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ABSTRACT

Modeling taxation of Variable Annuities has been frequently neglected, but
accounting for it can significantly improve the explanation of the withdrawal
dynamics and lead to a better modeling of the financial cost of these insur-
ance products. The importance of including a model for taxation has first
been observed by Moenig and Bauer (2016) while considering a Guaranteed
Minimum Withdrawal Benefit (GMWB) Variable Annuity. In particular, they
consider the simple Black–Scholes dynamics to describe the underlying secu-
rity. Nevertheless, GMWB are long-term products, and thus accounting for
stochastic interest rate has relevant effects on both the financial evaluation
and the policyholder behavior, as observed by Goudenège et al. (2018). In this
paper, we investigate the outcomes of these two elements together on GMWB
evaluation. To this aim, we develop a numerical framework which allows one
to efficiently compute the fair value of a policy. Numerical results show that
accounting for both taxation and stochastic interest rate has a determinant
impact on the withdrawal strategy and on the cost of GMWB contracts. In
addition, it can explain why these products are so popular with people looking
for a protected form of investment for retirement.
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1. INTRODUCTION

Variable Annuities are tax-deferred investment contracts with insurance
coverage. The market for such products has been steadily growing in the past
years all around the world, and 2019 has set best sales year since 2008 in Unites
States. According to the Secure Retirement Institute (2019), the Variable
Annuity sales in 2019 amounted to over $100 billions, which represents
almost half of the total annuity sales. In this paper, we focus on a particular
type of Variable Annuity, called Guaranteed Minimum Withdrawal Benefit
(GMWB) which promises to return the entire initial investment by means of
cash withdrawals during the policy life, plus a final payment amounting to the
remaining account value at the contract maturity. Usually, the policyholder
(hereinafter PH) pays the whole premium as a lumpsum, and he is entitled to
withdraw at each contract anniversary a variable amount, with a minimum
guaranteed. Thanks to the guarantee included in the policy, the PH can
withdraw money from his account even if it has run out. Moreover, if the PH
death occurs before the contract maturity, then his heirs receive the remaining
account value as a lumpsum payout. The premium paid at contract inception
determines the risky account, which changes over time according to a financial
index (usually a fund) but it is also reduced due to the fees applied by the
insurer and by withdrawals made by the PH.

In order to manage GMWB contracts, insurers usually employ hedging
techniques which rely on the computation of the fair prices of the policies in
a risk neutral probability framework. In addition, the hedging costs are off-
set by deducting a proportional fee from the risky asset account. Moreover,
the mortality risk is hedged by using the law of large numbers (see Bernard
and Kwak, 2016 and Lin et al., 2016 for an explanation of move-based and
semi-static hedging of Variable Annuities). Price and Greeks calculation usu-
ally relies on numerical computations, which are based on a convenient model
of the product, of the financial market, and nonetheless of the behavior of the
PH. In fact, since the PH can choose (within certain limits established by the
contract) the amount to be withdrawn, he can decisively drive the total pay-
off of the contract. Anyway, ordinary techniques for pricing American and
Bermudan options lead to prices which differ significantly from market obser-
vations (Moenig and Bauer, 2016). In particular, the typical prices for Variable
Annuities in the marketplace are often much less than the no-arbitrage value.
A possible simple explanation for this anomaly is that the price gap derives
from errors in the internal models of insurance companies or it is caused by
(dangerous) short-term marketing decisions, forced by market competition.
Anyway, various academics have postulated more fascinating reasons. For
example, Piscopo and Haberman (2011) prove that neglecting randomness of
mortality rates can lead to mispricing, while Sun et al. (2018) attribute mispric-
ing to the lack of a correct model for management fees. Furthermore, Kling
et al. (2014) find that the price of the guarantee strongly depends on the con-
sidered model for the PH’s behavior. In this regard, an element that affects
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the withdrawal strategy of the PH and that supports the theoretical-empirical
price gap is the correct modeling of taxation dynamics. In particular, Moenig
and Bauer (2016) propose to model taxation imposed to the PH and to con-
sider a subjective valuation of the contract. Specifically, they show that when
accounting for taxation, PH withdraws less frequently than without taxes and
by employing ordinary pricing techniques, one can obtain prices which are in
line with empirical observations. Moreover, Moenig and Zhu (2018) observe
that the preferential tax treatment has been one of the key factors that have
made Variable Annuities such a popular instrument and thus correctly mod-
eling taxation can improve the explanation of the still unclear mechanisms
about these products. We stress out that the investigations in Moenig and
Bauer (2016) and Moenig and Zhu (2018) have been performed by assuming
the Black–Scholes model for the underlying fund.

Interest rates are another relevant factor in Variable Annuities evaluation.
As observed by Goudenège et al. (2018), since GMWB contracts have long
maturities that could last almost 25 years, the Black–Scholes model seems
to be unsuitable for such a long time interval as it assumes constant inter-
est rate and volatility. Several authors have investigated the possibility of
evaluating GMWB contracts while considering a stochastic interest rate. For
example, Peng et al. (2012) develop an analytic approximation of the fair value
of the GMWB under the Vasicek stochastic interest rate model. Donnelly
et al. (2014) consider pricing and Greeks calculation through an Alternating
Direction Implicit method in the advanced Heston–Hull–White model. Dai
et al. (2015) develop a tree-based model to include both stochastic interest rate
and mortality in their evaluation framework. Gudkov et al. (2019) employ the
operator splitting method to price GMWB products under stochastic interest
rate, volatility and mortality. Shevchenko and Luo (2017) employ high-order
Gauss-Hermite quadrature to evaluate the GMWB contract under the Vasicek
interest rate model. Recently, Goudenège et al. (2019) exploit a hybrid tree-
PDEmethod together withMachine Learning techniques to efficiently evaluate
the GMWB contract in a model that considers both stochastic interest rate and
stochastic volatility. More generally, as far as pricing of Variable Annuities in
a stochastic interest rate framework is considered, it is worth mentioning the
work of Bacinello and Zoccolan (2019) that develops a Monte Carlo flexible
approach to study the impact of threshold fee on the optimal surrender strategy
about a product including accumulation and death guaranteed benefits under a
model which considers stochastic interest rate, volatility andmortality. We also
mention Goudenège et al. (2016), who employ the hybrid tree-PDE method to
evaluate a GLWB contract under stochastic interest rate.

In this paper, we present an investigation about GMWB pricing and PH
behavior when both tax treatment and stochastic interest rate are considered.
In particular, followingMoenig and Bauer (2016) andMoenig and Zhu (2018),
we model taxation of GMWB through a constant marginal income tax rate
on all policy earnings and a constant marginal tax rate on capital gains from
investments outside of the policy. Moreover, we also include a premium-based
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model for taxation of the insurer, which was neglected in previous researches.
Because of taxation, the evaluation of the contract is not straightforward, so
we exploit the same subjective risk-neutral valuation methodology employed
in Moenig and Bauer (2016). In particular, in this framework, the value of
a given post-tax cash flow is the amount necessary to set up a pre-tax port-
folio that replicates the considered cash flow. This causes the insurer and
the PH to evaluate the policy differently, and we investigate both the per-
spectives. As far as the stochastic interest rate is concerned, we consider the
Hull–White model (Hull and White, 1994), which is often employed by both
academics and practitioners for its easiness of calibration and simple proba-
bility distribution. This model has already been employed in other research
works concerning GMWB Variable Annuities (e.g. Donnelly et al., 2014; Dai
et al., 2015; Goudenège et al., 2018, 2019). We stress out that considering both
taxation and stochastic interest rate is a challenging task because of the com-
putational effort required to consider many factors together. In particular,
evaluating a GMWB policy in the considered model is a four (plus time)-
dimensional problem, which means a high computational cost in terms of both
computing time and working memory required. Moreover, the evaluation of a
policy through the subjective risk-neutral valuation methodology requires the
resolution of many fixed point problems, and this increases even more the com-
putational cost. Finally, we assume the PH to employ an optimal withdrawal
strategy, which implies the numerical resolution of a dynamic control problem.
In order to manage such a computational effort, we use a backward dynamic
approach that exploits a tree approach to compute the fair contract price. In
particular, we employ a trinomial tree to approximate the stochastic interest
rate process through a Markov chain, which represents an efficient numerical
solution already used by Goudenège et al. (2019). It is worth noting that tree
methods have already been used to study the GMWB contract. In this regard,
we mention the works of Costabile (2017) and of Costabile et al. (2020) that
employ a trinomial tree to evaluate a GMWB policy and to investigate the PH
decisions while including exogenous factors in the model.

In order to test our approach, we perform some numerical experiments.
Specifically, we study how the evaluation of the policy varies according to the
insurer and to the PH perspectives and how the withdrawal strategy is modi-
fied, by including or not including taxation and by changing the parameters of
the interest rate and the fund. Numerical results show many interesting find-
ings. First of all, if taxation is considered, the fair value of the policy for the PH
is higher than the fair value for the insurer. This means that the PH attributes
a higher price to the policy than the insurer does, so buying and selling the
contract can be a good deal for both of them. Secondly, we observe that tax-
ation and interest rate modeling have a significant impact on the withdrawal
strategies of the PH.

To the best of our knowledge, this is the first analysis about GMWB pric-
ing and withdrawal strategy which accounts for both taxation and stochastic
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interest rate. Our research could be useful both for the qualitative observations
obtained and for the numerical solutions adopted.

The reminder of the paper is organized as follows. Section 2 introduces the
stochastic model for the underlying and the interest rate processes. Section 3
describes the GMWB contract and the taxation model. Section 4 presents
pricing assumptions. Section 5 describes the pricing method and the techni-
cal measures. Section 6 shows numerical results on various examples. Finally,
Section 7 draws the conclusions.

