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Hypergraphs Do Jump
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We say that α ∈ [0, 1) is a jump for an integer r � 2 if there exists c(α) > 0 such that for all
ε > 0 and all t � 1, any r-graph with n � n0(α, ε, t) vertices and density at least α + ε contains a
subgraph on t vertices of density at least α + c.

The Erdős–Stone–Simonovits theorem [4, 5] implies that for r = 2, every α ∈ [0, 1) is a jump.
Erdős [3] showed that for all r � 3, every α ∈ [0, r!/rr) is a jump. Moreover he made his famous
‘jumping constant conjecture’, that for all r � 3, every α ∈ [0, 1) is a jump. Frankl and Rödl [7]
disproved this conjecture by giving a sequence of values of non-jumps for all r � 3.

We use Razborov’s flag algebra method [9] to show that jumps exist for r = 3 in the interval
[2/9, 1). These are the first examples of jumps for any r � 3 in the interval [r!/rr, 1). To be precise,
we show that for r = 3 every α ∈ [0.2299, 0.2316) is a jump.

We also give an improved upper bound for the Turán density of K−
4 = {123, 124, 134}: π(K−

4 ) �
0.2871. This in turn implies that for r = 3 every α ∈ [0.2871, 8/27) is a jump.

1. Introduction

An r-uniform hypergraph (or r-graph for short) is a pair F = (V (F), E(F)), where V (F) is a set
of vertices and E(F) is a family of r-subsets of V (F) called edges. So a 2-graph is a simple graph.
For ease of notation we often identify an r-graph F with its edge set. The density of an r-graph
F is

d(F) =
|E(F)|(

n
r

) .

We say that α ∈ [0, 1) is a jump for an integer r � 2 if there exists c(α) > 0 such that for all
ε > 0 and all t � 1, there exists n0(α, ε, t) such that any r-graph with n � n0(α, ε, t) vertices and
at least (α + ε)

(
n
r

)
edges contains a subgraph on t vertices with at least (α + c)

(
t
r

)
edges.

The Erdős–Stone–Simonovits theorem [4, 5] implies that for r = 2, every α ∈ [0, 1) is a jump.
Erdős [3] showed that for all r � 3, every α ∈ [0, r!/rr) is a jump. He went on to make his
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famous ‘jumping constant conjecture’, that for all r � 3, every α ∈ [0, 1) is a jump. Frankl and
Rödl [7] disproved this conjecture by giving a sequence of values of non-jumps for all r � 3.
More recently a number of authors have given more examples of non-jumps for each r � 3 in the
interval [5r!/2rr, 1) (see [6] for example). However, nothing was previously known regarding
the location of jumps or non-jumps in the interval [r!/rr, 5r!/2rr) for any r � 3.

We give the first examples of jumps for any r � 3 in the interval [r!/rr, 1).

Theorem 1.1. If α ∈ [0.2299, 0.2316) then α is a jump for r = 3.

In order to explain our proof we require some definitions and a theorem of Frankl and Rödl [7].
Let F be an r-graph with vertex set [n] = {1, 2, . . . , n} and edge set E(F). Define

Sn =

{
(x1, . . . , xn) ∈ R

n :

n∑
i=1

xi = 1, xi � 0

}
.

For x ∈ Sn let

λ(F, x) =
∑

{i1 ,i2 ,...,ir}∈E(F)

r!xi1xi2 · · · xir .

The Lagrangian of F is defined to be

λ(F) = max
x∈Sn

λ(F, x).

Given a family of r-graphs F , we say that an r-graph H is F-free if H does not contain a
subgraph isomorphic to any member of F . For any integer n � 1 we define the Turán number of
F to be

ex(n,F) = max{|E(H)| : H is F-free, |V (H)| = n}.

The Turán density of F is defined to be the following limit (a simple averaging argument shows
that it always exists):

π(F) = lim
n→∞

ex(n,F)(
n
r

) .

