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Magnetohydrodynamic (MHD) turbulence at low magnetic Reynolds number is
experimentally investigated by studying a liquid metal flow in a cubic domain. We
focus on the mechanisms that determine whether the flow is quasi-two-dimensional,
three-dimensional or in any intermediate state. To this end, forcing is applied by
injecting a DC current I through one wall of the cube only, to drive vortices
spinning along the magnetic field. Depending on the intensity of the externally
applied magnetic field, these vortices extend part or all of the way through the cube.
Driving the flow in this way allows us to precisely control not only the forcing
intensity but also its dimensionality. A comparison with the theoretical analysis of
this configuration singles out the influences of the walls and of the forcing on the
flow dimensionality. Flow dimensionality is characterised in several ways. First, we
show that when inertia drives three-dimensionality, the velocity near the wall where
current is injected scales as Ub ∼ I2/3. Second, we show that when the distance lz

over which momentum diffuses under the action of the Lorentz force (Sommeria &
Moreau, J. Fluid Mech., vol. 118, 1982, pp. 507–518) reaches the channel width h,
the velocity near the opposite wall Ut follows a similar law with a correction factor
(1− h/lz) that measures three-dimensionality. When lz < h, by contrast, the opposite
wall has less influence on the flow and Ut ∼ I1/2. The central role played by the ratio
lz/h is confirmed by experimentally verifying the scaling lz ∼ N1/2 put forward by
Sommeria & Moreau (N is the interaction parameter) and, finally, the nature of the
three-dimensionality involved is further clarified by distinguishing weak and strong
three-dimensionalities previously introduced by Klein & Pothérat (Phys. Rev. Lett.,
vol. 104 (3), 2010, 034502). It is found that both types vanish only asymptotically
in the limit N→∞. This provides evidence that because of the no-slip walls, (i) the
transition between quasi-two-dimensional and three-dimensional turbulence does not
result from a global instability of the flow, unlike in domains with non-dissipative
boundaries (Boeck et al. Phys. Rev. Lett., vol. 101, 2008, 244501), and (ii) it does
not occur simultaneously at all scales.
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1. Introduction
Magnetohydrodynamic (MHD) turbulence at low magnetic Reynolds number has

a well-known tendency to become two-dimensional. In this paper, we experimentally
characterise the mechanisms through which two-dimensionality breaks down in these
flows and quantify the ensuing three-dimensionality. Besides the fundamental question
of understanding this type of turbulence, liquid metal flows, in which MHD turbulence
is usually found, are of central industrial interest. In the metallurgical and nuclear
sectors, they are either processed or used to carry heat and mass. Typical examples
include fourth-generation sodium nuclear fission reactors and the cooling blankets
of nuclear fusion reactors (Vetcha et al. 2013). Since two- and three-dimensional
turbulence have radically different transport and dissipation properties, the question
of the dimensionality of turbulence is key to the efficiency of these systems. In such
engineering configurations, the flow is neither intense nor electrically conductive
enough to advect the magnetic field over a short enough time to compete with
magnetic diffusion. This justifies their description in the frame of the low-Rm
approximation, where the coupling between electrical and mechanical quantities
reduces to that between velocity, pressure and local electric current density (Roberts
1967). Under this approximation, Sommeria & Moreau (1982) showed in a seminal
paper, to which the title of this work pays homage, that the main effect of the
Lorentz force was to diffuse the momentum of a structure of size l⊥ along the
externally applied magnetic field B in time τ2D = (ρ/σB2)(lz/l⊥)2 over a distance
lz (ρ and σ are the fluid density and electric conductivity). This effect explains the
tendency of these flows to two-dimensionality when the field is homogeneous. When
turbulence is present, diffusion is achieved over a distance l(N)z ∼ N1/2, where the
interaction parameter N is the ratio of the eddy turnover time τU(l⊥) = l⊥/U(l⊥)
to the Joule dissipation time τJ = ρ/σB2. This remarkable property was exploited
extensively to reproduce some of the fine properties of two-dimensional turbulence,
such as the inverse energy cascade, in thin horizontal layers of liquid metal pervaded
by a strong vertical magnetic field (Sommeria (1986, 1988); see figure 3 for a
generic representation of this geometry). It also places MHD flows in the much
wider class of flows with a tendency to two-dimensionality: this class includes flows
in a background rotation Greenspan (1969) or where stratification is present Paret
et al. (1997). Geophysical flows (oceans and atmospheres) are famous examples.
The question of the dimensionality of turbulence in plane fluid layers is key to
understanding the dynamics of all such systems.

In low-Rm MHD, the question of dimensionality emerged with numerical simulations
in bounded domains: Schumann (1976) showed the first evidence of MHD turbulence
becoming strictly two-dimensional in a three-dimensional periodic domain when N
was significantly greater than unity, and this was later confirmed by Zikanov & Thess
(1998). More recently, Boeck, Krasnov & Thess (2008) found, still numerically,
that at moderate values of N, the flow could shift intermittently between two- and
three-dimensional states. Thess & Zikanov (2007) found the same phenomenon
in ellipsoidal structures confined by slip-free boundaries, while Pothérat & Dymkou
(2010) showed that for a flow in a given magnetic field, three-dimensionality appeared
at a bifurcation when the intensity of a two-dimensional flow with a velocity field
orthogonal to the magnetic field (2D-2C flow), was increased. All of these studies
with dissipation-free boundaries drew a picture where three-dimensionality developed
as an instability on initially two-dimensional (and two-component) flows.

By contrast, strict two-dimensionality cannot be achieved when physical walls
are present, as in experiments or in oceans and planetary atmospheres, because of
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170 A. Pothérat and R. Klein

the three-dimensionality of wall boundary layers. Furthermore, friction there drives
mass or electric current (respectively in rotating and MHD flows), that recirculate in
the core under the form of Ekman pumping or eddy currents. Owing to this effect,
transversal components of velocity or electric current almost always subsist in thin
layers of fluid, even when weak boundary friction is present. This was observed both
in non-MHD (Akkermans et al. 2008) and MHD flows. Not only does it affect the
quasi-two-dimensional dynamics of the flow but it also induces three-dimensionality
in the core (Alboussière, Uspenski & Moreau 1999; Pothérat, Sommeria & Moreau
2000, 2005). Asymptotic analyses indeed predict a quadratic variation of velocity
across the bulk of the fluid layer, called the barrel effect (Pothérat et al. 2000;
Pothérat 2012), which was observed in the numerical simulations of (Mück, Günter
& Bühler 2000). An inhomogeneous forcing across the fluid layer was shown to drive
three-dimensionality too, and the resulting three-dimensional structures were recently
found to induce secondary flows that could override Ekman pumping (Pothérat
et al. 2013). These results concur to show that whether induced by the boundaries
or by the inhomogeneity of the forcing, (i) the appearance of three-dimensionality
and the appearance of the third velocity component are interdependent, and (ii)
three-dimensionality does not always result from instabilities, at least in wall-bounded
flows. Our previous experiments in fact suggest that three-dimensionality due to
recirculating flows or electric currents and instability-driven three-dimensionality could
co-exist, but tended to take distinct forms: respectively a weak form, where only the
flow intensity varies along B, and a strong form, where flow topology varies too
(Klein & Pothérat 2010). Recently, it was also shown that because three-dimensional
flows are more dissipative, they carry less energy than their quasi-two-dimensional
counterpart for the same level of external forcing and they also decay faster when
not forced. This property was used to detect three-dimensionality in non-MHD flows
(Duran-Matute, Trieling & van Heijst 2010; Shats, Byrne & Xia 2010).

Our purpose is to characterise three-dimensionality in low-Rm MHD turbulence
in wall-bounded fluid layers and to determine its driving mechanism. Our starting
point shall be to quantify how flow intensity varies with dimensionality, somewhat in
the spirit of Duran-Matute et al. (2010). Our approach consists of forcing turbulence
between two walls orthogonal to an externally imposed magnetic field in a thick
enough layer of fluid to observe how three-dimensionality develops. We shall first
describe how the experimental set-up can reproduce the generic properties of MHD
turbulence in channels (§ 2). We shall then establish theoretical scalings linking
near-wall velocities to the intensity of the electric current driving flows in MHD
channels (§ 3). Occurrences of three-dimensionality will then be tracked in the
light of these scalings (§ 4) and an experimental measure of the corresponding
values of l(N)z shall be obtained (§ 5). This picture shall finally be refined by
means of frequency analysis and through a quantitative measure of weak and strong
three-dimensionalities (§ 6).

2. The FLOWCUBE experimental facility
2.1. Mechanical description

The principle of the experiment follows that of Sommeria (1986) on quasi-two-
dimensional turbulence in which a constant, almost homogeneous magnetic field
B = Bez was applied across a square, shallow container of height 0.02 m filled
with liquid mercury (the frame origin is chosen at the centre of the bottom wall,
with ex and ey pointing along its edges). References to top and bottom walls are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.620


Why, how and when MHD turbulence becomes three-dimensional 171

used for convenience, since gravity plays no relevant role in this experiment. In this
configuration, the time scale for two-dimensionalisation τ2D(l⊥) for each flow structure
of transverse size l⊥ was less than 10−2 s and much smaller than its turnover time
τU(l⊥). The flow was assumed quasi-two-dimensional on these grounds. Unlike this
earlier experiment though, the present container is not shallow, but cubic with inner
edge h = 0.1 m (figure 1). Walls are impermeable and electrically insulating, except
where small electrodes are inserted, either to drive or diagnose the flow. Since
Hartmann and Shercliff layers are expected to develop along walls perpendicular
and parallel to B, we shall refer to them as Hartmann walls and Shercliff walls,
respectively (figures 1 and 2). For the lower magnetic fields used, τ2D(l⊥) is of
the order of 1 s. Such times are much longer than those of Sommeria (1986), and
potentially comparable to, or longer than eddy turnover times, so three-dimensionality
is expected to be present. The working liquid metal is Gallinstan (or MCP11), an
eutectic alloy of gallium, indium and tin that is liquid at room temperature, with
electric conductivity σ = 3.4 × 106 S m−1, density ρ = 6400 kg m−3 and viscosity
ν = 4 × 10−7 m2 s−1. The container is successively filled with argon and evacuated
several times so as to ensure that as little gas as possible remains inside the vessel,
and to prevent oxidation of the Gallinstan as much as possible. This way, the liquid
metal is in the tightest mechanical contact with the walls and in electrical contact with
all wall-embedded electrodes. Once filled with Gallinstan, the container is subjected
to a magnetic field Bez by being placed at the centre of the cylindrical bore of a
superconducting solenoidal magnet. Magnetic fields B ∈ [0.1, 5] T of a maximum
inhomogeneity of 3 % along ex, ey and ez and with corresponding Hartmann numbers
Ha= Bh(σ/(ρν))1/2 ∈ [364, 18 222] are achieved (Ha2 measures the ratio of Lorentz
to viscous forces, see § 3). This very low level of inhomogeneity is not expected to
have any significant effect on the measurements. By contrast, a possible curvature of
the magnetic field lines due to the bipolar structure of the magnetic field could have
an influence on the diagnosis of three-dimensionality. By comparing the position of
several vortex centres in a steady quasi-two-dimensional regime using interpolation
between probes, we found that the lateral streamline displacement between top
and bottom walls was approximately the size of an injection electrode (1 mm),
which is below the spatial resolution of our measurements. The lack of influence of
inhomogeneity was also confirmed by the very low level of three-dimensionality we
measured in the asymptotic quasi-two-dimensional regime (§ 6).

