,)/80 > 0. Note that we also include results of the short duration
LES (the dotted lines correspond to an integration time of 44668,/U,). Our results
imply that a significant spanwise modulation of the flow is present close to the
separation and reattachment location. The underlying flow structures provoking
this variation are unsteady in nature, as the time-averaged spanwise minimum and
maximum values reduce with longer integration times. Time scales associated with
such flow phenomena are considerably longer than the characteristic time scale of the
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incoming TBL (8y/U,), since spanwise variations are still visible for the long-duration
LES close to the separation and reattachment locations but vanish upstream of the
interaction. We will provide support for this assumption in the course of this section
and later in §3.4.

A similar analysis has been conducted by Loginov et al. (2006) for their LES
of a compression corner flow. Their results cover an integration time of 70368,/Uj,
possibly explaining the strong spanwise variation of £2.4 x 10~* found in their
incoming TBL. Note that our short time LES shows a significantly lower variation
of 5.0 x 107>, They found two pairs of possibly steady counter-rotating streamwise
vortices originating in the proximity of the compression corner and termed them
Gortler-like vortices, bearing similarities with the instability mechanism found
experimentally for laminar boundary layers developing on sufficiently concave surfaces
(Gortler 1941; Floryan 1991). We will resume this discussion later in this section
and show that a similar mechanism exists for the current SWBLI. Figure 7(b) shows
the wall-pressure distribution for both LES and experiment. Similar to the findings
of Loginov et al. (2006), a less strong spanwise variation is observed for the wall
pressure. Experimental uncertainties have been estimated taking into account the
accuracy of the sensors, uncertainties in wind tunnel flow conditions (total pressure,
Mach number) and geometric uncertainties (alignment of the shock generator and the
baseplate), see Willems (2016). Both datasets are in good agreement, with a relative
error with respect to the maximum pressure of (Puarres)/{Pmaxep) — 1 = —0.029.
For demonstration, the mean wall pressure obtained through unsteady pressure
measurements is shown for an upstream position and close to the separation location.

The effect of the SWBLI on the normal Reynolds stress components is analysed
in figure 8. In each figure, we again indicate the shock system, boundary-layer
thickness, sonic line and reverse flow region by individual isolines. Additionally, the
grey isoline indicates the dividing streamline defined by the set of points y,(x) for
which foy‘“(pu) dy=0. The region of highest Reynolds stress is indicated by a star and
eight contour levels are superimposed by dashed lines. A high level of streamwise
Reynolds stress (u'u’) is found along the detached shear layer with its maximum
located at the separation-shock foot, see figure 8(a). The strong convex streamline
curvature near the bubble apex considerably damps the Reynolds stresses (see Smits &
Dussauge 2006, e.g.). A similar observation was made by Sandham (2016). A second
branch of increased (u'u’) is found in the proximity of the reattachment location but
located farther away from the wall. Shear-layer vortices in this region are convected
downstream with the flow and interact with the reattachment compression, possibly
explaining this local maximum of streamwise Reynolds stress. For the wall-normal
Reynolds stress component (v'v’), see figure 8(b), increased levels are found along
the separation and reattachment shocks and are directly associated with their unsteady
motion. The spanwise Reynolds stress component (w'w’) shares some similarities
with the streamwise component, but one remarkable difference is observed: in the
proximity of reattachment, where the dividing streamline shows a high level of
concave curvature, another area of increased Reynolds stress is observed with its
maximum located approximately 3§, downstream and attached to the wall. This
region of increased spanwise Reynolds stress covers 3.5 < (x — X;,,) /60 < 12.5. To the
authors’ knowledge, no such phenomenon has been previously reported for impinging
SWBLI. Similarities with the compression corner results of Loginov et al. (2006)
discussed previously suggest that a similar centrifugal instability plays a role for
the current SWBLI, which would explain the increased spanwise Reynolds stress
found in figure 8(c). Furthermore, the PME centred at the bubble apex, the dividing
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FIGURE 8. (Colour online) Time- and spanwise-averaged Reynolds normal stress
components. The shock system is visualised by isolines of pressure gradient magnitude
Vpldo/Pse =1{1.08, 3.28}. ( (red)) (8), ( (black)) (Ma)=1, ( (blue)) (u) =0,
( (grey)) dividing streamline y,. A star (x) indicates the location of maximum contour
level. Eight discrete contour levels are shown by dashed lines.

streamline and the downstream recompression correspond to a two-dimensional
supersonic backward-facing step flow, for which streamwise vortices have been found
experimentally in laminar, transitional and turbulent flows over a large range of Mach
numbers (Ginoux 1971).

In figure 9, we show the instantaneous structure of the flow at two uncorrelated
time instants. The blue isosurface indicates the reverse flow region (# =0), while the
white and black isosurfaces correspond to a positive and negative value of streamwise
vorticity (w, = £0.4U,/8p). As other authors have already pointed out (Loginov
et al. 2006; Grilli et al. 2013), the circulation of the Gortler-like vortices found in
compression corner studies is rather small, which makes it difficult to extract them
from background turbulent structures. For visualisation purposes we apply both a
temporal and spatial filter on three-dimensional snapshots of the flow. Temporal
filtering is accomplished by a simple moving-average filter. Although the roll-off
capabilities and the frequency response for such a filter are very poor, the noise
suppression in the time domain is excellent. The LES database consists of n, =7614
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FIGURE 9. (Colour online) Instantaneous visualisation of the reversed flow and the
Gortler-like vortices at two uncorrelated times. Translucent isosurface of streamwise
velocity u =0 (blue) and isosurfaces of streamwise vorticity w, = +0.4U,/3, (white/black)
are shown.

three-dimensional snapshots recorded at a sampling interval of At, = 0.560/Uy. We
select a filter width of n; =51 snapshots for the moving-average frame. Subsequently,
a top-hat filter is applied to the temporally averaged data with a constant filter width
in streamwise and spanwise direction equal to Ax; = 0.228, and Azy =0.07§,, while
in wall-normal direction the filter width is spanned by four computational cells.