We say that α is threshold for F if π(F) � α.

Theorem 1.2 (Frankl and Rödl [7]). The following are equivalent:

(i) α is a jump for r,
(ii) α is threshold for a finite family F of r-graphs satisfying

min
F∈F

λ(F) > α.

Let Fr be the r-graph consisting of a single edge. Since any α ∈ [0, 1) is threshold for Fr

and λ(Fr) = r!/rr, Theorem 1.2 trivially implies Erdős’s result [3] that for each r � 3, every
α ∈ [0, r!/rr) is a jump for r.

The original version of Erdős’s jumping constant conjecture asserted that r!/rr is a jump for
every r � 3. This fascinating problem is still open, even for r = 3. Erdős speculated [3] that
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3!/33 = 2/9 was threshold for the following family of 3-graphs F∗ = {F1, F2, F3}, where

F1 = {123, 124, 134}, F2 = {123, 124, 125, 345}, F3 = {123, 124, 235, 145, 345}.

It is straightforward to check that λ(F1) = 8/27, λ(F2) = 189+15
√

5
961

and λ(F3) = 6/25. Since
min1�i�3 λ(Fi) = λ(F2) > 2/9, if 2/9 were threshold for F∗ then Theorem 1.2 would imply
that 2/9 is a jump for r = 3.

Unfortunately Erdős’s suggestion is incorrect: 2/9 is not threshold for F∗. There exist 7 vertex
3-graphs that are F∗-free with Lagrangians greater than 2/9. By taking appropriate ‘blow-ups’
of such 3-graphs we find that π(F∗) > 2/9. (To be precise we could take blow-ups of F4, defined
below, to show that π(F∗) � 0.2319.) However, Erdős’s idea suggests a natural approach to
proving that 2/9 is a jump for r = 3. Let F ′ be a family of 3-graphs containing F1, F2, F3 with
the property that minF∈F ′ λ(F) > 2/9. If we can show that 2/9 is threshold for F ′, then (by
Theorem 1.2) 2/9 is a jump for r = 3.

A search of all 3-graphs with at most 7 vertices yields the following two additional 3-graphs
which we can add to F ′:

F4 = {123, 135, 145, 245, 126, 246, 346, 356, 237, 147, 347, 257, 167},
F5 = {123, 124, 135, 145, 236, 346, 256, 456, 247, 347, 257, 357, 167}.

It is easy to check that λ(F4) � 0.2319 > λ(F2) (to see this, set x1 = x2 = x3 = 0.164, x4 = 0.154,
x5 = x6 = x7 = 0.118) and λ(F5) � λ(F2) (set μ= (18 − 3

√
5)/31, x1 = x6 = x7 = μ/3, x2 = x3 =

x4 = x5 = (1 − μ)/4).
We can now ask: Is it true that 2/9 is threshold for F ′ = {F1, F2, F3, F4, F5}? Unfortunately this

is still false: there exist 3-graphs on 8 vertices avoiding all members of F ′ and with Lagrangians
greater than 2/9. By taking appropriate ‘blow-ups’ of such 3-graphs, we can show that π(F ′) >

2/9. Moreover, by considering 8 vertex 3-graphs, numerical evidence suggests that if 2/9 is a
jump then the size of the jump is extremely small: c(2/9) � 0.00009254.

However, although 2/9 is not threshold for F ′, we can show the following upper bound on the
Turán density of F ′.

Lemma 1.3. The Turán density of F ′ satisfies π(F ′) � 0.2299.

Since 0.2299 < minF∈F ′ λ(F) = λ(F2) = 0.2316, Theorem 1.1 is an immediate corollary of
Lemma 1.3 and Theorem 1.2.

It remains to prove Lemma 1.3. For this we make use of recent work of Razborov [9] on
flag algebras that introduces a new technique that drastically improves our ability to compute
(and approximate) Turán densities. We outline the necessary background in the next section but
emphasize that the reader should consult Razborov [8] and [9] for a full description of his work.