The flow entrainment relies on the same principle as in Sommeria’s (1986) and
Klein, Pothérat & Alferjonok’s (2009) experiments. A DC electric current in the range
I ∈ [0−300] A is injected at the bottom Hartmann wall located at z = 0 (figure 1),
through a lattice of either n = 100 or n = 16 electrodes, each of diameter 1 mm.
The basic forcing geometry consists of a square array of either 10 × 10 or 4 × 4
electrodes respectively spaced by distances of either Li = 0.01 m or Li = 0.03 m
(non-dimensionally, λi= Li/h= 0.1 or λi= 0.3), both centred on the bottom Hartmann
plate. For high enough injected current, this basic pattern turns into turbulence, with
adjustable forcing scale λi. The electrodes are made of copper and gold plated, which
ensures provision of a good electrical contact with the Gallinstan. They are embedded
into the bottom Hartmann wall located at z = 0, and mounted flush so that they do
not protrude into the liquid metal and bring no mechanical disturbance into the flow.
At their other end, they are connected to a regulated DC power supply through a
dedicated switchboard system. This system makes it possible to connect each of the
100 available electrodes to either the positive or the negative pole of the DC power
supply or to leave it open-ended. The 10 × 10 and 4 × 4 arrays are obtained by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.620


172 A. Pothérat and R. Klein

1

2

3

4

B

B

(a)

(b)

A

Li

A−A

TOP

h

9

10

2

6

7

8

12

13

0 50 100 (mm)

A

11 13 5

y

6 4

4.
6

4

x

6 7 8

BOTTOMI

y

10

2.541.25

9.25
13.25 18.5

2

2

5x

FIGURE 1. (Colour online) Sketch of the cubic container. (a) Cross-section. (b) Top
view onto the bottom plate: (1) cubic brazen frame; (2) top plate with (3) top electronic
board (top Hartmann wall); (4) set of 196 potential probes from the top Hartmann wall;
(5) bottom plate with (6) bottom electronic board (bottom Hartmann wall); (7) set of 196
potential probes from the bottom Hartmann wall (as on the top plate) and (8) additional
100 forcing electrodes; (9) electronic board at the Shercliff wall with (10) 195 potential
probes; (11) side plate; (12) probe for electric potential reference; (13) inlet and outlet to
evacuate the container and to fill it with liquid metal. All container walls are electrically
insulating, except at the locations of potential probes and current injection electrodes. The
central square region with high density of electric potential probes on the Hartmann walls
is marked with a (red online) dashed line.
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B

FIGURE 2. (Colour online) Modular design based on a cubic frame with interchangeable
side plates. These plates can be easily swapped to exchange flow forcing and flow
measurement systems. (a) Open container with side plates unmounted. (b) Closed
container where the front plate is only partly represented to allow for a view into the
container.

alternately connecting all of the electrodes to either pole (10× 10), or by leaving two
unconnected electrodes between one connected to the positive pole and one connected
to the negative pole (4× 4). For low injected electric current I, the base flow consists
of vortices of diameter Li spinning in alternate directions as in Sommeria’s (1986)
experiment. This type of set-up and forcing allowed Sommeria (1986) to provide one
of the first experimental evidences of the inverse energy cascade, a distinctive feature
of two-dimensional turbulence. In that sense, the constant periodic forcing generates
quasi-two-dimensional turbulence at high N when the injected current sufficiently
exceeds the critical value for the destabilisation of the array. It should also be noted
that a constant forcing is necessary to study the dimensionality of MHD turbulence
as we set out to do. Without it, three-dimensionality would be suppressed by the
action of the Lorentz force and turbulence would decay over timescales of the order
of τ2D(Li) or of the Hartmann friction time, depending on whether it is three- or
quasi-two-dimensional (Sommeria & Moreau 1982).

Since all electrodes are connected to a single power supply, particular attention was
paid to ensure that the same, constant current intensity I passed through all of them,
despite random fluctuations in the contact resistance between the electrode surface
and the liquid metal. These fluctuations of amplitude of the order of 10−2 � can lead
to an irregular current distribution resulting into an ill-controlled forcing. By adding
a constant ohmic resistance of 2 � ± 0.25 % to all 100 electric circuits, the impact
of these fluctuations on the uniformity of the forcing becomes negligible. Each 2 �
resistance dissipates a maximal power of 100 W, which limits the injected electric
current per electrode to approximately 7 A. To evacuate heat, they are mounted on
water-cooled aluminium plates. The current injected in each electrode is monitored
prior to each acquisition and discrepancies between the values measured at each
electrode were found to remain on the order of 0.25 %.
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FIGURE 3. (Colour online) Schematic representation of generic flow configurations in a
channel in an external magnetic field. Hartmann layers are represented as semi-transparent
strips in light blue, paths of electric current in red (marked Ib, It and Ic), and fluid flow
as blue, circular arrows. (a) lz � h, the injected current spreads between the Hartmann
layer and the core, where the Lorentz force it generates balances either viscous or inertial
forces; (b) lz & h, same as (a) but part of the injected current flows into the top Hartmann
layer, the flow is three-dimensional and influenced by the top wall; (c) lz� h, the current
spreads equally between top and bottom Hartmann layers, with practically no leak into
the core; the flow is quasi-two-dimensional; (d) symmetrically three-dimensional structures,
not attached to electrodes and where eddy currents in the core are equally sourced from
both Hartmann layers.

2.2. Electric potential measurements
The flow is analysed by measuring the electric potential φ locally, at probes that are
embedded in the container walls. Each electric potential is obtained with respect to a
reference taken in the thin inlet pipe located in a corner of the vessel, where the liquid
metal is always at rest (see figure 1). Each probe consists of a gold-plated copper wire
0.2 mm in diameter fitted flush to the container wall, in the same way as the current
injection electrodes are. This way, they incur practically no mechanical nor electrical
disturbance on the flow. 196 of these probes are embedded in the x–y plane, in the
bottom (z= 0) and top (z= h) Hartmann walls, and 195 probes in the y–z plane at the
Shercliff wall at x= 0. The sets of potential probes embedded in the top and bottom
Hartmann walls are mirror symmetric and precisely aligned opposite each other along

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.620


Why, how and when MHD turbulence becomes three-dimensional 175

magnetic field lines. Near the centre of the Hartmann walls, probes are positioned in
a dense 10× 10 grid of spacing 1x=1y=∆= 2.5 mm to map the smaller spatial
variations of potential. We shall refer to this region of the (x, y) plane as the ‘central
square’ ((red online) dashed line in figure 1). Mid-size and box-size structures are
captured by measurements on sets of three probes (distant by 1x=1y= 2 mm from
one another so as to record local variations of φ along ex and ey), around the centre
array and further out close to the Shercliff walls (figure 1). On the Shercliff wall at
x= 0, probes are respectively spaced by 1y= 4 mm and 1z= 4.6 mm along ey and ez.
Signals recorded there give an insight on the structure of the flow along the magnetic
field lines (see § 5).

The signals are collected via a printed circuit leading to 16-pin connectors built-in
at the back of all walls. From there, the signal is conveyed to a high-precision
single-ended 736-channel acquisition system, manufactured and tailored to this
particular experiment by company NEUROCONN (http://www.neuroconn.de/profile/).
Since the signals can be of the order of 10 µV, each channel features a low-noise
amplifier with gain 111. All signals are then synchronously sampled to 24-bit
precision at a frequency of 128 Hz. Digital signals are optically transmitted to a
PC where they are recorded through a dedicated MATLAB/SIMULINK module.
Since frequencies relevant to the flow are typically expected in the range [0, 35] Hz,
each channel is fitted with a low-pass filter of cut-off frequency of 45 Hz. The
peak-to-peak background noise that remains on the filtered signal is less than 2 µV,
and this determines the precision of the measurement system. The high dynamic
range dedicated analogue-to-digital (A/D) conversion on each channel combined with
the absence of detectable drift in the signals guarantees that no loss in precision
occurs when subtracting the signals from neighbouring probes to construct gradients
of electric potential.

The measurement chain provides real-time simultaneous time series of electric
potential in 587 locations spread between the top and bottom Hartmann walls and on
one of the Shercliff walls (thereafter denoted φb and φt and φS). At the Hartmann
walls, gradients of electric potential at r shall be determined from a second order
approximation:

∇⊥φ(r)= 1
∆

φ
(

r + ∆
2

ex

)
− φ

(
r − ∆

2
ex

)
φ

(
r + ∆

2
ey

)
− φ

(
r − ∆

2
ey

)
+O(∆3). (2.1)

Electric potentials measured on Hartmann walls can also be related to the velocity
fields ub and ut in the bulk of the flow just outside the Hartmann layers using Ohm’s
law there, and neglecting variations of potential across the Hartmann layers, which are
of the order of Ha−2. For the bottom wall,

ub = B−1ez ×∇⊥φb + (σB)−1ez × Jb, (2.2)

where Jb is the current density just outside the Hartmann layer. In quasi-two-
dimensional flows, Jb ∼ σBUHa−1 can be neglected. Equation (2.2) then provides
an indirect measurement of the velocity field, which has been widely used in MHD
experiments featuring thin fluid layers (Alboussière et al. 1999). Kljukin & Thess
(1998) further noticed that in this case, the streamfunction in the bulk becomes
proportional to φb and so isolines of φb provide a direct visualisation of flow patterns.
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When the flow becomes three-dimensional, however, Jb becomes larger but still
depends on the mechanism which pulls current in the core. For instance, we shall
see in § 3 that when inertial effects are present, Jb = O(N−1), so even in this case,
flow patterns can still be identified and velocities estimated from (2.2), albeit with
a precision that decreases with N−1 (see Sreenivasan & Alboussière (2002), where
errors incurred by this measurement technique are estimated). We shall follow this
strategy to test the scaling laws derived in § 3 against our measurements. We shall
also obtain an alternative, more precise quantification of three-dimensionality, using
potential measurements directly in § 6. For this, we shall rely on the property that in
a quasi-two-dimensional flow, measurements of electric potentials and their gradient
taken at the top and bottom Hartmann walls should be fully correlated, whereas any
trace of three-dimensionality should translate into a loss of correlation between these
quantities.