The following qualitative observations can be made from figure 9(a,b): two pairs
of counter-rotating streamwise vortices develop in the reattachment region. These
Gortler-like vortices are not fixed at a specific spanwise position, contrary to
the results of Loginov et al. (2006). Note that the inflow boundary condition in
their LES contained low-amplitude steady structures, which may lock the spanwise
position of the streamwise vortices, similar to model imperfections in experimental
configurations (Floryan 1991). Another aspect is their short integration time, which
might not capture low-frequency modulations of such flow structures. In accordance
with experimental observations (Gortler 1941; Floryan 1991; Schiilein & Trofimov
2011) as well as numerical findings (Loginov et al. 2006; Grilli et al. 2013), the
spanwise width of each vortex pair is approximately 28,. The spanwise width of our
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FIGURE 10. (Colour online) Numerical oil paint imitation together with mean skin-friction
contours. Thick solid lines indicate time-averaged separation and reattachment locations
defined by (Cy) =0. Contour cutoff level is (Cr) =2 x 1073, Time integration covers (a)
44660/ Uy and (b) 380560/ Up.

computational domain of L, =4.58, in combination with periodic boundary conditions
allow flow structures with a spanwise wavelength of at most 4.5, to be captured.
We investigated the wavelength on our large-span configuration D* with L, =98, and
found the same width of about 28, for a vortex pair. The effect of the streamwise
vortices on the separated flow is clearly visible in figure 9(b): vortex-induced upwash
decreases the shear stress at this specific spanwise location and directly influences the
reattachment position by shifting it further downstream. Indeed, at z/§; ~ —0.4 such a
flow configuration can be observed. Vortex-induced downwash (z/8y =~ 1) increases the
local shear stress and subsequently shifts the reattachment position further upstream.
The above findings suggest a direct coupling between the separated-flow dynamics
and the streamwise vortices. As pointed out by Floryan (1991), such vortices in
turbulent flow have no spanwise preference position and thus meander in time.
Steady non-uniformities, e.g. when small vortex generators are placed in the settling
chamber of a wind tunnel, might induce a preferred lateral position around which
the spanwise motion occurs. In case that the level of unsteady disturbances of the
oncoming flow is large compared to that of the steady disturbances, however, no
preferred spanwise position can be observed for Gortler-like vortices (Kottke 1988;
Floryan 1991). An animation of figure 9 reveals that the streamwise vortices tend to
meander in the lateral direction. At the same time the vortices appear and disappear,
coalesce and separate in an apparently random manner. Consequently, the effect of
the Gortler-like vortices on the mean spanwise flow modulation diminishes with
increasing averaging time. This is also evident when looking at figure 10, where
we show a numerical oil flow visualisation together with mean skin-friction contours
evaluated for the wall plane. While figure 10(a) is obtained for the short-duration LES,
figure 10(b) includes a large number of low-frequency oscillations of the separation
bubble. Characteristic node and saddle points close to the reattachment location can
be observed for the former. Convergence and divergence lines associated with regions
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FIGURE 11. (a) Curvature parameter 6/R and (b) Gortler number Gr evaluated along a
mean-flow streamline passing through (x — x;.,)/80 =—15 and y/8,=0.75. (----) stability
limits according to Gortler (1941) and Smits & Dussauge (2006).

of vortex-induced upwash and downwash indicate a strong spanwise modulation of
the flow for the time frame considered. While figure 10(a) might suggest a system
of steady streamwise vortices to be present, the results for the long-run LES clearly
suggest the streamwise vortices to be unsteady. Node and saddle points as well as
convergence and divergence lines appear suppressed in figure 10(b), indicating a less
strong spanwise modulation of the mean flow with increasing averaging time.

Figure 11 analyses the curvature parameter §/R and the Gortler number Gy for a
mean-flow streamline passing through (x — x;,,)/8 = —15 and y/8,=0.75. According
to Loginov et al. (2006) and Smits & Dussauge (2006), the Gortler number for a
compressible turbulent flow may be defined as

0 0
Gy = [ — - sen(R). 3.1
= 00188, \ 7] SE® 3-1)

Therein §;, 6 and R denote the displacement thickness, the momentum thickness
and the streamline curvature radius of the mean flow, respectively. Note that we
have modified the above expression to indicate convex and concave curvature. Smits
& Dussauge (2006) report a lower limit for the curvature parameter above which
longitudinal vortices are expected to develop, this being 6/R ~ 0.03 for a Ma = 3
flow. In laminar flow the critical Gortler number is Gy = 0.58 (Gortler 1941). Both
limits are significantly exceeded within a short region close to the separation point
as well as within a long region at reattachment (see filled patterns in figure 11(a,b).
Although it is unclear whether such stability criteria hold also for turbulent flow,
the high values within the reattachment region, which last over a significantly long
streamwise distance of 11§, indicate a centrifugal instability to be a plausible
mechanism for the generation of Gortler-like vortices.

3.3. Spectral analysis

The unsteadiness of the present SWBLI is studied in this section by means of spectral
analysis. For this purpose, 1230 equally spaced wall-pressure probes have been placed
in streamwise direction along the midplane of the computational domain. The probes
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FIGURE 12. (a) Numerical and (b) experimental wall-pressure signal near the separation-
shock foot. The numerical probe is located at mean separation x;, low-pass filtered with
a finite impulse rate filter (cutoff Strouhal number of St; =0.33, filter order of 900) and
subsequently projected on the experimental time axis via linear interpolation. Locations
of the experimental and numerical pressure probe are indicated in figure 7. (¢) Weighted
power spectral density f - P(f) for the raw pressure signals without low-pass filtering.
Experimental data from Daub et al. (2015) with ( (grey)) Tyee = 374Lge, /Uy (50 =
130) and (---- (gFGY)) Tseg = SlLsep/U() (nseg =973). ( ) LES with Tseg = SIL.vep/UO
(g = 12).