2. THE STOCHASTIC MODEL

In order to define the notation used throughout the rest of the paper, let us
introduce the Black–Scholes Hull–White model. The Hull–White model (Hull
and White, 1994) is one of the historically most important interest rate models,
which is nowadays often used for option pricing purposes. In particular, the
existence of closed formulas for the price of bonds, caplets and swaptions is
one of the important advantages of this model. Furthermore, it is capable of
generating negative interest rates, actually observed in the markets in recent
years. We report the dynamics of the Black–Scholes Hull–White model, which
combines the dynamics of the interest rate with the dynamics of the underlying:{

dSt = rtStdt+ σStdZS
t

drt = k (θ (t) − rt) dt+ ωdZr
t ,

(2.1)

where ZS and Zr are Brownian motions with d
〈
ZS
t ,Z

r
t

〉= ρdt. Moreover σ ,
k and ω are positive values, and the initial values S0 > 0 and r0 are given.
Furthermore, θ (t) is a deterministic function which is completely determined
by the market values of the zero-coupon bonds by calibration (see Brigo and
Mercurio, 2007) so that the theoretical prices of the zero-coupon bonds match
exactly the market prices.

It is well known that the (short) interest rate process r can be written as

rt =Yt + β (t), (2.2)

where Y is a stochastic process whose dynamics is given by

dYt = −kYtdt+ ωdZr
t , Y0 = 0, (2.3)

and β (t) is a real-valued function given by

β (t) = r0e−kt + k
∫ t

0
θ (s) e−k(t−s)ds. (2.4)

Moreover, β (t) can be estimated directly from market data as

β (t) = −∂ lnPM (0, t)
∂t

+ ω2

2k2
(1− exp (−kt))2 , (2.5)
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where PM (0,T) stands for the market price of the zero-coupon bonds at time
0 for the maturity t.

The Black–Scholes Hull–White model can be described by the following
relations: ⎧⎪⎨

⎪⎩
dSt = rtStdt+ σStdZS

t S0 = S̄0,
dYt = −kYtdt+ ωdZr

t Y0 = 0,
rt =Yt + β (t).

(2.6)

The flat curve case is a particular case for the market price of a zero-coupon
bonds: in this specific case, the price at time t of a zero-coupon bond with
maturity t̄ is given by

PM
(
t, t̄
)= e−r0(t̄−t), (2.7)

and the function β is given by

β (t) = r0 + ω2

2k2
(1− exp (−kt))2 . (2.8)

We stress out that assuming a flat curve for the price of bonds is not essential
for the development of our model, but it simplifies the numerical settings.

3. MODELING THE CONTRACT

3.1. Modeling taxation

In order to model taxation, we follow the same approach proposed by Moenig
and Bauer (2016), which in turn is a simplified version of the model currently
in force in the Unites States.

Variable Annuities are tax-deferred products, which means the PH does not
pay federal taxes on the income and on the investment gains from the annuity
until withdrawals are made. Moreover, taxes are due on future policy gains
and not on the invested amount. In this regard, we assume a constant marginal
income tax rate τ to be applied on all policy earnings. Moreover, we assume
that earnings from the policy are withdrawn before the initial premium, follow-
ing a last-in first-out approach. On the contrary, capital gains form investments
held by the PH outside the policy are taxed annually at a constant marginal tax
rate κ. Thus, if the PH sets up a multi-asset portfolio made of bonds and stocks,
then κ is the tax rate applied on portfolio gains.

In order to complete tax modeling, we have to consider taxation con-
cerning the insurer, which is usually of two types: premium taxation and net
income taxation (see Skipper, 2001). Determining life insurer profit is a chal-
lenge because of the difference in timing between premium payments and claim
payments, so premium taxes are the most common. Furthermore, as far as
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Unites States life insurance system is concerned, the insurance companies can
elect to be taxed based on either premiums or net income (see Nissim, 2010).
For sake of simplicity, we assume premium-based taxation, that is the insurer
pays a certain percentage of the gross premium GP as taxes. So, the tax due by
the insurer is thus χ ·GP, where χ is the premium tax rate. Such a rate usually
varies between 0.5% and 3% (see Moran, 2017). Obviously, the insurer has to
recover this tax cost; therefore, we assume that such an amount is applied indi-
rectly to the customer as an entry cost, which reduces the gross premium and
determines the net premium P, given by P=GP · (1− χ).

3.2. The GMWB contract

We study here a simple version of the GMWB contract which was first investi-
gated by Moenig and Bauer (2016). We consider an x-year-old individual that
purchased a GMWB policy with a finite integer maturity T against the pay-
ment of a single gross premium GP. Then, entry expenses are deducted from
the gross premium, and the net premium P is credited to the policy’s account.
There are three variables which determine the state of a policy at time t, namely
the account value Xt, the benefit base Gt and the tax base Ht whose values at
time t= 0 are equal to the policy net premium, that is

X0 =G0 =H0 =P. (3.1)

In particular, the account value X represents the risky account of the policy,
which changes as if it were invested in a market fund, aside from being reduced
by withdrawals and management costs. The benefit base G represents the guar-
antee inherent in the policy as it regulates the maximum withdrawal that the
PH can make, while the tax base H represents the amount that may still be
withdrawn from the policy free of tax.

Let ti denote the time of the i-th contract anniversary, that is ti = i. The
variables Gt and Ht do not change during the time between two consecutive
anniversaries, that is for t ∈ ]ti−1, ti[, while Xt varies according to an underlying
investment fund changes. This fund is usually chosen by the customer from a
list proposed by the insurer. Specifically, let us term St the value of the underly-
ing fund, which evolves according to (2.1). Then, for t ∈ ]ti−1, ti[, Xt follows the
same dynamics of St with the exception that fees are subtracted continuously,
that is

dXt = Xt

St
dSt − ϕXtdt. (3.2)

The variable ϕ in (3.2) is the (constant) fee rate and it controls the fees
withdrawn by the account value.

At each anniversary time ti, the continuation of the policy is determined
according to the survival of the PH during the last year of the contract. In order
to describe the policy revaluation mechanisms, let us denote with X−

ti and X+
ti
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the account values just before and after any cash flow at time ti (we use the
same notation for Gti and Hti ). If the PH has passed away during the previous
year, then his heirs receive the death benefit bi, which is paid at time ti and it is
given by the residual account value net of taxation, that is

bi =X−
ti − τ

(
X−
ti −H−

ti

)
+, (3.3)

where τ is the income tax rate and (x)+ =max (x, 0). After the payment of
the death benefit, the contract ends and it has no residual value. On the con-
trary, if the PH has not passed away, then he is entitled to withdraw an amount
wi within some limits. According to the contract, the withdrawal amount wi

selected by the PH must satisfy the following relation:

0≤wi ≤max
{
X−
ti , min

{
gW ,G−

ti

}}
, (3.4)

where gW is a positive constant value called the annual guaranteed amount
and it is stated in the contract. In particular, if gW = P/T, then the PH is enti-
tled to withdraw at each contract anniversary exactly an amount equal to gW

throughout the duration of the contract. We stress out that the alive PH is enti-
tled to perform withdrawals at times ti = 1, . . . ,T , for a total of T events, thus
a minimum amount is guaranteed from the first anniversary t1 up to maturity
T . After the withdrawal has been performed, the new account value is given by

X+
ti = (

X−
ti −wi

)
+, (3.5)

while the new benefit base and tax base are given by

G−
ti+1

=G+
ti =

⎧⎨
⎩
(
G−
ti −wi

)
+, if wi ≤ gW(

min
{
G−
ti −wi,G−

ti · X+
ti

X−
ti

})
+
, if wi > gW

(3.6)

and

H−
ti+1

=H+
ti =H−

ti −
(
wi −

(
X−
ti −H−

ti

)
+

)
+

(3.7)

respectively.
The PH does not receive the whole amount withdrawn wi because some fees

and tax may be applied. Specifically, the PH receives the withdrawn amount
reduced by the fees due to the insurer for withdrawing more than the guaran-
teed amount gW and also reduced by a penalty for early withdrawals and by
the taxation. Specifically, the net amount he receives is given by

wi − feei − peni − taxi (3.8)

being feei the cost for withdrawing an amount exceeding min
{
gW ,Gti

}
, peni an

early withdrawal penalty for any withdrawal before the age of 59.5 years and
taxi the income taxes associated with the withdrawal. In particular,
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feei = si ·
(
wi −min

{
gW ,G−

ti

})
+ , (3.9)

peni = sg · (wt − feei) · 1{x+ti<59.5}, (3.10)

and

taxi = τ ·min
{
wi − feei − peni,

(
X−
ti −H−

ti

)
+

}
. (3.11)

The coefficient si in (3.9) is a non-negative coefficient called surrender charge,
which usually decreases with time and it is zero within the term of the contract.
Moreover, sg in (3.10) is another non-negative coefficient that determines the
penalty for an early withdrawal. In particular, since these contracts are usually
employed as a supplement to the retirement pension, we assume that when the
contract maturity is achieved, the PH must be older than 59.5 years, so penalty
is not applied at last withdrawal at time T .

Finally, after the last withdrawal has been made at time T , the alive PH
receives the remaining account value net of taxes, that is

X+
T − τ

(
X+
T −H+

T

)
+, (3.12)

and the contract ends.

4. PRICING ASSUMPTIONS

In this Section, we present the pricing framework.
First of all, we present the main pricing tool, that is the subjective risk-

neutral valuation. In a nutshell, such an approach defines the value of the
policy as the amount of money that an agent requires to set up a pre-tax finan-
cial portfolio such that, after taxation, it replicates the post-tax policy cash
flows.