2.3. Experimental procedure and strategy
Experiments are performed at a constant magnetic field (constant Ha). Starting from a
flow at rest, the current per electrode, (measured non-dimensionally by parameter Re0

defined in § 3), is increased in approximately 20 steps, spread logarithmically between
0 and 6 A. At each step, electric potentials were recorded in a statistically steady
state, which was deemed reached after typically 5τH , where the Hartmann friction
time τH = h2/(2νHa), which characterises quasi-dimensional dynamics (Sommeria &
Moreau 1982), is much longer than τJ which characterises three-dimensional effects.
Records extended over a maximum of 7–10 min, imposed by limitations of the cooling
system for the superconducting magnet. To ensure stability of the magnetic field, the
magnet was operated in ‘persistent mode’, i.e. with the coil disconnected from its
power supply. Variations of magnetic field remained unmeasurable over a much longer
time than the few consecutive hours needed to record data at one given field.

Forcing the flow at one wall only imposes a particular topology to the forcing that
allows us to derive crucial generic information on the properties of MHD turbulence in
channels. First, the flow is forced near the bottom wall, where current is injected, but
free near the top wall. Comparing flows in the vicinity of both walls therefore gives
us a reliable way to quantify three-dimensionality. Second, the influence of the top
wall depends only on the dimensionality of turbulence and should therefore reflect the
generic properties of walls in MHD turbulence in channels (§ 4). Finally, by analysing
electric potentials along B at the side wall, we shall be able to identify the trace of the
forcing and distinguish the properties of turbulence that are linked to it from generic
ones: forcing-dependent and forcing-independent properties shall indeed be segregated
on the grounds that since current is injected at one wall only, the dimensional trace of
the forcing is carried by the antisymmetric part of these profiles, while their symmetric
part is relatively independent of the forcing (§ 5). Driving the flow in this manner
offers a very general way to parametrise a wide range of forcing types: any force
density f applied to the flow can indeed be characterised by its intensity and geometry.
The former can be measured through the current ρf /B it induces, and the latter by
the way in which this current distributes in the flow. These in turn determine the
intensity of the average flow and turbulent fluctuations, which we shall analyse. In
electrically driven flows, the total injected current therefore provides a measure of the
total force applied on the flow. Since the dimensionality of the forcing is controlled
by the intensity of the externally imposed magnetic field, the forcing geometry is
precisely controlled along the direction of the magnetic field as well as in the plane
across it.
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3. Theory

We shall first establish generic scalings for the bulk velocity in MHD channel flows
driven by injecting electric current at one of the walls (represented in figure 3).

3.1. Governing equations and governing parameters
In the low-Rm approximation (Roberts 1967), the motion of an electrically conducting
fluid (kinematic viscosity ν) in an ambient magnetic field B induces an electric current
density J . In turn, their mutual interaction creates a Lorentz force density J × B on
the flow, which drives the physical mechanisms analysed in this paper. The magnetic
field associated to the induced current is of the order of µσUhB = RmB (µ is
the magnetic permeability of the fluid). Since, in the experimental configuration
considered here, the magnetic Reynolds number Rm remains well below 10−1,
the flow-induced component of the magnetic field can be safely neglected in the
expression of the magnetic field and B shall coincide with the externally imposed
field Bez. In these conditions, mechanical and electromagnetic quantities are only
coupled through the mutual dependence of the velocity and pressure fields u and p
on one side, and the electric current density J on the other. The governing equations
consist of the Navier–Stokes equations

∂tu+ u · ∇u+ 1
ρ
∇p= ν∇2u+ B

ρ
J × ez, (3.1)

Ohm’s law
1
σ

J =−∇φ + Bu× ez, (3.2)

where φ is the electric potential, and the conservation of mass and charge, respectively:

∇ · u= 0, (3.3)
∇ · J = 0. (3.4)

A Poisson equation for the electric field can be obtained from (3.2) and (3.4).
Replacing (3.4) with it and substituting (3.2) into (3.1) provides a u–p–φ formulation
of (3.1)–(3.4), which is convenient for numerical simulations (Dousset & Pothérat
2012). With a choice of reference velocity U, reference lengths across and along the
magnetic field l⊥ and h, time, pressure, electric current density and electric potential
can respectively be normalised by l⊥/U, ρU2, σBU and BUh. It turns out that the
system (3.1)–(3.4) is determined by three non-dimensional parameters:

Ha= Bh
√
σ

ρν
, N = σB2l⊥

ρU
, λ= l⊥

h
. (3.5a−c)

The square of the Hartmann number Ha2 expresses the ratio of Lorentz to viscous
forces, while the interaction parameter N is a coarse estimate of the ratio of Lorentz
to inertial forces. The effect of the Lorentz force at low Rm comes into light through
the curl of Ohm’s law (3.2), and by virtue of (3.3):

∇× J = σB∂zu. (3.6)
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Equation (3.6) expresses that gradients of horizontal velocity along B induce electric
eddy currents with a vertical component. The associated Lorentz force density FL =
J× B tends to dampen this velocity gradient. In the absence of a free surface, only its
rotational part shall affect the flow, which, by virtue of (3.6) can be expressed through

∇2 FL =−σB2∂2
zzu+∇(σB2∂zuz). (3.7)

In configurations where boundary conditions guarantee the existence of the inverse
Laplacian, Sommeria & Moreau (1982) deduced from this expression that at low Rm,
the Lorentz force diffuses momentum in the direction of the magnetic field over a
distance lz, in characteristic time τ2D(lz) = τJ(lz/l⊥)2. Interestingly, this mechanism
does not involve the momentum equation (3.1) and thus remains valid regardless
of the incompressible fluid considered. Based on this more precise phenomenology,
Sreenivasan & Alboussière (2002) defined a true interaction parameter Nt = Nλ2,
which represents the ratio of the diffusive effect of the Lorentz force to inertial
effects more accurately than N. In the limit Nt →∞, Ha→∞, the Lorentz force
dominates and, boundary conditions permitting, the flow may then become strictly
two-dimensional. Eddy currents then vanish and so does the Lorentz force. A through
current Jz can still exist, but does not interact with the flow.

Let us now turn to the canonical configuration of flows bounded by two electrically
insulating walls orthogonal to B, located at z = 0 and z = h (figure 3). The flow is
driven by injecting a DC electric current I at point electrodes embedded in the
otherwise electrically insulating bottom wall. In this case, the no-slip boundary
condition at the wall imposes that viscous friction must oppose FL in the Hartmann
boundary layers near the wall. The balance between these forces determines the
Hartmann layer thickness as δH = h/Ha. In the absence of inertia, their laminar
profile is a simple exponential function of the distance to the wall (see for instance
Moreau 1990 for the full theory of these layers). In the limit Ha→∞, N →∞,
Sommeria (1986) showed that for a single point electrode, the azimuthal velocity in
the core at (r, z = δH) was linearly dependent on the current I injected through the
electrode. With a free surface present at z= h, this translated into

Ub(r)= Ib

2πr
√
ρσν

, (3.8)

where (r, z) are the cylindrical coordinates associated with the electrode. In a channel,
quasi-two-dimensionality in the core implies that a second boundary layer, exactly
symmetric to the bottom one, is present near the top wall. An example of such a
configuration, with two axisymmetric vortices, is represented in figure 3(c). The radial
currents in the top and bottom Hartmann layers, It and Ib, satisfy It = Ib = I/2, and
so Ub is half of the value found when a free surface is present.

3.2. Three-dimensional, inertialess flow
Since we are interested in three-dimensional flows, which were not considered in these
earlier studies, we now turn our attention to cases where either Ha or N is finite. From
the curl of (3.1), finite viscous or inertial effects drive a divergent current in the core:

∂zJz =−∇⊥ · J⊥ = ρB(u · ∇ωz +ω · ∇uz)− ρνB ∇
2ωz. (3.9)

Let us first consider the case where Ha is finite but inertia can be neglected (N→
∞), equation (3.9) then expresses that viscous forces in the core are balanced by a
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purely rotational Lorentz force driven by horizontally divergent eddy currents ‘leaking’
into the core (from the centre of the vortex, in case of an axisymmetric vortex). This
is represented schematically in figure 3(a). From (3.6), the intensity of these currents
is proportional to the gradient of velocity in the core, which decreases away from the
bottom wall. At a distance lνz from the electrode along ez, the total vertical current
injected in the core at z = 0 is exhausted and the vortex dies out. Here lνz is found
from the third curl of (3.1), using (3.7):

σB2∂2
zzωz = ρν∇4ωz. (3.10)

Assuming that in the core, derivatives along ez are of the same order or smaller
than radial ones, it follows that

lνz
l⊥
∼ l⊥

h
Ha= l⊥

δH
. (3.11)

If lνz < h, the current I injected through the electrode does not reach the upper wall
but spreads between the core and the bottom boundary layer:

I = Ic + Ib. (3.12)

The total current that feeds horizontally divergent currents is Ic ∼ 2πl⊥lνz J⊥. Here
J⊥ is estimated from (3.9) as follows: since ∇2 ∼ l−2

⊥ (1 + δ2
H/l

2
⊥) ∼ l−2

⊥ , it comes
that J⊥ ∼ ρνUb/(Bl2

⊥) and Ic ∼ 2πl⊥Ub(ρσν)
1/2. Also, by virtue of (3.8), the current

density and the total current in the Hartmann layer express respectively as Jb∼ σBUb
and Ib ∼ 2πl⊥δH Jb ∼ 2πl⊥Ub(ρσν)

1/2. It turns out that Ib ∼ Ic ∼ I/2, so the injected
current spreads equally between the core and the boundary layer, and from (3.12), the
corresponding velocity outside the bottom Hartmann layer is

Ub ∼ 1
2

I
2πl⊥
√
σρν

. (3.13)

This new result expresses that the scaling (3.8), which was derived for quasi-two-
dimensional flows extends to three-dimensional flows where the three-dimensionality
originates from viscous effects in the core. Based on this, we shall define two
distinct Reynolds numbers to characterise respectively the forcing and the measured
flow intensity:

Re0 = KΓ
2ν

with Γ = I
2π
√
σρν

, (3.14)

Reb = Ubl⊥
ν
, (3.15)

where K accounts for the geometry of the current injection pattern. For a single vortex,
K = 1; in a square vortex array of alternate spin and step Li, the velocity induced
between two electrodes is 2Γ /(Li/2) and so K = 4, as in Klein & Pothérat (2010).
In regimes where three-dimensionality is driven by viscous effects, equation (3.13)
translates into

Reb 'C0Re0, (3.16)

which is of the same form as the scaling for quasi-two-dimensional flows. Both
scalings were obtained under the assumption that inertia was negligible. Viscous
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forces were neglected in the bulk to obtain the quasi-two-dimensional scaling, but
were not neglected in (3.16). In this sense, the latter generalises the former, and they
are both part of an inertialess regime. In (3.16) and the remainder of this section, all
constants C and D with various indices are real scalars of the order of unity. The
physical mechanism underlying (3.11) and (3.16) is the same as that discovered by
Ludford (1961) and Hunt, Ludford & Hunt (1968). It explains the presence of a zone
of stagnant fluid in regions attached to solid obstacles and extending over a distance
of the order of Ha along B. Hunt’s wake, as it was later called, was found in the
numerical simulations of Dousset & Pothérat (2012) and in the recent experiments
of Andreev, Kolesnikov & Thess (2013). Alpher et al. (1960), also reported the
existence of a similar wake attached to a conducting strip placed in a free surface
channel flow.