2. Computing Turán densities via flag algebras

2.1. Razborov’s method
Let F be a family of r-graphs whose Turán density we wish to compute (or at least approximate).
Razborov [9], describes a method for attacking this problem that can be thought of as a general
application of Cauchy–Schwarz using the information given by small F-free r-graphs.
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Let H be the family of all F-free r-graphs of order l, up to isomorphism. If l is sufficiently
small we can explicitly determine H (by computer search if necessary).

For H ∈ H and a large F-free r-graph G, we define p(H;G) to be the probability that a random
l-set from V (G) induces a subgraph isomorphic to H . Trivially, the density of G is equal to the
probability that a random r-set from V (G) forms an edge in G. Thus, averaging over l-sets in
V (G), we can express the density of G as

d(G) =
∑
H∈H

d(H)p(H;G), (2.1)

and hence d(G) � maxH∈H d(H).
This ‘averaging’ bound on d(G) is in general rather poor: clearly it could only be sharp if all

subgraphs of G of order l are as dense as possible. It also fails to consider how different subgraphs
of G can overlap. Razborov’s flag algebras method allows us to make use of the information given
by examining overlapping subgraphs of G to give far stronger bounds.

A flag, F = (GF, θ), is an r-graph GF together with an injective map θ: [s] → V (GF ). If θ
is bijective (and so |V (GF )| = s) we call the flag a type. For ease of notation, given a flag F =

(GF, θ) we define its order |F | to be |V (GF )|.
Given a type σ we call a flag F = (GF, θ) a σ-flag if the induced labelled subgraph of GF given

by θ is σ. A flag F = (GF, θ) is admissible if GF is F-free.
Fix a type σ and an integer m � (l + |σ|)/2. (The bound on m ensures that an l-vertex r-

graph can contain two m-vertex subgraphs overlapping in |σ| vertices.) Let Fσ
m be the set of all

admissible σ-flags of order m, up to isomorphism. Let Θ be the set of all injective functions from
[|σ|] to V (G). Given F ∈ Fσ

m and θ ∈ Θ, we define p(F, θ;G) to be the probability that an m-set
V ′, chosen uniformly at random from V (G) subject to im(θ) ⊆ V ′, induces a σ-flag (G[V ′], θ)

that is isomorphic to F .
If Fa, Fb ∈Fσ

m and θ ∈ Θ then p(Fa, θ;G)p(Fb, θ;G) is the probability that two m-sets Va, Vb ⊆
V (G), chosen independently at random subject to im(θ) ⊆ Va ∩ Vb, induce σ-flags (G[Va], θ),
(G[Vb], θ) that are isomorphic to Fa, Fb respectively. We define a related probability, p(Fa, Fb,

θ;G), to be the probability that if we choose a random m-set Va ⊆ V (G), subject to im(θ) ⊆
Va and then choose a random m-set Vb ⊆ V (G) such that Va ∩ Vb = im(θ), then (G[Va], θ),
(G[Vb], θ) are isomorphic to Fa, Fb respectively. Note that the difference between p(Fa, θ;G)p(Fb,

θ;G) and p(Fa, Fb, θ;G) is due to the effect of sampling with or without replacement. When G

is large this difference will be negligible, as the following lemma tells us. (This is a very special
case of Lemma 2.3 in [8].)

Lemma 2.1 (Razborov [8]). For any Fa, Fb ∈ Fσ
m, and θ ∈ Θ,

p(Fa, θ;G)p(Fb, θ;G) = p(Fa, Fb, θ;G) + o(1),

where the o(1) term tends to 0 as |V (G)| tends to infinity.