span the region —17.74 < (x — Xju)/80 < 17.18 and are sampled at a frequency of
approximately f; = 60U,/§,, which corresponds to 8.9 MHz. Figure 12(a,b) compares
a section of the experimental wall-pressure measurement (Daub ef al. 2015) with
the LES signal. Both signals have been evaluated near the separation-shock foot,
i.e. the experimental location is given by the unsteady pressure transducer indicated in
figure 7(b), whereas the LES signal has been extracted at the mean separation location
X;. As mentioned in §2.2, the cutoff frequency of the experimental measurements is
50 kHz(0.33U,/8,). Consequently, scales in the incoming TBL, whose characteristic
frequency is of the order of Uy/dy, are undersampled. In order to mimic the
experimental cutoff effect, we low-pass filter the LES signal with a finite impulse
rate (FIR) filter of order 900 and a —6 dB cutoff Strouhal number of Sts = 0.33.
Subsequently, the filtered signal is projected on the experimental time axis via linear
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interpolation. Qualitative similarities between both datasets can be observed in terms
of intermittency, occurring time scales and wall-pressure amplitudes. In contrast
to previous low Reynolds numerical studies (Adams 2000; Touber & Sandham
2009; Priebe & Martin 2012; Pasquariello et al. 2014), our filtered signal shows
the well-known intermittent character typically observed in high Reynolds number
experiments, that is, the wall-pressure jumps from the incoming TBL value to that
behind the separation shock and back again. This effect is attributed to the high
Reynolds number of the flow as shown experimentally by Dolling & Murphy (1983)
and Dolling & Or (1985). At lower Reynolds number the separation shock does
not penetrate as far into the TBL as it does at high Reynolds number. In fact, the
separation shock is diffused by increased viscous effects when approaching the wall.
Since its motion is no longer associated with a single, well-defined shock wave, its
intermittency is attenuated (Adams 2000; Ringuette et al. 2009).

A more quantitative comparison of both signals is given in figure 12(c), where
we show the weighted power spectral density (PSD) of the two signals. Note
that the LES signal is not low-pass filtered for this comparison, thus retaining
the high-frequency TBL content. Welch’s algorithm with Hamming windows is
used to estimate the PSD. For the LES signal (black solid line), a total number of
Ny, = 12 segments is used with 65 % overlap. These parameters lead to a segment
length of approximately 7838¢/Uy(51L,.,/Up). For the available experimental signal
two segmentation configurations have been used. The grey solid line reflects a total
number of n,, =130 segments with 65 % overlap. This leads to an individual window
length of 57978y/Uy(374Ly.,/Uy) and should resolve all expected low-frequency
dynamics properly. The parameters for the grey dashed line are chosen in such a
way that the individual segment length is the same as for the LES, leading to a total
number of n,, =973 segments. The good qualitative agreement between both signals
observed in figure 12(a,b) is also confirmed by their spectra. Both spectra indicate the
presence of a dominant low-frequency peak around a non-dimensional frequency of
Str,,, =fLsep/Uo ~ 0.04. This value agrees well with experimental studies for different
flow geometries and upstream conditions by Dussauge, Dupont & Debieve (2006),
who found that the unsteadiness occurs at frequencies centred about S, = 0.02-0.05.
While the peak amplitude for the shock unsteadiness is captured very well by the
LES, we observe a lower energy level for frequencies below the low-frequency peak.
We have computed the PSD for a reduced number of segments n,,, in order to allow
for increased low-frequency resolution. We find that the energy content of the LES
signal at frequencies below S7;, < 0.04 essentially is unaffected. We believe that
the observed discrepancies may be caused by side wall effects in the experiment
which mainly show up at low frequencies. The LES data show an additional bump
centred around f&y/Uy ~ 1, associated with the most energetic scales of the TBL. The
experimental cutoff frequency of 0.33U,/8, excludes this range from the experimental
data.

The wall-pressure spectrum for all numerical probes is shown in figure 13. Mean
separation and reattachment locations are indicated by vertical dashed lines. Note that
no energetically significant low-frequency content is apparent in the upstream TBL,
proving the suitability of the digital filter technique. In accordance with previous
numerical (Touber & Sandham 2009; Priebe & Martin 2012; Grilli ef al. 2012) and
experimental (Thomas et al. 1994; Dupont et al. 2006) studies, the broadband peak
associated with energetic scales in the incoming TBL shifts towards significantly lower
frequencies close to the mean separation location and moves back again to higher
frequencies downstream of the interaction. Within the rear part of the separation
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FIGURE 13. Weighted power spectral density map. At each streamwise location the
weighted spectra are normalised by [ P(f)df. Mean separation and reattachment locations
are highlighted by vertical dashed lines.

bubble so-called medium frequencies around St;,,, ~ 0.5 develop, which are probably
related to shear-layer vortices convected over the recirculation (Dupont er al. 2006).
While the low-frequency activity is concentrated around the mean separation location,
another significant level of unsteadiness is found slightly upstream and at frequencies
around 0.1Uy/L,,. Associated time scales of approximately 10L,.,/U, can be found
in the wall-pressure signal, see figure 12(a,b), and are related to the intermittent
character of the separation shock as will be shown in figure 15.

The streamwise variation in r.m.s. wall-pressure fluctuations is shown in figure 14.
The distributions are obtained by integrating the power spectra over a given frequency
range

f2
(PP)i-n=[ P df. (3.2)
fi

We focus on the low-frequency contributions of pressure fluctuations and thus select
f» = 1Uy/Ly,, see also figure 12(c). At the same time this value is sufficiently far
away from the experimental cutoff frequency of 5.2U,/L,,, hence avoiding aliasing
effects. The lower limit f; is chosen to be the smallest resolved frequency, individually
selected for experiment (filled bullets) and LES (solid line). The overall agreement
within the separated-flow region and after reattachment is satisfactory, while the peak
value associated with the separation shock motion is underestimated by the LES.
This effect can be attributed to the longer sampling time for the experiment, thus
resolving much lower frequencies that contribute to the overall energy level. In fact,
when restricting the integration of the experimental data to the same lower value f;
as for the LES (open symbols in figure 14a), the peak r.m.s. value reproduces the
numerical result without affecting the other measurement locations.