3.3. Inertial electrically driven flow
In turbulent regimes, N is finite and inertia may act in the core with ur ∼ uθ ∼Ub for
any given vortex, so that u · ∇ω∼U2

b/l⊥. By virtue of (3.9), it must be balanced by
the Lorentz force and this pulls some of the current injected at the electrode into the
bulk of the flow. Then, neglecting viscous effects in (3.9), and using (3.6), as in § 3.2,
it comes that the fluid is set in motion up to a distance l(N)z from the wall. Here l(N)z
corresponds to the diffusion length by the Lorentz force in the presence of inertia first
introduced by Sommeria & Moreau (1982):

l(N)z

l⊥
∼N1/2. (3.17)

Using the same approach as in § 3.2, and still considering that lz < h, we note that
in the limit Ha→∞ and for finite N, equation (3.9) implies that the horizontally
divergent core current scales as J⊥ ∼ ρU2

b l−1
⊥ B−1. Furthermore, the scaling for the

current in the Hartmann layer Ib ∼ 2πl⊥Ub(σρν)
1/2 remains valid and so from the

conservation of current I= Ic+ Ib, we arrive at a new scaling for the velocity outside
the bottom boundary layer:

Ub ∼ 1
1+ (Reb)1/2

Γ

l⊥
. (3.18)

For Reb� 1, expressing Γ with (3.14), the inertial regime is thus characterised by
a scaling of the form:

Reb 'C(N)
b (Re0)

2/3
. (3.19)

For a pair of vortices, velocity and current distributions are qualitatively similar to
those represented in figure 3, but differ from the viscous case of § 3.2 in how they
scale with Re0.

A somewhat similar distinction between viscous and inertial regimes in electrolytes
flows driven by passing an imposed current through an inhomogeneous magnetic field
was observed experimentally by Duran-Matute et al. (2010). In this case, however, the
current was not influenced by the flow so the Lorentz force acted as an externally
imposed force, and this led to different scalings to those we find here.

In the viscous regime, they found a scaling consistent with (3.8), whereas in our
notation, the Reynolds number in their inertial regime scaled as

Reb ∼ (Re0)
1/2
. (3.20)
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This scaling reflects a different forcing mechanism whereby the electric current, and
therefore the Lorentz force, spread across the whole fluid layer instead of being largely
confined to the boundary layers, as here at high Hartmann numbers. The Lorentz force
was then directly balanced by inertial terms.

3.4. Measure of three-dimensionality at the Hartmann wall where no current is
injected

Let us now consider the influence of the top Hartmann wall present at z= h. If, as
in the previous section, h> lz, then only weak residual flows and currents exist in its
vicinity and the influence of the top wall on the flow can be expected to be minimal.
In this sense, the top wall is passive.

If, on the other hand, h< lz, the current injected through an electrode mounted at
the bottom wall separates in three components instead of two when h> lz. The first,
Ib, flows from the electrode directly into the bottom Hartman layer and satisfies Ub∼
Ib/(2πl⊥

√
σρν) as previously. The second is pulled into the core either by viscous

or inertial forces, depending on the values of Ha and N. The third is made of the
residual current It at z∼ h− δH . Here It flows in the top Hartmann layer and in this
sense, the top wall ‘cuts’ the vortical structure at z= h, where a significant flow Ut

still exists and satisfies Ut ∼ It/(2πl⊥
√
σρν) by virtue of (3.6). In this sense, the top

wall is active.
In the inertialess regime, N→∞ and (3.1) expresses that the current pulled into

the core for the Lorentz force to balance viscous forces there is Ic∼2πl⊥ρνhUb/(Bl2
⊥).

Then, since I = Ib + Ic + It, it comes that the inertialess scaling (3.16) found for Reb

in the absence of the top wall remains valid and we arrive at a new scaling for the
velocity near to the top wall:

Ut ∼Ub

(
1− h

lνz

)
. (3.21)

Alternately, this scaling can also be obtained by noting that Ut ' Ub + h∂u/∂z '
Ub− h(Ub/lνz ). Using Ret, a Reynolds number based on the top velocity Ut, this yields
a non-dimensional scaling of the form:

Ret 'C0
t Re0

(
1−D0

t
h2

l2
⊥

Ha−1

)
. (3.22)

The top wall thus affects the distribution of current in the core, mostly in its vicinity
but not near the bottom wall.

The same reasoning applies to the inertial regime (N finite, Ha→∞). This time,
the scaling for the velocity outside the top Hartmann layer becomes

Ut ∼Ub

(
1− h

l(N)z

)
. (3.23)

Three cases can be distinguished for the expression of Ic, depending on l(N)z /h.

(i) For Nt < 1 (l(N)z < h), the top wall is passive: the scaling of § 3.3 holds and Ic ∼
2πl⊥ρU2

b/(Bl⊥)l(N)z .
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(ii) For Nt & 1 (l(N)z & h), noticeable three-dimensionality is present in the core. Most
of the eddy currents recirculate in the core. Only a small portion of these currents
passes through the top Hartmann layer, without significantly affecting the core
current. Then Ic can be expected to still scale as Ic ∼ 2πl⊥ρU2

b/(Bl⊥)l(N)z .
(iii) In the limit Nt� 1 (l(N)z � h), the flow is close to quasi-two-dimensionality and

most eddy currents recirculate through both Hartmann layers. The current in the
core scales as Ic∼ 2πl⊥ρU2

b/(Bl⊥)h, which is typically Ha times smaller than the
currents in the Hartmann layers Ib and It.

All three cases can be reconciled into one in writing Ic∼2πl⊥ρU2
b/(Bl⊥)l(N)z f (h/l(N)z ).

The correction f (h/l(N)z ) then varies from a constant value for l(N)z < h (case (i)), then
exhibits dependence on Nt for Nt & 1 (case (ii)), and tends to a function of order N−1/2

t

in the limit lz/h→∞ (case (iii)). The scaling for Reb follows from the global current
conservation, I = Ib + It + Ic:

(2(Reb)−1/2 − (Reb)−1/2N−1/2
t + f (Nt))(Reb)3/2 ' (C(N)

b )3/2Re0. (3.24)

In the limit of large Nt (l(N)z �h), the first term in the bracket dominates and the law
for quasi-two-dimensional flows is recovered. The middle term represents a correction
to the current in the top layer accounting for the current lost to the core. The last term
comes from the current pulled by inertial effects into the core. For Nt & 1 (l(N)z & h),
it approaches a constant and becomes larger than the other two. This case shall be
the most interesting one, since it combines inertia-induced three-dimensionality with
an active influence of the top wall. In this limit using (3.23) for Ut, Reb and Ret can
be expressed as

Reb 'C(N)
b (Re0)

2/3f (Nt)
−2/3, (3.25)

Ret 'C(N)
t (Re0)

2/3f (Nt)
−2/3(1−D(N)

t N−1/2
t ). (3.26)

Note that both (3.22) and (3.26) have the same form as their counterparts in the
vicinity of the wall where current is injected but for a coefficient smaller than unity.
This coefficient therefore gives a global measure of the amount of three-dimensionality
across the fluid layer.

3.5. Symmetric versus antisymmetric three-dimensionality
Equation (3.9) imposes that inertial or viscous effects in the core pull a horizontally
divergent current there and induce a variation of vertical current. It imposes, however,
no constraint on the direction in which this current travels along B. This shall be
decided by the boundary conditions of the problem. In the examples of figure 3(a–c),
the current enters and leaves the domain at two electrodes located at the bottom
wall. The topology of the electric current lines must ensure that the circuit is closed
whilst satisfying this topological constraint and this forces the current to flow as
sketched. A structure not attached to an injection electrode may, by contrast, not
necessarily exhibit the asymmetry imposed by the location of the electrodes and
the current that loops in the core may be sourced from either Hartmann layers. In
this case, Pothérat et al.’s (2000) asymptotic analysis of a symmetric channel (with
no injection electrode) shows that when N decreases from infinity, the first form of
three-dimensionality encountered is symmetric, with a velocity profile that is quadratic
in z. The underlying mechanism was indeed the same as in §§ 3.3 and 3.4, except

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.620


Why, how and when MHD turbulence becomes three-dimensional 183

that eddy currents feeding the core current took source equally in the top and bottom
Hartmann layers, as sketched in figure 3(d).

Such symmetric three-dimensionality may still occur in a channel where the
flow is driven by injecting current at one wall only. In turbulent regimes indeed,
energy is transferred from the mean flow, made of vortices attached to the injection
electrodes (characterised by lmean

⊥ and Umean
b ), to transient structures, not attached to

electrodes. The transfer takes place over a structure turnover time τu = lmean
⊥ /Umean

b .
After typically τ2D(lmean

⊥ ) = (h/lmean
⊥ )2ρ/(σB2), momentum diffusion by the Lorentz

force has erased the asymmetry inherited from the influence of the electrodes on
the the mean flow and Pothérat et al.’s (2000) theory becomes relevant. Depending
on their sizes, such structures can be either two- or three-dimensional. The possible
existence of symmetrically three-dimensional structures can be seen by noting that
for a structure of size l⊥ to be three-dimensional, its turnover time must satisfy
τ2D(l⊥) > l⊥/U(l⊥) (or equivalently Nt(l⊥) < 1). For it to be symmetric, on the other
hand, the energy transfer time from the mean flow to it, which is at least lmean

⊥ /Umean
b ,

must be larger than τ2D(lmean
⊥ ) (or Nt(lmean

⊥ )> 1). For l⊥< lmean
⊥ , τ2D(lmean

⊥ )< τ2D(l⊥), and
so depending on the variations of U(l⊥), both conditions may be satisfied (for instance
if U(l⊥) ∼ Umean

b ), and symmetric three-dimensionality may be present in turbulent
fluctuations, even though the mean flow may be asymmetric if Nt(l⊥) < 1< Nt(lmean

⊥ ).
A consequence is that forcing the flow through electrodes embedded in one wall can
still lead to turbulence that is either quasi-two-dimensional or three-dimensional and
not influenced by the dimensionality of the forcing.