After introducing the subjective risk-neutral valuation, we focus on the
appraisal of the GMWB contract by considering PH’s subjective valuation and
then we present the same while assuming insurer’s subjective valuation. The
main differences in the two perspectives are due to taxation and to control on
withdrawals. As far as taxation is considered, the PH has to pay taxes on both
policy earnings and capital gains outside the policy. On the contrary, the taxa-
tion applied to the insurer is much simpler: a percentage of the gross premium.
As far as withdrawals are concerned, the PH selects optimal withdrawals in
order to maximize the expected value of its assets, net of taxation: if taxation is
applied, such a value is not equal to insurer’s liability. Thus, the amount with-
drawn by the PH is optimal for him, but it could be different from the worst
amount computed considering the insurer’s point of view, that is the amount
that maximizes insurer’s liability to the PH. This means that the PH withdraws
money trying to maximize his economic return, rather than trying to maximize
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the outputs of the insurer: since these two strategies do not coincide, the costs
for the insurer are lower than the worst withdrawal case.

Finally, we underline that the considered framework captures an interesting
feature of insurance products. Taxation makes GMWB policies particularly
attractive to customers: although taxes are applied on the earnings of the
policy, the tax regime is particularly favorable for this type of product and
therefore it is more convenient for the customer buying the policy rather than
reproducing it through a replicating portfolio.

In the next Subsections, we show how to compute the initial contract value
according to the PH and to the insurer’s subjective valuation.We stress out that
in both cases we compute the cost of the replicating portfolio under the same
risk neutral measureQ for the Black–Scholes Hull–White model (see Brigo and
Mercurio, 2007).

4.1. Subjective risk-neutral valuation

The subjective risk-neutral valuation was introduced in the context of Variable
Annuities by Moenig and Bauer (2016) by drawing inspiration from the
approach of Sibley (2002) originally employed for pricing insurance products
with deterministic cash flows. Such an approach solves the problem of defin-
ing a pricing framework when accounting for taxation. In fact, when taxation
is applied, the well-known standard risk-neutral valuation is not suitable: as
observed by Ross (1987), taxation leads to the loss of uniqueness of prices of
contingent claims since the valuation of a specific cash flow depends on the per-
sonal endowment and on the tax rates applied to the agent that owns the claim.

While assessing his financial position, each agent (in our case the PH or the
insurer) must consider the taxation applied to the various instruments he owns,
by distinguishing between the pre-tax and post-tax amounts. Obviously, these
two amounts cannot be directly compared with each other since the former
ones, unlike the latter ones, still have to discount the taxation before they are
actually available for consumption.

The key idea of the subjective risk-neutral valuation is that in a complete
pre-tax market, any agent can replicate all post-tax cash flows from the pol-
icy by investing a pre-tax amount in a replicating portfolio including securities
such as shares of the underlying fund, a bank account for cash money and
other interest rate products. It is important to note that all of these financial
instruments must discount capital gain taxes. According to the subjective risk-
neutral valuation, the amount required to set up such a replicating portfolio
defines the contract value. Clearly, such a value depends on the specific tax-
ation applied to the agent and this can be significantly different with respect
to the PH and to the insurer: that’s why the valuation is termed subjective.
Furthermore, taxation of policy cash flows may be different from taxation of
the replicating portfolio: a lighter taxation is usually applied to insurance prod-
ucts (such as Variable Annuities policies) and a heavier taxation is imposed to
financial products (such as the securities in the replicating portfolio).
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Finally, we point out that, when a positive tax rate κ is applied on gains of
the replicating portfolio, the subjective risk-neutral value of the policy must be
computed by solving a non-linear equation which involves the post-tax value
of the policy together with the risk-neutral expected post-tax cash flow. On the
contrary, if no taxation is applied to the replicating portfolio, then a linear
equation is obtained, which can be solved by computing the expected dis-
counted value under the risk-neutral probability measure as in the usual case
without taxation.

4.2. Policyholder’s subjective valuation

We focus now on the PH’s subjective valuation of the contract, that is we
compute the amount of money that a PH needs to set a hypothetical repli-
cating portfolio, which replicates the post-tax policy cash flows. Specifically,
let V (t, r,X ,G,H) denote the fair value according to an alive PH of a GMWB
contract at time t, being r the interest rate, X the account value, G the guar-
antee base and H the tax base. Specifically, following the same approach of
Moenig and Bauer (2016), V represents the average option value across the
many policies sold to the customers that are still alive at time t.

Finally, in order to compute PH’s subjective value of the contract at time
t= 0, we proceed backward in time, starting from contract’s maturity at time
T and by taking into account the changes that occur to the policy status
parameters.

4.2.1. Value function at a contract anniversary.
First of all, let us denote with V+ (T , rT ,X+

T ,G
+
T ,H

+
T

)
the policy value at matu-

rity, after the last withdrawal is performed. Such an amount is given by the
final payoff, that is

V+ (T , rT ,X+
T ,G

+
T ,H

+
T

)=X+
T − τ

(
X+
T −H+

T

)
+ . (4.1)

Now, let us focus on the i-th contract anniversary, at time ti. Since we are
assuming that the PH is alive, then he is entitled to perform a withdrawal from
his account. Let V− (ti, rti ,X−

ti ,G
−
ti ,H

−
ti

)
and V+ (ti, rti ,X+

ti ,G
+
ti ,H

+
ti

)
represent

the values of the policy just before and after the PH has withdraw money,
respectively. In particular, rti ,X

−
ti ,G

−
ti ,H

−
ti are the state parameters before with-

drawing at time ti, while rti ,X
+
ti ,G

+
ti ,H

+
ti are the state parameters after with-

drawing at time ti. Please, observe that there is no need to distinguish between
the value of the interest rate before and after the withdrawal because such a
value is not modified by the withdrawal, so we simply write rti in both cases.
We can write the relation between the two policy values in the general form

V− (ti, rti ,X−
ti ,G

−
ti ,H

−
ti

)= V+ (ti, rti ,X+
ti (wi),G+

ti (wi),H+
ti (wi)

)
+ (wi − feei (wi) − peni (wi) − taxi (wi)), (4.2)
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where we underline the dependence of many variables on the withdrawal wi by
denoting them as a function of wi. In particular, Equations (3.5), (3.6), (3.7),
(3.9), (3.10) and (3.11) express the dependence of X+

ti ,G
+
ti ,H

+
ti , feei, peni and

taxi on wi, respectively.
The PH might adopt a static withdrawal strategy, which means he with-

draws an amount wi equal to gW , regardless of the value taken from the policy
state parameters. Such a strategy is easy to be implemented, and it may be
interesting in practice in the sense that retirees often desire stable (real) cash
flows to fund expenses. However, in the case of an investor interested in maxi-
mizing his financial return, a strategy based on constant withdrawals may not
be the best one. Moreover, for such investors, a dynamic strategy is not only
desirable but also possible, thanks to the indications of the financial advisors
which could direct their withdrawal strategies as already pointed out by Kling
et al. (2014) and by Moenig and Bauer (2016). Thus, since we are interested
in investigating optimal withdrawal strategies, we consider a value-maximizing
approach. Specifically, we assume that the PH selects the amount wi in order
to maximize the expected value of his assets – contract plus net withdrawal–,
that is

wi = argmax
w∈[0,Wmax]

V+ (ti, rti ,X+
ti (w),G

+
ti (w),H

+
ti (w)

)
+ (w− feei(w)− peni(w)− taxi(w)), (4.3)

where

Wmax =max
{
X−
ti , min

{
gW ,G−

ti

}}
(4.4)

is the maximumwithdrawal allowed by the contract. We observe that, at matu-
rity, the optimization problem (4.3) can be easily solved as the continuation
value after the payment is given by the final payoff, which has a closed formu-
lation. Specifically, one can prove that the optimal withdrawal in this particular
case is given by

wT =min
{
gW ,G−

T

}
. (4.5)

Moreover, by using Equations (4.1), (4.2) and (4.5), one can obtain the
following expression:

V− (T , rT ,X−
T ,G

−
T ,H

−
T

)=max
{
X−
T ,wT

}− τ min
{
wT ,

(
X−
T −H−

T

)
+
}

− τ
((
wT − (

X−
T −H−

T

)
+
)

+
+ (

X−
T −wT

)
+ −H−

T

)
+
.

(4.6)

When the optimal withdrawal wi at time ti <T is concerned, there is no
closed formula as for the last anniversary T , so wi must be approximated by
a numerical procedure.
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Remark. The model that we have considered here assumes the PH to determine
the amount to be withdrawn in order to maximize the expected value of his assets.
A more complicated approach would be to specify a utility model to determine the
withdrawal strategy. Such an approach has been investigated by Moenig (2012)
(in the Black–Scholes model) and it requires the resolution of a life cycle utility
optimization problem that incorporates the relevant decision variables. Anyway,
as observed by Campbell (2006) and by Moenig and Bauer (2016), including all
important elements and risk factors within a life cycle model is a demanding task,
so that formulating a model for a real-world GMWB contract may not be possi-
ble. Furthermore, as observed byMoenig (2012), it appears that a life cycle model
does not bring significant improvements in modeling the behavior of the PH com-
pared to the use of taxation alone and it gives similar results as far as withdrawal
strategies and pricing results are concerned.

4.2.2. Dynamics of the value function between two anniversaries.
During the time between two contract anniversaries ti and ti+1, the variables G
andH do not change. Changes of the policy value are solely due to the passage
of time and to the changes of the account value X and of the interest rate r.
Following Moenig and Bauer (2016), the subjective risk-neutral value at time
ti of V+ is given via a nonlinear implicit equation:

V+ =EQ
[
e− ∫ ti+1

ti
rsds

(
qx+ti bi+1 + px+tiV−)]

+ κ

1− κ
·EQ

[
e− ∫ ti+1

ti
rsds

(
qx+ti bi+1 + px+tiV− − V+)

+
]
, (4.7)

where V+ stands for V+(ti, rti ,X
+
ti ,G

+
ti ,H

+
ti ) and V− stands for V−(ti+1,

rti+1 ,X
−
ti+1

,G−
ti+1

,H−
ti+1

). Furthermore, bi+1 is the death benefit that may be paid
at time ti+1 in case of death and it is computed according to (3.3). Moreover,
qx+ti is the probability that the alive PH, aged exactly x+ ti at time ti, will die
in 1 year, while px+ti+1 is the probability that he will survive at least one more
year. We stress out that the use of death and survival probabilities is possible
if a large number of contract holders is assumed: in this case, mortality risk is
diversifiable.