Similarly to experimental observations (Dolling & Murphy 1983; Dolling &
Or 1985; Selig et al. 1989), the high Reynolds number of the flow leads to a
distinct r.m.s. peak centred around x,. Directly downstream a plateau region develops,
followed by a continuous increase in pressure fluctuations until a second maximum
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FIGURE 14. (a) Band-limited root mean square of wall-pressure fluctuations. ( ) LES
data obtained by integrating the PSD for Sr;,, < 1, (@) experimental data from Daub
et al. (2015) obtained by integrating the PSD for Sz, < 1 and (O) by integrating
the PSD for 0.014 < S#;,, < 1. (b) Band-limited (87, < 1) relative root mean square
of wall-pressure fluctuations for the present LES. (A) indicate locations which will be
discussed in conjunction with figure 15.

is reached. Note that the second maximum is located 2.48, downstream of the
mean reattachment location. This position apparently coincides with the reattaching
shear layer, see figure 6(a), for which a characteristic frequency of the reattaching
large-scale vortices is usually found around 0.5U,/L,, (Dupont et al. 2006). In
figure 14(b) we further investigate the band-limited low-frequency contribution of
pressure fluctuations to the total fluctuation energy for the present LES. In the
incoming TBL approximately 10% of the total r.m.s. of wall-pressure fluctuations
reside in the lower-frequency range of f < 1Uy/Ly,. A similar value has been found
experimentally by Thomas et al. (1994). When approaching the mean separation point,
almost the complete (95 %) pressure-fluctuation intensity is associated with such
low frequencies. Thomas ef al. (1994) investigated experimentally a compression
corner flow at a free stream Mach number of 1.5 and a Reynolds number of
Res ~ 178 x 10°. They found that the fraction of fluctuation intensity that is associated
with separation-shock oscillation increases with increasing ramp angle. For their
largest ramp angle of 12° a ratio of 55 % is reported, which is significantly lower than
our value and possibly related to the considerably lower Mach number and weaker
interaction in their study. Close to reattachment the low-frequency contribution is still
responsible for 55 % of the total wall-pressure-fluctuation intensity and composed of
a superposition of separation-bubble dynamics and reattaching shear-layer vortices
convected downstream.

The intermittent character of the wall pressure is further analysed in figure 15. On
the left we show the normalised wall-pressure evolution for six different streamwise
locations. On the right the corresponding normalised probability density functions
(PDFs) computed from 228681 samples grouped into 478 bins, together with a
standard Gaussian distribution are shown. The individual positions are indicated in
the r.m.s. plot of wall-pressure fluctuations, see figure 14. From top to bottom they
refer to the undisturbed TBL, the onset of interaction, the location of maximum
wall-pressure fluctuation intensity, the mean reattachment position, the reattaching
shear layer and the post-interaction location. The incoming TBL signal is effectively
Gaussian, which is also reflected by the skewness «; and flatness o4 coefficients.
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FIGURE 15. Wall-pressure signals (a) and corresponding normalised probability density
distributions (b) evaluated at (x — x;,,)/80 = {—17.74, —11.66, —11.34, 4.25, 6.61, 17.18}.
Refer to the text and figure 14 for a physical interpretation of the wall-pressure positions.
The mean wall pressure is indicated by a horizontal dashed line. Arrows together with
vertical bars indicate the mean wall pressure and its standard deviation. Values of skewness
o3 and flatness w4 coefficients and a Gaussian distribution are included for reference.

The next probe is located 0.418, upstream of the mean separation location at
a pressure level of (p,)/{(pwo) = 1.07. The signal is strongly intermittent. This is
also confirmed by the associated PDF which is highly skewed and has a single
mode at —0.50,,, thus reflecting the probability of finding pressures in the range
of the incoming TBL. Close to the mean separation location, at a pressure level
of (pw)/{pwo) = 1.27, the signal is still intermittent. Its PDF is highly left skewed
with tendencies to develop a bimodal shape whose centres are located around *1lo,, .
These two pressure probes have been evaluated at a very similar pressure ratio as
done by Dolling & Murphy (1983). The reported wall-pressure signals and PDF
qualitatively agree with experimental observations by Dolling & Murphy (1983) (see
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FIGURE 16. (a) Streamwise intermittency distribution y;(x). The mean separation location
xg is indicated. (©) highlight 1% and 99 % intermittency boundaries and define the
intermittent length scale L; = 1.2§,. (b) Skewness coefficient o3 as a function of
intermittency ;. ( ) LES. Symbols represent experimental data from Dolling & Or
(1985) for a compression ramp flow at a Mach number of Ma = 2.9 and a Reynolds
number of Res, =1.43 x 10° with wedge angles (#) ¥ = 12° (attached flow), (®) ¥ =16°
(incipient separation), (A) v =20° (separated flow) and (W) ¥ =24° (separated flow).

figure 6 in the respective publication) and Dolling & Or (1985) (see figure 3 in
their publication), which again confirms the high Reynolds number character of the
present SWBLI. The bimodal character is more pronounced in their studies, which
is probably because of the even higher Reynolds number of Res, = 1.43 x 10° in
their experiment. At the mean reattachment position the signal is slightly left skewed,
see also Adams (2000). Wall-pressure fluctuations increase for the next downstream
probe, which is located in the proximity of the reattaching shear layer. At the same
time the skewness coefficient increases. Further downstream the signal has returned
to an almost Gaussian shape with relaxed pressure fluctuations.

In figure 16(a) we show the intermittency factor y;(x). According to Dolling & Or
(1985) it is defined as

/’t2 {17 Pw > (pW,()) + 30—Pw,0 d[
t

0, else

] , 33
Y P (3.3)

which describes the fraction of time that the wall pressure is above the threshold value
defined by the undisturbed incoming TBL. A high intermittency level of y;(x,) =0.84
is found at the mean separation location. Based on the 1% and 99 % intermittency
boundaries we can derive an intermittent length scale of L; =1.25,. For comparison,
Loginov et al. (2006) reported a value of y;(x;) =0.88 and L; = 1.38y. According to
Dolling & Or (1985), higher-order moments such as «; are only a function of y; and
do not depend on the flow geometry. Their compression corner results at Re;, =1.43 x
10° and four different ramp angles are shown in figure 16(b). The overall correlation is
satisfactory and our LES results (solid line) support the experimental findings. Dolling
& Or (1985) also analysed data for a different flow geometry (blunt fin) and a variety
of Reynolds numbers. These results generally support the free interaction concept and
suggest a Reynolds number dependency for the peak value of «j.
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3.4. Dynamic mode decomposition

The previous section addressed the unsteady character of the interaction by means of
local flow diagnostics. The aim of the following modal analysis is to relate global flow
phenomena to the frequencies found in §3.3. We will start with a two-dimensional
DMD in terms of spanwise-averaged snapshots. This is motivated by the successful
application of the DMD method to similar SWBLI problems by Pirozzoli et al. (2010),
Grilli et al. (2012), Tu (2013) and Nichols et al. (2016), the analysis of low-pass
filtered and spanwise-averaged flow fields by Priebe & Martin (2012) and the global
stability analysis by Touber & Sandham (2009). Three-dimensional effects are however
present for the current study as already shown in the previous sections. Therefore we
will subsequently apply the DMD to snapshots of the two-dimensional skin-friction
data, which will enable us to conclude whether three-dimensional modulations of the
separated-flow region are present.

