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Abstract
We consider the Bayesian over-dispersed Poisson (ODP) model for claims reserving in general

insurance. We choose two different types of prior distributions for the parameters and then study

the different Bayesian predictors. This study leads, on the one hand, to the classical chain ladder

predictor and, on the other hand, to Bornhuetter & Ferguson predictors. We highlight (either

analytically or numerically) how these predictors are obtained and how their prediction uncertainty

can be determined.
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1 Bayesian over-dispersed Poisson model

1.1 Introduction

A number of papers have appeared in the recent literature looking at stochastic models related to

the Bornhuetter & Ferguson (BF, 1972) method of claims reserving, see for example Alai et al.

(2009), Mack (2008), Saluz et al. (2011), Verrall (2004). The basic philosophy underlying these

papers, and the BF method, is that there is external knowledge about the ultimate losses that is not

contained in the runoff triangles of data. In statistical methodology, the usual way to incorporate

such external knowledge is to use Bayesian methods. This paper examines the use of Bayesian

methods for over-dispersed Poisson (ODP) models. The Bayesian ODP model treated in this paper

was briefly covered in England & Verrall (2002), the present paper provides a much more detailed

analysis and examines the use of different prior distributions and posterior estimators. We provide

analytical results, where possible, which allow for intuitive interpretations. Where it is not possible
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to derive analytical results, we use Markov chain Monte Carlo (MCMC) methods to obtain

numerical results.

Although this paper is related to the BF method, in that the underlying philosophy is similar, the

results are not the same as the results from applying the conventional BF method. The reason for

this is that the BF method uses the same runoff pattern as the chain ladder (CL) technique, whereas

the application of Bayesian prior distributions to the rows of the claims development triangle

naturally affects the posterior distributions of the parameters for the columns (i.e. the runoff

parameters) of the claims development triangle – even if non-informative prior distributions are

used for the latter. It is possible to construct a Bayesian BF model where the runoff pattern is exactly

the same as in the CL technique, see Verrall (2004), but in that case it is not clear that this is a

statistically optimal estimator. Thus, the purpose of this paper is to examine Bayesian models which

incorporate prior knowledge about ultimate losses (as the BF method does), but it is not the purpose

to reproduce the results from the BF method exactly, as in Alai et al. (2009).

The model assumptions are set out in full in Sections 1.2, 2.1 and 3.1, but the basic idea is to use an

ODP model for the incremental claims with cross-classified means migj, where mi is the row parameter in

accident year i (related to the exposure of accident year i) and gj is the column parameter for

development period j (related to the runoff pattern), and to apply prior distributions to these

parameters. We will assume that there is no prior knowledge about the runoff parameters, and we use

non-informative prior distributions for gj. By assuming informative prior distributions for the mi’s we

can incorporate external knowledge about the ultimate losses. We investigate a number of different

formulations of these informative prior distributions, and examine the properties of the resulting

posterior estimators. We also compare our results with the traditional BF method.

An important observation will be that although we choose non-informative prior distributions for

the parameters, their shapes may have a significant influence on the resulting claims reserves.

Organization of the paper. In the remainder of this section we define the general Bayesian ODP

Model and we discuss prediction in a Bayesian framework. In Sections 2 and 3 we then specify two

different types of prior distributions (the uniform prior model with log link function and the gamma

prior model). Parameter estimates, e.g. for gj, are always denoted by bgj in the uniform prior model

with log link function and with bgnj in the gamma prior model. In Section 4 we discuss parameter

estimation via simulation methods and in Section 5 a numerical example is provided. All the

statements are proved in the appendix.

1.2 Model assumptions

The model assumptions are similar to those in the Bayesian claims reserving models presented in

England & Verrall (2002, 2006), Verrall (2004) and Wüthrich & Merz (2008), Section 4.4. We

assume that the parameters are modelled through prior distributions and, conditional on these

parameters, the incremental claims Xi,j have independent ODP distributions for accident years

iA {0,y,I} and development years jA {0,y,I}. The final development year is given by I and the

observations at time I are given in the (upper) runoff triangle

DI ¼ Xi;j : i þ j � I
� �

:

Our goal is to predict the future claims in the lower triangle Dc
I ¼ Xi;j : i þ j4 I ; i � I

� �
.

Bayesian over-dispersed Poisson model

259

https://doi.org/10.1017/S1748499512000012 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000012


Model 1.1 (Bayesian ODP model)

> m0,y,mI, g0,y,gI, j are independent positive random variables with joint density u( � ).

> Conditionally, given parameters H ¼ ðm0; . . . ; mI; g0; . . . ; gI;jÞ; Xi;j are independent random

variables with

Xi;j

j

����
H

�
ðdÞ

Poi ðmigj=jÞ:

The parameter mi plays the role of the row parameter (related to the exposure of accident year i,

see (1.2)), the gj’s describe column parameters (related to an incremental claims development

(runoff) pattern that is not necessarily normalized, see (1.2)) and j describes the dispersion

parameter. We obtain the following first two conditional moments

E Xi;j

��H� �
¼ migj and Var Xi;j

��H� �
¼ jmigj; ð1:1Þ

and the conditional total ultimate claim of accident year i is given by

E
XI

j¼ 0

Xi;j

�����H
" #

¼ mi

XI

j¼ 0

gj: ð1:2Þ

We analyze the Bayesian ODP Model 1.1 for different types of prior distributions for Q and

different types of parameter estimates for Q (see (1.3)–(1.4) below).

1.3 Bayesian predictors

Assume the Bayesian ODP Model 1.1 to hold. Using Bayes’ Theorem we find the posterior density

of Q, given the observations DI, by

uðhjDIÞp
Y

iþ j� I

exp �
migj

j

	 
 migj

j

� �Xi;j=j

Xi;j

j

� �
!

uðhÞ;

where the proportionality sign p means up to normalization w.r.t. the random vector Q. In

Bayesian theory there are two commonly used predictors, the minimum mean square error (MMSE)

predictor and the maximum a posteriori (MAP) predictor for Q, given DI. These are given by

bHMMSE
¼ E½H jDI�; ð1:3ÞbHMAP
¼ arg max

h
uðh jDIÞ: ð1:4Þ

The predictor bHMMSE
minimizes the conditional prediction variance (see also (2.7) below) and the

predictor bHMAP
is the maximum likelihood estimator (MLE) for the posterior density u(h|DI). The MAP

predictor bHMAP
has the advantage that it can often be calculated analytically. On the contrary, it has a

bias term bHMMSE
� bHMAP

, relative to the posterior density u(h|DI), that can, in general, only be calculated

numerically, for example, using the MCMC methodology. This is discussed in the rest of this paper.

2 Uniform prior distributions and the chain ladder method

In this section we start with uniform priors and log links for the parameters mi and gj. Such a model

has already been studied in England & Verrall (2006), Section 7.1. The crucial consequence of the
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uniform priors assumption is that if we make them non-informative we obtain the classical CL

estimate from the MAP predictors. In this spirit, this model is another example that replicates the

CL reserves (see also Subsection 2.3).

2.1 The (non-informative) uniform priors model with log link

We define the parameters on the log scale: ai ¼ logðmiÞ and bj ¼ logðgjÞ.

Model 2.1 In addition to Model 1.1 we assume that ai ¼ logðmiÞ are uniformly distributed on (2m, m)

for m . 0, and bj ¼ logðgjÞ are uniformly distributed on (2b, b) for b . 0 and j. 0 is constant.

Remark. It might be more appropriate to use different uniform priors for each parameter, e.g. ai are

uniformly distributed on (2mi,mi). However, if we choose non-informative priors for ai ¼ logðmiÞ

and bj ¼ logðgjÞ (i.e. we will let m-N and b-N), then the specific prior differences between the

ai’s and between the bj’s are not relevant.

With (1.1) we obtain

log E Xi;j

��H� �
¼ log migj

� �
¼ ai þ bj;

which illustrates the role of the log link function, see also England & Verrall (2002), Section 2.3.