4.3. Insurer’s subjective valuation

Let U (t, r,X ,G,H) denote the fair value of the GMWB contract but accord-
ing to insurer’s subjective value, that is the amount of money that the insurer
needs to set a replicating portfolio. The valuation according to the insurer dif-
fers from the valuation according to the PH for some reasons. First of all, the
taxation applied to the insurer only concerns the initial gross premium and it
is not applied to the replicating portfolio. Secondly, the insurer must shell out
an amount gross of taxes, while the PH receives the net amount. Finally, the
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insurer has no decision-making power and undergoes the PH’s choices regard-
ing the amount to be withdrawn. Just as done for the PH’s subjective valuation,
in order to compute insurer’s subjective value at contract inception, we proceed
backward in time.

4.3.1. Value function at a contract anniversary.
Let U+ (T , rT ,X+

T ,G
+
T ,H

+
T

)
be the policy value at maturity according to the

insurer, after the last withdrawal is performed. Such an amount is given by the
final payoff before tax, that is the residual account value:

U+ (T , rT ,X+
T ,G

+
T ,H

+
T

)=X+
T . (4.8)

Moreover, since the optimal withdrawal wT at time T is given by (4.5), one can
prove the following relation:

U− (T , rT ,X−
T ,G

−
T ,H

−
T

)=max
{
X−
T , min

{
gW ,G−

T

}}
. (4.9)

Now, let us focus on the i-th contract anniversary at time ti. The functions
U− (ti, rti ,X−

ti ,G
−
ti ,H

−
ti

)
and U+ (ti, rti ,X+

ti ,G
+
ti ,H

+
ti

)
represent the value of the

contract just before and after the PH has withdrawn the amount wi, which is
the solution of problem (4.3). The following relation holds,

U− (ti, rti ,X−
ti ,G

−
ti ,H

−
ti

)=U+ (ti, rti ,X+
ti (wi),G+

ti (wi),H+
ti (wi)

)
+ (wi − feei (wi) − peni (wi)). (4.10)

Equation (4.10) is similar to Equation (4.2) but taxes are not subtracted
because the insurer has to pay the amount before taxation.

Remark. In Subsection 4.2.1, we have assumed the PH to withdraw money in
order to maximize his total wealth according to his subjective valuation, that is
according to Equation (4.3) which defines the withdrawal strategy. Another inter-
esting withdrawal strategy is the so-called worst-case strategy, which assumes the
PH to make the worst withdrawal according to insurer’s subjective valuation. The
term “worst” is to be understood as “the most expensive”, that is, the one that
makes the replication of the contract the most money demanding according to the
insurer’s subjective valuation. Please, observe that the PH has no incentive to act
in such a way as to maximize the worst-case hedging cost for the insurance com-
pany, nonetheless his withdrawal strategy may be different from the expected one
(irrational customer) and therefore could be worse than expected for the insurer.
Therefore, although the worst-case strategy should not be realized in practice, it
is important to assess whether the insurer has the economic coverage necessary to
cope with any possible withdrawal strategy. In order to deal with this state, it is
sufficient to replace Equation (4.3) with the following one:

wi = argmax
w∈[0,Wmax]

U+ (ti, rti ,X+
ti (w),G

+
ti (w),H

+
ti (w)

)+ (w− feei(w)− peni(w)).

(4.11)
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4.3.2. Dynamics of the value function between two anniversaries.
As opposed to the PH, the insurer pays no taxes on the replicating portfolio.
The subjective risk-neutral value at time t+i of U is given by the discounted
expected future value of the death benefit plus the value of the policy, that is

U+ =EQ
[
e− ∫ ti+1

ti
rsds

(
qx+ti bi+1 + px+tiU−)], (4.12)

where U+ stands for U+ (ti, rti ,X+
ti ,G

+
ti ,H

+
ti

)
and U− stands for

U−(ti+1, rti+1 ,X
−
ti+1

,G−
ti+1

,H−
ti+1

).

5. PRICING METHOD

The fair value of the GMWB contract at time t= 0 according to the PH’s sub-
jective perspective, denoted by V (0, r0,P,P,P), can be computed by moving
backward in time. The terminal condition is expressed by (4.1). In order to
proceed backward, we have to solve the nonlinear implicit Equation (4.7) in
]ti, ti+1[ for ti =T − 1, . . . , 0, and apply relations (4.2) and (4.3) to handle the
jumps due to withdrawals at each contract anniversary.

With a similar approach, the initial fair value of the contract according
to the insurer’s perspective, denoted by U (0, r0,P,P,P), can be computed by
starting from the terminal condition (4.8), by solving backward Equation (4.12)
and by applying relation (4.10). We observe that computing U (0, r0,P,P,P)

requires the knowledge of the optimal withdrawals, which can be achieved
through the parallel computation of V (0, r0,P,P,P).

We stress out that the evaluation problems of V and U are four-dimensional
problems (plus the time variable) and this represents a non-trivial challenge
which requires an efficient numerical method to be solved.

5.1. Problem discretisation

The variables that determine the state of the policy at any time are the G,H, X
and r. To tackle the problem numerically, we prefer to replace r with Y , since
the dynamics of Y is simpler and one can easily compute r from Y through
(2.2). We consider a set of discrete values GY for Y , GX for X , GG for G and GH
for H, and we define a four-dimensional grid G = GY × GX × GG × GH .

First of all, since the benefit base G and the tax base H are non-negative
values that do not exceed P, it is worth exploiting an uniform partition of the
interval [0,P] to define GG and GH . In particular, we set

GG =
{
gj = j

NG
P, j= 0, . . . ,NG

}
(5.1)
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and

GH =
{
hj = j

NH
P, j= 0, . . . ,NH

}
, (5.2)

where NG and NH are two positive integers.
As opposed to G and H, the account value X assumes non-negative

unbounded values. Anyway, because of withdrawals and fees applied by the
insurer, such a value should not grow too much during the life of the policy.
In fact, as observed by MacKay et al. (2017) and by Bacinello and Zoccolan
(2019) in a similar context, when the account value is very high there is a great
incentive for the PH to surrender the contract by withdrawing all the money.
So, following same principle of the spatial grid employed by Haentjens and In’t
Hout (2012), we consider GX as a non-uniform distribution of points which is
more dense where the process X is more likely to be. Specifically, we consider
two sets of points: the first set

GX1 =
{
x1j = 2.5 · j

NX1

P, j= 0, . . . ,NX1

}
(5.3)

is made of NX1 + 1 uniformly distributed points between 0 and 2.5 ·P and the
second one

GX2 =
{
x2j = 2.5 ·P · exp

(
(ln (30) − ln (2.5))

j
NX2

)
, j= 1, . . . ,NX2

}
(5.4)

are made of NX2 points which are distributed uniformly in log between 2.5 ·P
and 30 ·P. Then, GX = GX1 ∪ GX2 and we term xj the j-th point of GX . Moreover,
for seek of simplicity, we consider NX1 =NX2 and we term NX the number of
elements of GX . We stress out that the coefficients 2.5 and 30 are determined
empirically in order to give accurate results and their small variations do not
produce impacts on the numerical results.

Finally, the construction of the set GY relies on the trinomial tree proposed
by Goudenège et al. in (2019). Such a tree defines a discrete Markov chain Ȳ�t

that matched the first two moments of the process Y . We set

GY =
{
yj = 3

2
( j−NY ) σ�t

Y , j= 0, . . . 2NY

}
, (5.5)

where σ�t
Y is a positive coefficient that depends on the standard deviation of the

process Y andNY is a suitable integer value, thus GY is made of 2NY + 1 points
uniformly distributed in

[− 3
2NYσ�t

Y ; 32NYσ�t
Y

]
. Appendix A presents technical

details about the process Ȳ�t, the coefficient σ�t
Y and the integer NY .
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5.2. Backward evaluation of V
Once the grid G has been build, we can start the computation of the numerical
approximation of V defined on G at any time ti. In particular, for every
policy anniversary ti, we compute a function V̄+

i : G →R such that for any
point (y, x, g, h) of G, V̄+

i (y, x, g, h) approximates V+ (ti, y+ β (ti), x, g, h).
Moreover, we also compute a function V̄−

i : G →R such that for any
point (y, x, g, h) of G, V̄−

i (y, x, g, h) approximates V− (ti, y+ β (ti), x, g, h).
According to (4.6), the terminal condition at each point (y, x, g, h) of G is given
by:

V̄−
T (y, x, g, h) =max {x,wT (g)} − τ min

{
wT (g), (x− h)+

}
− τ

((
wT (g) − (x− h)+

)
+ + (x−wT (g))+ − h

)
+
, (5.6)

where wT (g) =min
{
gW , g

}
.

Suppose now the function V̄−
i+1 to be known on G. Let us fix (y, x, g, h) ∈ G

and let us focus on the computation of V̄+
i (y, x, g, h) by solving Equation (4.7).