A short overview of the DMD is given in the following. DMD is a Koopman-
operator-based spectral analysis technique that decomposes the flow field into coherent
spatial structures sharing the same temporal frequency (Rowley et al. 2009; Schmid
2010). It operates on a discrete sequence of snapshots and can be used to extract a
reduced-order representation of the underlying dynamical system. Starting point is a
given sequence of snapshots V| = {v, v, ..., v,} € R™" sampled at constant time
intervals Af,, where each v; is a column vector with m entries (e.g. velocities on
the computational grid). A linear, time-invariant operator is assumed to relate two
consecutive snapshots, that is v;.; = Av;. The dynamics of the underlying system
is determined once the eigenvalues and eigenvectors of this operator A € R™™ are
found. Note that in case of a nonlinear system this assumption is equivalent to a linear
approximation. The time-invariant mapping allows to formulate a Krylov sequence of
the data of the form V| = {vl,Av,,szl, o ,A”_'v]}. In general m is so large that
we cannot compute eigenvalues of A directly, which is why we seek for a low-order
representation. A method that does not require explicit knowledge of A is based on
the assumption that we can express v, as a linear combination of the previous n — 1
linearly independent vectors v; according to

vV, =aV; +avy+---+a,_ v, +r. 3.4

Following the work of Schmid (2010), the above relation can be applied to the
snapshot sequence to obtain

AV =Vi=V"!S tre”, (3.5)

where e = (0, ..., 1) e R""!. The matrix § € R®»"P*®=D jg a companion matrix with
the only unknowns a;. It is a lower-dimensional representation of A and shares a
subset of approximate eigenvalues, which are often referred to as Ritz values (Rowley
et al. 2009). In case of a linear system the residual r vanishes. We will later use
(3.4) in our analysis to verify whether enough snapshots have been collected. The
companion matrix S can be obtained by solving (3.4) in a least-squares sense. The
resulting decomposition in terms of eigenvalues and eigenvectors of S, however, often
produces an ill-conditioned and noise-sensitive algorithm, which is why Schmid (2010)
proposed a more robust implementation based on a singular value decomposition
(SVD) of Vi™' = UXV". The SVD of V™' in combination with (3.5) yields the

approximate matrix S= UTV;VE - = UTAU, which is the same result as when the
linear operator A is projected onto the proper orthogonal decomposition (POD) basis
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implicitly contained in the matrix U. Finally, the individual DMD modes ¢; € C" are
obtained by

¢, =Uy;,, (3.6)

where y; € C"~!' denotes the ith eigenvector of § that is Eyi = wny; with u; € C being
the associated eigenvalue. With the above decomposition it is possible to approximate
experimental or numerical snapshots using a linear combination of the DMD modes

n—1
vy b, me(l,... n—1), (3.7)
i=1

where «; € C can be recognised as the amplitude of the individual DMD mode. In
matrix form we obtain

n—1

o) | 'u;la—l
Vit mg bl | SRR B BRET
¢ Oy 1 PLn.—l MZ::
D, Vand

The choice of the DMD amplitudes «; is not unique. Here we follow the strategy
by Jovanovi¢, Schmid & Nichols (2014), who proposed to solve the following
optimisation problem for the unknown amplitudes

Oppy = arg minlvlll_l - ¢Davand|12va (39)

where |- | denotes the Frobenius norm. Resulting amplitudes e, in combination with
(3.7) optimally approximate the entire data sequence. Note that the above optimisation
problem reduces to the classical first snapshot scaling (Tu & Rowley 2012) for a full-
rank system.

One of the main problems when applying the DMD algorithm is to properly select
the dynamically most important and robust modes of the underlying dataset. The
amplitude of a mode «; might be a good indicator for modes having an almost zero
growth rate, but could be misleading for transient modes associated with large negative
growth rates. We therefore use a more sophisticated and automated mode selection
algorithm developed by Jovanovi¢ et al. (2014). Their sparsity-promoting DMD
(SPDMD) algorithm augments the optimisation problem (3.9) by a regularisation
term that penalises the ¢;-norm of the vector of DMD amplitudes «;

n—1
o =argmin|V]™ — ¢DoVaualt+v Y leil, (3.10)

i=1

where y is a given positive regularisation parameter that for large values enforces
a sparse vector &, while for y = 0 the conventional optimisation problem (3.9) is
recovered. When for a given y a desired sparsity structure is achieved, the amplitudes
for the non-zero entries of & are adjusted according to (3.9). For algorithmic details
on how to effectively solve this convex optimisation problem please refer to Jovanovié¢
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et al. (2014). Besides the mode selection algorithm via SPDMD we will also look at
the magnitude of a mode |¢;|, which has been shown to correlate with the spectral
behaviour of the underlying flow field when compared to local measurements (Rowley
et al. 2009).