4. Measure of flow dimensionality through scaling laws for the velocity
4.1. Experimental measurements of Ub and Ut

We shall now experimentally characterise the origin of three-dimensionality, using
the scalings from § 3. These involved bulk velocities near top and bottom Hartmann
walls, and the injected current per electrode I. Velocities cannot be directly measured
in the experiment, but can be estimated using (2.2), from measurements of ∇⊥φ at
the Hartmann walls (see § 2.2). Hence, velocities Ub and Ut, which appeared in the
scalings of § 3 shall be estimated as

Ub = B−1〈|∇φb|〉, (4.1)
Ut = B−1〈|∇φt|〉, (4.2)

where the overbar indicates spatial averaging in the central square region (see figure 1),
〈·〉 stands for time-averaging, φb and φt are electric potentials measured at the bottom
and top wall respectively. Reynolds numbers Reb and Ret were built using l⊥ = Li
as reference length. We shall also extract scalings for their counterparts Reb′ and Ret′,
built on the RMS of velocity fluctuations near the bottom and top walls, estimated as

U′b = B−1〈|∇φb − 〈∇φb〉|2〉1/2, (4.3)

U′t = B−1〈|∇φt − 〈∇φt〉|2〉1/2. (4.4)

For a spacing between probes of 2.5 mm in (2.1), instantaneous velocities can be
measured locally to a precision of 1.6 mm s−1 (at B = 0.5 T/Ha = 1822.2) down
to 0.16 mm s−1 (at B = 5 T/Ha = 18 222). In the turbulent regimes considered in
this paper, this provides a relative precision of at worse 5–0.5 %. These figures are
considerably improved for averaged and RMS quantities, which are calculated over
time series of typically 105 samples.
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FIGURE 4. Graphs of Reb versus Re0 representing the average flow near the bottom wall
for measurements spanning the whole range of parameters accessible in the experiment:
(a) λi = 0.1; (b) λi = 0.3. Solid lines represent scaling laws for the inertialess regime of
the form (3.16) and purely inertial regime (3.19).

4.2. Inertialess versus inertial three-dimensionality
4.2.1. Average flow

Figure 4 shows graphs of Reb against Re0 over the full range of parameters spanned
in our measurements for λi= 0.1 and λi= 0.3. For any fixed value of Ha, two regimes
clearly stand out and data obtained at different values of Ha all closely collapse into
two single curves respectively for lower and higher values of Re0. For λi= 0.1, these

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

62
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.620


Why, how and when MHD turbulence becomes three-dimensional 185

curves follow the scalings

Reb ' 0.24Re0 at small Re0, (4.5)
Reb ' 1.5(Re0)2/3 at large Re0. (4.6)

The scaling at low Re0 is found exclusively in the steady state, where vortices
are mostly axisymmetric, and therefore subject to little inertia. It matches the scaling
which characterises the inertialess regime (3.16) with C0 ' 0.24, which suggests that
no three-dimensionality driven by inertia is present there. Furthermore, from previous
observations of flow patterns (Klein & Pothérat 2010), the reason why this scaling
holds at high Ha is rather that the flow is indeed close to quasi two-dimensionality
(typically Ha> 7500 for λi= 0.1 and Ha> 4000 for λi= 0.3). At low Ha, on the other
hand, three-dimensionality was visible in the base flow, under the form of differential
rotation affecting the base vortices. In this case, the validity of (4.5) indicates that this
effect is driven by viscous friction.

When the flow becomes unsteady, inertia triggers a transition away from the
inertialess regime (the conditions of this transition where analysed by Klein &
Pothérat (2010) and earlier by Sommeria (1988) in the quasi-two-dimensional regime).
Viscous effects are however still present and a purely inertial regime, in the sense that
inertia-driven three-dimensionality dominates, is only reached asymptotically at high
Re0, when the flow is turbulent. Then Reb tends to (4.6), which matches (3.19) with
C(N)

b = 1.5. For higher Ha, the asymptotic value of Reb consistently stands slightly
under that of (4.6), as predicted theoretically in (3.25). The correction factor due to
the influence of the top wall is however weak, of the order of f (Nt)

−2/3 ∼ N0.08±0.01
t .

Overall, the validity of generic scaling (3.19) for the average flow is verified over a
wide range both of Re0 and Ha.

We were also able to verify that (3.16) still holds when the forcing scale λi is varied,
even though C0 is slightly smaller for λi = 0.3 than for λi = 0.1 (C0 ' 0.18 versus
C0'0.24). This point is mostly experiment-specific, as larger vortices are indeed more
sensitive to friction from the side walls because a larger proportion of the lattice is in
direct contact with them. Note that the values of Re0 reached in the experiment for
λi = 0.3 are not large enough for the average flow to reach a fully developed inertial
regime so we could not verify whether (3.19) was independent of λi for the average
flow.

4.2.2. Turbulent fluctuations
For λi = 0.1, fluctuations U′b also exhibit two distinct regimes at low and high Re.

In the limit Re0→∞, they follow a unique law of the form Reb′'C′bλi(Re0)2/3Ha1/3,
with C′b ' 1.05. This law is satisfied to a remarkable precision as soon as the flow
is sufficiently turbulent (see figure 5a). Experimental data shows the scaling λiHa1/3

to represent the ratio of velocity fluctuations relative to the mean flow in the limit
of large Reynolds numbers (see Appendix(a)). Beyond the prefactor in λiHa1/3, it
remains that Reb′ ∼ (Re0)2/3, which is of the form of (3.19), and therefore indicates
that fluctuating structures are three-dimensional as a result of the inertial mechanism
identified in § 3.3. As for the average flow, the validity of (3.19) is verified over a
wide range of Re0 and Ha for turbulent fluctuations too.

At lower Re, and for Ha= 18 222 only, Reb′ scales as Reb′' 0.12λiHa1/3Re0, which
is of the form (3.16) expected in the inertialess limit. Equations (3.16) and (3.19)
intersect at Reb′ ' 1.27 × 103. This point marks a form of transition between the
inertialess regime and the regime of inertia-driven three-dimensionality. This transition
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Inertialess  inertial transition
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103 104
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(a)

(b)

FIGURE 5. (Colour online) Graphs of Reb′Ha−1/3 versus Re0, representing the RMS of
velocity fluctuations near the bottom wall, for (a) λi = 0.1 and (b) λi = 0.3. Solid and
dashed lines represent scaling laws for the purely inertial regime (3.19).

occurs at a rather high value of the true interaction parameter N ′t based on U′b, of the
order of 26. Nevertheless a more precise estimate of this value, and a confirmation
of its validity in the limit Ha→∞ would require further experiments at significantly
higher magnetic fields. For Ha< 18 222, the inertialess limit is not well achieved and
this transition is therefore not as clear. Remarkably, since the inertialess regime for the
average flow is only reached in the steady state, the inertialess regime for turbulent
fluctuations corresponds to a state where inertia-driven three-dimensionality is present
in the base flow but not in the turbulent fluctuations.
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Equation (3.19) further remains valid for fluctuations when the injection scale varies
albeit with a slightly lower value of constant C′b (0.85 versus 1.05, see figure 5)
due to the greater influence of the side walls at higher λi. Fluctuations at λi = 0.3
further reveal how these scalings degenerate at low Ha: the asymptotic law (in the
limit Re0 → ∞) stands a little lower than for higher Ha (C′b = 0.67). This value
of C′b reflects a non-asymptotic dependence on Ha: the scaling U′b/Ub ∼ λiHa1/3 is
indeed only valid in the limit Ha→∞ but not in the limit Ha→ 0, where non-MHD
turbulence still sustains strong fluctuations.

4.3. Measure of three-dimensionality at the wall where no forcing is applied
Now that regimes of quasi-two dimensionality, inertialess and purely inertial three
dimensionality are identified, we shall examine the flow in the vicinity of the upper
Hartmann wall to obtain a first quantification of three-dimensionality within these
regimes. This shall be achieved by seeking the conditions in which the current
injected at the bottom Hartmann wall feeds into the Hartmann layers near the top
walls (when lz & h and lz� h according to the theory from § 3.4), and by quantifying
lz (§ 5).

4.3.1. Average flow
The variations of Ret with Re0 are shown in figure 6 for λi= 0.1 and λi= 0.3. Their

general aspect is somewhat similar to those of Reb with Re0 (figure 4), with a linear
law in the inertialess regime (for Re0 <Re0

I ), and a scaling of the form Ret ∼ (Re0)2/3

in the purely inertial regime (for Re0 sufficiently large). There are, however, two major
differences. Firstly, in the inertialess regime, a dependence on Ha of the form (3.22) is
present (with C0

t = 0.22 versus C0
b= 0.24 for λi= 0.1, and C0

t = 0.18'C0
b for λi= 0.3).

The graph for λi= 0.3 was scaled to find an estimate for the second constant in (3.22),
D(Ha)

t '3.103. The fact that flow intensities near top and bottom walls are close at high
Ha reflects that the average flow becomes quasi-two dimensional in the limit Ha→∞.
At lower Ha, the validity of (3.22) indicates that the average flow looses intensity
away from the bottom wall under the effect of viscous friction. The second important
difference between the variations of Ret and Reb is visible on the graph for λi=0.1: in
the inertial regime too, Ret depends on Ha, but this time according to scaling (3.26),
which incorporates a correction for inertial effects in the presence of the top wall.
Together with the validity of (3.22) in the range of lower Re0, This suggests that the
upper wall actively influences the flow according to the mechanism outlined in § 3.4,
where part of the current injected near the bottom wall was concentrated in the top
Hartmann layer.

4.3.2. Turbulent fluctuations
As for the average flow, the variations of the intensity of flow fluctuations near

the top wall with Re0, reported in figure 7, resemble their counterpart near the
bottom wall but exhibit a non-asymptotic behaviour at low Ha. In the limit of
large Ha, Ret′ clearly follows: (i) an inertialess regime at intermediate Re0 and
(ii) an inertia-driven three-dimensional one in the limit Re0 → ∞. These regimes
are respectively characterised by scalings of the form Ret′ ' C0′

t λiRe0Ha1/3 and
Ret′ 'C′tλi(Re0)2/3Ha1/3, which only differ from the scalings for Reb′ through slightly
lower values of C0′

t (0.085 versus C0′
b = 0.12) and C′t (0.88 versus C′b = 1.05). The

slight differences in the first set of constants confirm that three-dimensionality driven
by viscous effects is present in the inertialess regime. The most remarkable property
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(b)

FIGURE 6. Graphs of Ret versus Re0, for (a) λi = 0.1 and (b) λi = 0.3. (a) Curves are
scaled by (1− 0.15×N−1/2

t )−1 to show that all curves collapse into a scaling of the form
(3.26) in the high Re0 range. A similar collapse happens at low Re0 for scaling (3.22) (not
represented here for concision). (b) Curves are scaled by (1− 3.3× 103 × λ2

i Ha−1)−1 to
show that all curves collapse into a scaling of the form (3.22). Values of Re0 accessible
in the experiment were not large enough to verify inertial scaling (3.26) at λi = 0.3.

of fluctuations near the top plate is that unlike for the base flow, the scaling exponent
of Re0 in the law Ret′(Re0) is different at low Ha than in the limit of high Ha. At
low Ha, it is indeed of the form Ret ' C′t(Ha)λiHa1/3(Re0)1/2. This phenomenon is
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102 103 104

(a)
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104 105

FIGURE 7. Graphs of Ret′Ha−1/3 versus Re0, for (a) λi = 0.1 and (b) λi = 0.3. Scalings
laws corresponding to the purely inertial regime are represented by solid and dashed-dotted
lines when the top wall influences the flow (l′(N)z &h or l′(N)z �h, scalings (3.22) and (3.26))
and by dashed lines when it does not l′(N)z < h, scaling of the form (3.20).