Proof. Choose random m-sets Va, Vb ⊆ V (G), independently, subject to im(θ) ⊆ Va ∩ Vb. Let
E be the event that Va ∩ Vb = im(θ). Then

p(Fa, Fb, θ;G)P[E] � p(Fa, θ;G)p(Fb, θ;G) � p(Fa, Fb, θ;G)P[E] + P[Ē].
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If |V (G)| = n then

P[E] =

(
n−|σ|
m−|σ|

)(
n−m
m−|σ|

)
(
n−|σ|
m−|σ|

)2
= 1 − o(1).

Averaging over a uniformly random choice of θ ∈ Θ, we have

Eθ∈Θ

[
p(Fa, θ;G)p(Fb, θ;G)

]
= Eθ∈Θ

[
p(Fa, Fb, θ;G)

]
+ o(1). (2.2)

Note that this expectation can be computed by averaging over l-vertex subgraphs of G. For
an l-vertex subgraph H ∈ H, let ΘH be the set of all injective maps θ : [|σ|] → V (H). Recall
that, for H ∈ H, p(H;G) is the probability that a random l-set from V (G) induces a subgraph
isomorphic to H . Thus,

Eθ∈Θ

[
p(Fa, Fb, θ;G)

]
=

∑
H∈H

Eθ∈ΘH

[
p(Fa, Fb, θ;H)

]
p(H;G). (2.3)

Consider a positive semidefinite matrix Q = (qab) of dimension |Fσ
m|. For θ ∈ Θ define pθ =

(p(F, θ;G) : F ∈ Fσ
m). Using (2.2), (2.3) and linearity of expectation, we have

Eθ∈Θ[pTθ Qpθ] =
∑

Fa,Fb∈Fσ
m

∑
H∈H

qabEθ∈ΘH
[p(Fa, Fb, θ;H)]p(H;G) + o(1). (2.4)

For H ∈ H define the coefficient of p(H;G) in (2.4) by

cH (σ, m, Q) =
∑

Fa,Fb∈Fσ
m

qabEθ∈ΘH
[p(Fa, Fb, θ;H)]. (2.5)

Suppose we have t choices of (σi, mi, Qi), where each σi is a type, each mi � (l + |σi|)/2 is an
integer, and each Qi is a positive semidefinite matrix of dimension |Fσi

mi
|. For H ∈ H define

cH =

t∑
i=1

cH (σi, mi, Qi).

Note that cH is independent of G.
Since each Qi is positive semidefinite, (2.4) implies that∑

H∈H
cHp(H;G) + o(1) � 0.

Thus, using (2.1), we have

d(G) �
∑
H∈H

(d(H) + cH )p(H;G) + o(1).

Hence the Turán density satisfies

π(F) � max
H∈H

(d(H) + cH ). (2.6)

Since the cH may be negative, for an appropriate choice of the (σi, mi, Qi), this bound may be
significantly better than the trivial averaging bound given by (2.1).
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Figure 1. The 3-graph H2, with vertices labelled
a, b, c, d. Its two edges are acd and bcd.

Note that we now have a semidefinite programming problem: given any particular choice of
the (σi, mi), find positive semidefinite matrices Qi so as to minimize the bound for π(F) given by
(2.6).

2.2. An example
We now illustrate Razborov’s method with a simple example. Let K−

4 = {123, 124, 134}. We will
reprove de Caen’s [2] bound: π(K−

4 ) � 1/3.
Let l = 4, so H consists of all K−

4 -free 3-graphs of order 4, up to isomorphism. There are three
such 3-graphs, which we will refer to as H0, H1, and H2; they have 0, 1, and 2 edges, respectively
(this is enough information to identify them uniquely). We will use a single type: σ = (Gσ, θ)

where V (Gσ) = [2], E(Gσ) = ∅ and θ(x) = x. Taking m = 3, there are only two admissible σ-
flags of order 3 up to isomorphism, F0 and F1, containing 0 and 1 edge, respectively.

In order to calculate the coefficients cH we need to compute Eθ∈ΘH
[p(Fa, Fb, θ;H)], for each

H ∈ {H0, H1, H2} and each pair Fa, Fb ∈ {F0, F1}. Their values are given in the following table:

H0 H1 H2

F0, F0 1 1/2 1/6

F0, F1 0 1/4 1/3

F1, F1 0 0 1/6

.