Finally, dynamic information of an individual DMD mode in terms of growth rate
B; and angular frequency w; are implicitly available through the eigenvalues w; after
applying a logarithmic mapping

ﬂi =Re(1;)) =1In |/~’Li|/At$

o =Im() = arg(up) / At, (3.11)

/li =In Mi/At.v —

Our database for the spanwise-averaged DMD analysis consists of n = 7000
snapshots of pressure and velocity fields {p, u, v}, equispaced in time with an interval
of At; = 0.58y/Uy. Only a subdomain of the full computational box is used for
the modal analysis, which covers the region —15.25 < (x — Xjn,)/80 < 19.75 and
0 <y/dy <7.5. We thus focus on the dynamically interesting interaction region. This
leads to a snapshot matrix of V| e R™" with dimensions m = 968352 and n = 7000.
The particular choice of the number of snapshots for the current analysis is motivated
by studying the DMD residual introduced in (3.4). The normalised ¢,-norm of the
residual vector is plotted over the number of snapshots in figure 17(a). The DMD
residual appears sufficiently saturated after approximately 7000 snapshots. It is thus
plausible to assume that enough snapshots have been gathered to accurately predict
the dynamics of the system. We show contours of the residual for both the pressure
and streamwise velocity in figure 17(b) for the chosen snapshot set of n = 7000.
The above settings lead to a frequency resolution expressed in Strouhal number of
2.86 x 107* < St; <1 (4.43 x 107 <81, < 15.5). The high sampling rate is motivated
by the fact that, besides the low-frequency phenomenon, we want to accurately
resolve the medium-frequency unsteadiness typically found around frequencies of
0.5Uy/Ly,, (Dupont et al. 2006). Moreover, as pointed out by Nichols et al. (2016),
the signal-to-noise ratio is significantly increased as we partially resolve turbulence,
having a favourable effect on convergence properties of the DMD algorithm.

In figure 18(a) we show the spectrum of eigenvalues resulting from the standard
DMD algorithm. Since real-valued input data are processed the modes arise
as complex conjugate pairs, which results in a symmetric spectrum. Nearly all
eigenvalues reside on the unit circle |u;| = 1. This is expected for statistically
stationary systems and further indicates that the snapshot sequence V lies on or near
an attracting set (Rowley et al. 2009). The normalised magnitudes of the individual
DMD modes |¢;| for positive frequencies are shown in figure 18(b). To facilitate
mode selection, we apply the SPDMD algorithm of Jovanovié et al. (2014). The filled
bullets indicate a subset of Ny, =13 modes that have been categorised as dynamically
important. Note that the SPDMD method does not simply chose the DMD modes
based on their magnitude, but identifies modes having the strongest influence on
the complete snapshot sequence (Jovanovi¢ et al. 2014). The DMD spectrum shares
some similarities with the local PSD at the mean separation location shown in
figure 12(c), that is the low-frequency unsteadiness appears as a broadband bump
involving multiple low frequencies. This implies that the unsteadiness is connected to
a global flow phenomenon. In agreement with the spectral analysis of wall-pressure
probes presented in § 3.3, one of the low-frequency modes obtained by the DMD
algorithm is located at S7;,,, = 0.039 and is part of the SPDMD subset. The modes
selected by the SPDMD algorithm can be categorised into two different types as
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FIGURE 17. (Colour online) (a) Normalised DMD residual according to (3.4). (b)
Contours of DMD residual for pressure (top) and streamwise velocity (bottom) for
n = "7000.

T T T T
(@ 1.0 (b) — - ——
10 * i
05
z 0 ]
= 05
-0.5
-1.0 0 .
-0 05 0 05 10 1073 1072 107! 10° 10!
Re(p:) fLyep/Uo

FIGURE 18. (a) Spectrum of eigenvalues resulting from the standard DMD algorithm.
(b) Normalised magnitudes of the DMD modes. (® (grey)) indicate a SPDMD subset of
Ny = 13 modes.

indicated by the frequency bins I and II in figure 18(b). Modes belonging to the first
group (I) describe a flow modulation that involves the shock system and separation
bubble as an entity, while modes belonging to the second group (II) correspond to
shedding motions of the detached shear layer. We post-processed the SPDMD modes
within each single bin and found that they share similar flow structures, which is why
in the following we only select two representatives out of each region, see the labels
¢, ¢, ¢ and ¢, in figure 18(b). The associated frequencies are f; = 0.039U,/L,,
£ =0.114U,/L,,, f3=0.52U, /Ly, and fi =1.087U,/Ly,,.

Animations of the mean-flow modulation through the individual modes are available
as a supplement to the online version at https://doi.org/10.1017/jfm.2017.308 of this
article and should be considered in conjunction with the following discussions. For a
selected mode ¢; we reconstruct an individual real-valued flow variable u according
to u(x, t) = ¢, + ay - Re{a,z,(,p,d),-ei‘”” + cc}, where ¢,, denotes the mean mode, cc
indicates the contribution of the complex conjugate of ¢; and a, is an optional
amplification factor. We only study the oscillatory component of each DMD mode
and thus neglect the individual growth rate B;, since in the limit of infinitely many
snapshots the growth rate tends towards zero for a nonlinear statistically stationary
system (Pirozzoli et al. 2010). In contrast to the results of Grilli et al. (2012), where
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FIGURE 19. (Colour online) Real and imaginary part of DMD modes showing contours
of modal pressure fluctuations p’/ps.. (@) Re(¢;). (b) —Im(¢;). Refer to figure 18 for the
mode selection. For clarity, the mean shock system, the mean sonic line and the mean
dividing streamline are superimposed by black solid lines.

the low-frequency unsteadiness is restricted to a few discrete phase-locked modes, the
DMD spectrum in figure 18(a) shows a large number of contributing modes. Indeed,
increasing the number N, for the SPDMD algorithm results in selecting nearly all
modes within the low-frequency bin. Consequently, the contribution of a single mode
to the mean-flow field is hardly seen, which is why we chose a suitable magnification
factor ay for ¢; before adding it to the mean mode ¢,,. The supplementary animations
show contours of the pressure gradient magnitude in the range |Vp|do/poo = [0, 10] at
8 equally spaced phase angles, that is w; =jn/4,j=0...7. The mean shock system
together with the instantaneous separation bubble are highlighted by black solid lines.

In figures 19 and 20 we show the real and (negative) imaginary part of the selected
DMD modes with contours of pressure and velocity fluctuations, respectively. The
temporal mode evolution between the two discrete phase angles w;t=0 and w;t =1/2
is equivalent to the real and negative imaginary part when neglecting the individual
growth rate B;. Note that the contour range has been adjusted for best visibility and
thus does not reflect the actual minimum and maximum values.