That is, with the log link function we derive the generalized linear model form.

The posterior density under Model 2.1 is given by

uðhjDIÞp
Y

iþ j� I

exp �
eai ebj

j

	 

eai ebj
� �Xi;j

j
YI

i¼ 0

1

2m
1ð�m;mÞðaiÞ

YI

j¼ 0

1

2b
1ð�b;bÞðbjÞ:

If we assume that m and b are sufficiently large (we comment on this below) then the MAP

predictors for ai and bj can be found by maximizing the posterior log-likelihood function log u(h|DI)

analytically, see Section 2.3. This provides MAP estimators bai and bbj for ai and bj, respectively, that

correspond to the solution of the following system of equations, see also e.g. (2.16)–(2.17) in

Wüthrich & Merz (2008),

eai

XI� i

j¼ 0

ebj ¼
XI� i

j¼ 0

Xi;j; for i ¼ 0; . . . ; I; ð2:1Þ

ebj

XI� j

i¼ 0

eai ¼
XI� j

i¼ 0

Xi;j; for j ¼ 0; . . . ; I: ð2:2Þ

Remarks 2.2

> Ci;j ¼
Pj

k¼ 0 Xi;k is called the cumulative claim of accident year i up to development year j. The

(total) ultimate claim of accident year i is denoted by Ci,I and the outstanding loss liabilities at

time I for accident year i are given by

Ri ¼
XI

j¼ I� iþ1

Xi;j ¼ Ci;I �Ci;I� i; ð2:3Þ

under the assumption that Xi,j denotes claims payments. The final goal is to predict these out-

standing loss liabilities Ri and to determine the prediction uncertainty.
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> The solution to (2.1)–(2.2) is not unique, i.e. whenever bai and bbj solve the system (2.1)–(2.2), then

for any K 2 R also bai þ K and bbj�K solve the system (2.1)–(2.2). The requirement m and b

sufficiently large now means that there exists at least one K 2 R such that the solution ðba0 þ

K; . . . ;baI þ K; bb0�K; . . . ; bbI �KÞ of (2.1)–(2.2) is within ½�m;m�Iþ 1 � ½�b; b�Iþ 1. We fix such a

constant K and then denote the resulting MAP predictor bybHMAP
¼ ebaMAP

0 ; . . . ; ebaMAP
I ; e

bbMAP
0 ; . . . ; e

bbMAP
I

 �
:

The MAP predictor for the outstanding loss liabilities Ri in (2.3) is then defined by

bRMAP
i ¼ ebaMAP

i

XI

j¼ I� iþ 1

e
bbMAP

j :

We see that K cancels in this product and hence the specific choice of K is not important as long as at

least one such K exists.

> The MAP optimization problem (2.1)–(2.2) can be solved analytically. This is discussed in

Section 2.3, below.

> For the priors of ai we can either use informative priors (i.e. m ,N) or non-informative priors

(i.e. m-N). However, since we have only one parameter, namely m, we always have prior

expected value E[ai] 5 0 and variance VarðaiÞ ¼ m2=3. Because we would like to have more

flexibility in these parameter choices (if we have prior knowledge on ai), we consider different

priors in Section 3, which then leads to a Bayesian BF model. For the BF method we refer to

Bornhuetter & Ferguson (1972).

> Note that the MAP predictors do not depend on the explicit choices of m, b and j, once m and b

are sufficiently large. On the other hand the MMSE predictors will depend on these parameter

choices.

The MMSE predictor for Ri in (2.3) is given by

bRMMSE
i ¼ E½RijDI� ¼ E

XI

j¼ I� iþ 1

Xi;j

����DI

" #

¼
XI

j¼ I� iþ 1

E migj

����DI

� �
¼

XI

j¼ I� iþ 1

E½eai ebj jDI

�
:ð2:4Þ

Due to the posterior dependence between ai and bj, given DI, this cannot be further decoupled and

calculated in closed form, see also Verrall (2004). Therefore, the MMSE predictor can only be

calculated numerically.

We analyze the right-hand side of (2.4) in more detail. We denote a ¼ ða0; . . . ; aIÞ, b ¼ ðb0; . . . ; bIÞ,

l ¼ ðm0; . . . ; mIÞ, c ¼ ðg0; . . . ; gIÞ. Doing the following change of variables mi ¼ eai and gj ¼ ebj we

obtain

bRMMSE
i;j ¼ E eai ebj jDI

� �
¼

Z
R2I

eai ebj u a; b
��DI

� �
da db

¼

Z
R2I
þ

migju l; c
��DI

� � YI

k¼ 0

1

mk

YI

l¼ 0

1

gl

dl dc; ð2:5Þ
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with posterior density

u l; c
��DI

� � YI

k¼ 0

1

mk

YI

l¼0

1

gl

p

Y
iþ j� I

exp �
migj

j

	 

migj

� �Xi;j
j

�
YI

i¼ 0

m�1
i

2m
1ðe�m;emÞðmiÞ

YI

j¼ 0

g�1
j

2b
1ðe�b ;ebÞðgjÞ:

ð2:6Þ

Maximizing the right-hand side of (2.6) provides the MAP estimators bmMAP
i and bgMAP

j .

Remarks 2.3

> Basically the same remarks about the uniqueness of the MAP estimators bmMAP
i and bgMAP

j apply as

in Remarks 2.2: (i) they are only unique up to multiplication (and division, respectively) with a

positive constant; (ii) we choose m . 0 and b . 0 so large that the mode of the density (2.6) lies

within ½e�m ; em�Iþ 1 � ½e�b ; eb�
Iþ 1

.

> The MAP optimization problem (2.6) can be solved analytically. This is discussed in Section 3.2, below.

> The MAP predictor for the outstanding loss liabilities Ri in (2.3) is then defined by

�RMAP
i ¼ bmMAP

i

XI

j¼ I� iþ 1

bgMAP
j :

This now leads to a slightly unpleasant observation. Note that the MMSE predictor in (2.5) does not

depend on the parametrization. This is not true for the MAP predictor! The MAP estimators baMAP
i andbbMAP

j solve the system of equations (2.1)–(2.2), whereas the MAP estimators bmMAP
i andbgMAP

j will solve the

system of equations (3.11)–(3.12), below. Because these two systems of equations differ, we find

ebaMAP
i e
bbMAP

j 6¼ bmMAP
i bgMAP

j which in general implies bRMAP
i 6¼ �RMAP

i :

This property is well known in Bayesian statistics, see for example Smith (1998). It gives us a first

indication that the MAP predictor is not always suitable in a Bayesian context.

2.2 Prediction uncertainty

We measure the prediction uncertainty in terms of the conditional mean square error of prediction

(MSEP) which for a DI-measurable predictor bRi for Ri is given by, see also Section 3.1 in Wüthrich

& Merz (2008),

msepRijDI
bRi

� �
¼ E Ri� bRi

� �2
jDI

� �
¼ VarðRijDIÞ þ bRi

MMSE
� bRi

� �2

: ð2:7Þ

From (2.7) we see that the MMSE predictor bRMMSE
i ¼ E RijDI½ � minimizes the conditional MSEP.

The conditional MSEP for the MAP predictor is given by

msepRijDI
bRi

MAP
� �

¼ E Ri� bRi

MAP
� �2

jDI

� �
¼ msepRijDI

bRi

MMSE
� �

þ bRi

MMSE
� bRi

MAP
� �2

� msepRijDI

bRi

MMSE
� �

: ð2:8Þ

The MMSE predictor and the conditional MSEP can, in general, only be determined numerically,

using e.g. the MCMC methodology.
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First conclusions. In many situations the MAP predictor bRi

MAP
has the advantage over the MMSE

predictor bRi

MMSE
that it can be calculated analytically. The MMSE predictor on the other hand has the

advantage that it minimizes the prediction uncertainty if we use the conditional MSEP as uncertainty

measure. The MAP predictor obtains a positive bias term bRi

MMSE
� bRi

MAP
� �2

, see (2.8). This bias term

however needs to be interpreted carefully: it is always measured w.r.t. the posterior density u(h|DI).