Furthermore, according to Equation (4.7), V̄+
i (y, x, g, h) can be interpreted as

the solution of a fixed point problem:

v= f (v), (5.7)

with

f (v) =EQ

[
e− ∫ ti+1

ti
Ys+β(s)ds

(
F + κ

1− κ
· (F − v)+

) ∣∣Yti = y,Xti = x
]
, (5.8)

where F stands for

F = qx+ti
(
Xti+1 − τ

(
Xti+1 − h

)
+
)

+ px+ti+1 V̄−
i+1

(
Yti+1 ,Xti+1 , g, h

)
. (5.9)

Following the same approach employed by Moenig and Bauer (2016) under
the Black–Scholes model, one can verify that the solution of Equation (5.7)
exists and is unique for 0≤ κ < 1. In particular, existence follows from
limv→+∞ v− f (v) = +∞, f (0) > 0 and from continuity of f by the Intermediate
Value Theorem, while uniqueness is guaranteed by the monotony of v− f (v).
Moreover, one can prove that, under additional hypotheses easily met, F is a
contraction; thus, Equation (5.8) can be faced by fixed point iterations, which
can be started by considering V̄−

i+1 (y, x, g, h) as the initial guess. In this regard,
we employ a stopping criterion which is a combination of an absolute and a rel-
ative tolerance. Specifically, the solver stops when |v− f (v)| <TOLv (1+ |v|),
where TOLv is a given tolerance. We emphasize that, as an alternative to fixed
point iterations, one may employ Newton-type methods to accelerate the con-
vergence to the solution of Equation (5.7) (see e.g. Judd, 1998). Regardless of
the chosen fixed point solver, the key point consists in calculating the expected

https://doi.org/10.1017/asb.2020.29 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.29


1018 A. MOLENT

values that appears in (5.8). In order to tackle such a problem, we employ a
tree approach. Technical details are explained in Appendix B.

Once the function V̄+
i is known, we can compute V̄−

i by solving the optimal
withdrawal problem related to Equation (4.3). So, let us fix again (y, x, g, h) ∈ G
and let us focus on solving the following problem:

V̄−
i (y, x, g, h) = max

w∈[0,Wmax]
f̂ (w) (5.10)

with

f̂ (w)= V̄+
i

(
y, x+(w), g+(w), h+(w)

)+ (w− feei(w)− peni(w)− taxi(w)), (5.11)

Wmax =max
{
x, min

{
gW , g

}}
, (5.12)

x+(w)= (x−w)+ (5.13)

g+(w)=
{

(g−w)+, if w≤ gW(
min

{
g−w, g · x+(w)

x

})
+
, if w> gW

(5.14)

h+(w)= h− (
w− (x− h)+

)
+ (5.15)

feei(w)= si ·
(
w−min

{
gW , g

})
+, (5.16)

peni(w)= sg · (w− feei(w)) · 1{x+ti<59.5}, (5.17)

taxi(w)= τ ·min
{
w− feei(w)− peni(w), (x− h)+

}
. (5.18)

The resolution of (5.10) is not trivial as the function f̂ has no smoothness prop-
erties. In particular, f̂ has singular points, due to the presence of the positive
part function, as well as a discontinuity point, due to the function g+(w) at
w= gW . Therefore, we approach the solution of the maximization problem
(5.10) through a very simple approach: we evaluate the target function in a set
W of points and record the maximum value achieved on these points. In par-
ticular, we considerW as the union of two sets,W1 andW2. The first setW1 =
{n · P

NW
, n ∈N} ∩ [0,Wmax] is a set of uniformly distributed values, with NW a

positive integer, while the second set W2 = {
gW , gW + 10−6,Wmax

}∩ [0,Wmax]
is a set of critical values that might not be included in W1. In particular, gW

and gW + 10−6 are considered in order to handle the discontinuity at gW .
Evaluating the function f̂ requires the calculation of the function V̄+

i at(
y, x+(w), g+(w), h+(w)

)
for any w ∈W . These points may not belong to the

grid G as the values x+(w), g+(w), h+(w) may not belong to GX , GG and GH ,
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respectively. So, in order to compute V̄+
i

(
y, x+(w), g+(w), h+(w)

)
, interpolation

on G of V̄+
i is required. To this aim, we employ trilinear interpolation (Gomes

et al., 2019).
Finally, we observe that if we are interested in computing the policy cost by

assuming the worst-case withdrawal strategy, adapting Equation (5.10) to this
aim is straightforward.

5.3. Backward evaluation of U
Once an approximation V̄ of V is available, we can tackle the policy evaluation
according to the insurer’s perspective, that is computing U . Approximating U
is easier than approximating V because of two reasons. First of all, the implicit
nonlinear Equation (4.7) is replaced by an explicit Equation (4.12). Secondly,
the problem of computing the best withdrawal has been already solved while
approximating V , so we have just to recover the optimal withdrawals already
computed.

Similarly to what we have done for V , we consider a function Ū+
i :

G →R such that for any point (y, x, g, h) of G, Ū+
i (y, x, g, h) approxi-

mates U+ (ti, y+ β(ti), x, g, h) and a function Ū−
i : G →R such that for any

point (y, x, g, h) of G, Ū−
i (y, x, g, h) approximates U− (ti, y+ β(ti), x, g, h).

According to (4.9), for any point (y, x, g, h) of G, the terminal condition is
given by:

Ū−
T (y, x, g, h) =max

{
x, min

{
gW , g

}}
. (5.19)

Suppose now the function Ū−
i+1 to be known on G. Let us fix (y, x, g, h) ∈ G and

let us focus on the computation of Ū+
i (y, x, g, h) by computing the following

expression:

Ū+
i (y, x, g, h) =EQ

[
e− ∫ ti+1

ti
Ys+β(s)ds

(
qx+tiXti+1 + px+ti+1Ū−

i+1

(
Yti+1 ,Xti+1 , g, h

)) ∣∣Yti

= y,Xti = x
]
. (5.20)

We compute such an expression by using the same tree approach employed
to compute (5.8). Please observe that in this case, no fix point iterations are
required because (5.20) gives U+

i through an explicit equation.
Suppose now the function Ū+

i to be known on G. Let us fix (y, x, g, h) ∈ G
and let us focus on the computation of Ū−

i (y, x, g, h). Let wi be the maximum
point for the problem (5.10) for the point (y, x, g, h) ∈ G. The following relation
holds:

Ū−
i (y, x, g, h) = Ū+

i

(
y, x+ (wi), g+ (wi), h+ (wi)

)+ (w− feei (wi) − peni (wi)),
(5.21)

where x+, g+, h+, feei and peni are defined as in (5.13)–(5.17). Also in this case,
interpolation is required and we employ again trilinear interpolation.
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5.4. Sketch of the algorithm

We present the sketch of the algorithm to approximate the initial fair contract
values V (0, r0,P,P,P) and U (0, r0,P,P,P).

1. Set the terminal values V̄−
T (y, x, g, h) and Ū−

T (y, x, g, h) according to
Equations (5.6) and (5.19) for every point (y, x, g, h) in G.

2. For all i=T − 1, . . . 1
(a) Compute V̄+

i (y, x, g, h) and Ū+
i (y, x, g, h) by solving Equations (5.8) and

in (5.20) for every point (y, x, g, h) in G;
(b) Compute V̄−

i (y, x, g, h) by solving Equation (5.10) for every point
(y, x, g, h) in G;

(c) Compute Ū−
i (y, x, g, h) by solving Equation (5.21) for every point

(y, x, g, h) in G;
3. Compute V̄+

0 (0,P,P,P) and Ū+
0 (0,P,P,P) by solving Equations (5.8) and

(5.20).

Values V̄+
0 (0,P,P,P) and Ū+

0 (0,P,P,P) approximate V (0, r0,P,P,P) and
U (0, r0,P,P,P), respectively. We point out that the algorithm is fully paral-
lelizable: in fact the computations for every point in G are independent of each
other.

A common practice in the context of Variable Annuities (see, e.g., Forsyth
and Vetzal, 2014) consists in computing the fair policy cost ϕ∗

IN , that is the
particular value of ϕ that makes the insurer’s initial value of the policy
U (0, r0,P,P,P) equal to the net premium P. To this aim, the algorithm can be
plugged into the Secant method to solve the equation U (0, r0,P,P,P) (ϕ) =P.
The Secant method must be equipped with a suitable pair of initial values
and a suitable stopping criterion. In this regard, we suggest to use ϕ0 = 0, and
ϕ1 = 100 bps (basis points) as the initial values. The stopping criterion that
we consider is as a combination of a function tolerance TOLf and a step toler-
ance TOLϕ, which means that the algorithm stops when both the two following
conditions are satisfied:

|U (0, r0,P,P,P) (ϕn) −P| <TOLf and |ϕn − ϕn−1| <TOLϕ. (5.22)

6. NUMERICAL RESULTS

In this Section, we report the results of some numerical tests. Tables 1 and 2
report the employed parameters for the GMWB product and for the stochas-
tic model, respectively. We underline that these parameters, with the exception
of those for the interest rate process, are the same employed by Moenig and
Bauer (2016). Table 3 shows the discretization parameters for the numerical
method. In particular, in order to investigate the convergence of the proposed
method, we vary the discretization parameters by considering seven different
parameter configurations. Specifically, the basic configuration is termed Cbase.
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TABLE 1

PARAMETER CHOICES FOR THE PH AND CONTRACT SPECIFICATIONS.

Description Parameter Value

Age at inception x 55
Premium P 100
Years to maturity T 15
Annual guaranteed amount gW 7
Excess withdrawal fee si 8%, 7%, . . . , 1%, 0%, 0%, . . .
Fee rate ϕ to be determined
Income tax rate τ 0%, or 30%
Capital gain tax rate κ 0%, or 23%
Early withdrawal penalty sg 10%

TABLE 2

PARAMETER CHOICES FOR THE BLACK–SCHOLES HULL–WHITE MODEL.

Description Parameter Value

Initial fund value S0 100
Fund volatility σ 0.1, 0.3
Initial interest rate r0 0.03, 0.05
Interest rate mean reversion speed k 1
Interest rate mean θt flat
Interest rate volatility ω 0.05, 0.1
Correlation ρ 0.2

TABLE 3

PARAMETER CONFIGURATIONS FOR THE NUMERICAL METHOD.