As an example of how these values are computed, consider Eθ∈ΘH2
[p(F0, F1, θ;H2)]. This

is the probability that a random choice of θ ∈ ΘH2
and 3-sets V0, V1 ⊂ V (H2), such that V0 ∩

V1 = im(θ), induce σ-flags (H2[V0], θ), (H2[V1], θ) that are isomorphic to F0, F1, respectively. A
random of choice of θ ∈ ΘH2

is equivalent to picking a random ordered pair of vertices (u, v) from
H2, and setting θ(1) = u and θ(2) = v. To form the random 3-sets V0, V1, we pick the remaining
two vertices of V (H2) \ {u, v} randomly in the order x, y and set V0 = {u, v, x}, V1 = {u, v, y}.
The σ-flags (H2[V0], θ), (H2[V1], θ) are isomorphic to F0, F1 if and only if V0 /∈ E(H2) and
V1 ∈ E(H2) respectively. Consequently Eθ∈ΘH2

[p(F0, F1, θ;H2)] is the probability that a random
permutation (u, v, x, y) of V (H2) satisfies {u, v, x} /∈ E(H2) and {u, v, y} ∈ E(H2). Of the 24

permutations of V (H2) = {a, b, c, d} (see Figure 1), the following 8 have this property:

(a, c, b, d), (a, d, b, c), (b, c, a, d), (b, d, a, c),

(c, a, b, d), (d, a, b, c), (c, b, a, d), (d, b, a, c).

Hence Eθ∈ΘH2
[p(F0, F1, θ;H2)] = 8/24 = 1/3.
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We now need to find a positive semidefinite matrix

Q =

(
q00 q01

q01 q11

)
,

to minimize the bound given by (2.6). Note that

cH0
= q00,

cH1
=

1

2
q00 +

1

2
q01,

cH2
=

1

6
q00 +

2

3
q01 +

1

6
q11.

The bound on π(K−
4 ) given by (2.6) is now

π(K−
4 ) � max

{
q00,

q00

2
+

q01

2
+

1

4
,

q00

6
+

2q01

3
+

q11

6
+

1

2

}
.

This can be expressed as a semidefinite programming problem, the solution to which is

Q =
1

3

(
1 −2

−2 4

)
.

Consequently π(K−
4 ) � max{1/3, 1/12, 1/3} = 1/3.

2.3. Proof of Lemma 1.3
To prove π(F ′) � 0.2299, we use Razborov’s flag algebras method, as outlined above. We set l =

7, so H consists of all 7 vertex 3-graphs that do not contain any F ∈ F ′, up to isomorphism. There
are 4042 such 3-graphs, which are explicitly determined by the C++ program DensityBounder.1

To calculate the coefficients cH we take six choices of (σi, mi, Qi). The types are σi = ((Vi, Ei), θi),
where

V1 = [1], E1 = ∅,
V2 = [3], E2 = ∅,
V3 = [3], E3 = {123},
V4 = [5], E4 = {123, 124, 135},
V5 = [5], E5 = {123, 124, 345},
V6 = [5], E6 = {123, 124, 135, 245},

and θi : [|Vi|] → Vi, maps x → x. Ideally we would use all types of size at most l − 2 = 5.
However, this yields a computationally intractable semidefinite program. Our actual choice was
made by experiment, in each case taking the value of mi = �(7 + |σi|)/2�. DensityBounder de-
termines the positive semidefinite matrices Qi by creating a semidefinite programming problem.
Several implementations of semidefinite program solvers exist. We chose the CSDP library [1]
to solve the problem. The CSDP library uses floating-point arithmetic, which may introduce

1 This, along with HypergraphsDoJump.soln, can be downloaded from:
http://www.ucl.ac.uk/~ucahjmt/SolnFiles.zip.
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rounding errors. DensityBounder takes the output of the CSDP program and uses it to construct
the Qi (removing any rounding errors). Our results can, however, be verified without needing to
solve a semidefinite program: DensityBounder can load pre-computed matrices Qi from the file
HypergraphsDoJump.soln.