2.3 Link to the chain ladder algorithm

The remarkable property of the MAP predictor bRMAP
i in Model 2.1 with non-informative priors and

log link is that it is equal to the CL reserves bRCL
i . That is, the non-informative priors Bayesian Model

2.1 with MAP predictors is another stochastic model that leads to the CL reserves: since our system

(2.1)–(2.2) of equations is exactly the same as the one for the ODP model, see (2.16)–(2.17) in

Wüthrich & Merz (2008), we have

bRMAP
i ¼ bRCL

i : ð2:9Þ

In the literature this was, for example, proved by Mack (1991). Therefore, we define for

j 5 0,y,I – 1 the CL factor estimators

bf j ¼

PI� j�1

i¼ 0

Ci;jþ 1

PI� j� 1

i¼ 0

Ci;j

:

Corollary 2.18 and Remarks 2.19 in Wüthrich & Merz (2008) then imply that (for the appropriate

normalizing constant K)

bbMAP
j ¼ log 1�

1bf j� 1

 !YI� 1

k¼ j

1bf k

24 35 and baMAP
i ¼ log

PI� i

j¼ 0

Xi;j

PI� i

j¼ 0

e
bbMAP

j

26664
37775: ð2:10Þ

That is, we can explicitly calculate the MAP predictors. Moreover, this gives another stochastic model

that allows for the calculation of the conditional MSEP given in (2.8). Unlike in Mack’s (1993)

distribution-free CL model and in the ODP model (see England & Verrall (2002), Section 7.2) we do not

need any approximations here for the estimation of the MSEP, but we calculate the exact conditional

MSEP value (2.8) numerically in this Bayesian inference model (using the MCMC methodology).

In this spirit the parameter uncertainty of the estimate Q is part of the model, see (2.8). Moreover,

because we have all key figures in terms of the full posterior distributions, we can calculate any risk

measure of interest (not only the conditional MSEP).

3 Gamma prior distributions

In Section 2 we have used uniform priors with log links in order to obtain the CL reserves. In this

section gamma prior distributions (with the identity link) are used, especially for the modelling of

the row parameters mi. This allows us to incorporate prior expert knowledge about the model parameters

and we obtain claims reserves in a similar spirit to the BF method. However, in our model, we still have

the freedom to determine how much credibility weight we give to the prior knowledge. A similar
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Bayesian ODP model with gamma priors has, for example, already been studied in Section 7.11 of

England & Verrall (2002) and Example 4.51 of Wüthrich & Merz (2008).

3.1 Informative priors for the row parameters

Model 3.1 In addition to Model 1.1 we assume that mi are G-distributed with mean mi . 0 and shape

parameter ai . 0, gj are G-distributed with mean cj . 0 and shape parameter b . 0, and j. 0 is constant.

In contrast to Model 2.1, we now extend the prior model for mi to a two-parameter distribution.

Our aim is to keep the mean mi fixed and study the sensitivity in the shape parameter ai. The priors

for gj will be chosen to be non-informative (i.e. b-0).

The posterior density (likelihood function) in Model 3.1 is given by

uðhjDIÞp
Y

iþ j� I

exp �
migj

j

	 

migj

� �Xi;j
j
YI

i¼0

mai �1
i exp �

aimi

mi

	 
YI

j¼ 0

gb�1
j exp �

bgj

cj

	 

: ð3:1Þ

The MAP predictors using non-informative priors for gj (i.e. b-0) are then found by solving

mi

XI� i

j¼ 0

gj þ
aij
mi

 !
¼
XI� i

j¼0

Xn

i;j þ aij; for i ¼ 0; . . . ; I; ð3:2Þ

gj

XI� j

i¼ 0

mi ¼
XI� j

i¼ 0

Xn

i;j; for j ¼ 0; . . . ; I; ð3:3Þ

with adjusted incremental claims

Xn

i;j ¼

Xi;j for j � 1 and i � 1;

Xi;j�j for ðj ¼ 0 and i � 1Þ or ðj � 1 and i ¼ 0Þ;

Xi;j þ ðI� 1Þj for j ¼ 0 and i ¼ 0;

8><>:
and adjusted cumulative claims Cn

i;j ¼
Pj

k¼ 0

Xn

i;k.

Therefore, the MAP predictors for non-informative claims development pattern gj will be a function

of the parameters j, m 5 (m0,y,mI) and a 5 (a0,y,aI).

Lemma 3.2 We assume Model 3.1 is fulfilled, and we assume that
PI� i

j¼ 0 Xn
i;j 4 0 for all i 5 0,y,I

and
PI� j

i¼ 0 Xn
i;j 4 0 for all j 5 0,y,I. The solution to (3.2)–(3.3) satisfies mi . 0 and gj . 0 for all

aiZ 0 and i,j 5 0,y,I.

We first state a CL type result. Note that in the following lemma we do a CL argument on the rows

instead of on the columns; and for a 5 0 we obtain the CL method on rows. Its proof is similar to

the classical CL result, see e.g. Section 2.4 in Wüthrich & Merz (2008).

Lemma 3.3 In Model 3.1 equations (3.2)–(3.3) imply for j 5 0,y,I21

PI� j

k¼ 0

mk

PI� j� 1

k¼ 0

mk

¼

PI� j

k¼ 0

Cn

k;j þ j
PI� j

k¼ 0

ak 1� mk

mk

� �
PI� j� 1

k¼ 0

Cn

k;j þ j
PI� j� 1

k¼ 0

ak 1� mk

mk

� � :
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The statement of Lemma 3.3 can also be written in incremental form, i.e. for i 5 1,y,I

miPi� 1

k¼ 0

mk

¼
Cn

i;I� i þ jai 1� mi

mi

� �
Pi� 1

k¼ 0

Cn

k;I� i þ j
Pi� 1

k¼ 0

ak 1� mk

mk

� � : ð3:4Þ

This implies the following theorem:

Theorem 3.4 In Model 3.1 equations (3.2)–(3.3) imply for i 5 1,y,I

mi ¼
Cn

i;I� i þ aijPi� 1

k¼ 0

Cn

k;I� i þ j
Pi� 1

k¼ 0

mk
ak

mk
�

ak

mk
þ ai

mi

� �Xi� 1

k¼ 0

mk; ð3:5Þ

and

XI

i¼ 0

aimi

mi
¼
XI

i¼ 0

ai: ð3:6Þ

Theorem 3.4 is now the key to obtain the MLE which are the same as the solutions of equations

(3.2)–(3.3). Note that the right-hand side of (3.5) only depends on m0,y,mi21. Therefore, once we

know the initial value m0, the remaining estimators for m1,y,mI are calculated iteratively by (3.5).

This is discussed in more detail below.

Solution to (3.2)–(3.3) for aA(0,N). We apply Theorem 3.4. Choose an initial value em0ðmÞ ¼ m40,

then using (3.5) we define iteratively for i 5 1,y,I

emiðmÞ ¼
Cn

i;I� i þ aijPi� 1

k¼ 0

Cn

k;I� i þ j
Pi� 1

k¼ 0

emkðmÞ
ak

~mkðmÞ
�

ak

mk
þ ai

mi

� �Xi� 1

k¼ 0

emkðmÞ ¼
1

I iðmÞ

Xi� 1

k¼ 0

emkðmÞ;

where we have defined

I iðmÞ ¼
Cn

i;I� i þ aijPi� 1

k¼ 0

Cn

k;I� i þ j
Pi� 1

k¼ 0

emkðmÞ
akemkðmÞ
�

ak

mk
þ ai

mi

� �
0BBB@

1CCCA
�1

:

Note that the vector ðem0ðmÞ; . . . ; emIðmÞÞ is now a function of one single parameter m. 0. The MAP

predictors for (3.2)–(3.3) are then found by using the normalizing condition (3.6), that is, choose

m. 0 such that

XI

i¼ 0

aiemiðmÞ
mi

¼
XI

i¼ 0

ai

mi

1

I iðmÞ

Xi� 1

k¼ 0

emkðmÞ ¼
!
XI

i¼ 0

ai: ð3:7Þ

We denote the resulting MAP predictors for 0r I, jr I by

bmMAPn
i ðaÞ ¼ bmMAPn

i ða;m;jÞ and bgMAPn
j ðaÞ ¼ bgMAPn

j ða;m;jÞ;

where bgMAPn
j ðaÞ is obtained from (3.3).
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Remarks 3.5

> Predictors in the gamma priors Model 3.1 are denoted by a superscript ‘‘*’’, e.g. bgnj , whereas

predictors in the uniform priors Model 2.1 are simply denoted by bbj and bgj, respectively,

depending on the parametrization (2.5).