Parameter configurations

Description Parameter CT− CX− CGHW− Cbase CT+ CX+ CGHW+

Time step per year NT 12 25 25 25 50 25 25
Points in GX NX 500 250 500 500 500 1000 500
Points in GG NG 100 100 50 100 100 100 200
Points in GH NH 100 100 50 100 100 100 200
Withdrawal step NW 100 100 50 100 100 100 200

Configurations CT−, CX− and CGHW− employ a smaller number of discretiza-
tion points than Cbase, while CT+, CX+ and CGHW+ employ a larger number of
discretization steps. In particular, CT− and CT+ vary NT , that is the number of
time steps. Configurations CX− and CX+ vary NX , that is the number of points
that discretize the account value. Finally, configurations CGHW− and CGHW+
vary the parameters NG, NH and NW together, which rule the discretization of
the product bases Gt and Ht, and of the discretization of the withdrawal step
respectively.
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TABLE 4

FAIR FEE RATE ϕ∗
IN (IN BASIS POINTS) ACCORDING TO THE INSURER’S

SUBJECTIVE VALUATION, FOR DIFFERENT VALUES OF r0, σ AND ω.

r0 = 0.03, σ = 0.16 r0 = 0.05, σ = 0.19

Configuration ω = 0.05 ω = 0.1 ω = 0.05 ω = 0.1

No taxation

CT− 69.40 94.81 41.87 56.96
CX− 69.93 95.35 42.24 57.33
CGHW− 66.57 91.19 40.59 55.25

Cbase 69.36 94.78 41.90 56.98

CT+ 69.35 94.78 41.91 56.97
CX+ 69.34 94.77 41.89 56.97
CGHW+ 69.37 94.79 41.91 56.99

With taxation

CT− 43.10 60.26 23.83 33.46
CX− 43.45 60.70 24.16 33.80
CGHW− 40.78 57.17 22.84 32.12

Cbase 43.12 60.29 23.91 33.54

CT+ 43.18 60.31 23.96 33.58
CX+ 43.08 60.26 23.90 33.50
CGHW+ 43.19 60.40 23.99 33.64

Moreover, as far as the solution of Equation (5.7) is concerned, we set
TOLv = 10−6, while, with regard to the Secant method, we set TOLf = 10−2

and TOLϕ = 10−1 bps.
If not explicitly stated otherwise, we assume that the PH adopts the with-

drawal strategy that maximizes his total wealth, according to Equation (5.10).
Furthermore, in Subsection 6.2, we also investigate the worst-case cost of the
hedge, that is the PH determines the withdrawal amount according to Equation
(4.11).

Finally, in order to estimate the mortality and survival probabilities q and p,
we employ the 2007 Period Life Table for the Social Security Area Population
for the USA (Social Security Administration).

6.1. Computing the fair fee rate

We start by computing the fair fee rate ϕ∗
IN according to the insurer’s subjective

valuation. In particular, we consider some test cases with different values of
the initial interest rate r0, the volatility of the interest rate ω and the volatility
of the underlying fund σ . Numerical results are reported in Table 4.

First of all, we observe that the numerical results are very stable. In particu-
lar, results about the configurations with an increased number of discretization
points (that is CT+, CX+, and CGHW+), always vary less than 0.2 bps against the
basic configuration Cbase.
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By comparing the results with and without taxation, we observe that, in
all the considered cases, including taxation decrease the fair fee that reduces
the account value, that is the policy cost. The reason for this reduction lies in
the withdrawal strategy: if taxation is applied, the optimal withdrawal strategy
from PH’s perspective changes and it does not overlap anymore with the worst-
case strategy according to insurer’s perspective, thus the withdrawal strategy
adopted by the PH becomes less expensive for the insurer. In particular, as
shown in Subsection 6.3 and as already noted by Moenig and Bauer (2016)
in the Black–Scholes model, the PH tends in general to defer withdrawals
when taxation is applied: withdrawing may be suboptimal for the PH since
the withdrawals are subject to income taxes, whereas the sums invested in the
policy grow tax-deferred. Moreover, we observe that the higher the interest
rate volatility, the greater the policy cost. This is probably due to the fact
that, by increasing the volatility of the interest rate, it is easier to observe very
low (or negative) interest rates which make replicating the policy very expen-
sive. Thus, both taxation and interest rate modeling have a sensitive impact on
policy evaluation.

6.2. Comparing policy initial values

We compute now the PH’s initial subjective policy value with ϕ equal to ϕ∗
IN ,

that is the break-even fee, as in Table 4: this is the amount of money the
agent needs to replicate the policy on its own. To this aim, we employ param-
eter configuration Cbase. Numerical results are reported in Table 5. We observe
that if no taxation is applied, the subjective valuations of the PH and of the
insurer equate the initial premium P and the contract is fair for both the two
agents. Instead, when taxation is applied, the contract values according to the
subjective valuations of the two agents both increase. In particular, as far as
the insurer is concerned, we have considered χ = 3% as the premium tax rate
(which is a common value, see Moran, 2017). With such a premium tax rate,
the gross premium GP that the insurer requires to cover all the costs is 103.09,
so that the net premium P is 100 and the contract is fair for the insurer. As
far as the PH is concerned, the increase in the contract value is due to the tax
regime applied to the policy, which is advantageous compared to the tax regime
applied to investment outside the policy. Moreover, according to Table 5, in all
the considered cases, the customer will be willing to paymuchmore than 103.90
to buy the policy: for example, if r0 = 0.03, σ = 0.16 and ω = 0.05 then the PH’s
subjective valuation of the policy is 110.15. Therefore, if the insurer sets a sale
price between 103.09 and 110.15, then the sale will be advantageous for both
the PH and the insurer.

The proposed model allows us to recreate a framework that makes Variable
Annuities particularly interesting to customers: although taxes are applied on
the earnings of the policy, the tax regime is particularly favorable for this type
of products. Therefore, the GMWB policy is attractive for the customer and
profitable for the insurer.
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TABLE 5

FAIR INITIAL OPTION VALUE ACCORDING TO THE SUBJECTIVE
VALUATIONS OF THE INSURER AND THE PH, WITH ϕ = ϕ∗

IN AS IN
TABLE 4, FOR DIFFERENT VALUES OF r0, σ AND ω.

r0 = 0.03, σ = 0.16 r0 = 0.05, σ = 0.19

Agent Tax ω = 0.05 ω = 0.1 ω = 0.05 ω = 0.1

Insurer
No 100.00 100.00 100.00 100.00
With 103.09 103.09 103.09 103.09

PH
No 100.00 100.00 100.00 100.00
With 110.15 110.70 114.99 115.94

TABLE 6

FAIR INITIAL OPTION VALUE ACCORDING TO THE SUBJECTIVE VALUATIONS
OF THE INSURER AND OF THE PH WHILE ASSUMING THE WORST-CASE

WITHDRAWAL STRATEGY, WITH ϕ = ϕ∗
IN AS IN TABLE 4, FOR DIFFERENT VALUES

OF r0, σ AND ω.

r0 = 0.03, σ = 0.16 r0 = 0.05, σ = 0.19

Agent Tax ω = 0.05 ω = 0.1 ω = 0.05 ω = 0.1

Insurer
No 100.00 100.00 100.00 100.00
With 104.75 105.16 104.39 104.73

PH
No 100.00 100.00 100.00 100.00
With 105.62 106.32 107.00 107.69

To complete our investigation about the subjective evaluation of the
GMWB policy, we also consider the worst-case of the hedge. In this partic-
ular case, we assume that the PH withdraws as to maximize the hedging cost
for the insurance company. To this aim, we compute the gross fee (before tax)
required to fund policy replication. In order to compare the results with those
of Table 5, we consider again ϕ = ϕ∗

IN (that is the the value of ϕ which makes
the contract fair according to insurer’s subjective valuation, while assuming a
PH that maximizes his own wealth). Numerical results in Table 6 show that, in
the absence of taxation, the worst strategy for the insurer overlaps with the best
strategy for the PH: in fact, since ϕ = ϕ∗

IN , the contract is worth 100 and it is fair
for both the two agents. On the contrary, when the taxation is applied, we can
observe that the cost for the insurer increases (this is in fact the maximum pos-
sible cost) and the subjective value for the PH decreases (he no longer employs
the best strategy). In particular, with reference to the case r0 = 0.03, σ = 0.16
and ω = 0.05, the cost for the insurer increases to 104.75, while the value for
the PH decreases down to 105.62. Again, it is worth noting that, in all the con-
sidered cases, the worst-case cost of hedging never exceeds the subjective value
of the PH; therefore, even in this case, it is still possible to find an advanta-
geous price for both the insurer and the PH. In particular, if the insurer sets
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FIGURE 1: In the first two columns, the contour plot with respect to X−
4 (x-axis) and r4 (y-axis) of the

optimal withdrawal w4 at time t4 = 4 without or applying taxation. In the third column, the difference
between the optimal withdrawals without and with taxation reported in the first two columns. Green areas

denote positive values.

a sale price between 104.75 and 110.15, he will surely cover the hedging costs
regardless of the withdrawal strategy, and the PH will have a profit margin.