For each H ∈ H, d(H) and cH are calculated by DensityBounder, and using (2.6) it computes
that 0.2299 is an upper bound for π(F ′). Note that although floating-point operations are used
by the semidefinite program solver, our final computer proof consists of positive semidefinite
matrices with rational coefficients and our proof can be verified using only integer operations,
and thus there is no issue of numerical accuracy.

2.4. Other results
The program DensityBounder can be used to calculate upper bounds on the Turán density
of other families of 3-graphs. In particular, we have used it to reproduce Razborov’s bound:
π(K (3)

4 ) � 0.561666 [9].
The conjectured value of π(K−

4 ) is 2/7 = 0.2857. Razborov [9] showed that π(K−
4 ) � 0.2978.

Using DensityBounder we obtain a new upper bound of 0.2871 by taking l = 7 and considering
the following four types σi = ((Vi, Ei), θi) with the given values of mi (in each case θi is the
identity map):

V1 = [3], E1 = ∅, m1 = 5,

V2 = [3], E2 = {123}, m2 = 5,

V3 = [4], E3 = {123}, m3 = 5,

V4 = [5], E4 = {123, 124, 125}, m4 = 6.

As before, the positive semidefinite matrices Qi are determined by solving a semidefinite pro-
gramming problem.

Theorem 2.2. Let K−
4 be the 3-graph on four vertices with three edges. The Turán density of

K−
4 satisfies

0.2857 · · · =
2

7
� π(K−

4 ) � 0.2871.

As with our main result, our computations can be verified without any floating-point opera-
tions, so there is no issue of numerical accuracy in these results. Theorem 2.2 yields a second
new interval of jumps for r = 3.

Corollary 2.3. If α ∈ [0.2871, 8/27) then α is a jump for r = 3.

Proof. Since λ(K−
4 ) = 8/27, this follows directly from Theorem 2.2 and Theorem 1.2.

2.5. Solving the semidefinite program
Razborov’s method, as outlined above, reduces the problem of computing an upper bound on
a Turán density to solving a semidefinite programming problem. In practice this may be com-
putationally difficult. Razborov [9] describes a number of ways in which this problem can be
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simplified to make the computation more tractable. Below, we outline one of these ideas, which
we have used in our work.

For a type σ and the collection of all admissible σ-flags of order m, Fσ
m, define RFσ

m to be the
real vector space of formal linear combinations of σ-flags of order m. Let H be the collection of
all admissible r-graphs of order l.

Let us introduce Razborov’s �·�σ notation (which will make our expressions easier to read).
Define �·�σ : RFσ

m × RFσ
m → R

|H|, by

�FaFb�σ = (Eθ∈ΘH
[p(Fa, Fb, θ;H)] : H ∈ H),

for Fa, Fb ∈ Fσ
m and extend it to be bilinear.

For a positive semidefinite matrix Q and p = (F : F ∈ Fσ
m), the vector of all admissible σ-flags

(in an arbitrary but fixed order), we have

�pTQp�σ = (cH (σ, m, Q) : H ∈ H),

where the cH are as defined in (2.5).
Razborov [9] describes a natural change of basis for RFσ

m. The important property (in terms of
reducing the computational complexity of the associated semidefinite program) is that the new
basis is of the form B = B+∪̇B−, and for all B+ ∈ B+ and B− ∈ B− we have �B+B−�σ = 0.
Thus, in our new basis the corresponding semidefinite program has a solution Q′, which is a block
diagonal matrix with two blocks, of sizes |B+| and |B−|, respectively. Since the best algorithms
for solving semidefinite programs scale like the square of the size of block matrices, this change
of basis can potentially simplify our computation significantly.