> Note that the MAP predictors can now easily be found by a simple (one-dimensional)

root searching algorithm (it only depends on one single parameter m. 0, see (3.7)). This is

slightly more involved than the closed form solution (2.10) in the uniform prior case, but it is

a lot simpler than the multi-dimensional generalized linear model (GLM) claims reserving

problems where one either uses the Newton-Raphson algorithm or Fisher’s scoring method to

find the roots for the multidimensional problems, see for example Chapter 6 in Wüthrich &

Merz (2008).

> For the special case of mi 	 m and ai 	 a we obtain a closed form solution. Equation (3.5)

implies for constant mi and ai

mi ¼
Cn

i;I� i þ ajPi�1

k¼0

Cn

k;I� i þ aj
� �Xi� 1

k¼ 0

mk:

The normalization condition (3.6) then provides

mðI þ 1Þ¼
!
XI

i¼ 0

mi ¼
XI

i¼ 0

Cn
i;I� i þ ajPi� 1

k¼0

Cn

k;I� i þ aj
� �Xi� 1

k¼ 0

mk

¼
Cn

I;0 þ ajPI� 1

k¼ 0

Cn

k;0 þ aj
� � þ 1

0BBB@
1CCCAXI� 1

i¼ 0

mi ¼ . . . ¼
YI� 1

j¼ 0

PI� j

k¼ 0

Cn

k;j þ aj
� �

PI� j� 1

k¼ 0

Cn

k;j þ aj
� � m0: ð3:8Þ

Hence, from this we can explicitly calculate the MAP predictor

bmMAPn
0 ðaÞ ¼ mðI þ 1Þ

YI� 1

j¼ 0

PI� j

k¼ 0

Cn

k;j þ aj
� �

PI� j� 1

k¼ 0

Cn

k;j þ aj
� �

0BBB@
1CCCA
�1

;

and the iteration then provides the remaining MAP predictors.

> We can now study the MAP predictors as a function of the degree of information a contained in

the prior estimates mi, in particular, we obtain a smoothed claims development pattern bgMAPn
j ðaÞ,

where the degree of smoothing depends on a.

The MAP predictor for the outstanding loss liabilities of accident year i . 0 is then given by

bRMAPn
i ðaÞ ¼ bmMAPn

i ðaÞ
XI

j¼ I� iþ 1

bgMAPn
j ðaÞ: ð3:9Þ
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3.2 Non-informative prior case

For the non-informative prior case we let ai-0 for all i. The posterior density (likelihood function)

in Model 3.1 for non-informative priors is then asymptotically given by

uðhjDIÞp
Y

iþ j� I

exp �
migj

j

	 

migj

� �Xi;j
j
YI

i¼ 0

m�1
i

YI

j¼ 0

g�1
j : ð3:10Þ

There are two important observations: (i) The non-informative prior case in Model 3.1 has exactly

the same posterior density as the non-informative prior case in Model 2.1 ‘‘under the change of

variables’’, see (3.10) and (2.6) for m,b-N. Therefore, the predictive posterior distributions of the

outstanding loss liabilities Ri in these two non-informative priors models will coincide as well as

their MAP predictors. (ii) Note that in the case (3.10) the last terms on the left-hand side and the

right-hand side of (3.2) disappear. Therefore, we are left with

mi

XI� i

j¼ 0

gj ¼
XI� i

j¼ 0

Xn

i;j; for i ¼ 0; . . . ; I; ð3:11Þ

gj

XI� j

i¼ 0

mi ¼
XI� j

i¼ 0

Xn

i;j; for j ¼ 0; . . . ; I: ð3:12Þ

Similar to the solution of (2.1)–(2.2) we find the following solutions to (3.11)–(3.12)

bgMAPn
j ð0Þ ¼ eK 1�

1bf n
j� 1

0@ 1AYI� 1

k¼ j

1bf n

k

and bmMAPn
i ð0Þ ¼

PI� i

j¼ 0

Xn
i;j

PI� i

j¼ 0

bgMAPn
j ð0Þ

;

for any positive constant eK and CL factors bf n
j for the transformed observations Cn

i;jþ 1

bf n

j ¼

PI� j� 1

i¼ 0

Cn
i;jþ 1PI� j� 1

i¼ 0

Cn
i;j

:

Therefore, we obtain a CL model for the incremental claims Xn
i;j. However, in this case we can find a

‘‘natural’’ normalizing constant eK. Theorem 3.4 implies

mið0Þ ¼ lim
a!0

miðaÞ ¼
Cn

i;I� iPi� 1

k¼ 0

Cn

k;I� i

Xi� 1

k¼ 0

mkð0Þ: ð3:13Þ

Proposition 3.6 In Model 3.1 equations (3.2)–(3.3) imply

lim
a!0

bmMAPn
0 ðaÞ ¼ ðI þ 1Þ

1

m0
þ
XI� 1

j¼ 0

1

mI� j

Cn
I� j;jPI� j� 1

k¼ 0

Cn

k;j

YI� 1

n¼ jþ 1

PI�n

m¼ 0

Cn
m;nPI� n� 1

m¼ 0

Cn
m;n

26664
37775
�1

:

Therefore, Proposition 3.6 provides a natural scaling constant eK 40 if we let the degree of

information a converge to 0.
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3.3 Strong prior case

For the strong prior case we let ai-N for all i and obtain from (3.2)–(3.3)

mi

mi
¼ 1; for i ¼ 0; . . . ; I;

gj

XI� j

i¼ 0

mi ¼
XI� j

i¼ 0

Xn

i;j; for j ¼ 0; . . . ; I:

Therefore, bmMAPn
i ð1Þ ¼ mi and

bgMAPn
j ð1Þ ¼

XI� j

i¼ 0

Xn

i;j =
XI� j

i¼ 0

mi:

In this case we can explicitly calculate the posterior distributions of gj, given DI. These posterior

distributions are independent with

gj

��
DI
�
ðdÞ

G
XI� j

i¼ 0

Xi;j=j;
XI� j

i¼ 0

mi=j

 !
: ð3:14Þ

This immediately implies that

bgMMSEn

j ð1Þ ¼

PI� j

i¼ 0

Xi;j

PI� j

i¼ 0

mi

; ð3:15Þ

and the bias of the MAP predictor of gj is given by

bgMMSEn

j ð1Þ�bgMAPn
j ð1Þ ¼

PI� j

i¼ 0

Xi;j�
PI� j

i¼ 0

Xn
i;jPI� j

i¼ 0

mi

¼
jPI� j

i¼ 0

mi

:

Therefore, in the strong prior case we obtain closed form posterior distributions which allow for an

analytical analysis of the model, both for the MAP predictor

bRMAPn
i ð1Þ ¼ mi

XI

j¼ I� iþ 1

bgMAPn
j ð1Þ;

and the MMSE predictor

bRMMSEn

i ð1Þ ¼ mi

XI

j¼ I� iþ 1

bgMMSEn

j ð1Þ:

3.4 Link to the Bornhuetter & Ferguson (1972) method

The BF method, as applied in practice, uses as claims development pattern gj the one implied by the

CL factor estimates given in (2.10). Therefore, the classical BF predictor for the outstanding loss
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liabilities is given by

bRBF
i ¼ mi

PI
j¼ I� iþ 1

e
bbMAP

j

PI
j¼ 0

e
bbMAP

j

; ð3:16Þ

where the bbMAP
j ’s solve (2.1)–(2.2). bRBF

i exactly corresponds to the BF predictor studied in

Alai et al. (2009).