clearly identifiable over one to two decades of Re0 at λi = 0.1 for Ha 6 3644.3, and
at λi = 0.3 for Ha< 1822.2. The corresponding flow fluctuations are of much lower
intensity than predicted by any of the scenarii of § 3.4 involving an active influence
of the top wall on the flow, so one can infer that the electrically driven flow does not
reach the upper wall (i.e. l′(N)z < h, where l′(N)z is built on U′b instead of Ub). Instead,
the exponent 1

2 of Reb′ is the same as in scaling (3.20), found by Duran-Matute et al.
(2010) in a non-MHD inertial regime. It can be understood as follows: for the lowest
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values of Ha, the flow near the bottom wall is entrained over a height l(N)z < h (given
by (3.17)) and so the scaling law (3.16) for Reb still holds. Fluctuations, by contrast,
are not directly driven by current injection but receive energy from the average flow
by inertial transfer. Furthermore, the non-asymptotic behaviour of Reb′, visible at low
Ha in figure 5(b), suggests that for such structures, the core current density becomes
comparable to that through the bottom Hartmann layer. (This electric ‘leak’ from the
bottom Hartmann layer explains the lower intensity of the fluctuations.) Consequently,
fluctuations are powered by inertial transfer over the whole height l′(N)z of the fluid
layer where current passes. The Lorentz force balances inertia there, and is of order
σB2U′c. This phenomenology was noted in § 4.2 to translate into a fluctuating velocity
in the core U′c scaling as (Re0)1/2. The flow in the top region l′(N)z 6 z 6 h, is thus
not connected to the flow in the region 0 6 z 6 l′(N)z by eddy currents. Instead, it is
entrained by viscous friction acting though a fluid thickness of h − l′(N)z (figure 3a).
Therefore, U′t is proportional to U′c and decreases with h − l′(N)z . This explains that
Ret′ ∼ (Re0)1/2. Since the thickness of the top region h − l′(N)z decreases with Ha, it
also explains that at low Ha, velocity fluctuations decrease faster when Ha decreases,
than at high Ha, where they scale as Ha1/3 (see Appendix(b)).

5. Symmetric, asymmetric three-dimensionalities and experimental measure of the
Lorentz force diffusion length
From the characterisation of the flow near the wall where no forcing was applied,

three-dimensionality was measured and its driving mechanisms identified. We shall
now inspect electric potentials along the side walls to determine l(N)z and l′(N)z , where
l(N)z and l′(N)z are respectively built on average and fluctuating quantities. This shall lead
us to examine the trace of the forcing in the bulk of the flow, by tracking symmetric
and antisymmetric three-dimensionality.

5.1. Interpretation of electric potential profiles along Shercliff walls
Unlike Hartmann layers, Shercliff layers, which develop along walls parallel to the
magnetic field, do not possess a property providing a simple relation between electric
potential at the side wall φS and velocities in the core (such as (2.2)) and so there is
no simple way to deduct velocity variations along B from time series of non-intrusive
measurements of electric potential at the wall. Furthermore, Shercliff layers are
intrinsically three-dimensional because they result from a balance between the Lorentz
force and horizontal viscous friction, which, as in the mechanisms responsible for
three-dimensionality in the core, draws a horizontal current from the core into them.
Nevertheless, if three-dimensionality is present in the core, then the current drawn
from it into the Shercliff layers depends on z. More specifically, the asymmetric
three-dimensionality in the core described in § 3.5 translates into an antisymmetric
component of the profile of φS(z) of order at least z3 (see Appendix(c)). Similarly,
symmetric three-dimensionality in the core leads to a symmetric deformation of φS(z).
The reverse, however is not true, since even in quasi-two-dimensional flows, intrinsic
three-dimensionality within the Shercliff layers induces a symmetric three-dimensional
component in φS(z) (see, for example, Moreau 1990). Nevertheless, since this
deformation is driven by linear viscous friction, it must depend linearly on the
flow intensity, as measured by Ub. Consequently, symmetric three-dimensionality in
the core can still be detected by tracking nonlinear deformations of the symmetric
part of the average of φS(z)/(BUbLi), and of the RMS of φ′S(z)/(BU′bLi) with Re0.
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The distinction between symmetric and asymmetric three-dimensionality is particularly
important in our experiment where current is injected at one wall only: because of
this particularity, asymmetric three-dimensionality gives a measure of the influence of
the forcing on the flow dynamics.

Our analysis will be restricted to the turbulent regimes, where the flow and the
signals are more intense and the corresponding measurements more precise. Since we
consider variations of voltage with respect to the centrepoint of the vertical profile,
the loss in precision on ∇φ incurred by the lower flow intensity is compensated by
the larger distance between electrodes, which is proportional to the amplitude of the
signal (4–46 mm versus 2.5 mm for gradients of potentials measured in the central
square of the Hartmann walls). For sufficiently turbulent flows, the precision on ∇φ
therefore remains similar to that of measurements along Hartmann walls. Profiles are
chosen at (x/h, y/h)= (−0.5, 0.24) and for λi= 0.1 only, but are representative of the
phenomenology observed in other cases.

5.2. Symmetric versus antisymmetric three-dimensionality: influence of the forcing

Figure 8 shows the profiles of 〈φS(z/h) − φS(
1
2)〉 and 〈φS(z/h)′2〉1/2 − 〈φS(

1
2)
′2〉1/2 for

the same set of values of Re0, at different Ha. They are respectively normalised
by BUbLi and BU′bLi. First, the amplitude of the variations of both these quantities
decreases by about an order of magnitude between Ha= 1822.2 and Ha= 18 222: the
flow becomes closer to quasi-two dimensionality as Ha increases and the proportion
of current that transits from the core to the Shercliff layers reduces correspondingly.
Second, all graphs show that the vertical gradient of these quantities increases with
Re0. This is due to the increasing amount of current drawn into the core by inertial
effects, which loops back through the Shercliff layers. This effect being nonlinear, it
can be measured on the graphs through the discrepancy between curves at different
values of Re0 for the same Ha. At Ha= 1822.2, the eddy currents originating from
the core are strongly concentrated near the bottom wall and practically zero near
the top wall (this is even more spectacular on the profiles of fluctuations). Together
with the scaling Re′t ∼ (Re0)1/2 observed in this regime (§ 4.3), this concurs to show
that the top wall is not active and that l′(N)z < h. The phenomenology is similar at
Ha = 3644.3, except for a slight gradient in the vicinity of the top wall, suggesting
that l′(N)z is closer to h and that eddy currents already appear between the core and the
top Hartmann layer. At the two highest values of Ha, the profiles of both averages
and fluctuations become more symmetric, to be almost symmetric at Ha= 18 222, but
with an important difference between them. All average profiles converge towards a
single curve at high Re0: this indicates linearity with the flow intensity and therefore
suggests that the corresponding three-dimensionality is due to the viscous effects
in the Shercliff layers. By contrast, the profiles of fluctuations are more scattered:
although the amplitude of the corresponding currents is quite weak, this nonlinearity
suggests the presence of symmetric three-dimensionality in turbulent fluctuations, as
theorised in § 3.5.

Symmetric three-dimensionality can be more precisely traced by inspecting the
symmetric parts φ(S)S and φ′(S)S of the profiles of 〈φS(z/h)−φS(

1
2)〉 and 〈φS(z/h)′2〉1/2−

〈φS(
1
2)
′2〉1/2, in figure 9. While inertia-driven, symmetric three-dimensionality is

practically absent from fluctuations at low Ha, it becomes dominant a large Ha.
The average flow, by contrast, exhibits the opposite behaviour, with inertia-driven
symmetric three-dimensionality absent at high Hartmann number. Since the profiles
of fluctuations are highly symmetric in this regime, this important difference shows
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FIGURE 8. Profiles of 〈φS(z/h) − φS(z/h = 1
2 )〉 (a,c,e,g), and 〈φ′S(z/h)2〉1/2 − 〈φ′S(z/h =

1
2 )

2〉1/2 (b,d,f,h) measured at (x, y)/L= (−0.5, 0.24): (a,b) Ha= 1822.2, (c,d) Ha= 3644.3,
(e,f ) Ha= 10 933, (g,h) Ha= 18 222.
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FIGURE 9. Symmetric parts (superscript S) φ
(S)
S and φ

′(S)
S respectively of 〈φS(z/h) −

φS(z/h = 1
2 )〉 (a,c,e,g), and of 〈φ′S(z/h)2〉1/2 − 〈φ′S(z/h = 1

2 )〉1/2 (b,d,f,h), measured at
(x/L, y/L) = (−0.5, 0.24): (a,b) Ha = 1822.2, (c,d) Ha = 3644.3, (e,f ) Ha = 10 933,
(g,h) Ha= 18 222, legend is in figure 8.
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that at Ha> 10 933, where τ2D becomes shorter than the turnover time for the large
scales τu′ (or, equivalently, when Nt becomes greater than unity), the asymmetry
induced by the forcing is mostly confined to the base flow and the Lorentz force
damps it out before it is transferred to turbulent fluctuations. The dimensionality of
turbulent fluctuations generated in this regime is therefore subject to little influence
from the inhomogeneity of the forcing.

5.3. Experimental measure of the length of diffusion by the Lorentz force
We shall now extract the lengthscale of momentum diffusion by the Lorentz force
l(N)z (B, Ub), defined by (3.17) from the antisymmetric parts φ(AS)

S and φ
′(AS)
S of the

profiles of 〈φS(z/h) − φS(
1
2)〉 and 〈φS(z/h)′2〉1/2 − 〈φS(

1
2)
′2〉1/2. Profiles of these

quantities are plotted on figure 10 respectively against (z−h/2)/l(N)z and (z−h/2)/l′(N)z .
With this choice of variables, since l(N)z and l′(N)z increase with Ha, curves obtained at
higher Ha are shorter than those at low Ha, and all curves are centred on zero. The
first important result is that profiles of average and fluctuations collapse well into
a single curve each: this indicates that the momentum forced near the bottom wall
reaches into the flow over l(N)z . This establishes the validity of scaling (3.17) for l(N)z
and l′(N)z , for the average flow and the fluctuations, respectively.

The average potentials follow a linear profile, with strong discrepancies to it in
regions where |(z − h/2)/l(N)z | > 0.5 (marked by horizontal dashed lines). Only at
Ha = 1822.2 are these regions clearly reached, as l(N)z is notably smaller than h
whereas at Ha = 3644.3, lz ' h, depending on Re0. Strong current exists in the
corresponding regions of the core and so diffusion by the Lorentz force is not
effective there. Since the inhomogeneity is asymmetric, it can be attributed to the
forcing. In that sense, it carries the signature of the forcing dimensionality. In the
region |(z − h/2)/l(N)z | < 0.5, by contrast, momentum diffusion by the Lorentz force
dominates inertia: the (asymmetric) horizontally divergent current collapses in the
core and therefore in the Shercliff layers, where it would normally return. For
Ha > 3644.3, l(N)z > h: discrepancies to linearity are less pronounced and reflect
eddy currents more homogeneously spread along the height of the vessel. This
phenomenology holds for both the average flow and the fluctuations but the collapse
to a single curve is significantly better on the profiles of fluctuations. It is remarkable
that the antisymmetric part of turbulent fluctuations in the region |(z− h/2)/l′(N)z |< 0.5
is dominated by momentum diffusion by the Lorentz force, when at the same time,
three-dimensionality can still be observed in the symmetric part of the profiles. Since
for Ha> 10 933, this region extends along the full height of the vessel, this implies
that the three-dimensionality of turbulent fluctuations observed in this range of
parameters (visible in particular on the symmetric profiles of figure 9) is not induced
by the forcing, even though the forcing still induces some three-dimensionality in the
average flow. This is the second important result of this section.