For a type σ = (Gσ, θσ) we construct the basis B as follows. First construct Γσ , the auto-
morphism group of σ, whose elements are bijective maps α : [|σ|] → [|σ|] such that (Gσ, θσα) is
isomorphic to σ. The elements of Γσ act on σ-flags in an obvious way: for α ∈ Γσ and σ-flag
F = (GF, θF ) we define Fα to be the σ-flag (GF, θFα). Define subspaces

RFσ+
m = {L ∈ RFσ

m : Lα = L ∀α ∈ Γσ}

and

RFσ−
m =

{
L ∈ RFσ

m :
∑
α∈Γσ

Lα = 0

}
.

Below we describe how to find bases B+,B− for these subspaces. By the construction of these
bases it will be clear that RFσ

m = RFσ+
m ⊕ RFσ−

m . Finally we will verify that for all B+ ∈ B+

and B− ∈ B− we have �B+B−�σ = 0.
We start with the canonical basis for RFσ

m, given by Fσ
m = {F1, F2, . . . , Ft}. For each Fi ∈ Fσ

m

define the orbit of Fi under Γσ by

FiΓσ = {Fα : α ∈ Γσ}.

Any two orbits are either equal or disjoint. Suppose there are u distinct orbits: O1, . . . , Ou. For
i ∈ [u] let B+

i =
∑

F∈Oi
F . Then B+ = {B+

1 , . . . , B
+
u } is easily seen to be a basis for RFσ+

m .
Moreover, if Oi = {Fi1 , . . . , Fiq} then Fi1 − Fiz ∈ RFσ−

m for 2 � z � q, and the union of all such
vectors forms a basis B− for RFσ−

m .
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We now need to check that if B+ ∈ B+ and B− ∈ B− then �B+B−�σ = 0. If B− ∈ B− then
by construction B− = Fbα − Fb for some Fb ∈ Fσ

m and α ∈ Γσ . Moreover, B+α = B+. Hence,
by linearity,

�B+B−�σ = �B+(Fbα − Fb)�σ = �(B+α)(Fbα) − B+Fb�σ.

We observe that for any Fa ∈ Fσ
m,

�(Faα)(Fbα)�σ = (Eθ∈ΘH
[p(Fa, Fb, θα

−1;H)] : H ∈ H)

= (Eθ∈ΘHα−1 [p(Fa, Fb, θ;H)] : H ∈ H),

where ΘHα
−1 = {θα−1 : θ ∈ ΘH}. Since ΘHα

−1 = ΘH , we must have �(Faα)(Fbα)�σ = �FaFb�σ .
Thus, since B+ =Fa1

+ Fa2
+ · · · + Fas , we have �(B+α)(Fbα) − B+Fb�σ = 0, and hence

�B+B−�σ = 0.

3. Open problems

We have shown that [0.2299, 0.2316) is an interval of jumps for r = 3. If we were able to compute
π(F ′) precisely we could quite possibly extend this interval below 0.2299. However, as noted
in the Introduction, we know that π(F ′) > 2/9, so our approach could never resolve the most
important open question in this area: Is 2/9 a jump?

Indeed the question of whether 2/9 is a jump for r = 3 seems remarkably difficult to resolve. If
2/9 is a jump then the size of this jump is very small, and so to give a proof along the same lines
as the proof of Theorem 1.1 would appear to require a very precise approximation of the Turán
density of some unknown family of 3-graphs. On the other hand, the only current technique for
showing a value is not a jump is to follow the method of Frankl and Rödl [7], but this trivially
fails for 2/9 (or indeed r!/rr for any r � 3).

Another obvious open problem is to compute π(K−
4 ) exactly. It is likely that improvements

over our bound of 0.2871 could be made by applying Razborov’s method with larger flags or by
considering different types of order 5. Similarly improved bounds for the central problem in this
area, determining π(K (3)

4 ), could quite probably be found by the use of larger flags.
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