Mack (2008) provides a different BF predictor where he uses a different method for the estimation of

the claims development pattern gj. We include a comparison of the results with two versions of the

Mack (2008) method. In the first case we define the raw pattern, see formula (3) in Mack (2008),

bgraw
j ¼

PI� j

i¼ 0

Xi;j

PI� j

i¼0

mi

¼ bgMMSEn

j ð1Þ:

This pattern is not normalized, i.e. does not add up to 1. Therefore, we can also study a second

development pattern defined by

bgnorm
j ¼

bgraw
jPI

j¼0

bgraw
j

:

We then define similar to Mack (2008)

bRMack1
i ¼ mi

XI

j¼ I� iþ 1

bgraw
j ¼ bRMMSEn

i ð1Þ and bRMack2
i ¼ mi

XI

j¼ I� iþ 1

bgnorm
j :

These BF predictors bRBF
i , bRMack1

i and bRMack2
i can now be compared to the CL predictor bRCL

i ¼ bRMAP
i as

well as to the MAP predictors bRMAPn
i ðaÞ, for aiA[0,N] and the corresponding MMSE predictors. In this

spirit, the Bayesian predictors can be viewed as BF predictors where ai determines the degree of

information contained in the prior value mi. These predictions and estimators are compared in Section 5.

Moreover, bgMAPn
j ðaÞ and bgMMSEn

j ðaÞ can be viewed as smoothed claims development patterns where

we account for the prior information mi according to its degree of information ai for smoothing.

4 Bias, prediction uncertainty and MCMC

4.1 Gibbs sampler

In general, Models 2.1 and 3.1 do not allow for analytical calculations of the posterior

distributions. In most cases the posterior distribution of the parameters can only be determined up

to the normalizing constant. This is then the ideal situation to apply MCMC simulation methods

which provide empirical posterior distributions. These empirical posterior distributions then allow

for the calculation of claims reserves, cash flows and any desirable risk measure. For an

introduction to MCMC methods we refer to Gilks et al. (1996), Asmussen & Glynn (2007) and

Spiegelhalter et al. (1995, 2002). We mention that in recent actuarial literature MCMC methods
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became rather popular, see e.g. Scollnik (2001) and the literature therein, England & Verrall (2002,

2006) and Section 4.4 in Wüthrich & Merz (2008).

Here, we use the Gibbs sampler, see Gilks et al. (1996), page 12. The Gibbs sampler is a simplified

version of the single-component Metropolis-Hastings algorithm (Metropolis et al., 1953, Hastings,

1970). Our aim is to sample from the posterior density u(h|DI) with h ¼ ðl; cÞ ¼ ðm0; . . . ; mI; g0; . . . ; gIÞ,

see (3.1). This posterior density has the special property that

uðljDI; cÞ are independent gamma densities with parameters ai þ
XI� i

j¼ 0

Xi;j

j
and

ai

mi
þ
XI� i

j¼ 0

gj

j
;

uðcjDI; lÞ are independent gamma densities with parameters b þ
XI� j

i¼ 0

Xi;j

j
and

b

cj
þ
XI� j

i¼ 0

mi

j
:

Thus, from these conditional posterior densities u (l|DI; c) and u (cjDI,l) we can directly sample from.

The Gibbs sampler then goes as follows:

1. Initialize Hð0Þ ¼ ðlð0Þ; cð0ÞÞ.

2. For tZ1 do

(a) generate lðtÞ � uð�jDI ; cðt� 1ÞÞ;

(b) generate cðtÞ � uð�jDI; lðtÞÞ;

(c) set HðtÞ ¼ ðlðtÞ; cðtÞÞ.

Then, this algorithm provides a Markov chain ðHðtÞÞt� 0 whose stationary limit distribution is given

by u(h|DI), see Gilks et al. (1996) and Asmussen & Glynn (2007).

4.2 Empirical distribution from Gibbs sampling

Using the Gibbs sampler we obtain (after burn-in T) an empirical distribution from the sample

HðtÞ ¼ ðlðtÞ; cðtÞÞ
� �

t4T
¼ ðmðtÞ0 ; . . . ; m

ðtÞ
I ; g

ðtÞ
0 ; . . . ; g

ðtÞ
I Þ

� �
t4T

which is an estimator for the posterior distribution u( � |DI). Therefore, we estimate the MMSE

predictor bRMMSE
i by the sample mean

bbRi

MMSE

¼
1eT �T

X~T
t¼Tþ 1

XI

j¼ I� iþ 1

mðtÞi gðtÞj :

To indicate that this is the sample mean we use two hats in the notation. The conditional MSEP of

the MMSE predictor is estimated similarly. Note that

msepRijDI
bRi

MMSE
� �

¼ Var RijDIð Þ

¼ E Var RijDI;Hð ÞjDI½ � þ Var E RijDI;H½ �jDIð Þ

¼ jE RijDI½ � þ Var
XI

j¼ I� iþ 1

migj

����DI

 !
:

ð4:1Þ
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Therefore, we get the estimator

ddmsepRijDI
bRi

MMSE
� �

¼ j bbRi

MMSE

þ
1eT �T

XeT
t¼T þ1

XI

j¼ I� iþ 1

mðtÞi gðtÞj

 !2

�
bbRi

MMSE
 �2

:

Remarks 4.1

> We would like to emphasize that using the Gibbs sampler we do not only estimate the conditional

MSEP. The Gibbs sampler provides an approximation to the full posterior distribution u( � |DI)

and one can calculate any desirable risk measure.

> The empirical sample HðtÞ
� �

t4T
allows for the simulation of the payments Xi,j: for any t . T we

may sample for i 1 j . I

XðtÞi;j =j�
ðdÞ

Poi mðtÞi gðtÞj =j
� �

: ð4:2Þ

This provides the simulated cash flows. The sampled outstanding loss liabilities Ri are then obtained by

RðtÞi ¼
XI

j¼ I� iþ 1

XðtÞi;j : ð4:3Þ

The sample ðRðtÞi Þt4T then provides the empirical posterior distribution of Ri, givenDI, see also Figure 2.

Moreover, it also allows for the direct estimation of (4.1), simply by calculating the sample variance of

the simulated values.

5 Example

5.1 Univariate example

Before we start with a real data example (in the next subsection) we illustrate the behaviour of the

MAP and the MMSE predictors in a univariate example. This example highlights the importance of

the choice of the prior distribution, the link function and its implications.

Assume conditionally, given L, X1,y,Xn, Xn11 are i.i.d. Poisson distributed with parameter L. We

assume that X1,y,Xn are observed and we would like to make Bayesian inference for L and Xn11.

We now make different choices for the distribution L:

Case 1. G 5 log(L) has a non-informative uniform prior distribution. In that case the posterior

distribution of G, given X 5 (X1,y,Xn), is given by

u GjXÞð p e�neG ðeGÞ

Pn

i¼ 1

Xi

: ð5:1Þ

This implies

e
bGMAP

¼
1

n

Xn

i¼ 1

Xi and bLMMSE
¼ E eG

��X� �
¼

1

n

Xn

i¼ 1

Xi:

In this case the MAP and the MMSE predictors coincide.
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Case 2. We make the same assumptions as in Case 1 but we do a change of variable in (5.1). We set

L 5 eG this provides posterior density

u LjXÞð p e�nLL

Pn

i¼ 1

Xi�1

:

This implies bLMAP
¼

1

n

Xn

i¼ 1

Xi �
1

n
and bLMMSE

¼
1

n

Xn

i¼ 1

Xi:

That is, we obtain bLMAP
o bLMMSE

. This shows that the MAP predictors are not invariant under re-

parametrization and therefore are often not appropriate. This is well-known in Bayesian theory, see

for example Smith (1998).