6.3. Comparing withdrawal strategies with and without taxation

The last numerical test we propose consists in comparing the optimal with-
drawals performed by the PH while considering or not taxation. In particular,
we consider the case with r0 = 0.03, σ = 0.16 and ω = 0.05 (results for other
parameters combinations are similar). For this test, we employ parameter con-
figuration CT+, which provides a better discretization of the process Yt than
the others. Moreover, the value of ϕ is set as the break-even fee with taxes,
that is ϕ∗

IN = 43.18 basis points. Optimal withdrawal amounts wi at different
anniversaries are reported in Figures 1, 2 and 3. The first column represents
the optimal amount as a function of X−

ti and rti , by considering different values
for G and H and a zero tax rate, while in the second column by considering
both a positive income tax rate and a positive capital gain tax rate. The area
where the color is darker identifies higher withdrawals. Finally, in the third
column, the difference between the optimal amount without taxation and with
taxation. Here, green areas indicate that withdrawals without tax are higher,
while red areas (not visible) indicate that withdrawals with tax are higher.
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FIGURE 2: Same contour plots as in Figure 1, but considering t8 in place of t4.
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FIGURE 3: Same contour plots as in Figure 1, but considering t12 in place of t4.
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We can observe that the optimal amount depends on all the considered
parameters. In particular, the withdrawal strategy may significantly change
according to the actual interest rate, as shown in Figure 3 for Gt12 =Ht12 = 100.
As far as the impact of taxation on withdrawal strategy is concerned, we
find the same effect observed by Moenig and Bauer (2016): when taxation is
applied, the PH withdraws less than when taxation is not considered. In fact,
for all the numerical cases considered, the last columns in Figures 1, 2 and 3
show only positive values, which means the amount withdrawn with no tax-
ation is higher. As observed in Moenig and Bauer (2016), in the absence of
taxes, as the account value increases more and more, the PH is motivated to
withdraw money instead of leaving it in the policy where it is reduced by fees.
Conversely, if taxation is applied, withdrawals are taxed as ordinary income
and they are subject to capital gain tax if invested in other products. Therefore,
it is more convenient for the PH not to withdraw the money, letting it grow
within the policy. Such a difference in the withdrawal strategy is particularly
clear in Figure 3: ifG=H = 50, then the PHwithdraws large amount of money
whenX is high if taxation is neglected, whereas no money if taxation is applied.

7. CONCLUSIONS

In this paper we have investigate the impact of taxation on a GMWB Variable
Annuity when stochastic interest rate is considered. We modeled taxation
following the approach of Moenig and Bauer (2016): we have considered a
subjective risk-neutral valuation methodology that considers differences in the
taxation for both different products and market agents. Moreover, we have
modeled stochastic interest rate through the Hull–White model. This analy-
sis combines the effects of taxation and of the variable interest rate which, as
already shown separately in other research work, can have a significant impact
on the withdrawal choices and thus on the hedging costs. This analysis has
been possible thanks to the use of an efficient numerical method based on a
tree approach (Goudenège et al., 2019). Numerical results show many inter-
esting facts. First of all, both taxation and interest rate modeling can have a
relevant impact on policy evaluation: the break-even fee can change of several
basis points when the parameters of these two factors change. Then, applying
different taxation to insurer and to PH can lead to different policy evaluations:
in particular PH’s valuation is higher than insurer’s valuation and this makes
buying and selling the policy convenient for both the two agents. Moreover,
numerical tests show that taxation clearly impacts on withdrawal strategy: it
discourages the PH to perform withdrawals. This is useful to match theoret-
ical prices to those actually observed on the real market. In conclusion, the
model presented here represents an important extension in the evaluation of
GMWB-type policies.
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APPENDIX A

A.1. Markov chain to approximate Y

In this Appendix, we explain how to design a discrete time Markov chain that approximates
the process Y , based on the trinomial tree introduced in Goudenège et al. (2019). First of
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all, we consider a partition of the time interval [0,T ] in T ·NT sub-intervals, that is NT per
year. We define �t= 1

NT
as the time increment and we term t̄n = n · �t the n-th time step

for n= 0, . . . ,T ·NT . Please observe that policy anniversaries t0, . . . , tT are included in the
time steps t̄0, t̄1 . . . , t̄T ·NT and in particular ti = t̄i·NT = i. We consider the set Y given by

Y =
{
υj = 3

2
jσ�t
Y , j ∈Z

}
, (A1)

where the coefficient σ�t
Y is the standard deviation of the random variable Yt̄n+1

−Yt̄n
(which is the same for all t̄n values) and it is given by

σ�t
Y = ω

√
1− exp (−2k · �t)

2k
. (A2)

We define now a discrete time Markov chain Ȳ�t = {
Ȳ�t
n , n= 0, . . . ,T ·NT

}
whose state

space is an opportune subset of Y and that matches the first two moments of the process
Y = {Yt, 0≤ t≤T}. The process Ȳ�t is designed so it weakly converges to the process Y : in
particular Ȳ�t

n converges to Yt̄n .
The initial value is Ȳ�t

0 = υ0 = 0, so Ȳ�t
0 =Y0. Now, let us fix a value n ∈

{0, . . . ,T ·NT − 1} and suppose Ȳ�t
n = υm for a certain integer m ∈Z. Let

μ�t
Y (υm) =E

[
Yt̄n+1

∣∣Yt̄n = υm

]
= υm · exp (−k · �t) (A3)

be the expected value of the random variable Yt̄n+1

∣∣Yt̄n = υm . We term

jA = ceil

[
2

3σ�t
Y

μ�t
Y (υm)

]
(A4)

the index of the first element of Y whose value is bigger than the expected value of the
process Yt̄n+1

∣∣Yt̄n = υm . Moreover, we also consider these three indices:

jB = jA − 1, jC = jA + 1, jD = jA − 2. (A5)

In particular, if we define the variables

�A = υjA − μ�t
Y (υm) (A6)

and

�B = μ�t
Y (υm) − υjB (A7)

then 0≤ �A < 3
2σ�t

Y and 0< �B ≤ 3
2σ�t

Y .
There are two alternatives for the future states of the process Ȳ�t: it can move from υm

either to υjA , υjB , υjC , or to υjA , υjB , υjD . Transition probabilities pA, pB, pC , pD for both
of these two alternatives are stated in Table A.1. In particular, it is possible to prove that if

0≤ �A ≤
√
5
2 σ�t

Y then pA, pB, pC ∈ [0, 1], while if 3−√
5

2 σ�t
Y ≤ �A < 3

2σ�t
Y then pA, pB, pD ∈

[0, 1]. Since 3−√
5

2 σ�t
Y <

√
5
2 σ�t

Y , at least one of the two sets of probabilities is well defined.
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TABLE A.1

TRANSITION PROBABILITIES FOR THE PROCESS Ȳ�t.

Transition to υjA , υjB , υjC Transition to υjA , υjB , υjD

pA
5
(
σ�t
Y

)2 − 4
(
�A

)2
9
(
σ�t
Y

)2 2
(
�B

)2 + 3
(
σ�t
Y

) (
�B

)+ 2
(
σ�t
Y

)2
9
(
σ�t
Y

)2
pB

2
(
�A

)2 + 3
(
σ�t
Y

) (
�A

)+ 2
(
σ�t
Y

)2
9
(
σ�t
Y

)2 5
(
σ�t
Y

)2 − 4
(
�B

)2
9
(
σ�t
Y

)2
pC

2
(
�A

)2 − 3
(
σ�t
Y

) (
�A

)+ 2
(
σ�t
Y

)2
9
(
σ�t
Y

)2 0

pD 0
2
(
�B

)2 − 3
(
σ�t
Y

) (
�B

)+ 2
(
σ�t
Y

)2
9
(
σ�t
Y

)2

Moreover, transition probabilities in Table A.1 have been computed in order to match the
first two moments of the process Y : this means that the random vectors Ȳ�t

n+1 − Ȳ�t
n and

Yt̄n+1
−Yt̄n , given Ȳ

�t
n =Yt̄n = ym, have the same mean and variance.

The choice between the two alternatives – υjA , υjB , υjC or υjA , υjB , υjD – is made in
order to reduce the number of points connected with υ0, which is the starting point. Since
Y reverts to 0, it is sufficient, when possible, to choose the set with the points closest to υ0.

Specifically, if �A < 3−√
5

2 σ�t
Y , then Ȳ�t can only move to υjA , υjB , υjC (in fact at least one

among pA, pB and pD is not in [0, 1]). If
√
5
2 σ�t

Y < �A, then Ȳ�t can only move to υjA ,

υjB , υjD (in fact at least one among pA, pB and pC is not in [0, 1]). Finally, if 3−√
5

2 σ�t
Y ≤

�A ≤
√
5
2 σ�t

Y both choices are admissible: if
∣∣υjC ∣∣≤ ∣∣υjD ∣∣, then Ȳ�t moves to υjA , υjB , υjC

otherwise to υjA , υjB , υjD .
The state space of Ȳ�t is the connected component of υ0, that is the set Y0 ⊂

Y of points that the process Ȳ�t can reach. Taking advantage of the symmetry and
mean reversion properties of the process Y , and thus of Ȳ�t, one can prove that Y0 ={
υj, j= −NY , . . . ,NY

}
where NY is an integer. Moreover, by exploiting the definition of

Ȳ�t, one can prove that

NY ≤
(
3− √

5
)
ek·�t

3
(
ek·�t − 1

) + 1, (A8)

thus NY ≤ 3−√
5

3k ·NT as NT → +∞.
Finally, we stress out that Ȳ�t matches the first two moments of the process Y , thus

weak convergence for NT → +∞ is guaranteed and it can be proved as done by Nelson and
Ramaswamy (1990).

To conclude, we observe that the set GY defined in (5.5) is equal toY0: the only difference
concerns the indexing of the elements and in particular yj = υj−NY for j ∈ {0, . . . , 2NY }.
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APPENDIX B

B.1. Computing expected value (5.8)

B.1.1. The binomial tree approach.
In this Appendix, we explain how to efficiently compute the expectation in (5.8). Such a
computation can be seen as a particular case of a more general problem: computing

E =EQ

[
e−

∫ ti+1
ti

Ys+β(s)ds
φ
(
Yti+1 ,Xti+1 , g, h

) ∣∣Yti = y,Xti = x
]
, (B1)

where φ :A⊂R4 →R is a given continuous function. Moreover, ti+1 and ti are two consec-
utive policy anniversaries times and thus ti+1 − ti = 1. Furthermore, y ∈ GY and x ∈ GX .