Considering the pressure modulation with respect to the low-frequency mode ¢,
a high level of p’ is found along the separation and reattachment shock. These
fluctuations are out of phase and describe an oscillation of the shock system as a
whole, i.e. a periodic contraction and expansion of the interaction region. While
the separation shock exhibits a nearly translational motion, a flapping motion is
observed for the reattachment shock. No fluctuations are found along the incident
shock above the shock-intersection location, which remains steady. Similarly to the
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FIGURE 20. (Colour online) Real and imaginary part of DMD modes showing contours
of modal velocity fluctuations u'/U,. (a) Re(¢;). (b) —Im(¢;). Refer to figure 18 for the
mode selection. For clarity, the mean shock system, the mean sonic line and the mean
dividing streamline are superimposed by black solid lines.

results of Nichols er al. (2016), velocity fluctuations (see Im(¢;) in figure 20) are
mainly concentrated along the separation shock and the detached shear layer, with
minor contributions within the recirculation bubble. Increased levels of pressure and
velocity fluctuations are not visible within the incoming TBL for ¢,. Mode ¢, is
associated with a frequency of f, = 0.114U,/L,., and shares some similarities with
the former low-frequency mode: high levels of pressure fluctuations are found along
the separation and transmitted incident shock. However, the strength is not uniform
along the former, indicating a change of the shock angle with respect to the free
stream (see also the animation available online). Pressure fluctuations are increased
within the recirculation region close to the bubble apex and probably related to a
flapping motion of the incident-shock tip (see Im(¢,) in figure 19), which strongly
perturbs the mean separation bubble in this region.

The medium-frequency mode ¢; and its higher harmonic ¢, have a strong impact
on the reattachment shock in terms of shock wrinkling. This shock wrinkling is
clearly seen from an animation of the snapshot sequence and caused by shear-layer
vortices interacting with the reattachment compression. The modal shapes provide
a proof of this observation, see Re(¢p;) and Re(¢,) in figure 19. Their activity is
concentrated along the mean sonic line and associated with shear-layer vortices
convected downstream while simultaneously inducing eddy Mach waves in the
supersonic part of the flow. This finding is consistent with global linear-stability
analysis of impinging SWBLI in the laminar regime by Guiho, Alizard & Robinet
(2016). Besides the corrugation of the reattachment shock, Mach wave radiation
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FIGURE 21. (a) Spectrum of eigenvalues resulting from the standard DMD algorithm. ()
Normalised magnitudes of the DMD modes. (® (grey)) indicate a SPDMD subset of Ny, =
17 modes.

induces disturbances along the reflected shock above the shock-intersection location.
Similar results have been found by Agostini ef al. (2012) through cross-correlation
maps between the pressure field and time series of the streamwise location of the
reflected shock for their LES studies of incipient, mildly and fully separated SWBLI
at Ma = 2.3 and Re;, ~ 60 x 10° (see figure 8 in the respective publication). The
supplementary online material further highlights that the modes ¢; and ¢, primarily
influence the rear part of the separation bubble starting from the bubble apex. While
the separation point remains quasi unaltered, the reattachment location is strongly
perturbed by the shear-layer vortices reattaching nearby.

We now move on to the DMD analysis of the skin-friction coefficient {C}. The
sampling time interval and frequency resolution is the same as for the former
analysis. The subdomain chosen for the modal decomposition coincides in streamwise
direction with the DMD of spanwise-averaged snapshots, while in spanwise direction
we take the full LES domain extent of —2.25 < z/8y < 2.25. As expected, nearly all
eigenvalues lie on the unit circle, see figure 21(a). The normalised mode magnitudes
|@:| are shown in figure 21(b). We again employ the SPDMD algorithm to ease the
mode selection process and highlight a subset of Ny, = 17 modes. The spectrum is
similar to the one from the spanwise-averaged analysis shown in figure 18(b) with
respect to the frequencies selected by the SPDMD within each single frequency
bin. However, differences can be observed for the high-frequency part starting from
f > 3Uy/Ly,. Since we partially resolve high-frequency related turbulent structures
and do not filter them out through spanwise averaging as in the former analysis, the
spectrum still shows significant energy content in this region. Note that two modes
with the same low frequency of f =6 x 107°U,/L,,, and large modal norm are visible
in the spectrum. We do not, however, pay much attention to these modes, as they are
very close to the minimum resolvable frequency of the snapshot sequence given by
443 x 1073 Uy/Ls.,. Moreover, the SPDMD algorithm does not classify these modes
as being dynamically important, even if we increase the subset size.

Figure 22 shows the real and (negative) imaginary part of four dynamically
important DMD modes with contours of skin-friction perturbation and isolines of
mean separation and reattachment location. The frequencies of the selected modes,
fi=0.035U,/L,, f» =0.12Uy/Ly,, f5 = 0.52Uy/Ly, and fi, = 1.58U, /Ly, (see also
figure 21(b) for reference), are similar to the ones of the spanwise-averaged DMD
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FIGURE 22. (Colour online) Real and imaginary part of DMD modes showing contours
of modal skin-friction fluctuations C}. (a) Re(¢;). (b) —Im(¢;). Refer to figure 21 for
the mode selection. For clarity, the mean separation and reattachment locations are
superimposed by black solid lines.

analysis. An animation of each mode superimposed on the mean solution is again
available as a supplement to the online version of this article and should be considered
for the following discussion. There, the instantaneous separation and reattachment
locations are highlighted by black solid lines, whereas the mean lines are shown in the
print version. The low-frequency mode ¢; shows a nearly two-dimensional modulation
of the separation-shock foot, see Im(¢;) in figure 22, with comparably low activity
inside the recirculation zone. Remarkably, streamwise streaks (generated through
Gortler-like vortices) starting slightly upstream of the mean reattachment location
and extending up to the domain end are clearly visible. A spanwise wavelength of
approximately 2§, is found (similar to the spanwise width of each vortex pair shown
in figure 9), from which we conclude to have identified footprints of Gortler-like
vortices. Their impact on the skin friction results in a large-scale flapping of the
reattachment line, superimposed on a breathing motion of the separation bubble as
a whole (see also the animation available online). In the absence of Gortler-like
vortices, the separation bubble would uniformly expand and shrink across the span.
The shape of the second dynamically important mode ¢, is similar to the former.
Streamwise streaks of same wavelength are dominant at this frequency and the
separation line moves essentially back and forth. The animation reveals a spanwise
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motion of the streaks, which provokes a spanwise wrinkling of the reattachment line
without significant influence on its streamwise position.