Case 3. L has a non-informative gamma prior distribution. In that case the posterior distribution of

L, given X, has exactly the same form as in Case 2 and therefore we obtain the same inference

picture as in Case 2.

Case 4. L has the non-informative Jeffrey’s prior distribution l�1=2. In that case the posterior

distribution of L, given X 5 (X1,y,Xn), is given by

uðLjXÞp e�nL L

Pn

i¼ 1

Xi�1=2

:

Jeffrey’s non-informative priors are often used because they have invariance properties under

parameter transformations. This implies

bLMAP
¼

1

n

Xn

i¼ 1

Xi �
1

2n
and bLMMSE

¼
1

n

Xn

i¼ 1

Xi þ
1

2n
:

In this paper we do not further investigate Jeffrey’s priors.

Conclusion. The MMSE predictor bLMMSE
has always minimal posterior variance and is invariant under

re-parametrization. Therefore the optimal Bayesian predictor for Xn11, given DI, is always given by

E Xnþ 1

��X� �
¼ E E Xnþ 1

��L;X� ���X� �
¼ E LjX½ � ¼ bLMMSE

:

5.2 Real data example

We revisit the BF example given in Tables 2.2–2.4 of Wüthrich & Merz (2008) (this is the example

also considered in the BF analysis in Alai et al., 2009)), see Table 1. We analyze this data set for non-

informative uniform priors according to Model 2.1 and for gamma priors according to Model 3.1.

In order to compare the results to the results in Wüthrich & Merz (2008) and Alai et al. (2009) we

choose a fixed plug-in estimate j5 14,714.

5.2.1 Non-informative priors and the CL method
In this subsection we study Model 2.1 with non-informative uniform priors and log link as well as

Model 3.1 with non-informative gamma priors. The Gibbs sampler allows us to numerically

calculate the MMSE predictors

bbRMMSE

¼
X

i

bbRi

MMSE

and
bbRMMSEn

¼
X

i

bbRi

MMSEn

;
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for Model 2.1 (with m,b-N) and Model 3.1 (with ai 	 a ! 0 and b-0). In Model 2.1 the

posterior density is then given by (2.5)–(2.6) with m,b-N. In Model 3.1 the posterior density is

then given by (3.10).

Note that for these two non-informative prior cases the posterior densities coincide, see (2.6) and (3.10).

Therefore, we only need to run one Gibbs simulation to solve both of these two cases numerically.

We have used the Gibbs sampler and we have run 1,000,000 simulations after the subtraction of

burn-in costs T 5 100,000. This provided the empirical posterior distribution of the parameters

ðmðtÞ0 ; . . . ; m
ðtÞ
I ; g

ðtÞ
0 ; . . . ; g

ðtÞ
I Þ

� �
t¼ 100;001;...;1;100;000

from which the MMSE predictors and their empirical

uncertainty ddmsepRjDI
�ð Þ were provided, see Section 4.2. For the estimation of the prediction

uncertainty of the MAP predictor we have used formula (2.8). The results are presented in Table 2.

Table 1. Observed incremental claims Xi,j, i 1 jr I, and prior values mi.

i/j 0 1 2 3 4 5 6 7 8 9 mi

0 5,946,975 3,721,237 895,717 207,760 206,704 62,124 65,813 14,850 11,130 15,813 11,653,101

1 6,346,756 3,246,406 723,222 151,797 67,824 36,603 52,752 11,186 11,646 11,367,306

2 6,269,090 2,976,233 847,053 262,768 152,703 65,444 53,545 8,924 10,962,965

3 5,863,015 2,683,224 722,532 190,653 132,976 88,340 43,329 10,616,762

4 5,778,885 2,745,229 653,894 273,395 230,288 105,224 11,044,881

5 6,184,793 2,828,338 572,765 244,899 104,957 11,480,700

6 5,600,184 2,893,207 563,114 225,517 11,413,572

7 5,288,066 2,440,103 528,043 11,126,527

8 5,290,793 2,357,936 10,986,548

9 5,675,568 11,618,437

Table 2. Claims reserves predictors with corresponding conditional MSEP1/2 in Model 2.1 (with non-informative

uniform priors and log link) and in Model 3.1 (with non-informative gamma priors). The figures in brackets

are obtained by Gibbs sampling, the others are exact. The results are compared to the frequentist’s CL model of

England & Verrall (2002) and of Mack (1993). Note that Mack (1993) is a rather different model, so we include

Mack’s (1993) results only for comparison purposes.

claims

reserves

posterior

bias term MSEP1/2

Model 2.1 (non-informative uniform priors with log link)bRMAP
¼ bRCL 6,047,059 (22,339) (430,166)

bbRMMSE (6,049,398) (430,160)

Model 3.1 (non-informative gamma priors)bRMAPn 5,783,089 (2266,229) (505,881)

bbRMMSEn (6,049,398) (430,160)

frequentist’s CL model of England & Verrall (2002) and of

Mack (1993)bRCL
from ODP, England & Verrall (2002) 6,047,059 429,891

bRCL
from Mack (1993) 6,047,059 462,960
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Observations 5.1

> We observe that the predictors of the outstanding loss liabilities are all rather similar in these non-

informative prior situations. The MAP predictor bRMAP
¼ 6; 047; 059 coincides with the CL

reserves bRCL
and it is also in line with the MMSE predictors

bbRMMSE

¼
bbRMMSEn

¼ 6; 049; 398

obtained by Gibbs sampling. Only the MAP predictor in the non-informative gamma priors

Model 3.1 gives a prediction bRMAPn
¼ 5; 783; 089 that deviates from the others. This prediction

seems too low and moreover, as mentioned in Remarks 2.3, the MAP predictor is not invariant

under re-parametrization. Therefore its use is questionable.

> Note that although the MAP predictors for Models 2.1 and 3.1 (with non-informative priors) are

different, the distributions of the reserves are identical since they are from the same Gibbs

simulation. This highlights the danger of focusing solely on the MAP predictors, and not on

the distribution.

> Prediction uncertainties in terms of the conditional MSEP: We compare our Bayesian calculations

to the frequentist’s estimates found in the literature: (i) ODP (constant scale) analytical

approximation using asymptotic normality of MLEs, see Section 7.2 in England & Verrall (2002),

(ii) distribution-free CL method, see Mack (1993):

dmsepRjDI
bRCL
� �

¼

ODP ðconstant scaleÞ approximation; England & Verrall ð2002Þ;

according to Mack0s distribution � free CL model ð1993Þ:

8<:
We observe that our Bayesian models provide a prediction uncertainty in the range of 430,000.

This is very similar to the estimate of England & Verrall (2002) in the asymptotic normality

approximation. Mack (1993)’s model is a rather different model, therefore we include Mack’s

(1993) results only for comparison purposes.

> The Bayesian models now have the advantage that they provide the full posterior parameter

distributions. Therefore, we can calculate the predictive distribution of the outstanding

loss liabilities (not only the claims reserves and the conditional MSEP). This is further outlined

below.

5.2.2 Informative gamma priors
We turn to Model 3.1 (gamma priors) with informative priors, that is, we implement prior

knowledge about the exposure parameters mi. We choose the degree of information a constant for all

accident years, i.e. ai 	 a 2 ½0;1�. Then the MAP predictors in Model 3.1 are given by

bRMAPn
ðaÞ ¼

X
i

bRMAPn
i ðaÞ ¼

X
iþ j4 I

bmMAPn
i ðaÞbgMAPn

j ðaÞ:

These are calculated by the root searching algorithm given in (3.7) for aA(0,N), the cases a 5 0 and

a 5N can be solved explicitly. Figure 1 gives the MAP predictors bRMAPn
ðaÞ for different degrees of

information aA[0,N]. We see that in our case the claims reserves bRMAPn
ðaÞ are an increasing

function in the degree of information a. This comes from the fact that the prior estimates mi are

rather conservative (this will be further highlighted below).