First of all, let us consider the Gaussian vector Λ = (Λ1,Λ2,Λ3)
�given by

Λ =
(
Yti+1 , ln

(
Xti+1

)
,
∫ ti+1

ti
Ys + β (s) ds

)� ∣∣Yti = y,Xti = x . (B2)

It is possible to prove that the mean vector μ of Λ is given by

μ = (
μ1, μ2,μ3

)� ,

where

μ1 = y · e−k, μ2 = ln (x) + μ3 − ϕ − 1
2
σ 2, μ3 = y

1− e−k
k

+
∫ ti+1

ti
β (s) ds. (B3)

Moreover, the covariance matrix � of Λ is given by

� =
⎛
⎜⎝

�11 �12 �13

�12 �22 �23

�13 �23 �33

⎞
⎟⎠, (B4)

with

�11 = 1
2
ω2 (1− e−2k)

k
, (B5)

�33 =
(ω

k

)2 (
1+ 2e−k

k
− e−2k

2k
− 3

2k

)
, (B6)

�22 = �33 + σ 2 + 2σρ
ω

k

(
1− 1− e−k

k

)
, (B7)

�13 = ω2

2

(
1− e−k

k

)2

, (B8)

�12 = �13 + σρω
1− e−k

k
, (B9)
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�23 = �33 + σρ
ω

k

(
1− 1− e−k

k

)
. (B10)

Let � be the lower triangular Cholesky decomposition of �, and suppose G̃= (G̃1, G̃2, G̃3)�
to be a Gaussian standard vector. So, the random vector μ + �G̃ has the same law of �.
Following the same approach of Ekvall (1996) for multidimensional simulation, we can
develop a binomial tree method to compute (B1). Such a method exploits three independent
binomial approximations of G̃1, G̃2 and G̃3. In particular, we consider the binomial random
variable

BN ∼Bi
(
NT ,

1
2

)
(B11)

and define

ĜNT = BNT − NT
2√

NT
4

. (B12)

It is well known that ĜNT converges in distribution to a standard normal distribution so, if
ĜNT
1 , ĜNT

2 , ĜNT
3 are i.i.d. random variables that have the same law of ĜNT , then the vector

�̂NT =
(
�̂
NT
1 , �̂NT

2 , �̂NT
3

)�
given by

�̂NT = μ + �
(
ĜNT
1 , ĜNT

2 , ĜNt
3

)�
(B13)

converges in distribution to Λ. Let
{
ĝ0, . . . , ĝNT

}
be the support of ĜNT and let

p̂m = P

[
ĜNt = ĝl

]
=
(
NT
l

)(
1
2

)NT
(B14)

for l = 0, . . . ,NT be the associated probabilities. Let ξ1, ξ2, ξ3 be three integers in

{0, . . . ,NT } and let
(
λ̂

ξ1
1 , λ̂ξ1,ξ2

2 , λ̂ξ1,ξ2,ξ3
3

)�
be the vector defined by

(
λ̂

ξ1
1 , λ̂ξ1,ξ2

2 , λ̂ξ1,ξ2,ξ3
3

)� = μ + �
(
ĝξ1 , ĝξ2 , ĝξ3

)�
. (B15)

Please observe that, since � is lower triangular, λ̂
ξ1
1 does not depend on ĝξ1 and ĝξ2 , while

λ̂
ξ1,ξ2
2 does not depend on ĝξ3 . Moreover

P

[
�̂N

1 = λ̂
ξ1
1 , �̂N

2 = λ̂
ξ1,ξ2
2 , �̂N

3 = λ̂
ξ1,ξ2,ξ3
3

]
= p̂ξ1 · p̂ξ2 · p̂ξ3 . (B16)

In order to approximate (B1), we replace Yti+1 , ln
(
Xti+1

)
and

∫ ti+1
ti Ys + β (s) ds with

�̂N
1 , �̂

N
2 and �̂N

3 , respectively. We obtain
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Ê =E

[
e−�̂

NT
3 φ

(
�̂
NT
1 , �̂NT

2 , g, h
)]

(B17)

=
NT∑

ξ1=0

NT∑
ξ2=0

NT∑
ξ3=0

p̂ξ1 p̂ξ2 p̂ξ3 exp
(
−λ̂

ξ1,ξ2,ξ3
3

)
φ
(
λ̂

ξ1
1 , exp

(
λ̂

ξ1,ξ2
2

)
, g, h

)
(B18)

=
NT∑

ξ1=0

p̂ξ1

NT∑
ξ2=0

p̂ξ2φ
(
λ̂

ξ1
1 , exp

(
λ̂

ξ1,ξ2
2

)
, g, h

) NT∑
ξ3=0

p̂ξ3 exp
(
−λ̂

ξ1,ξ2,ξ3
3

)
(B19)

Such an expression converges toE thanks to the properties of convergence in distribution for
expected values (see for example Pollard, 2012). Please observe that, by leaving the random
variable

∫ ti+1
ti Ys + β (s) ds as the third component in �, the two variables λ̂

ξ1
1 and λ̂

ξ1,ξ2
2

do not depend on ξ3. So, in order to evaluate (B1), the function φ needs to be evaluated
only (NT )2 times in place of (NT )3. This is a relevant improvement because evaluating the
function φ many times can be time demanding. Moreover, if the function φ is known only
on the grid G – this is what happens for the functions V̄− and Ū− – then a two-dimensional
interpolation is required.

Finally, it is well known that a vector of random independent binomial variables, suit-
ably standardized, converges weakly to a vector of independent standard Gaussian variables
(see Lehmann, 2004). This property, together with the assumption of growth at the most
exponential of the integrand function with respect to the random variables Λ1,Λ2,Λ3,
guarantees the convergence of Ê to the expected value E (see Van den Berg, 2000).

B.1.2. Improving computational efficiency.
TheMarkov chain Ȳ�t introduced in Appendix A does not only provide a way to define the
set GY but it can also be used to improve the evaluation of (B1). Suppose now y in (B1) to be
equal to ym ∈ GY for a particular integerm. Let n=NT · i so that t̄n = ti and t̄n+NT = ti+1. In

order to improve the discretisation of the random variable Yti+1

∣∣Yti = ym , we replace �̂
NT
1

in (B17) with Ȳ�t
n+NT

∣∣Ȳ�t
n = ym . The transition probabilities

p̄m,l =P
(
Ȳ�t
n+NT = yl

∣∣∣Ȳ�t
n = ym

)
(B20)

for m, l ∈ {0, . . . , 2NY } can be obtained by computing the NT -power of transition matrix
of Ȳ�t, whose elements are determined according to Table A.1. Finally, we conclude by
observing that the support of the random variable Ȳ�t

n+NT
∣∣Ȳ�t

n = ym is a subset of GY for

every value ym in GY . We stress out that the support of the random variable �̂
NT
1 has

NT + 1 elements, while the support of Ȳ�t
n+NT

∣∣Ȳ�t
n = ym has at most 2NY + 1 elements.

Numerical tests show that 2NY + 1 is usually smaller than NT + 1, so computational effi-
ciency is improved: for example, with respect to our tests in Section 6, we have NT + 1= 51
and 2NY + 1= 27.

The Markov chain Ȳ�t helps us to discretize the process Y , but in order to compute
(B19), we also have to simulate the whole random vector �̂NT in (B2). To do so, we have
to compute the normal Gaussian increments associated with the transitions of Ȳ�t. Let us
define the discrete random variable ḠNT as the standard score of Ȳ�t

n+NT
∣∣Ȳ�t

n = ym , that is

ḠNT = Ȳ�t
n+NT − μ1

Y (ym)

σ 1
Y

. (B21)
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Since Ȳ�t
n+NT

∣∣Ȳ�t
n = ym matches the first two moment of the random Gaussian variable

Yti+1

∣∣Yti = ym , then ḠNT matches the first two moments of a standard Gaussian variable

and so it can be employed in place of ĜNT
1 . Moreover,μ1

Y (ym) = μ1 and
(
σ 1
Y

)2 = �11. Then,

we define the vector �̄NT =
(
�̄
NT
1 , �̄NT

2 , �̄NT
3

)�
given by

�̄NT = μ + �
(
ḠNT
1 , ĜNT

2 , ĜNt
3

)�
, (B22)

which converges to� and in particular �̄
NT
1 = Ȳ�t

n+NT
∣∣Ȳ�t

n = ym . Let ξ1, ξ2, ξ3 be three inte-

gers such that ξ1 is in {0, . . . 2NY } and ξ2, ξ3 are in {0, . . . ,NT }. Let
(
λ̄

ξ1
1 , λ̄ξ1,ξ2

2 , λ̄ξ1,ξ2,ξ3
3

)�

be the vector defined by(
λ̄

ξ1
1 , λ̄ξ1,ξ2

2 , λ̄ξ1,ξ2,ξ3
3

)� = μ + �
(
ḡξ1 , ĝξ2 , ĝξ3

)�
, (B23)

where
{
ḡ0, . . . ḡ2NY

}
is the support of ḠNT . Please note that λ̄

ξ1
1 is equal to yξ1 which is in

GY . Thus, we obtain the following approximation of E, based on the Markov chain Ȳ�t:

Ē =
2NY∑
ξ1=0

p̄m,ξ1

NT∑
ξ2=0

p̂ξ2φ
(
yξ1 , exp

(
λ̄

ξ1,ξ2
2

)
, g, h

) NT∑
ξ3=0

p̂ξ3 exp
(
−λ̄

ξ1,ξ2,ξ3
3

)
. (B24)

Because of the Markov chain, Ȳ�t matches the first two moments of the process Y ,
weak convergence with respect to ḠNT

1 is guaranteed (see Nelson and Ramaswamy, 1990).
Moreover, the weak convergence of the whole discretization is guaranteed by weak con-
vergence on each variable ḠNT

1 , ĜNT
2 , ĜNt

3 to standard Gaussian variables and by their
independence.

We conclude by observing that Equation (B24) has one important advantage over
Equation (B19), that improves computational efficiency when the function φ is known only
at the points of G. Specifically, the computation of (B19) requires a two-dimensional inter-
polation to evaluate the function φ outside G, while (B24) requires only a one-dimensional
interpolation because, as opposed to λ̂

ξ1
1 , yξ1 is an element of GY . To this aim, we employ

one-dimensional cubic spline interpolation, which is very fast and accurate.
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