The medium-frequency mode ¢; (f; = 0.52U,/L,.,) is connected to large-scale
vortices reattaching downstream of the mean reattachment line, which are subsequently
convected towards the domain outlet. Similarly to the results from the spanwise-
averaged DMD analysis, modes ¢; and ¢, do not considerably affect the separation
line but leave a strong footprint on the reattachment dynamics (see also the animation
available online).

4. Summary and discussion

The present work was motivated by the lack of an analysis of strong impinging
shock-wave/turbulent boundary-layer interactions (SWBLI) with very large mean-flow
separation at high Reynolds number based on well-resolved numerical simulation data.
We have performed wall-resolved large-eddy simulations for the flow configuration of
a recent experiment (Daub et al. 2015), consisting of a flat plate turbulent boundary
layer at Mach number Ma =3 and Reynolds number Re;, =203 x 10°. The incoming
TBL interacts with a wedge-induced shock wave that deflects the incoming flow by
¥ =19.6° and leads to a strongly separated mean-flow region with a length of L,, =
15.56¢.

The mean wall-pressure evolution agrees with experimental measurements and
exhibits a distinct pressure plateau representative of a strong SWBLI. Similarly to
LES results of Loginov et al. (2006) for their compression corner flow, Gortler-like
vortices exist in our configuration. These counter-rotating streamwise vortices develop
slightly downstream of the bubble apex and induce a strong spanwise flow modulation
in this region. In our case, however, these vortices are not locked at a specific
spanwise position, but rather undergo a meandering motion that is coupled to the
separation-bubble dynamics.

Our well-resolved and long-time integrated LES data enable an accurate analysis of
the low-frequency SWBLI dynamics. Spectral analyses of numerical and experimental
wall-pressure signals near the separation point demonstrate a broadband low-frequency
unsteadiness with a peak amplitude near Sz, = 0.04, consistent with experimental
values found by Dussauge er al. (2006) for different flow geometries and upstream
conditions. High Reynolds number effects lead to a distinct peak (global maximum) in
the r.m.s. wall-pressure fluctuations centred around the mean separation location with
95 % fluctuation intensity associated with frequencies below 1U,/L,,,. Furthermore,
the wall-pressure signal is strongly intermittent at this location.

Sparsity-promoting dynamic mode decomposition (Jovanovi¢ et al. 2014) has
proven effective in identifying robust and dynamically important modes of our
SWBLI when applied to spanwise-averaged snapshots as well as snapshots of the
two-dimensional skin-friction coefficient. Essentially, two types of modes have been
found: low-frequency modes (87, ~ 0.04) primarily involve the shock system, the
separated shear layer and the separation bubble as an entity, leading to the classical
breathing motion of the recirculating flow together with a forward/backward motion
of the shock system. Medium-frequency modes (S7;,, ~ 0.5) involve shear-layer
vortices convected downstream while simultaneously inducing eddy Mach waves in the
supersonic part of the flow. Shock corrugation, both for the reattachment and reflected
shock, is found to be connected to these frequencies. Low-frequency skin-friction
modes include streamwise streaks downstream of the nominal impingement location,
which we have identified as footprints of Gortler-like vortices. These vortices cause a
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large-scale flapping of the reattachment line superimposed on a breathing motion of
the separation bubble.

In contrast to experimental observations by Ganapathisubramani et al. (2009)
for a compression corner flow, our modal analysis does not identify any coherent
structure of sufficient length (superstructure) upstream of the interaction that could
possibly provoke the SWBLI unsteadiness. Our turbulent inflow conditions and
domain size limit such structures to a minimum frequency one order of magnitude
larger than the observed characteristic frequencies. The scaling analysis of Clemens
& Narayanaswamy (2014) further shows that an upstream mechanism related to
momentum fluctuations in the incoming TBL is unlikely responsible for the large-scale
separation-shock motion in the present study. Collapse events of the separation bubble
as observed by Priebe & Martin (2012) for their weak compression corner flow have
not been found for our strong SWBLI. Increasing the shock strength and keeping the
upstream TBL conditions the same decreases the natural frequency of the SWBLI
system and hence reduces its receptive frequency band. Upstream mechanisms cannot
explain the observed frequencies for our particular interaction and the quasi-constant
Strouhal number found both experimentally and numerically for a wide range of
interaction parameters. Our analyses support a mechanism proposed by Touber &
Sandham (2011) and Grilli et al. (2012), where the low-frequency unsteadiness is
an intrinsic property of the interaction. It may not be self-sustaining and thus may
require a coherent or incoherent forcing (Touber & Sandham 2011) originating from
upstream or within the interaction zone (Sansica, Sandham & Hu 2014). For our
strong high Reynolds number SWBLI the separation-bubble dynamics is clearly
coupled to unsteady Gortler-like vortices, which might act as a source for continuous
(coherent) forcing of the separation-shock-system dynamics. Interestingly, since the
discoveries were made independently of one another, this is the same conclusion as
the one drawn by Priebe et al. (2016). These authors recently have analysed previous
DNS results of Priebe & Martin (2012) of a Ma = 2.9 compression corner flow
using DMD of spanwise-averaged as well as three-dimensional snapshots. Therein,
low-frequency modes are characterised by streamwise-elongated regions of low and
high momentum that the authors identified as being induced through Gortler-like
vortices. Similar to our results, such vortices are unsteady and move in spanwise
direction. While Priebe ef al. (2016) remain in doubt whether the observed dynamics
constitutes an unusual event due to a relatively short time duration captured in their
DNS (2008y/Uy), our results with a much longer time period of 38058,/U, confirm
this assertion. Furthermore, our results show that unsteady large-scale streamwise
structures are also present in strong impinging SWBLI.
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