Next, we determine the MMSE predictors and the prediction uncertainties in the gamma priors

model. Therefore we again apply the Gibbs sampler. After subtracting the burn-in costs

T 5 100,000 we again simulate 1,000,000 samples. The results are provided in Table 3.
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Observations 5.2

> The first observation is that in the Gibbs sampler we obtain long-range dependencies for later

development periods. This comes from the fact that we have large variances (for non-informative

priors) and only a few observations. Therefore, we need many simulations (eT large) for the

convergence of the empirical mean.

> Similar to the non-informative gamma prior case we see substantial posterior bias terms in the

MAP predictors. This comes from the fact that the dispersion j is fairly large compared to the

incremental payments Xi,j in later development periods. For a 5N, for example, this results inbgMAPn
9 ð1Þ ¼ 0:01% and bgMMSEn

9 ð1Þ ¼ 0:14% which explains the posterior bias terms. This

again indicates that the MAP predictors should not be used.

> We see that the MMSE predictors are increasing in the degree of information a. This comes from

the fact that the prior means mi were chosen rather conservative and the more weight we give to

these conservative prior means the more the MMSE predictors increase.

> The conditional MSEPs are decreasing in the degree of information a. This is rather obvious

because the less uncertainty we have in the prior distributions the less prediction uncertainty we

obtain. We see that the conditional MSEP1=2 decreases from 430,160 to 395,012.
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Figure 1. MAP predictors bRMAPn
ðaÞ for different degrees of information a 2 ½0;1�.

Table 3. Claims reserves predictors with corresponding conditional MSEP1/2 in the gamma Model 3.1 for

different degrees of information a. The figures in brackets are obtained by Gibbs sampling.

claim reserves posterior bias term MSEP1/2

bRMAPn
ða ¼ 0Þ 5,783,089 (2266,229) (505,881)bbRMMSEn

ða ¼ 0Þ (6,049,398) (430,160)bRMAPn
ða ¼ 100Þ 5,878,911 (2266,615) (499,621)bbRMMSEn

ða ¼ 100Þ (6,145,526) (422,526)bRMAPn
ða ¼ 1Þ 6,367,134 2276,913 482,406bbRMMSEn

ða ¼ 1Þ 6,644,047 395,012
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As mentioned above, we obtain the full posterior distribution from the Gibbs sampler for the

outstanding loss liabilities R ¼
P

i Ri, conditional on DI, see (4.3). We consider in Model 3.1 the

case a 5 100. The histogram of the total reserves from 100,000 simulation of the outstanding loss

liabilities R is given in Figure 2.

This empirical distribution now allows for the estimation of any risk measure, not only the

conditional MSEP. Moreover, we can also plot confidence intervals, for example, in Figure 3 we

show the confidence intervals per accident year i. As expected, we observe that the uncertainty in
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Figure 2. Histogram for RjDI
in Model 3.1 for a 5 100 from 100,000 simulations.
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Figure 3. Confidence intervals of RijDI
, i 5 1,y,10, in Model 3.1 for a 5 100. The different

quantiles correspond to: minimum, 5th percentile, 10th percentile, 25th percentile, 50th percentile,
75th percentile, 90th percentile, 95th percentile and maximum.
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old accident years is rather low, because they are already well developed, whereas for younger

accident years we obtain bigger ranges.

The Gibbs sampler not only provides the conditional distribution of the outstanding loss liabilities

Ri, given DI, but we also obtain the conditional distribution of the cash flows Xi,j, conditionally

given DI. From these cash flows we can determine how the uncertainty evolves over time (over the

development years). In Figure 4 we show the development of the uncertainty over time for the

youngest accident year. We see that the payment for the first development year is given (contained

in DI). This is why there is no uncertainty at time 1. After this first development year we obtain the

corresponding confidence intervals. Figure 5 describes the same development uncertainty but for the
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Figure 4. Development of Ci,j, i 5 I and jZ0, over time in Model 3.1 for a 5 100. The different gray
scales correspond to: 10th percentile, 25th percentile, 50th percentile, 75th percentile, 90th percentile.
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Figure 5. Development of Ci,j, i 5 I–1 and jZ0, over time in Model 3.1 for a 5 100. The different gray
scales correspond to: 10th percentile, 25th percentile, 50th percentile, 75th percentile, 90th percentile.
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second youngest accident year. Of course, we observe a smaller uncertainty, because we have more

observations compared to the case in Figure 4.

5.2.3 Strong gamma prior case and the BF method
Finally, we compare the gamma priors Model 3.1 with strong priors for mi to the classical BF

predictor. In the literature the classical BF predictor is given by (3.16). We also compare the classical

BF predictor to the BF predictors obtained from Mack (2008):

bRMack1
¼
X

i

bRMack1
i ¼

X
iþ j� I

mibgraw
j ðBF-Mack predict or from raw patternÞ;

bRMack2
¼
X

i

bRMack2
i ¼

X
iþ j� I

mibgnorm
j ðBF-Mack predict or from normalized patternÞ:

For the calculation of the prediction uncertainty of the BF predictor there are different methods in

the literature: The conditional MSEP dmsepRjDI
bRBF
� �

of the classical BF predictor is calculated with

Alai et al. (2009) and the conditional MSEPs dmsepRjDI
bRMack1
� �

and dmsepRjDI
bRMack2
� �

of the

BF-Mack predictors are calculated according to Mack (2008). The results are presented in Table 4.

Observations 5.3

> The different BF predictors are rather diverse. This comes from the fact that the prior values mi

are too high, which has the rather unpleasant effect that we do not obtain reliable estimates

for the claims development pattern gj. For the raw pattern we obtain
P

j bgraw
j ¼

P
j

bgMAPn
j ð1Þo1.

If we normalize this raw pattern, we get predictors bRMack2
and bRBF

that are too high. Also

the non-normalized ones
bbRMMSEn

ða ¼ 1Þ and bRMack1
seem to be too high because of the large

values of mi.

> The predictors bRMMSEn

ða ¼ 1Þ and bRMack1
coincide because they use the same parameter esti-

mates. However, the underlying reasoning is slightly different which can be seen in the prediction

uncertainty. For the MMSE predictor bRMMSEn

ða ¼ 1Þ there is no uncertainty in mi (because we

assume perfect information a 5N), whereas in bRMack1
we also add uncertainty to mi.

> The gamma priors Model 3.1 is consistent in the sense that it also uses the prior knowledge on mi

to estimate the claims development pattern gj (whereas the other BF methods are not). In this

spirit our Bayes model should be preferred. Moreover, we also have the flexibility to attach

credibility weights in terms of a to this prior knowledge which then results in Table 3.

Table 4. Claims reserves predictors with corresponding conditional MSEP1/2 according to Model 3.1 with

strong priors, Alai et al. (2009) and Mack (2008).

claims reserves MSEP1/2

bbRMMSEn

ða ¼ 1Þ from Model 3.1
6,644,047 395,012

bRBF
from BF (1972) with Alai et al. (2009) 7,356,578 471,973

bRMack1
from Mack (2008) raw pattern

6,644,047 539,678

bRMack2
from Mack (2008) normalized pattern

7,505,455 726,531
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6 Conclusions

The Bayesian ODP claims reserving model with uniform priors and log link (Model 2.1) and with

gamma priors (Model 3.1) give mathematically consistent ways to estimate claims reserves in the

Bornhuetter & Ferguson (1972) spirit:

> they use prior knowledge mi for the expected ultimate claim;

> they combine the prior knowledge mi with an estimated claims development pattern bgj to obtain

the reserves;

> this claims development pattern is estimated using a credibility weighted average between the

observations DI and the prior knowledge mi according to the degree of information a contained in

the prior knowledge. Complete prior knowledge (a 5N) leads to a BF model similar to Mack

(2008), no prior knowledge (a 5 0) leads to the CL case, and for aA(0,N) we can model any

intermediate case.