6. Weak versus strong three-dimensionality in unsteady regimes
6.1. Global quantification of weak and strong three-dimensionality

In §§ 3–5, the vertical profiles of electric potential and the scalings for Ub, Ut, U′b
and U′t were shown to be efficient tools to detect three-dimensionality, and to
contain the viscous or inertial signature of its origin. We shall now more precisely
measure three-dimensionality and determine its nature by quantifying weak and strong
three-dimensionalities, which we previously introduced in Klein & Pothérat (2010). In
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FIGURE 10. Antisymmetric part (superscript (AS))φ(AS)
S and φ

′(AS)
S respectively of the

profiles of (a) 〈φS(z/h) − φS(
1
2 )〉 and (b) 〈φ′S(z/h)2〉1/2 − 〈φ′S(z/h = 1

2 )
2〉1/2, measured at

(x/L, y/L)= (−0.5, 0.24), with (z− h/2) respectively normalised by l(N)z and l′(N)z (built on
Ub and U′b). Profiles are plotted for λi = 0.1, for five values of Ha and three values of
Re0 for each value of Ha.

particular, we shall estimate the extent to which either form of three-dimensionality
is eradicated in the quasi-two-dimensional limit.

Let us start by recalling that weak three-dimensionality is characterised by a
variation in flow intensity between two-dimensional ‘slices’ of topologically equivalent
flows in the (x, y) plane. Strong three-dimensionality, by contrast, involves different
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profiles of physical quantities along z at different locations (x, y). Following Klein
& Pothérat (2010), their respective occurrence shall be quantified by comparing
measurements at bottom and top Hartmann walls at z = 0 and z = h, by means of
two types of correlations:

C′1(x, y)=

T∑
t=0

∂yφ
′
b(x, y, t)∂yφ

′
t(x, y, t)√√√√ T∑

t=0

∂yφ′2b(x, y, t)
T∑

t=0

∂yφ′2t (x, y, t)

, (6.1)

C′2(x, y)=

T∑
t=0

∂yφ
′
b(x, y, t)∂yφ

′
t(x, y, t)

T∑
t=0

∂yφ
′2
b(x, y, t)

, (6.2)

where T is the duration of the recorded signals. Values of C′1 depart from unity
whenever strong three-dimensionality is present, but are unaffected by weak
three-dimensionality. C′2, on the other hand, differs from unity whenever either
weak or strong three-dimensionality is present. In order to minimise the influence of
the side walls, we shall reason on the spatial averages C′i and 1−C′i of C′i and 1−C′i
over the central square region (see § 2). Whilst 1 − C′1 and 1 − C′2 give a measure
of three-dimensionalities, C′1 and C′2 reflect the emergence of two-dimensionality,
respectively in the strong sense, and in both the weak and the strong sense. A
minor limitation of this method, however, is that fluctuations that remain at all time
symmetric with respect to the vessel mid-plane (z/h= 1

2 ) cannot be detected as they
do not affect the values of C′1 nor C′2. Fluctuations that are symmetric on average
but not at all time, such as those detected in the symmetric part of φ′S (§ 5), may,
by contrast, alter the values of the correlations. While the former type of fluctuation
is unlikely to generate strong three-dimensionality, the latter is the most likely form
of strong symmetric three-dimensionality, since it results from randomly localised
three-dimensional disturbances, which are unaffected by the asymmetry of the forcing
and therefore distributed symmetrically along the vessel height. The experimental
precision on C′i can be estimated from the ratio of signal amplitude to uncorrelated
noise. Using definitions (6.1) and (6.2), we find that the relative theoretical precision
is never worse than 2 %. It concerns regimes of low Ha were the signal is lower and
the values of C′i are close to zero. For the highest values of Ha, where C′i becomes
very close to one, the uncertainty falls around that incurred by the mechanical
tolerances of the vessel (approximately 0.1 %). In practise, we found it to be around
0.5 %.

We plot C′i and 1 − C′i in figure 11 against the true interaction parameter based
on the velocity fluctuations and the injection scale N ′t(Li)= (σB2Li/ρU′b)λ

−2
i . All our

measurement points collapse into two single curves C′1(Nt) and C′2(Nt), indicating
that three-dimensionality in the fluctuations is exclusively of inertial nature. This is
consistent with the scalings found for fluctuations U′b and U′t in § 4, which reflected
the presence of inertia in the core too. In the limit N ′t→∞, both types of correlations
become close to one within a precision of approximately 1 %, indicating that in these
regimes, the flow is very close to quasi-two-dimensionality. Furthermore, in the limit
N ′t →∞, 1 − C′1(Nt) ∼ N ′−0.9

t and 1 − C′2(Nt) ∼ N ′−0.9
t , up to the point where these

quantities reach a plateau reflecting the level of signal noise. In fact two such plateaux
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FIGURE 11. (Colour online) (a) Correlations and (b) co-correlations of electric potential
gradient between bottom and top Hartmann walls, averaged over the central square. Data
were obtained from measurements both with λi = 0.1 and λi = 0.3. (c) Snapshots of
contours of electric potential taken for four values of N ′t and examples of spectra taken
pairs of probes within the central square respectively from top (green, lower curve) and
bottom plate (red, upper curve), at the same point (x, y).
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shoot off from the main N ′−0.9
t law, that correspond to the two different levels of signal

to noise ratio for λi = 0.1 and λi = 0.3. Despite their purely empirical nature, these
scalings give a strong experimental evidence that the flow becomes asymptotically
quasi-two-dimensional and that a vanishingly small amount of three-dimensionality
always remains present. By contrast, the transition between two- and three-dimensional
states in MHD flows with non-dissipative boundaries (such as free-slip conditions
studied by Thess & Zikanov (2007) or periodic boundary conditions by Zikanov &
Thess (1998), Pothérat & Dymkou (2010)) occurred through bifurcations at a critical
value of the parameter representing the flow intensity. This fundamental difference
in behaviour must be attributed to the role of walls, in line with our recent theory
(Pothérat 2012) showing that walls incur weak three-dimensionality as soon as N (or
Nt) is finite.

In the limit N ′t → 0, C′1 and C′2 exhibit several noticeable differences. Firstly,
measurements empirically obey two different scalings: C′1 ∼ N ′1/2t and C′2 ∼ N ′t .
This indicates that weak three-dimensionality is more significant than strong
three-dimensionality. This effect is in part due to the nature of the forcing: for
low magnetic fields and strong currents, electric currents remain in the vicinity of
the bottom wall, where the flow is intensely stirred. By contrast, very little current
flows near the top wall. Whatever weak flow remains there is mostly entrained by
viscous momentum diffusion from the intense flow near the bottom wall. Both share
the same large patterns, as on the snapshots of streamlines (a) and (b) from figure 11,
and are therefore somewhat correlated in the weak sense. By contrast, the very small
intensity of the flow near the top wall extinguishes correlation in the strong sense.

The power laws found in the limits N ′t→ 0 and N ′t→∞ intersect at N ′t =N ′2D
t ' 4.5,

and remain remarkably valid in their respective ranges N ′t < 4.5 and N ′t > 4.5, In this
sense, the value N ′2D

t marks a form of transition between quasi-two-dimensional and
three-dimensional states. We insist, however, that this is not a critical value of N ′t since
no bifurcation occurs in the flow states at this point. Also, it provides a rather global
appraisal of the flow state but it is certainly not the case that for N ′t > 4.5, every
structure in the flow is quasi-two-dimensional.

6.2. Frequency dependence of strong three-dimensionality
We shall now seek to characterise three-dimensionality locally by analysing the
frequency spectra from the fluctuations of ∇φ near each of the Hartmann walls. In
figure 11, pairs of such spectra are shown that were obtained from signals acquired
at locations of either Hartmann walls exactly aligned with the magnetic field lines
(i.e. respectively at z= 0 and z= h, but at the same coordinates (x, y)). These were
taken in the central square region, so as to minimise the influence of the side walls.
At a sampling frequency of 128 Hz, signals would theoretically render fluctuations
of up 64 Hz. To increase signal quality, however, we apply a low-pass filter at
45 Hz so as to avoid electromagnetic interferences from the mains. The physically
relevant part of the spectra correspondingly extends approximately over 2–3 decades.
For values of N ′t noticeably higher than 4.5, top and bottom spectra are practically
identical, as would be expected of a flow that would be quasi-two-dimensional at
all scales. Since spectra do not carry any phase information, however, identical
spectra do not provide a proof that all scales are indeed quasi-two-dimensional,
but merely that no obvious three-dimensionality is present at any scale. Pairs of
spectra at lower values of N ′t , on the other hand, show a clear manifestation of
three-dimensionality as fluctuations of higher frequency carry significantly less energy
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in the vicinity of the top wall than near the bottom wall. Fluctuations of lower
frequency, by contrast, carry the same amount of energy. When N ′t is reduced, the
range of frequencies affected by three-dimensionality widens to the low-frequency
range and ends up contaminating the whole spectrum at the lowest values of N ′t . This
qualitative comparison of spectra indicates that fluctuations of higher frequencies, and
smaller scales by extension, are more sensitive to three-dimensionality than those of
lower frequencies and larger scales, in accordance with Sommeria & Moreau (1982)’s
prediction. A closer inspection of superimposed spectra further suggests the existence
of a cutoff frequency fc separating three-dimensional high-frequency fluctuations from
lower-frequency fluctuations with the same amount of energy near both walls. It also
appears that fc increases with N ′t . To quantify the behaviour of fc(N ′t), we define a
partial correlation function between signals on the bottom and top Hartmann walls in
the strong sense:

c′1( f )=

T∑
t=0

Bf ∂yφ
′
b(t)∂yφ

′
t(t)√√√√ T∑

t=0

Bf ∂yφ′2b(t)
T∑

t=0

∂yφ
′2
t (t)

. (6.3)

The definition of c′1( f ) hardly differs from that of C′1( f ), but for the fact that
the full signal recorded from the bottom wall is replaced with a filtered counterpart,
processed through an eighth-order low-pass filter of cutoff frequency f , incurring
neither phase nor amplitude distortion (denoted Bf ). Figure 12 shows the typical
variations of c′1( f ) when f spans the whole part of the spectrum resolved in our
measurements. Their most important feature is the presence of a maximum, which
can be understood by considering two spectra obtained from top and bottom walls
overlapping up to a frequency fc. Increasing f from 0 for f < fc adds fluctuations
to the bottom signal that are correlated with existing frequencies in the signal from
the top wall, so c′1( f ) increases. When f is increased beyond fc, the fluctuations
added to the bottom signal are decorrelated from existing frequencies in the top one,
so c′1( f ) decreases. The position of the maximum thus gives a good measure of fc.
Note that the same approach cannot be applied to C′2, as a partial correlation c2( f )′
obtained from C′2 by replacing the bottom signal by a filtered counterpart would
diverge in the limit f → 0. This is because the filtered bottom signal vanishes in this
limit (This feature is absent from the behaviour of c1( f )′ as signals are normalised
by their intensity by construction). Nevertheless, from Sommeria & Moreau’s (1982)
theory, the existence of a cutoff lengthscale kc separating quasi-two-dimensional from
three-dimensional structures stems from no assumption on the nature of inertial effects
so it can be expected to exist both for weak and strong three-dimensionality. Yet, if
instabilities occurred at the scale of individual structures, they would incur strong
rather than weak three-dimensionality so in any case, fc is linked to the minimum size
of structures that are stable to three-dimensional perturbations. The question of the
nature of the possible instabilities that occur below this size remains to be clarified
with dedicated analysis.