The advantage of such full Bayesian models is that they allow for a complete analysis and for the

calculation of any risk measure, whereas the frequentist’s approaches (Alai et al. (2009) and Mack

(2008)) need additional approximations for the determination of the conditional MSEP, and are

unable to provide additional information such as predictive distributions of cash flows.

Limitations and outlook for further research. This paper only considers the ODP model with

constant scale factor j, and the BF model in the context of the CL model without a tail factor. In

many cases the choice of a constant scale parameter j should be checked. Often data suggests that

jj depends on the development period j. Furthermore, it should be checked whether the conditional

independence assumption between the Xi,j’s is appropriate and whether one should include tail

factors beyond the latest development period.
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Alai, D.H., Merz, M. & Wüthrich, M.V. (2009). Mean square error of prediction in the

Bornhuetter-Ferguson claims reserving method. Annals of Actuarial Science, 4/1, 7–31.

Asmussen, S. & Glynn, P.W. (2007). Stochastic Simulation. Springer.

Bornhuetter, R.L. & Ferguson, R.E. (1972). The actuary and IBNR. Proceedings CAS, LIX, 181–195.

England, P.D. & Verrall, R.J. (2002). Stochastic claims reserving in general insurance. British

Actuarial Journal, 8/3, 443–518.

England, P.D. & Verrall, R.J. (2006). Predictive distributions of outstanding liabilities in general

insurance. Annals of Actuarial Science, 1/2, 221–270.

Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice.

Chapman & Hall.

Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications.

Biometrika, 57, 97–109.

Mack, T. (1991). A simple parametric model for rating automobile insurance or estimating IBNR

claims reserves. ASTIN Bulletin, 21/1, 93–109.

Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder reserve esti-

mates. ASTIN Bulletin, 23/2, 213–225.

Mack, T. (2008). The prediction error of Bornhuetter/Ferguson. ASTIN Bulletin, 38/1, 87–103.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953). Equation of

state calculations by fast computing machines. Journal Chemical Physics, 21/6, 1087–1092.

P. D. England et al.

280

https://doi.org/10.1017/S1748499512000012 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499512000012
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A Proofs

Proof of Lemma 3.2. This is an immediate consequence of the assumptions and

(3.2)–(3.3). &

Lemma A.1 In Model 3.1 equations (3.2)–(3.3) imply for j 5 0,y,I

XI� j

k¼ 0

mk

Xj

m¼ 0

gm ¼
XI� j

k¼ 0

Cn

k;j þ j
XI� j

k¼0

ak 1�
mk

mk

 �
:

Proof of Lemma A.1. We first prove the two statements (an empty sum is set equal to 0)

XI� j

k¼ 0

Cn

k;j ¼
XI� j

k¼ 0

mk

Xj

m¼ 0

gm þ j
XI

k¼ I� jþ 1

ak 1�
mk

mk

 �
; ðA:1Þ

XI

i¼ 0

aimi

mi
¼
XI

i¼ 0

ai: ðA:2Þ

If we sum (3.2) over i 5 0.y,I and (3.3) over j 5 0.y,I we obtain

X
iþ j� I

gjmi þ j
XI

i¼ 0

aimi

mi
�j

XI

i�0

ai ¼
X

iþ j� I

Xn

i;j ¼
X

iþ j� I

gjmi:

This immediately implies statement (A.2). We now turn to (A.1). The proof is similar to the proof of

Lemma 2.17 in Wüthrich & Merz (2008) and goes by induction.

We start with j 5 0: using (3.3) in the second step we have

XI

k¼ 0

Cn

k;0 ¼
XI

k¼ 0

Xn

k;0 ¼ g0

XI

k¼ 0

mk:

This proves the claim for j 5 0.
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Induction step j-j 1 1. We assume that the claim holds true for jr I 2 1, then we prove the claim

for j 1 1:

XI�ðjþ 1Þ

k¼ 0

Cn

k;jþ 1 ¼
XI� j� 1

k¼ 0

Xjþ1

m¼ 0

Xn

k;m ¼
XI� j

k¼ 0

Xj

m¼0

Xn

k;m�
Xj

m¼ 0

Xn

I� j;m þ
XI� j� 1

k¼ 0

Xn

k;jþ 1:

To the first term on the right-hand side we apply the induction assumption

XI� j

k¼ 0

Xj

m¼ 0

Xn

k;m ¼
XI� j

k¼ 0

Cn

k;j ¼
XI� j

k¼ 0

mk

Xj

m¼ 0

gm þ j
XI

k¼ I� jþ 1

ak 1�
mk

mk

 �
;

and to the second and third term (3.2) and (3.3), respectively. This implies

XI� ðjþ 1Þ

k¼ 0

Cn

k;jþ 1 ¼
XI� j

k¼ 0

mk

Xj

m¼ 0

gm þ
XI

k¼ I� jþ 1

jak 1�
mk

mk

 �

� mI� j

Xj

k¼ 0

gk þ jaI� j

mI� j

mI� j
�1

 �" #
þ gjþ 1

XI� j� 1

k¼ 0

mk

¼
XI� ðjþ1Þ

k¼ 0

mk

Xjþ 1

m¼ 0

gm þ j
XI

k¼ I� ðjþ 1Þ þ1

ak 1�
mk

mk

 �
:

This proves (A.1). If we now combine (A.1) and (A.2) we obtain

XI� j

k¼0

mk

Xj

m¼ 0

gm ¼
XI� j

k¼ 0

Cn

k;j�j
XI

k¼ I� jþ 1

ak 1�
mk

mk

 �
¼
XI� j

k¼ 0

Cn

k;j þ j
XI� j

k¼ 0

ak 1�
mk

mk

 �
:

This proves the claim. &

Proof of Lemma 3.3. Choose jr I–1 then we have from Lemma A.1 and equation (3.2)

XI� j� 1

k¼ 0

mk

Xj

m¼ 0

gm ¼
XI� j

k¼ 0

mk

Xj

m¼ 0

gm � mI� j

Xj

m¼ 0

gm

¼
XI� j

k¼ 0

Cn

k;j þ j
XI� j

k¼ 0

ak 1�
mk

mk

 �
�
Xj

k¼ 0

Xn

I� j;k� aI� jj 1 �
mI� j

mI� j

 �

¼
XI� j� 1

k¼ 0

Cn

k;j þ j
XI� j� 1

k¼ 0

ak 1�
mk

mk

 �
:

ðA:3Þ

If we divide the equality in Lemma A.1 by (A.3) we obtain the claim. &

Proof of Theorem 3.4. We solve (3.4) for mi. In a first step we obtain for i 5 1,y,I

mi

Xi� 1

k¼ 0

Cn

k;I� i þ j
Xi� 1

k¼ 0

ak 1�
mk

mk

 �" #
¼

Xi� 1

k¼ 0

mk

 !
Cn

i;I� i þ jai 1�
mi

mi

 �� �
:
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Moreover, we have

mi

Xi� 1

k¼ 0

Cn

k;I� i þ j
Xi�1

k¼0

ak 1�
mk

mk

 �
þ

aij
mi

Xi� 1

k¼ 0

mk

" #
¼

Xi� 1

k¼ 0

mk

 !
Cn

i;I� i þ aij
h i

:

Therefore, if we divide by the bracket on the left-hand side we obtain

mi ¼

Pi� 1

k¼ 0

mk

 !
Cn

i;I� i þ aij
h i

Pi� 1

k¼ 0

Cn

k;I� i þ j
Pi� 1

k¼ 0

mk
ak

mk
�

ak

mk
þ ai

mi

� � :
But then the first claim easily follows. The second claim was already proved in (A.2). &

Proof of Proposition 3.6. The proof follows from the normalization condition (3.6) and (3.13)

similar to the derivation (3.8). &
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