The variations of fc(N ′t) are represented on figure 13. Measurements points across
the whole range of unsteady flows reachable in the experiment once again collapse
into a single curve, so fc is determined by N ′t , as C′1( f ) and C′2( f ) were, with a scaling
law

fc w 1.7τ−1
u′ N0.67

t , (6.4)
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FIGURE 12. (Colour online) Variations of partial correlation c′1( f ) with the cutoff
frequency of filter Bf applied to the signal measured at the bottom wall. Curves are
obtained for λi= 0.1 and N ′t = 0.12 for a pair of probes within the central square. Curves
obtained for different parameters exhibit the same features. (a–d) Spectra of the filtered
signals and top signals plotted in terms of the frequency normalised by the turnover
frequency associated to RMS fluctuations τ−1

u′ . Frequency fc is also represented.

where τu′ =Li/U′b is the turnover time at the forcing scale. While this law is verified to
a great precision for λi= 0.1 (the exponent 0.67 is obtained to a precision of ±0.03),
a small departure to it is visible at low N ′t for λi= 0.3, that must be attributed to the
greater influence of the walls. Indeed the large vortices forced in such regimes can
be expected to induce local separations of the parallel boundary layers, acting as a
source of instability that could lower fc. Unfortunately, our measurements do not allow
us to test this hypothesis further. It is however consistent with the fact that boundary-
layer separation is suppressed at higher N ′t (Pothérat et al. 2005). The fact that this
empirical scaling is reasonably independent of the forcing scale gives good evidence
of its universality. This important result brings a phenomenological confirmation of
Sommeria & Moreau’s (1982) theory, even though (6.4) is not strictly equivalent to
these authors’ scaling for a cutoff wavelength kc, of the form kc ∼N ′1/3.

7. Conclusions
We have conducted a detailed analysis of the conditions of appearance of

three-dimensionality in low-Rm MHD turbulence in a channel bounded by two solid
walls. We have clarified the mechanisms governing this phenomenon and were able
to quantify it through the scaling of flow quantities. These results can be summarised
as follows.
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FIGURE 13. Cut-off frequency fc, separating quasi-two-dimensional fluctuations from
three-dimensional ones, normalised by τ−1

u′ , the eddy turnover frequency built on U′b,
versus N ′t .

7.1. The force driving three-dimensionality determines the scalings for the Reynolds
number near Hartmann walls

Three-dimensionality appears whenever viscous or inertial forces exist in the core of
the flow, i.e. outside the Hartmann boundary layers. The nature of these forces was
identified through scaling laws linking the total current injected to drive the flow and
the velocities in the vicinity of the bottom wall (where the flow is forced by injecting
electric current), and the top wall. Driving the flow in this way offers a convenient
way of controlling the external force generating the flow. Scaling laws expressing
the response of the flow to the forcing were written in terms of Reynolds numbers
Reb, Ret, against the forcing intensity measured by Re0. These yield two conclusions
regarding both the average flow and for turbulent fluctuations.

(i) Both quasi-two-dimensional flows and flows where three-dimensionality is driven
by viscous friction in the core obey scaling laws of the form first put forward
by Sommeria (1988): Reb ∼ Re0. We gathered both in a regime which we called
inertialess.

(ii) For flows where three-dimensionality is purely driven by inertia, in particular
turbulent ones, Reb ∼ (Re0)2/3.

7.2. In a channel of height h, three-dimensionality is determined by the ratio of the
length of diffusion of momentum by the Lorentz force lz to h

Momentum diffusion along B is opposed by either viscous or inertial forces and this
determines the thickness lz of the fluid layer where momentum diffuses. If viscous
effects oppose the Lorentz force, then lz∼ l⊥Ha, whereas when inertia opposes it, lz∼
l⊥N1/2. For a channel of height h, two regimes can be distinguished.

(i) If h < lz, eddy currents flow in the top Hartmann layer and the upper wall
is active in the sense that it strongly influences the flow. Ret then scales as
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Ret ∼ Re0(1 − D(Ha)λ2
i Ha−1) in the inertialess regime, and as Ret ∼ (Re0)2/3(1 −

D(N)N−1/2
t ) in the inertial regime. The flow becomes quasi-two-dimensional

in the limit lz/h → ∞. (When the top wall is active, but the flow is still
three-dimensional, inertia also incurs a small correction to the law Reb∼ (Re0)2/3

that further reduces Reb slightly.)
(ii) If h > lz, momentum diffusion does not reach the top wall and only a weak

residual flow exists there. In this sense the top wall is passive and the flow there
satisfies the scaling found by Duran-Matute et al. (2010) of Ret ∼ (Re0)1/2.

These scalings were verified experimentally for two injection scales (λi = 0.1
and 0.3), 1093.3 6 Ha 6 18 222 and Re0 up to 1.03 × 105, which corresponded
to a Reynolds number based on turbulent fluctuations Reb′ of up to approximately
6 × 103. Exponents in the scalings for Reynolds number near Hartmann walls are
recovered both experimentally and from a generic theory so they may be deemed a
universal feature of MHD turbulence in channels. The same may not hold true for
the multiplicative constants, which can be expected to depend on the geometry of the
forcing.

The average flow was found to be in the inertialess regime exclusively when the
flow was steady and to exhibit inertia-driven three-dimensionality in the limit of
Re0→∞. The fluctuating part of the unsteady flow, by contrast, exhibits a transition
between the inertialess regime and the regime of inertial three-dimensionality. This
difference between average and fluctuations singles out a range of forcing intensities
where inertial three-dimensionality due to the forcing affects only the average flow
but not turbulent fluctuations.

7.3. Three-dimensionality was observed independently of the dimensionality of the
forcing

We were then able to track the three-dimensionality due to the electric forcing by
separating symmetric and antisymmetric parts of profiles of electric potential measured
along Shercliff walls. This led us to identify two basic features of low Rm MHD
turbulence.

(i) Diffusion of momentum by the Lorentz force is indeed effective over the
length theorised by Sommeria & Moreau (1982), which we showed to be rather
precisely lz 'N1/2 both for the average flow and for turbulent fluctuations.

(ii) When τ2D(λi) . τU(λi), the asymmetry between the top and bottom wall
introduced by the forcing was dampened out during the energy transfer from
the mean flow to the large turbulent scales. In this case, the trace of the forcing
was mostly borne by the average flow. The features of the turbulence observed
in the flow fluctuations are then reasonably independent of it. In this sense, the
three-dimensionality observed in this regime is intrinsic and not induced by the
forcing.

7.4. Three-dimensionality vanishes asymptotically in the quasi-two dimensional limit
Finally, in the turbulent regimes, we were able to quantify weak and strong
three-dimensionalities, which we first introduced in Klein & Pothérat (2010), both
globally and in a frequency analysis of the flow. This brought further clarification on
the mechanisms driving three-dimensionality.
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(i) The transition between the quasi-two-dimensional and three-dimensional states
of wall-bounded MHD turbulence is a progressive phenomenon controlled
by the true interaction parameter built on the large scales N ′t . It does not
occur at a bifurcation in the space of parameters, unlike in domains with
slip-free boundaries only. Instabilities of individual structures are still most
probably involved in strong three-dimensionality, but both weak and strong
three-dimensionality only vanish in the limit N ′t→∞, and not at a critical value
of N ′t .

(ii) A cutoff scale exists in MHD turbulence, that separates quasi-two-dimensional
scales from three-dimensional ones, as predicted by Sommeria & Moreau
(1982). Its existence could, however, only be confirmed experimentally for
strong three-dimensionality, even though it is expected to be found for weak
three-dimensionality too.

These results give a good idea of the conditions in which three-dimensionality is
to be expected and how it arises. Since no direct measurements in the bulk were
available, the question of how the appearance of three-dimensionality relates to that
of the component of velocity along B was left aside in this particular paper. Its link
to weak three-dimensionality was investigated elsewhere in MHD and non-MHD flows
(Davidson & Pothérat 2002; Pothérat 2012; Pothérat et al. 2013). Two complementary
approaches are currently underway to obtain a precise diagnosis of the flow in the
bulk: one based on numerical simulations of the experiment in its exact configuration,
and the other using ultrasound velocimetry to measure velocity profiles directly. The
question that now remains concerns how the different forms of three-dimensionality
identified affect the flow dynamics, the finer properties of turbulence and in particular
the direction of the energy cascade.
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Appendix. Additional remarks
(a) Intensity of turbulent fluctuations. Physically, the increase of U′b/Ub with λi and

Ha for a given value of Re0 can be understood as follows: turbulent structures
become increasingly two-dimensional when Ha is increased, and all the more
so as they are large (hence, the positive exponent of λi). Energy transfer from
the main flow to them, and through them to smaller scales, is then progressively
impeded by friction in the Hartmann layers (which incurs a dissipation of
the order of −HaρνU′2b /l

2
⊥, on a structure of size l⊥), rather than by Joule

dissipation in the bulk of the flow (of the order of −Ha2ρνU′2b /l
2
⊥). With less

and less dissipation as the flow becomes closer to two-dimensionality, more
energy is retained by turbulent fluctuations. This effect can also be noticed in
high-precision simulations of the flow in a duct past a cylindrical obstacle by
Kanaris et al. (2013).

(b) Validity of electric potential velocimetry in strongly three-dimensional flows. A
remark must be made here on the validity of the velocity measurements near the
top wall in such a strongly three-dimensional flow. Since the current density in
the core is comparable to that in the top Hartmann layer, equation (4.4) becomes
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inaccurate near the top wall. The quantity B−1〈|∇φt|〉 may still be interpreted as
a velocity but represents an average over the upper layer of thickness h − l(N)z ,
rather than the velocity in the vicinity of the top Hartmann layer.

(c) The z-linear variations of electric potential in the Shercliff layers. A z-linear
antisymmetric component of φS(z), by contrast, corresponds to constant and
therefore non-divergent vertical current. Such a current can only be fed by the
Hartmann layers, which connect to the Shercliff layers at the top and bottom
edges of the vessel, not from the core.
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